
Western Washington University Western Washington University 

Western CEDAR Western CEDAR 

WWU Honors College Senior Projects WWU Graduate and Undergraduate Scholarship 

Spring 2021 

Multifunctional Polymer-Nanoparticle Composites for Surface-Multifunctional Polymer-Nanoparticle Composites for Surface-

Enhanced Raman Scattering Applications Enhanced Raman Scattering Applications 

Aliandra E. Pierce 
Western Washington University 

Samantha A. Patrick 
Western Washington University 

Steven R. Emory 
Western Washington University 

Follow this and additional works at: https://cedar.wwu.edu/wwu_honors 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Pierce, Aliandra E.; Patrick, Samantha A.; and Emory, Steven R., "Multifunctional Polymer-Nanoparticle 
Composites for Surface-Enhanced Raman Scattering Applications" (2021). WWU Honors College Senior 
Projects. 489. 
https://cedar.wwu.edu/wwu_honors/489 

This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at 
Western CEDAR. It has been accepted for inclusion in WWU Honors College Senior Projects by an authorized 
administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu. 

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwu_honors
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwu_honors?utm_source=cedar.wwu.edu%2Fwwu_honors%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=cedar.wwu.edu%2Fwwu_honors%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwu_honors/489?utm_source=cedar.wwu.edu%2Fwwu_honors%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


Pierce  1 
 

Multifunctional Polymer-Nanoparticle Composites for Surface-Enhanced Raman 

Scattering Applications 

Aliandra E. Pierce, Samantha A. Patrick, Steven R. Emory 

Western Washington University Department of Chemistry 

Honors Thesis 

 

Abstract. 

To create a multifunctional nanoparticle-based optical sensor, a pH-responsive microgel consisting 

of 20% polystyrene (PS) and 80% poly(2-vinylpyridine) (P2VP) surface-coated with gold 

nanoparticle (NP) seeds was synthesized. The pH-responsive microgel serves as a size-tunable 

scaffold for the assembly of the surface-enhanced Raman scatter active (SERS-active) metal, gold. 

The random copolymer of PS and P2VP (PS20P2VP80) is sterically stabilized by 

poly(ethyleneglycol) methyl ether methacrylate (PEGMA) and lightly crosslinked with 

divinylbenzene (DVB) to allow for reversible pH-swelling over multiple cycles of acid-base 

titration. The ability to swell and de-swell in response to changes in pH allows for the tuning of 

gold NP interparticle distance, consequently affecting the SERS activity. The gold NPs adsorbed 

to the surface of the microgels dramatically enhances the SERS spectroscopy signals depending 

on their size and spacing. Attempts to encapsulate magnetic NPs were accomplished and would 

allow for the extraction of microgels from a sample matrix through applying an external magnetic 

force. These NP-microgel composites are synthesized, characterized, and their SERS-activity is 

demonstrated. 
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1. Introduction 

The Emory and Rider research groups at Western Washington University have been working 

collaboratively to develop a polymer-based system for surface-enhanced Raman scattering (SERS) 

spectroscopy applications. Previous work by these groups has demonstrated the synthesis of a 

random copolymer consisting of 20% polystyrene and 80% 2-vinylpyridine (PS20P2VP80) lightly 

crosslinked with DVB, a polymer ratio that is optimal for forming stable micrometer-sized beads.1  

The average microgel bead diameter of ~275 nm is suitable for future biological imaging 

applications.2  Cellular systems are on the micrometer to nanometer length scale, thus the synthesis 

of structures on this length scale or below is essential for the development of new optical probes 

for biological systems.2 

Surface-enhanced Raman scattering (SERS) is a highly sensitive spectroscopic technique that can 

be used to identify molecules when adsorbed to the surface of metallic nanoparticles (NPs) such 

as gold or silver.3  New imaging methods are sought after by scientists in order to help them study 

a range of problems such as brain function, cancer detection, and quantification of environmental 

contaminants. Nanostructures are currently being utilized for drug delivery, labeling agents, 

sensors, and the enhancement of electromagnetic fields.2  The SERS effect arises most dominantly 

from the uniform oscillations of conduction band electrons in the metallic NPs that give rise to 

localized surface plasmon resonances (LSPR). These LSPR oscillate in resonance with the applied 

electric field of light, enhancing the SERS spectroscopy signal. This electric field amplification 

increases the SERS signal by many orders of magnitude, making metal NPs, and specifically gold 

NPs, a desirable candidate for optical sensors.  

Encapsulating magnetic NPs (Fe3O4, magnetite, SPIONs) within the PS20P2VP80 microgel beads 

would create a multifunctional microgel with the properties of both materials.  Superparamagnetic 
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iron(II,III) oxide nanoparticles (SPIONs) encapsulated within a microgel bead theoretically have 

the unique magnetic, thermal, optical, and electronic properties of magnetic nanoparticles, as well 

as the chemical and physical properties of a polymer matrix (e.g. SERS activity and pH-

swellable).4 Introducing magnetic properties enables active manipulation of the microgel beads in 

complex systems.  For example, the beads could be extracted from environmental samples or 

guided towards specific cellular regions using magnetic fields.  The ability to enrich or direct the 

microgel beads would allow lower concentrations of the particles to be used, and thus improve 

detection sensitivity. 

The project goal is to develop a synthetic route of creating multifunctional microgel beads for 

optical sensing/imaging. To achieve this task, gold NPs will be electrostatically loaded onto the 

surface of the microgels; previous work in the Emory Group demonstrated this process.1  By 

coating the microgel beads with gold NPs, the microgel beads become SERS-active. Encapsulation 

of SPIONs inside polymer microgel beads was attempted using the established emulsion 

polymerization procedure to theoretically produce magnetic polymer microgel beads. Further 

research into this encapsulation method must be done in the future before adsorbing and growing 

AuNPs on the surface of the magnetic-polymeric substrate. 

2. Methods 

2.1.  PS20P2VP80 Microgel Synthesis 

Styrene (PS, 99%, stabilized; Acros), 2-vinylpyridine (P2VP, 97%, stabilized; Acros), and 

divinylbenzene (DVB, 55%; Aldrich) were purified through columns packed with glass wool and 

aluminum oxide to remove inhibitor molecules present within the stock solution that prevent auto-

polymerization. The purified monomers were collected in 20 mL scintillation vials and set aside 
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for later. The emulsion polymerization was carried out within a 100 mL Schlenk flask attached to 

a Schlenk line under a N2 atmosphere. Before purging the flask, the Aliquat 336 surfactant (0.30 

g) and a stir bar were added. PEGMA stabilizer (0.45 g) was dissolved in 10 mL Ultrapure water 

within a 20 mL scintillation vial before its addition to the Schlenk flask. In the same PEGMA vial, 

15 mL portions of Ultrapure water were added two times (for a total of 40 mL H2O) to aid in the 

transfer of PEGMA to the reaction flask. The flask was capped with a septum and cycled onto the 

Schlenk line three times over a period of 15 minutes. After purging the headspace of the Schlenk 

flask, it was lowered into a 70 oC oil bath while stirring at a rate of approximately 350 rpm. A 20 

mL scintillation vial was capped with a septum and a dual needle system was used to purge the 

flask with N2 for 15 minutes. The monomers PS (1.00 mL), P2VP (4.00 mL), and DVB (0.03 mL) 

were injected into the purged scintillation flask using appropriately-sized syringes and needles. 

After swirling the scintillation flask a few times to gently mix the monomers, the monomer solution 

was transferred into the heated reaction flask. An external temperature probe was used to note 

when the oil bath rose back to its initial temperature of 70 oC and the contents of the flask appeared 

homogeneous (no oil droplets on the surface of the solution). An initiator solution containing the 

water-soluble 2,2’-azobis(2-methylpropionamidine) dihydrochloride (AIBA) (0.05311 g) was 

created by dissolving the initiator in 5.00 mL Ultrapure water. This solution was injected into the 

reaction flask, which stirred for 21 h at 70 oC under a N2 atmosphere. The resulting microgels were 

purified three times using an ultracentrifuge set to 10,000 rpm for 10 min each. After each 

centrifugation, the impurities in the top layer were decanted off and the microgels were 

resuspended in ultrapure water. 
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2.2.  AuNP Seed-PS20P2VP80 Synthesis 

In a 50 mL beaker, the previously synthesized PS20P2VP80 microgels (1.00 mL) were diluted in 

Ultrapure water (5.00 mL). A solution of potassium tetrachloroaurate(III)  (98%; Acros) (17.5 mL, 

20 mM) was created and mixed with the contents of the beaker for 1 h. The resulting solution was 

transferred into dialysis tubing and purified in Ultrapure water for 48 h. The dialysis bath water 

was changed every 8-12 h. After 48 h of purification, the solution was removed from the bath and 

an aliquot (1.00 mL) was transferred to a 25 mL beaker. A solution of dimethylamine borane 

complex (DMAB) (55%; Sigma-Aldrich) (5.00 mL, 10 mM) was freshly-made and added to the 

beaker at a rate of 150 mL/s. The resulting solution stirred for 1 h before being transferred to 

dialysis tubing and placed in a dialysis bath for 24 h. The bath water was changed every 8-12 h. 

 

2.3.  Au@AuNP-PS20P2VP80 Microgel Synthesis 

An aliquot of the resulting AuNP Seed-PS20P2VP80 microgels (1.00 mL) was diluted in Ultrapure 

water (13.00 mL). This solution was mixed with sodium citrate (dihydrate, Mallinckrodt 

Chemicals) (250 L, 38.8 mM) for 4 minutes before the dropwise addition of potassium 

tetrachloroaurate(III) (230 L, 25 mM). The resulting solution stirred for 8 min before 

hydroxylamine hydrochloride (J.T. Baker) (340 L, 10 mM) was added at a rate of 10 drops per 

second. The solution stirred for 1 h and was purified through centrifugation for 15 min at 5,000 

rpm. 
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2.4.  Fe3O4-PS20P2VP80 Microgel Synthesis 

SPIONs were synthesized following a procedure by Xu et al.5  The SPIONs (0.37 g) were dissolved 

in the surfactant solution via sonication bath for 45 m. The surfactant solution was created using 

sodium dodecyl sulfate (SDS) (0.214 g) in 8 mL Ultrapure water. The PS20P2VP80 Microgel 

Synthesis procedure was followed using the magnetite-SDS solution as the surfactant rather than 

Aliquat 336. The 8 mL of Ultrapure water used to make the SDS solution was subtracted from the 

total volume of water used to transfer PEGMA to the reaction flask, for a 32 mL addition of 

Ultrapure water rather than the 40 mL total volume of water described in PS20P2VP80 Microgel 

Synthesis.  

 

2.5.  AuNP-loaded Fe3O4-PS20P2VP80 Microgel Synthesis 

The AuNP-loaded PS20P2VP80 Synthesis was followed using a 1.00 mL aliquot of Fe3O4-

PS20P2VP80 microgels in the place of non-magnetic microgels. 

 

2.6.  Characterization 

UV-Vis Spectroscopy.  UV-Vis extinction spectra were acquired using a diode array UV-Vis 

spectrophotometer (Jasco V-670) and 10.00 mm polystyrene cells (Fisher). The AuNP-

PS20P2VP80 microgels were diluted by a factor of 10 before collecting data. 

Atomic force microscopy (AFM).  AFM data were collected on a low-power microscope stage (TS-

300/LT) with a Nikon Eclipse Ti-U camera attachment. Images were acquired using tapping mode 

with a scan rate of 1.00 Hz, 512 samples per line, and the ScanAsyst Auto Control settings 
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activated. Samples were prepared by allowing a 10 L aliquot to dry on a coverslip, which was 

then taped to a microscope slide before placing it in the instrument. 

Scanning transmission electron microscopy (STEM).  STEM data were collected on a JEOL Field 

Emission scanning electron microscope (JEOL SM-13020RLV). Sample preparation consisted of 

dropping a 2-5 L aliquot onto a carbon 300 mesh copper TEM grid (Formvar) and allowing it to 

dry before STEM imaging. 

Energy-dispersive x-ray spectroscopy (EDS).  EDS data were collected on a JEOL Field Emission 

scanning electron microscope (JEOL SM-13020RLV). Sample preparation consisted of dropping 

a 2-5 L aliquot onto a carbon 300 mesh copper TEM grid (Formvar) and allowing it to dry before 

EDS analysis. 

Raman microscopy.  Raman scattering data were collected on a Renishaw inVia confocal Raman 

microscope using the x50 L objective lens and a 633 nm He-Ne laser source. A Renishaw Centrus 

2NA004 detector was used. For image mapping, the scan type was set to static, the exposure time 

was 0.500 s, and one accumulation was acquired. 

3. Results and Discussion. 

The PS20P2VP80 microgels were studied through atomic 

force microscopy (AFM). Using tapping mode, the 

microgels were found to have a narrow size distribution 

with a diameter of approximately 275 nm (Figure 1). The 

emulsion polymerization proceeded using 20% styrene 

and 80% 2-vinylpyridine because previous studies by 

Curtis et al. showed that this ratio was optimal for pH-

 

Figure 1.  AFM image of PS20P2VP80 

microgels acquired using the tapping 

mode setting. 
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swelling and contracting over several acid-base titration cycles.1 As the pH is decreased, the basic 

nitrogen on the pyridyl groups become protonated, causing the microgels to swell. The DVB 

crosslinker holds the microgel together, allowing it to swell and contract without losing its form. 

A graduate student in the Emory group previously found that the diameter of the microgels under 

acidic conditions could increase up to approximately 720 nm, on average, and that the swelling 

occurred in all three dimensions.6  These sterically stabilized microgel beads were found to act as 

a scaffold for metal NP absorption to their surface. Anchoring SERS-active metal NPs on a 

polymer substrate increases their stability and sensitivity and improves reproducibility in SERS 

studies.  

The PS20P2VP80 microgels were loaded with Au NP seeds using potassium tetrachloroaurate(III) 

and DMAB reducing agent. In the first step of the reaction, Au3+ ions were electrostatically loaded 

onto the microgels, where the addition of DMAB reduced 

them to Au(0) NP seeds on the microgel surface. During 

this process, the gold anions coordinated to the basic 

nitrogen on the pyridyl groups within the random 

copolymer microgel beads. Upon analysis of the STEM 

image, the diameter of each NP was found to be 

approximately 15 nm, and the interparticle distance was 

calculated to be 10 nm on average (Figure 2).6  

Another addition of potassium tetrachloroaurate(III) along with the weak reducing agent, 

hydroxylamine hydrochloride, promoted Au growth on the previously adsorbed Au seeds rather 

than new nucleation. These Au@AuNP-PS20P2VP80 microgels were the intended composite 

material for SERS spectroscopic signal enhancement in this work. The Au@AuNP-PS20P2VP80 

 

Figure 2. SEM image of AuNP seeds 

adsorbed to the surface of the 

PS20P2VP80 microgels. The diameter of 

each AuNP was measured to be 15 nm, 

and the AuNP interparticle distance 

was calculated to be 10 nm. 

100 nm
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microgels were studied using STEM to confirm their morphology and EDS to confirm elemental 

composition. The STEM data revealed that the AuNP-seeds on the surface of the microgel beads 

had grown from ~15 nm to approximately 35 nm while the interparticle distance decreased from 

10 nm to 0.5 nm (Figure 3).6   This decrease in interparticle distance is known to increase the 

SERS-activity and can be controlled further through 

tuning the sample pH, and consequently the diameter of 

the microgels. The EDS spectrum confirmed the 

elemental composition, with large peaks corresponding to 

C and Au (Figure 4).6 The signal from C atoms arose from 

their presence in the random PS20P2VP80 copolymer. The 

large signal from Au was due to the NPs grown on the 

surface of the microgel beads. The EDS spectrum 

confirmed the assumption that the NPs in the STEM 

image were AuNPs.  

The Au@AuNP-PS20P2VP80 microgels were then used 

for SERS enhancement studies by Raman microscopy. A 

1 M crystal violet (CV) solution was made by dissolving 

CV powder in ethanol. This CV solution (20 L) was 

mixed with Au@AuNP-PS20P2VP80 microgels (200 L) 

for 30 min before being deposited on a glass coverslip for SERS spectroscopy. The sample was 

imaged under the Raman microscope and a spectrum was acquired (Figure 5). The CV peak at 

1177 cm-1 was of particular interest due to its intensity and impressive signal-to-noise ratio; the 

intensity of this peak was mapped across a rectangular area of the sample image (Figure 6). The 
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Figure 4.  EDS spectrum of the 

Au@AuNP-PS20P2VP80 microgels. The 

largest peaks in the spectrum are due 

to the presence of C and Au. 

Figure 3.  SEM image of Au@AuNP-

PS20P2VP80 microgels. The NP 

diameter was found to be 35 nm, and 

the interparticle distance between each 

NP cluster was calculated to be 0.5 nm. 

The scale bar represents 100 nm. 

100 nm
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signal-to-noise ratio of the vibrational peaks in the 

Raman spectrum were phenomenal considering the use 

of a low concentration CV solution (1 M), using ten 

times more microgel solution than CV solution in the 

volume of sample mixture, as well as acquiring the image 

using relatively low power from the He-Ne laser with 

only a 1 s integration time (Figure 6A). When mapping 

the 1177 cm-1 peak intensity across the sample image, the 

resolution of the map was limited by the spot size of the 

laser. In the rectangular intensity map, the laser hit the 

sample 175 times, creating a 5-pixel by 35-pixel raster image (Figure 6B). Brighter yellow pixels 

indicate a higher intensity of the peak signal. From this intensity map, it was found that the SERS 

signal was localized on the AuNPs. The localized surface plasmon resonance of each AuNP 

enhanced the Raman signal intensity through the coherent oscillation of these surface plasmons 

resonant with the wavelength of the 633 nm He-Ne laser excitation source.  

 

 

Figure 5.  Raman spectrum of CV in 

ethanol (1 M, 20 L) mixed with 

Au@AuNP-PS20P2VP80 microgels (200 

L). Blue peaks are CV, red peaks are 

from the microgels. Spectrum was 

acquired using a He-Ne laser at a 

power of 1,2000 W/m2 for an 

integration time of 1 s. 
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Figure 6. Raman microscope image of a CV and Au@AuNP-PS20P2VP80 microgel mixture. A) depicts 

the sample, and B) depicts the 1177 cm-1 peak intensity from Figure 5 mapped across a 5 x 35-pixel 

rectangle of the sample. 
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After proving the SERS enhancement capabilities of the Au@AuNP-PS20P2VP80 microgel system, 

the next goal was to introduce a magnetic component to the microgels to create a NP-based 

detection system that could be extracted magnetically from a sample matrix. SPIONs were 

synthesized and dispersed in the SDS surfactant solution to create an initial emulsion of SPIONs, 

which was predicted to improve encapsulation efficiency. The emulsion polymerization 

theoretically created a PS20P2VP80 microgel with SPIONs encapsulated in the core of the polymer 

beads (Scheme 1).   

 

 

Before encapsulation attempts, the SPIONs were characterized by powder XRD and Raman 

spectroscopy. The XRD pattern of the SPION sample matched with the Fe3O4 reference pattern, 

confirming the identity of the SPION crystals (Figure 7). The diameter of the crystal lattice was 

calculated to be 6.3 nm using Bragg’s Law. The optimal diameter of Fe3O4 crystals is 7-10 nm 

because it has been reported that this size range is good for minimizing the effect of moment 

reduction.5 The diameter of the experimentally-produced 

magnetite was 0.7 nm short of this optimal range, but still 

close in size. The Raman spectrum of the Fe3O4 sample 

showed a large peak at 674 cm-1, which is redshifted 4 

wavenumbers from the literature value of 670 cm-1 for 

magnetite, but is still within a close range of the expected peak 

location (Figure 8).7  

Scheme 1. Magnetite encapsulation into PS20P2VP80 microgel beads. 

 

Figure 7. Powder XRD pattern 

of Fe3O4 crystals. 
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The magnetite-encapsulated microgels were purified by 

magnetic extraction and studied using an optical microscope. 

The sample was found to have a large size distribution of 

microgel particles (Figure 9). This is in stark contrast to the 

uniform size of the nonmagnetic PS20P2VP80 microgels 

studied by AFM (Figure 1). It was found that there were three 

distinct microgel size groups. The first group was the ‘mega’ 

particles with diameters of 10 microns, approximately. A small particle group existed where each 

structure was less than one micron in diameter. The mid-sized particles appeared to be between 

one and five microns and were susceptible to an applied magnetic field. When the optical image 

was acquired, the sample solution was suspended between two coverslips to delay the evaporation 

process. A neodymium magnet was passed back and forth along the sample stage, where the mid-

sized particles reacted by rocking back and forth in sync 

with the magnet. This showed that, in at least one size 

population, magnetite was able to be encapsulated in 

PS20P2VP80 microgels. Future work must be done to 

improve the encapsulation methods to fix the large size 

distribution of microgels created, as well as the uneven 

loading of magnetite into their cores.  
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Figure 8. Raman spectrum of the 

Fe3O4 sample. 

 

Figure 9. Optical microscope image of 

magnetite-encapsulated PS20P2VP80 

microgels. Image was acquired at 80x 

magnification. 
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4. Conclusions 

A pH-swellable random copolymer of PS20P2VP80 was synthesized, characterized, and found to 

have a diameter of 275 nm at basic pH levels. Using this polymer substrate, AuNP seeds were 

loaded onto the surface where they acted as anchors for another addition of AuNPs to grow on. It 

was demonstrated that the AuNPs could grow to 35 nm on the microgel surface while maintaining 

the microgel’s ability to swell and de-swell in response to changes in pH.6 These Au@AuNP-

PS20P2VP80 microgels were used to enhance the Raman signal through the SERS effect. A 

magnetic component was attempted to be incorporated into the multifunctional microgel system 

but was found to have an uneven encapsulation efficiency over the different microgel sizes in the 

sample solution. Future work will be done to improve this magnetite-encapsulation procedure so 

that AuNPs may be grown on the surface of PS20P2VP80 microgels with SPIONs in their cores. 
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