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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) arose as a novel virus

in Wuhan China in December 2019. Then, as it rapidly spread across the world, it was declared a

global health emergency by the World Health Organization in March 2020. SARS-CoV-2, the

causative agent of coronavirus disease 2019 (COVID-19), has dramatically disrupted both

normal life and the economy. In the past year and a half, there have been over 175 million cases

globally1 (as of June 15, 2021). High death rates, disruption to education, and widespread job

loss has necessitated the desperate need for a vaccine against SARS-CoV-2. A vaccine against

SARS-CoV-2 will significantly reduce the spread of COVID-19 and enable a safe return to

pre-pandemic social life. Across the world, money and research have been poured into the

vaccine, resulting in the fastest vaccine development in history. The Pfizer-BioNtech mRNA

vaccine, one of the first widely available vaccines, was approved by emergency authorization in

Britain on December 2, 2020, and then by the Food and Drug Administration (FDA) in the

United States on December 11, 2020. Soon after, on December 18, the Moderna vaccine, another

mRNA vaccine, was also approved for emergency use2. There are several different vaccines in

production and under development, but the focus of this paper is specifically on the Pfizer and

Moderna mRNA vaccines, and the antibody responses these vaccines elicit based on the use of

the spike protein as an antigen. The binding of antibodies, generated through vaccination, to the

spike protein of SARS-CoV-2 effectively neutralizes the virus, and understanding the details of

the interactions between the spike protein and different antibodies is essential for understanding

the specifics of the immune response to SARS-CoV-2 upon which the vaccine is based and the

effect novel variants may have on the effectivity of the vaccine.



Basic Biology of SARS-CoV-2

The SARS-CoV-2 genome was first published on January 10, 2020. SARS-CoV-2 is a

Betacoronavirus, belonging to the same genus as SARS-CoV-1 and Middle-East Respiratory

Syndrome Coronavirus (MERS-CoV) as well as two common cold coronaviruses, HCoV-OC43

and HCoV-HKU13,4,5. The SARS-CoV-2 virus is an enveloped positive sense RNA virus. It

consists of a helical ribonucleocapsid complex made of nucleocapsid proteins and the messenger

RNA (mRNA) sequence which holds all of the essential genes for the virus surrounded by a

membrane which protects the mRNA and allows the virus to fuse with the membrane of host

cells. The membrane of the virus is populated with proteins, including the famed spike protein

which allow the virus to bind to host cells. SARS-CoV-2 has four structural proteins and 16

nonstructural proteins. The four structural proteins include the membrane protein which

organizes the formation of the viral membrane, the envelope protein, which like the membrane

protein is incorporated in the viral membrane and helps facilitate new viral assembly, the

nucleocapsid protein, and the spike protein3 (Fig. 1). By October 2020, the structures of more

than half of the SARS-CoV-2 proteins had been determined using Cryo-Electron-Microscopy

(Cryo-EM) and X-ray crystallography.

Figure 1: Schematic representation of a SARS-CoV-2 virus (created  using BioRender). The four structural proteins

are labeled.



Viral Life Cycle

SARS-CoV-2 invades host cells and utilizes host cell components to replicate, producing

new virions which can spread to and infect other cells (Fig. 2). The SARS-CoV-2 spike protein,

which is expressed on the outside of the viral membrane, binds to receptors on the host cell

membrane. After the spike protein binds to the host cell, the virus either fuses with the host cell

membrane and the viral mRNA is released into the host cell, or the virus is engulfed into the cell

through endocytosis5. Once inside the host cell, the viral mRNA is released from the membrane

and uncoated from the nucleocapsid proteins5. Ribosomes in the cell then translate the viral

mRNA into proteins.

Figure 2: Complete viral life cycle of SARS-CoV-2. Entry by membrane fusion is not shown. source: Chilamakuri,

R. & Argarwal, S. (2021). COVID-19: Characteristics and therapeutics. Cells. 10(2).

https://doi.org/10.3390/cells10020206



The first open reading frame (Orf) of the viral genome to be translated is Orf1ab.

Translation of Orf1ab produces polyprotein a and polyprotein ab which encode the 16

non-structural proteins (nsps)5,6. These polyproteins are cleaved by proteases from nsp3 and

nsp5, contained in the downstream region of the genome. Cleavage of the polyproteins results in

the nonstructural proteins which make up the replication and transcription complex (RTC),

including the RNA-dependent RNA polymerase (RdRP)6. The viral RNA is then replicated to

generate new mRNA which is packaged in new viruses or translated into new viral proteins.

Discontinuous negative strand synthesis from the 3’ end of the viral genomic mRNA produces

nested mRNAs which are translated into structural and accessory proteins5.  Membrane and

envelope proteins interact with the host cell endoplasmic reticulum (ER) to initiate the formation

of new viral envelopes and the engulfment of newly replicated mRNA, prompting the generation

of new virions. The new virions then exit the cell through exocytosis5.

Structure of the Spike Protein

The spike protein is a homotrimeric glycoprotein expressed on the outside of the

SARS-CoV-2 viral membrane. Many studies have been done to elucidate a detailed image of the

molecular structure of the spike protein through the use of Cryo-EM and X-ray crystallography.

The spike protein has two distinct subunits, the S1 subunit and the S2 subunit7,8. The S1 subunit

is the receptor binding fragment while the S2 subunit is the fusion fragment. The S1 subunit is

located on the top of the spike protein and protects the prefusion S27. The S1 subunit contains an

N-terminal domain (NTD), the receptor binding domain (RBD), and two C-terminal domains

(CTD)7. The S2 subunit is made of a central helix (CH), comprised of a three-stranded coiled

coil, connected by the connector domain to the C-terminal heptad repeat 2 (HR2), heptad repeat



1 (HR1), the fusion peptide (FP), which becomes inserted in the host cell membrane, and a

transmembrane segment (TM) which anchors the spike protein in the viral membrane7.

Figure 3: (A) Cartoon representation of the spike protein structure. Each domain is labeled and highlighted in a

different color. (B) Schematic representation of the expression construct of the full-length SARS-CoV-2 spike

protein. Glycans are represented by the tree-like symbols in black. Source: Cai, Y., Zhang, J., Xiao, T., Peng, H., &

Sterling, S. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science, 369(6511).

https://doi.org/10.1126/science.abd4251

The spike protein has 22 glycans, or polysaccharide chains, on each trimer3. It has been

suggested that N-linked glycans on the surface of the spike protein may have a function in

inducing non-neutralizing antibodies in order to evade the immune system by shielding critical

epitopes from other neutralizing anitbodies3,7, a function that has been seen in HIV and influenza

viral proteins7. Additionally, the presence of glycans may contribute to the conformational

stability of the RBD3.



The receptor binding domain of SARS-CoV-2 binds to the peptidase domain of

angiotensin-converting enzyme (ACE2), a receptor protein expressed on the surface of host cells.

The high affinity between ACE2 and the SARS-CoV-2 spike protein has been suggested to

contribute to the high transfectability of the virus7. As described by Papageorgiou and Mohsin in

a review of the SARS-CoV-2 spike protein, “The RBD is characterized by a twisted

five-stranded antiparallel β-sheet with a long insertion between β4 and β7”. This insertion

interacts with two loops in the N-terminal peptidase domain of ACE2 in RBD binding to ACE2 3

(FIG. 4A). The RBD can be in either an up or down position (Fig. 4 B&C). The down position is

receptor-inaccessible and is more stable, while the up position is receptor-accessible and less

stable7. When the RBD binds to ACE2 and all RBDs are in the up position, the spike protein

undergoes a conformational change which allows membrane fusion to occur7.

Figure 4: (A) The insertion between β4 and β7 of the RBD, shown in green, interacts with ACE2. PDB ID: 6LZG.

RBDs, highlighted in green, on the spike protein in the (B) three down and (C) two down, one up conformations.

The RBD in the up position is shown in yellow. PDB ID: 6XM5 and 6XKL.



Conformation Change of the Spike Protein

The spike protein has two different conformational shapes, a pre-fusion conformation and

a post-fusion conformation. The pre-fusion conformational state is metastable, while the

post-fusion conformation state is stable7. RBD binding to ACE2 leads to a 3-RBD-up

conformation7. When all three RBDs are in the up position, the spike protein is highly unstable.

This increased instability causes the S1 subunit to dissociate from the S2 subunit, subsequently

causing the S2 subunit to change conformation3,7,8. Cleavage of the S1/S2 cleavage site also

contributes to the complete dissociation of the S1 subunit7. When the S1 subunit dissociates, the

S2’ cleavage site adjacent to the fusion peptide is exposed1 and cleaved by host cell proteases,

transmembrane serine protease TMPRSS2 or cysteine proteases cathepsin B and cathepsin L5,6,7.

This cleavage releases the fusion peptide3. Additionally, in the transition between pre and

post-fusion states the HR1 domain of the S2 subunit flips and HR2 folds back, inserting the

fusion peptide in the host cell membrane and allowing the fusion peptide and the transmembrane

segment to become in close proximity and facilitate membrane bending during fusion7. The

conformational change of the spike protein from a metastable pre-fusion to a stable post-fusion

conformation allows viral fusion to overcome the kinetic energy barrier of membrane fusion, and

proceed in a thermodynamically favorable manner7.

Spike Protein Based mRNA Vaccines

The Food and Drug Administration has authorized the emergency use of three vaccines

against COVID-19 in the United States. Two of those vaccines are the Pfizer-BioNTech

(BNT163b2) and Moderna (mRNA 1273) mRNA vaccines. These mRNA vaccines are

comprised of a mRNA molecule which codes for a modified spike protein encased in a lipid

nanoparticle. The lipid nanoparticle protects the mRNA sequence from degradation by host



enzymes13 and facilitates its delivery to host cells. The mRNA within the Pfizer and Moderna

vaccines encodes a full-length SARS-CoV-2 spike protein with two stabilizing proline mutations

in the C-terminal domain of the S2 subunit8,9.

Once the vaccine is administered, the lipid nanoparticle is taken up by a host cell, and

using host cell ribosomes, the mRNA it contains is translated into spike proteins2. The spike

proteins and spike protein fragments made by the cell are then presented on the cell surface

where they are able to be recognized by the immune system2. Essentially, mRNA vaccines use a

mRNA transcript to produce a spike protein in order to elicit a neutralizing antibody response

and file SARS-CoV-2 in the immune system’s memory. Due to its role in receptor binding and

fusion, the spike was identified as an antigenic target early in the pandemic8.

The immune system works to recognize and respond to foreign materials, such as the

spike proteins now expressed by cells in a vaccinated individual, through a complex pathway

involving many different cell types (Fig. 5). If a cell expressing spike proteins dies, an

antigen-presenting cell may take up spike proteins and fragments from the cell debris. The

antigen-presenting cell then digests the spike protein and presents the spike protein fragments on

its surface to be recognized by helper T cells. Helper T cells are activated by the antigens

presented on the surface of the antigen-presenting cells, and activated helper T cells may

function to activate either killer T cells or B cells. Activated killer T cells target and kill cells that

have been infected. B cells interact with spike proteins on the surface of an infected, or

vaccinated, cell, and if activated by helper T cells will either secrete soluble antibodies against

the spike protein or will proliferate into memory cells. Memory B cells become a part of the

innate immune system until activated by a specific antigen, such as the spike protein, which

causes them to become active and secrete antibodies. Antibodies produced by the B cells will



respond to the presence of the virus, neutralizing it by marking virions for destruction, and in

some cases, preventing them from binding to the ACE2 receptor. A rapid immune response to the

virus prevents infection and decreases viral load, reducing transfectability.

Figure 5: The immune system response elicited by the mRNA vaccine (created using BioRender).

In a study on mRNA vaccine-elicited antibodies, Zijun Wang et al. found that the mRNA

vaccines provoke a very similar B cell memory immune response as natural infection by

SARS-CoV-210. Furthermore, the antibodies produced by individuals given either the Pfizer or

Moderna vaccine were almost identical10. These findings allow antibodies produced by natural

infection in COVID-19 patients to be considered in analysis of antibody-spike protein

interactions elicited by either mRNA vaccine.

Spike-Protein Antibody Interactions

Using serum from convalescent COVID-19 patients, researchers have identified many

monoclonal neutralizing antibodies against the SARS-CoV-2 spike protein. Additionally,



multiple overlapping epitopes have been identified on the spike protein, the majority of which

are located on either the RBD or the NTD13. Antibodies that target the RBD have been found to

be more potently neutralizing against SARS-CoV-2 than antibodies targeting the NTD or other

regions of the spike protein, as blocking the SARS-CoV-2 RBD from binding with ACE2

prevents viral entry to the host cell10,13. Wu et al. expressed the SARS-CoV-2 RBD to isolate B

cells from COVID-19 patients. From this experiment they found four neutralizing antibodies,

B5, B38, H2, and H4 which bound specifically to the RBD of SARS-CoV-2 and not to the RBD

of SARS-CoV-1. Antibody specificity for SARS-CoV-2 suggests that the two SARS viruses

have different epitopes within their RBDs11. The spike proteins of SARS-CoV-2 and

SARS-CoV-1 share 77.5 percent amino acid sequence identity, while the spike proteins of

SARS-CoV-2 and MERS share only 31 percent sequence identity4. These differences in sequence

account for the binding of unique antibodies. The B38 antibody was also identified in a proteome

microarray experiment conducted by Hongye Wang et al, and further assays showed that the B38

and H4 antibodies compete with ACE2 for binding with the RBD11,12.

The B38 antibody interacts with 36 residues in the RBD, 15 with the light chain of the

antibody and 21 with the heavy chain3,11. Eighteen of the RBD residues that interact with B38

also are a part of the 21 residues on the RBD which have been found to interact with ACE211

(Fig 6), strong evidence showing binding competition between ACE 2 and B38. The interaction

between the spike protein RBD and the B38 antibody is based mainly on hydrophilic

interactions3. Using the PyMOL measurement tool, 14 potential hydrogen bonds were found

between the side chains of B38 and the previously identified 36 interacting residues of the RBD.

Potential hydrogen bonds were identified by measurements of 2.5-4.0Å between oxygen and

nitrogen atoms of the side chains (Fig. 7).



Figure 6: (A) The 21 residues on the RBD that interact with ACE2 are colored in. PDB ID: 6LZG. Cyan residues are

specific to interaction with ACE2. Green colored residues interact with both ACE2 and (B) B38. PDB ID; 7BZ5.

Figure 7: Representative images of the hydrogen bonds between the RBD and B38. Side chains are colored by atom

and potential hydrogen bonds are shown with dashed lines.



Mice infected with COVID-19 and given either B38 or H4 had significantly lower

amounts of viral RNA three days post-infection than mice in the control group that were not

given B38 or H4 antibodies11 (Fig. 8), demonstrating the neutralizing capacity of these two

antibodies.

Figure 8: Viral RNA copies measured by q-RT-PCR in mice lungs  treated with B38, H4, or phosphate buffered

saline (PBS) 3 days post-infection with COVID-19. source: Wu, Y., Wang, F., Shen, C. et al. (2020). A

noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2.

B38 and H4 bind to different, but overlapping epitopes on the RBD11, as can be seen in

the PyMOL alignment in Figure 9A. In a competition assay for B38 and H4, Wu et al. found that

after saturation with the first antibody, the second antibody still bound to the RBD, which shows

that B38 and H4 are noncompetitive11. A BLAST alignment of the B38 and H4 Fabs shows

several differences between the two antibodies in both the heavy and light chains (Fig. 9B),

consistent with previous evidence for distinct epitope recognition.



Figure 9: (A) PyMOL alignment of B38 and H4. RBDs are aligned. PDB ID: 7BZ5 and 6ZH9. (B) BLAST

alignment of B38 and H4 heavy chains. (C) BLAST alignment of B38 and H4 light chains. Variable residues are

highlighted in the BLAST alignments..



A PyMOL alignment and BLAST alignment was also done between B38 and C105 (Fig.

10), an antibody isolated from the plasma of a COVID-19 patient via ELISA4. C105 shares an

epitope with B38 and forms a complex with the spike with either 2 or 3 RBD in the up position,

in which an antibody binds to each RBD in the up position. The heavy chains of B38 and C105

are derived from the same gene, VH3-53, but the light chains are derived from different genes,

KV1-9 and LV2-8 respectively4. This difference can be seen in the BLAST alignment of B38 and

C105. Researchers have observed an overexpression of IGHV3-53 and IGHV3-30 derived

antibodies among anti-SARS-CoV-2 mAbs4,13 produced by both natural infection and

vaccination10. This finding suggests that the memory B cell response to the spike protein is

relatively similar between natural infection and vaccination and across the Pfizer and Moderna

vaccines.

Figure 10: (A) PyMOL alignment of B38 and C105. PDB ID: 7BZ5 and 6XCA. (B) BLAST alignment of B38 and

C105  heavy chains. (C) BLAST alignment of B38 and C105 light chains. Variable residues are highlighted.



The Future of mRNA Vaccines

The development of the Pfizer and Moderna mRNA vaccines, in addition to being a key

to moving forward against the COVID-19 pandemic, also marks the first use of mRNA vaccines

in humans. The use of mRNA vaccines has huge potential for future vaccine development in

increasing the efficiency of vaccine production, the potential targets for vaccination, and the

effectiveness of the vaccines produced. A significant advantage of mRNA vaccines is that they

can be produced completely in vitro9, and can be manufactured in a extremely short time relative

to other live attenuated vaccines. mRNA vaccines inherently have a copy and paste design in

which the mRNA in the lipid nanoparticle can easily be modified to address different variant

strains and novel mutations which may arise within a virus. Such variants can already be seen in

SARS-CoV-2. Knowledge of the spike protein structure in addition to identification and

characterization of different neutralizing antibodies that bind SARS-CoV-2 and different epitopes

on the SARS-CoV-2 spike protein is essential for further vaccine development, improvement,

and modification.
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