May 2nd, 10:30 AM - 12:00 PM

Drill, baby, drill: Invasive oyster drills are the main driver of native oyster mortality at a restoration site

Emily Grason
University of Washington, egrason@uw.edu

Eric Buhle
NOAA Northwest Fisheries Science Center

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Grason, Emily and Buhle, Eric, "Drill, baby, drill: Invasive oyster drills are the main driver of native oyster mortality at a restoration site" (2014). Salish Sea Ecosystem Conference. 77.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Invasive oyster drills are the main driver of native oyster mortality at a restoration site

EMILY W. GRASON
Department of Biology
University of Washington
egrason@u.washington.edu

&

ERIC R. BUHLE
Northwest Fisheries Science Center
National Marine Fisheries Service
NOAA
A New Landscape for Oyster Recovery

H. sapiens S. alterniflora C. gigas O. inornata
Japanese Oyster Drills - *Mollusca Non Grata*

- No planktonic dispersal
- Associated with historic oyster culture sites

Ocenebra inornata

- Taylor Shellfish: $500k per year on control
- Consume up to 1/3 of outplanted Olys (Buhle et al. 2009)
A predator of my predator is my friend

Native Cancrids

?

Ocenebra inornata

?

Ostrea lurida

Ostrea lurida

Cancrids?
A predator of my predator is my friend…?

...or just another predator.
Restoration at Liberty Bay

Photo: Brian Allen
Field Manipulation of Predators

Drills Enclosed

Drills Excluded

Ostrea lurida x 10
Field Manipulation of Predators

Drills Enclosed

Crabs Excluded

Drills Excluded

Crabs Allowed

n = 5
April – Aug 2011
Field Manipulation of Predators

Drills Enclosed

Crabs Excluded

Drills Excluded

Crabs Allowed

No Cage Control

n = 5
April – Aug 2011
Field Manipulation of Predators
GLMMs of Predator Effects

- Crabs Allowed
- Number of Drills
- Month
- Cage (Random)

Generalized Linear Mixed-effects Model

• Oyster Survival
• Drilling Rate: How many oysters were killed by drills per day?

Model Averaging & Variable Weighting

Information Theory (AICc)
Which parameters appear in the best models?

Variable Weight: 0 - 1
Oyster survival varies by season

Variable Weight
Month: 1.0
Drills Reduce Oyster Survival

Variable Weight

Month: 1.0
Drills: 1.0

Month X Drills: 0.05
Crabs Increase Oyster Survival

Variable Weight

- Month: 1.0
- Drills: 1.0
- Crabs: 0.89

Crab X Month: 0.11
Month X Drills: 0.05
Predators interact additively

Variable Weight
Month: 1.0
Drills: 1.0
Crabs: 0.89
Crab X Drills: 0.19
Crab X Month: 0.11
Month X Drills: 0.05
Ambient predator effects vary
Drilling rates vary seasonally

Variable Weight

Month: 1.0
Drill Num.: 1.0

Crabs: 0.33
Crab X Drills: 0.09
Crab X Month: 0.04
Month X Drills: 0.09
Crabs only reduced drills in August

only treatments where drills were included in cages
Drill feeding rates mirror mortality

Per capita drilling rate (no. oysters drill$^{-1}$ d$^{-1}$)

Crabs Excluded

Crabs Allowed

drills = Average of Initial and final number
Drills are major drivers of oyster success
Crabs are not bad news for oysters!
Recommendations

• Avoid drills at restoration sites
• Research density/size refuge for oysters
Many, many thanks are due to...

Puget Sound Restoration Fund

<3 Shore Access and Hospitality <3

Gitch and Yungkeit Families

Oyster Master
Joth Davis

Field and Lab Support

• Jennifer Ruesink
• Greg and Molly Jackson
• Avanthi Jayasuria
• Nima Yazdani
• Marie Clifford
• Matt Flora-Tostado

Thirsty for more?
Rahrahradula.blogspot.com
egrason@u.washington.edu