Does adaptation to harsh environments provide protection against parasites?

Arielle Michaelis
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Higher Education Commons

Michaelis, Arielle, "Does adaptation to harsh environments provide protection against parasites?" (2019). Scholars Week. 29.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Summary
Parasite-host relationships may be impacted by variation in the abiotic environment, particularly when the host species’ range includes both moderate and extreme climates. Parasites might not be able to tolerate both climates, resulting in adaptation by the host to harsh environments being a potential strategy to reduce parasitization. We studied parasitization of snowberry flies by a specialist parasitoid, the braconid wasp *Diachasma* sp., in both western and eastern Washington populations. In the relatively harsh environment east of the Cascades, desiccation resistance is a necessary trait for snowberry flies to survive. In order to investigate the success of the parasitic wasp in this harsh environment, we measured rate of parasitization and compared initial and final weights after a desiccation experiment. We found that parasitization rate is more variable in Eastern WA sites, an environment east of the Cascades is drier, indicating a drier climate.

Introduction

- The Cascade mountain range divides Washington into the western wet and mild climate and the eastern relatively harsh and dry climate.
- Snowberry flies infest snowberry plants on both sides of the Cascades; previous work showed that eastern flies are more desiccation resistant.
- The specialist braconid parasitoid *Diachasma* lays its eggs inside of snowberry larva while it is still in the fruit (Figure 2).
- It was unknown if the parasitoid matches the fly’s adaptation to dry conditions or whether WA east of the Cascades presents a refuge for the dry adapted flies.

Methods

1. **Collection**
 - The female snowberry fly oviposits eggs into the fruit; larvae may or may not become parasitized by the braconid wasp as they feed on and grow inside the berries.
 - Larvae emerge and burrow into the soil to pupariate.
 - We collect the fruit before emergence in order to immediately capture emerged larvae.

2. **Treatment**
 - Pupariating larvae (collected <12 hrs after leaving the fruit) are subjected to an 8-day, 43% relative humidity (RH) treatment at 21℃ directly after emergence.
 - Individuals are weighed before and after treatment.
 - Pupae are frozen post treatment.

3. **Dissection**
 - Pupae are dissected to determine whether or not they had been parasitized; Figure 2 shows a dissected puparium with the developing parasitic wasp inside (bottom photo) and an unparasitized developing fly (top photo).

Results

- Parasitization Rate

 - Parasitization rate appears to be more variable and lower on average in the relatively harsh environment east of the Cascades.

- Comparing Weights: Pre and Post Desiccation Treatment

 - Before treatment parasitized fly larvae weigh less than unparasitized larvae (p < 0.001)
 - This results in smaller puparia which are less resistant to desiccation due to their unfavorable surface area to volume ratio.
 - Confirming previous findings, flies east of the Cascades lose proportionally less weight during the desiccation experiment.
 - Parasitoid proportional weight remaining correlates with the trend seen in flies.

Conclusions

- Parasitization rate is less uniform and on average lower at sites east of the Cascades.
- Parasitized larvae are initially smaller and may therefore provide less protection from desiccation to the parasitoids.
- Desiccation resistance of flies and parasitoids is correlated, suggesting that parasites are similarly adapted to more arid climates.

Acknowledgements

Special thanks to Dietmar Schwarz for making this project possible. Thank you, Weston Staubus, for helping with project planning and data analysis. Funding was provided by USDA.