May 15th, 9:00 AM - 5:00 PM

Finding climatologically teleconnected sites with a network of tree ring chronologies

Hannah LaGassey
Western Washinton University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Higher Education Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Objective
- Identify existing tree ring chronologies that correlate with August streamflow of the North Fork Nooksack River.

Background
- Trees act as proxy climate records, allowing us to reconstruct past climate and climate-driven phenomena like streamflow. In the Pacific Northwest, dendrochronologists can extend records hundreds of years into the past, providing vital context for present and future conditions.
- Each tree species responds to climate fluctuations in a unique way:
 - Including multiple species in reconstruction models allows us to explain more variance in paleorecords, increasing the accuracy of these records.
- This study identifies existing tree ring chronologies within 100km of the North Fork Nooksack watershed and assesses their viability for dendrochronological reconstruction of North Fork Nooksack August streamflow.
- I include 37 tree ring chronologies available from the International Tree Ring Data Bank, consisting of 8 tree species.

Methods
- **Tree ring chronologies**
 - Detrend with a 50-year spline
 - Remove age-related growth trends
- **Construct master chronology for each site**
 - Average series within a site with Tukey’s biweight mean, pre-whitened
- **North Fork Nooksack August streamflow**
 - Average monthly discharge in cfs
- **Tree ring correlations**
 - Non-parametric Kendall method
- **Correlated chronologies with August streamflow**
 - Kendall’s tau

Results
- **Correlation coefficient (r)**
 - $t = -0.3$
 - $0.3 < t < 0.2$
 - $0.2 < t < 0.1$
 - $0.1 < t < 0$
 - $0 < t < 0.1$
 - $t < -0$

Conclusion
- **Chronologies of certain species near the North Fork Nooksack watershed correlate with August streamflow inside the watershed.**
- These trees respond to the same large-scale climate conditions that drive streamflow of the North Fork Nooksack.
- Significant correlations with August streamflow were found with mountain hemlock (Tsuga mertensiana) chronologies, subalpine fir (Abies lasiocarpa) chronologies, Engelmann spruce (Picea engelmannii) chronologies, and one subalpine larch (Larix lyallii) chronology.
- All significant correlations were negative, meaning there was reduced growth in years of high August streamflow.

Snowcover is likely the major growth-limiting factor of these trees and the major factor driving August streamflow in the North Fork Nooksack.

Future Work
- **Reconstruct August streamflow of the North Fork Nooksack and Sholes Glacier Mass Balance with tree ring chronologies identified in this project plus additional I collect this summer.**
- **Reconstructed streamflow and mass balance records will be inputs to the Distributed Hydrology Soil Vegetation Model, informing present and future hydrological conditions in the North Fork Nooksack watershed.**

References