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Bootstrapping the Likelihood Ratio Test to

Determine Change Points

Lili Donovan

June 2022

Advised by Kimihiro Noguchi and Ramadha Piyadi Gamage

Abstract

To detect mean changes in a sequence of independent observations from a certain
distribution, the likelihood ratio (LR) test can be applied. Its p-value is typically
computed using the asymptotic distribution of the test statistic, which may be
unreliable when the number of observations is small. To overcome the problem,
a simulation study is carried out to analyze the empirical Type I error rate
and power of the LR test using the parametric and nonparametric bootstrap
methods. Under both normal and exponential distributions, it is found that the
nonparametric bootstrap makes the test robust for small, moderate, and large
sample sizes.
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1 Introduction to Bootstrap-Based Change Point
Analysis

The basic idea of change point analysis is to detect structural changes such as
mean, variance, distribution, etc., in a sequence of random observations. For
example, consider an application to climate change, where a change in the mean
or variance of the data set indicates a new trend in temperature or weather. In
this case, identifying the location of change would pinpoint a date in which the
new trend emerged. Change point analysis also has different medical applica-
tions, for instance with the annual flu, where trends in daily case counts can
help estimate the beginning and end of the flu season. Another application can
be found in quality control, where we suppose that we are in charge of monitor-
ing some process to ensure that its observations stay within some range. That
way, we may be able to minimize loss should we detect changes in the behavior
of these observations.

There are several methods to identify change points and their location, such
as maximum likelihood ratio test, information approach, Bayesian test, non-
parametric test, and stochastic process. These methods determine if there is a
change point in a sequence and provide an estimation of the change location. As
there are often multiple change locations in a sequence, to find these locations,
a combination of one of the the previous methods and the binary segmentation
procedure, proposed by (Vostrikova, 1981), can be used. The binary segmenta-
tion procedure recursively finds change points by breaking up the sequence of
random variables at a change point location. Then, we look for a new change
point on the subsequent sub-sequences.

Let us now consider formulating the null and alternative hypothesis for the
LR test. Using the binary segmentation procedure, the change point problem
under the assumption that only one change point exists is equivalent to a hy-
pothesis test with the null hypothesis:

H0 : µ1 = µ2 = · · · = µn, (1)

and alternative hypothesis,

Ha : µ1 = µ2 = · · · = µk 6= µk+1 = · · · = µn, (2)

for some 1 < k < n, where k is the unknown change point location.

Traditionally, the statistical significance of a potential candidate change
point in the change point analysis is computed using using the asymptotic dis-
tribution of the test statistic. However, the results may be unreliable when
the number of observations is small. To improve the robustness of the change-
point analysis, we present a simulation study which applies the normal-based
parametric bootstrap and non-parametric bootstrap to the likelihood ratio (LR)
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change point test statistic. The results show that the nonparametric bootstrap
LR test is robust for both the normal and non-normal observations, including
the exponential distribution.

Let {xi}ni=1 be a sequence of independent and standardized normal random
observations. Furthermore, let

S =

n∑
i=1

(xi − x̄)2, Sk =

k∑
i=1

(xi − x̄1)2 +

n∑
i=k+1

(xi − x̄2)2.

The difference S−Sk is mathematically equivalent to the LR statistic, which is
discussed further in Section 3. Now, we wish to find k such that this difference is
maximized, as this k corresponds to the most likely location of a change point.
Thus, we take our test statistic to be

U = max
1<k<n

√
S − Sk.

The asymptotic distribution of U is obtained after a slight transformation. Let

U = a−1n (U − bn),

where an = (2 log log n)−1/2 and bn = a−1n + 1
2an log log log n. Then, U asymp-

totically has the extreme value distribution (Chen and Gupta, 2012), where the
cumulative distribution function (cdf) is

FU (x) = e−2π
1/2e−x

,−∞ < x <∞.

In practice, FU (x) gives an approximate p-value, and we reject H0 when p-value
< α for some desired significance level α. However, FU (x) is less accurate for a
small sample size, resulting in a less reliable p-value.

Therefore, the goal of using bootstrap is to make the test more robust; that
is, the empirical Type I error rate αe is made close enough to the desired sig-
nificance level α so that the test decision is reliable. In this report, we explore
two types of bootstrap methods to seek an appropriate test that achieves the
goal. The first method is called parametric bootstrap, which creates resam-
ples from an assumed distribution, such as the normal distribution. The other
method is called nonparametric bootstrap, which creates resamples by sampling
original observations with replacement. The nonparametric bootstrap offers a
robust alternative to the large-sample approximation or parametric bootstrap
for statistical inference and is valid for a wide range of data generating processes.

This report is organized as follows. First, we derive the maximum likelihood
estimation of the parameters for the normal and exponential distributions, which
are then used to construct the LR change point test statistics. Then, to evaluate
the robustness of these tests, a comprehensive simulation study on the empirical
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Type I error rate is conducted under various sample sizes and two distributions
(normal and exponential) for the normal-based LR change point test statistic.
Next, the normal-based LR test statistic is applied to detect change points from
genome data on copy number variation to demonstrate the effectiveness of the
nonparametric bootstrap approach.

2 Derivations of Maximum Likelihood Estima-
tion (MLE)

The maximum likelihood estimation of the parameters associated with normal
and exponential distributions are derived here. These parameters are then used
in the derivation of the LR change point test statistic.

2.1 Normal Distribution

Assuming a known variance of σ2 = 1, under each of H0 and Ha, we calculate
a maximum likelihood estimator (MLE) of µ.

To derive the MLE, we first must know about the likelihood function. This
function is similar to a joint pdf, but instead of looking at it in terms of value(s)
xi that a distribution may take, the likelihood function is calculated in terms
of the unknown parameters, which is µ in this case.

Under H0, assuming that X1, . . . , Xn are mutually independent with the
marginal pdfs fXi

(xi;µ), i = 1, . . . , n, the likelihood function is given by:

L0(µ) = fX1,...,Xn(x1, x2, . . . , xn;µ) =

n∏
i=1

fXi(xi;µ),

where we can substitute the pdf for the normal distribution N(µ, 1) into the
equation to obtain:

L0(µ) =
1

(
√

2π)n
e−

∑n
i=1(xi−µ)2/2.

The MLE comes from the maximizing the likelihood function and taking the
derivative of the likelihood function with respect to µ. Typically, the log-
likelihood function is used in place of the likelihood function as we can avoid
some of the more complicated mathematical computation with exponents, while
still obtaining the same result.

By taking the log of L0(µ), the log-likelihood function of a random sample
coming from N(µ, 1) is given by

`0(µ) = n ln

(
1√
2π

)
− 1

2

n∑
j=1

(xj − µ)2.
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Then, we find µ for which `0 is maximized by setting its derivative equal to 0.
That is,

d

dµ
`0(µ) =

d

dµ

(
n ln

(
1√
2π

)
− 1

2

n∑
j=1

(xj − µ)2
)

=

n∑
j=1

(xj − µ),

which can be simplified to
∑n
j=1 xj − nµ. If µ̂ is such that

d

dµ
`0(µ̂) = 0,

the statement can only be true if:

n∑
j=1

xj − nµ̂ = 0.

Thus, the MLE under H0 is given by

µ̂ = x̄ =
1

n

n∑
i=1

xi.

The log-likelihood function attains the maximum at this MLE of µ if the second
derivative, with respect to µ, yields a negative value under the null hypothesis.
The second derivative is given by:

d

dµ2
`0(µ) = −n,

which results in a negative value when n is a positive integer. Hence µ̂ is the
MLE of µ under the null hypothesis (1).

Under Ha (2), there is only one change point. Therefore, the corresponding
likelihood function is given by:

L1(µ1, µn) = fX1,...,Xn
(x1, . . . , xn;µ1, µn) =

k∏
i=1

fXi
(xi;µ1)

n∏
i=k+1

fXi
(xi;µn),

where µ1 is the mean of the sample and µn is the alternate mean found at the
change point. Which can be simplified to the following equation by substituting
in the actual pdfs,

L1(µ1, µn) =
1

(
√

2π)n
e−(

∑k
i=1(xi−µ1)

2+
∑n

i=k+1(xi−µn)
2)/2,

noting thatXi ∼ N(µ1, 1) for i = 1, . . . , k andXi ∼ N(µn, 1) for i = k+1, . . . , n.

We calculate the MLE for µ1 and µn by taking the same steps used for de-
riving the MLE for µ. The main difference is that the partial derivatives of the
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log-likelihood function needs be taken with respect to µ1 and µn.

The log-likelihood function under Ha is:

`1(µ1, µn) = n ln

(
1√
2π

)
− 1

2

( k∑
i=1

(xi − µ1)2 +

n∑
i=k+1

(xi − µn)2
)
.

From here, we take the partial derivatives of the log-likelihood function with
respect to µ1 and µn to find the MLE.

The partial derivatives with respect to µ1 and µn are

∂

∂µ1
`1(µ1, µn) =

∂

∂µ1

[
n ln

(
1√
2π

)
− 1

2

( k∑
i=1

(xi − µ1)2 +

n∑
i=k+1

(xi − µn)2
)]

=

k∑
i=1

(xi − µ1) =

k∑
i=1

xi − kµ1,

and

∂

∂µn
`1(µ1, µn) =

∂

∂µn

[
n ln

(
1√
2π

)
− 1

2

( k∑
i=1

(xi − µ1)2 +

n∑
i=k+1

(xi − µn)2
)]

=

n∑
i=k+1

(xi − µn) =

n∑
i=k+1

xi − (n− k)µn

Setting these partial derivatives equal to zero will determine the MLE for µ1

and µn:
k∑
i=1

xi − kµ̂1 = 0,

k∑
i=1

xi = kµ̂1,

µ̂1 = x̄k =
1

k

k∑
i=1

xi.

Similarly, for µn:
n∑

i=k+1

xi − (n− k)µ̂n = 0,

n∑
i=k+1

xi = (n− k)µ̂n,
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µ̂n = x̄n−k =
1

n− k

n∑
i=k+1

xi,

where n is the sample size and k is the location of the change point (where µ is
shifted).

The log likelihood functions yield maximum under the alternate hypothesis
if the Hessian Matrix is negative definite. We calculate:

[
fµ2

1
fµ1µn

fµnµ1
fµ2

n

]

For µ1 and µn, the second partial derivatives are

∂

∂µ2
1

`1(µ1) = −k,

and
∂

∂µ2
n

`1(µn) = −(n− k).

The other second partial derivatives fµ1µn
, fµnµ1

should be equivalent when
entered into the Hessian matrix, and we have:

∂

∂µ1

∂

∂µn
`1(µ1, µn) =

∂

∂µ1

(
n∑

i=k+1

xi − (n− k)µn

)
= 0

and

∂

∂µn

∂

∂µ1
`1(µ1, µn) =

∂

∂µn

(
k∑
i=1

xi − kµ1

)
= 0

The resulting Hessian matrix:[
−k 0
0 −(n− k)

]
is negative definite, confirming that our calculated µ1 and µn are the MLEs
under the alternate hypothesis, noting that n and k are both positive values
and that k < n is true.
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2.2 Exponential Distribution

The method of using the likelihood ratio procedure to detect change points in
exponentially distributed data is similar to that for a normal distribution in
Section 2.1. In this set-up, the null hypothesis states that the observations are
independent and that they are all coming from the same exponential distribu-
tion, with pdf equal to fXi(xi;λ) = λe−λxi , xi > 0, λ > 0. On the other
hand, the alternative hypothesis claims that these independent observations are
coming from two different exponential distributions with parameters λ1 and λn.
Specifically, there is k, 1 < k < n, for which fXi

(xi;λ1) = λ1e
−λ1xi , i ≤ k, and

fXi
(xi;λn) = λne

−λnxi , i > k. Note that the parameters λ, λ1, and λn are the
rate parameters of the exponential distributions.

Because the likelihood function is based on the pdf, we can first look at the
likelihood function under H0:

L0(λ) =

n∏
i=1

λe−λxi = λne−λ
∑n

i=1 xi .

As we did with the normal distribution, we maximize the log-likelihood function
to find the MLE. Under H0, the derivative of the log-likelihood function is taken
with respect to λ.

`0(λ) = ln(λne−λ
∑n

i=1 xi) = ln(λn)− λ
n∑
i=1

xi = n[ln(λ)− λx̄].

Then, we obtain the first derivative of `0(λ) with respect to λ. Specifically,

d

dλ
`0(λ) =

n

λ
−

n∑
i=1

xi.

By setting it equal to zero, we derive the MLE of λ. That is:

n

λ̂
=

n∑
i=1

xi,

so that

λ̂ =
n∑n
i=1 xi

=
1

x̄
.

Finally, the second derivative test is calculated to confirm that the MLE
found above yields a maximum. The second derivative of the log-likelihood
function with respect to λ is

d

dλ2
`0(λ) = − n

λ2
,

which is a negative value as both n and λ are positive; thus the test confirms
that the MLE of λ under the null hypothesis is λ̂.
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Under Ha, there are two different λ values, namely, λ1 and λn, to take into
account when considering the likelihood function:

L1(λ1, λn) =
(
λ1e
−λ1

∑k
i=1 xi

)(
λn−kn e−λn

∑n
i=k+1 xi

)
,

and log-likelihood function:

`1(λ1, λn) = ln(λk1e
−λ1

∑k
i=1 xi) + ln(λn−kn e−λn

∑n
i=k+1 xi)

= ln(λk1)− λ1
k∑
i=1

xi + ln(λn−kn )− λn
n∑

i=k+1

xi

= k[ln(λ1)− λ1x̄k] + (n− k)[ln(λn)− λnx̄n−k].

Under Ha, two partial derivatives of the log-likelihood function `1(λ1, λn)
are taken with respect to λ1 and λn, respectively. The partial derivatives are
given by:

∂

∂λ1
`1(λ1, λn) =

k

λ1
−

k∑
i=1

xi

and
∂

∂λn
`1(λ1, λn) =

n− k
λn

−
n∑

i=k+1

xi,

for λ1 and λn, respectively. Then, the resulting MLEs are given by:

λ̂1 =
k∑k
i=1 xi

=
1

x̄k

and

λ̂n =
n− k∑n
i=k+1 xi

=
1

x̄n−k

by setting the partial derivatives equal to 0.

The second partial derivatives with respect to λ1 or λn are,

∂

∂λ21
`1(λ1, λn) = − k

λ21
,

and
∂

∂λ2n
`1(λ1, λn) = −n− k

λ2n
,

respectively.

The second partial derivatives fλ1λn and fλnλ1 are equivalent. They can be
found by using the partial derivatives found above:

∂

∂λn

(
k

λ1
−

k∑
i=1

xi

)
= 0

9



and
∂

∂λ1

(
n− k
λn

−
n∑

i=k+1

xi

)
= 0

Thus, the Hessian Matrix is:[
fλ2

1
fλ1λn

fλnλ1
fλ2

n

]
=

[
− k
λ2
1

0

0 −n−kλ2
n

]
.

The matrix is negative-definite and so the maximum of the log likelihood
function, the MLE, is confirmed to be (λ̂1, λ̂n).

3 Likelihood Ratio Test Statistic Derivation

The LR test is used to assess the goodness-of-fit of two models. In the para-
metric approach, the observations are assumed to follow a known probability
distribution. Instead of checking for multiple change points at the same time,
the binary segmentation procedure is used here. With the binary segmentation
method, it suffices to test the null hypothesis with no change versus the alterna-
tive hypothesis of one change. In LR test, the log-likelihood function is derived
under H0 and Ha. Let θ̂ be the MLE under H0. Similarly, let θ̂1 and θ̂n be the
MLE under Ha. Then, for a fixed k, the LR test is:

Λ =
L0(θ̂)

L1(θ̂1, θ̂n)
.

Instead of Λ, it is typical to consider its transformation

−2 ln Λ = −2[`0(θ̂)− `1(θ̂1, θ̂n)].

We show that −2 ln Λ can be simplified even further for the normal and expo-
nential distribution cases.

3.1 Normal Distribution

Recall that

`0(µ) = n ln

(
1√
2π

)
− 1

2

n∑
j=1

(xj − µ)2

and

`1(µ1, µn) = n ln

(
1√
2π

)
− 1

2

( k∑
i=1

(xi − µ1)2 +

n∑
i=k+1

(xi − µn)2
)
.
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Therefore,

−2 ln Λ = −2[`0(µ̂)− `1(µ̂1, µ̂n)]

= −2

−1

2

n∑
j=1

(xj − µ̂)2 +
1

2

( k∑
i=1

(xi − µ̂1)2 +

n∑
i=k+1

(xi − µ̂n)2
)

=

n∑
i=1

(xi − µ̂)2 −

[
k∑
i=1

(xi − µ̂k)2 +

n∑
i=k+1

(xi − µ̂n−k)2

]
= S − Sk,

where

S =

n∑
i=1

(xi − x̄)2

and

Sk =

k∑
i=1

(xi − x̄k)2 +

n∑
i=k+1

(xi − x̄n−k)2. (3)

Now, let
Vk = k(x̄k − x̄)2 + (n− k)(x̄n−k − x̄)2. (4)

Then, we can show that Vk = S − Sk holds by considering the first component
of (3), which in turn makes the statement of Vk easier to visualize. Remember
that we would like to maximize Vk in the process of determining a likely change
location k. Now,

Sk =

k∑
i=1

(xi − x̄k)2 =

k∑
i=1

(xi − x̄+ x̄− x̄k)2

=

k∑
i=1

(xi − x̄)2 + 2

k∑
i=1

(xi − x̄)(x̄− x̄k)− k(x̄− x̄k)2.

The second component of the equation can be rewritten as

2

k∑
i=1

(xi−x̄)(x̄−x̄k) = 2(x̄−x̄k)

k∑
i=1

(xi−x̄) = 2(x̄−x̄k)(kx̄k−kx̄) = −2k(x̄−x̄k)2.

By plugging this back to (3) we get,

Sk =

k∑
i=1

(xi − x̄)2 − k(x̄− x̄k)2 +

n∑
i=k+1

(xi − x̄)2 − (n− k)(x̄− x̄n−k)2

Now, substituting for S, we have,

Sk = S − k(x̄− x̄k)2 − (n− k)(x̄− x̄n−k)2,
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confirming that Vk = S − Sk.

Thus, the test statistic under the null hypothesis, denoted by U2, is given
by the maximum of Vk. Furthermore, we may write U =

√
U2 in the following

ways. Let

Tk =

√
n

k(n− k)

[
k∑
i=1

(xi − x̄)

]
.

Then, Vk = T 2
k , where

Vk =
n

k(n− k)

[
k∑
i=1

(xi − x̄)

]2
.

Therefore, the test statistic U can be written as

U = max
1<k<n

√
Vk = max

1<k<n
Tk.

3.2 Exponential Distribution

Recall that
`0(λ) = n[ln(λ)− λx̄]

and
`1(λ1, λn) = k[ln(λ1)− λ1x̄k] + (n− k)[ln(λn)− λnx̄n−k].

Then, we have

−2 ln Λ = −2[`0(λ̂)− `1(λ̂1, λ̂n)]

= −2
[
n[ln(λ̂)− λ̂x̄]− k[ln(λ̂1)− λ̂1x̄k]− (n− k)[ln(λ̂n)− λ̂nx̄n−k]

]
= −2 [n ln(x̄)− k ln(x̄k)− (n− k) ln(x̄n−k)]

as the LR test statistic for the exponential distribution.

4 Bootstrap Algorithms

Two bootstrap methods are applied to the LR test statistic for the change point
analysis to improve the robustness and power when compared to the one based
on the asymptotic distribution, especially when the sample size is small. These
two methods are called parametric and nonparametric bootstrap, where the
main difference arises in how the resamples are generated. We describe the al-
gorithm for each bootstrap method below.
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Algorithm for the Parametric Bootstrap Method:

1. In the first step, we generate n independent standard normal (N(0, 1))
random observations as a resample. The generated observations agrees
with the null hypothesis H0 : µ1 = µ2 = · · · = µn, i.e., no changes in
the process or parameters. The process is repeated B times to create B
resamples, where B is a sufficiently large number.

2. Using B resamples, we compute B test statistics {U?1 , U?2 , ....U?B}, where
U?b , b = 1, 2, . . . , B, are the LR test statistics for the b-th resample.

3. Then, we calculate the empirical Type I error rate using a Monte Carlo
simulation. First, we generate M samples of size n from some standardized
distribution under H0 (e.g., N(0, 1)), each of which generates an observed
LR test statistic.

4. Let {U1, U2, ....UM} be the set of observed LR test statistics fromM Monte
Carlo samples. The bootstrap p-value for Um, m = 1, 2, . . . ,M , is given
by pm = #{Um < U?b , b = 1, . . . , B}/B.

The non-parametric bootstrap method, as used in the simulations with nor-
mal and exponential distributions, follows the algorithm above with some slight
adjustments. Instead of generating resamples from a given/known distribution,
the non-parametric bootstrap createsB resamples from (appropriately adjusted)
original sample with replacement. Specifically, the original dataset is divided
into two segments according to the estimated change-point location. Then, each
segment is mean-centered according to its respective sample mean. That way,
the mean-centered dataset respects the null hypothesis of no change point, and
it then can be used to generate resamples.

To test the robustness of the two bootstrap methods, the empirical Type I
error rate is calculated as an estimate of the actual type I error rate and power
curves are created to determine where the change points can most accurately
be identified.

The actual Type I error rate,

P (Reject H0 |H0 is true),

is approximated by the empirical Type I error rate

αe = #{pm < α,m = 1, . . . ,M}/M,

where M is the number of Monte Carlo samples generated of size n and pm is
the p-value for the m-th sample, M = 1, 2, . . . ,M .
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Another important aspect of hypothesis testing is the power of the test.
The power is the probability that the correct decision is made given that the
alternate hypothesis is true. That is,

P (Reject H0 |Ha is true).

The power is also approximated using the same formula

#{pm < α,m = 1, . . . ,M}/M.

In our simulation study, we investigate both the robustness and power of the
parametric and nonparametric bootstrap-based test under small, medium, and
large sample sizes. The data are generated from the standard normal (N(0, 1))
and standard exponential (Exp(1)) distributions.

5 Simulation Study

We set up a simulation study to assess the robustness and power of the normal-
based LR based on the two bootstrap methods (parametric and nonparametric).
For both the parametric and nonparametric bootstrap simulations, we use the
sample sizes of 30, 100, 200, and 500 generated from the standard normal and
standard exponential distributions. Then, the empirical Type I error rate and
power of the test are computed using Monte Carlo simulations to determine a
robust bootstrap method.

5.1 Empirical Type I Error Rate

The empirical Type I error rate as an estimate of the actual Type I error rate,
as described above, is expected to be close to our nominal Type I error rate
(significance level) α = 0.05 for each simulation if the test is robust.

N(0, 1) Exp(1)
n Empirical α
30 0.046 0.097
100 0.040 0.087
200 0.061 0.106
500 0.056 0.104

Table 1: Parametric bootstrap simulation results with B = 1000 and M = 1000
at α = 0.05.

When the nonparametric bootstrap is applied, the empirical Type I error
rates approach our predetermined significance level of α = 0.05 regardless of
the distributions. On the other hand, when the parametric bootstrap is ap-
plied, the empirical Type I error rates do not seem to approach α = 0.05 for
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the standard exponential distribution even with n = 500. Thus, we find non-
parametric bootstrap more robust than parametric bootstrap. In addition, for
the nonparametric bootstrap, we run additional simulations with n = 20 and
n = 50 to better understand the performance of the test when the sample size is
small to moderate. Overall, the nonparametric bootstrap test starts performing
reasonably well at around n = 100 for both the standard normal and standard
exponential distributions.

N(0, 1) Exp(1)
n Empirical α
20 0.149 0.142
30 0.117 0.117
50 0.090 0.090
100 0.070 0.069
200 0.061 0.060
500 0.058 0.055

Table 2: Nonparametric bootstrap simulation results with B = 1000 and M =
1000 at α = 0.05.

5.2 Empirical Power Curves

Using the nonparametric bootstrap, the following power curves are generated
under several conditions. For each sample size, the change points are placed in
several different relative locations; from 0.1 (at the first 10% of the data) to 0.9
(at the last 10% of the data) with 0.1 as the step size. The change of mean level
that we identify is of step 0.5 for each distribution and each sample size. Given
that the alternate hypothesis is true, a change point is present, implying that a
more powerful test is shown by the one whose power is higher.

The following power curves indicate that the change point is more likely to
be found when it is located in the middle of the dataset, where the power curve
peaks. The power itself is improved when the sample size is increased; as can be
seen in the increased power value for the sample sizes larger than 100. For the
sample sizes smaller than 100, the peak power value still occurs in the middle
of the dataset, but the value is lower than 1, indicating the change point is not
always accurately found.
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(a) Normal (n = 20) (b) Normal (n = 30)
(c) Normal (n = 50)

(d) Normal (n = 100) (e) Normal (n = 200) (f) Normal (n = 500)

(g) Exp. (n = 20) (h) Exp. (n = 30)
(i) Exp. (n = 50)

(j) Exp. n=100 (k) Exp. (n = 200) (l) Exp. (n = 500)

Figure 1: Power Curves for Normal and Exponential Distributions. The relative
locations and the empirical powers are on the x- and y-axis, respectively.
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6 Real-Life Example

Determining where changes occur in DNA sequence requires the identification
of copy number variation (CNV), which refers to the variation between individ-
uals when considering the number of copies of a particular gene. This variation
occurs when a particular gene is inserted or deleted. Variation is expected and is
normal, considering each individual has their own unique gene sequence. How-
ever, it is of interest to medical professionals to know where and what variation
occurs in an individual, to help in determining the risk associated with a certain
variation.

Microarray-based comparative genomic hybridization (CGH) provided mea-
sures of DNA copy numbers and maps the values onto a sequence of genes
(Chen and Wang, 2008). These measures are log2 mapping of the ratio compar-
ing copy-number in the tested individual and the reference sample, compared
at many positions along each chromosome. Insertions will cause the ratio to be
larger than one, thus a positive log2 value. Deletions lead to a negative log2

since the ratio becomes less than one. There should be no zeros resulting from
the variations. In practice, however, a zero is hard to avoid because of the dif-
ficulties of precise measurements. Furthermore, it is widely accepted that the
resulting values follow a normal distribution with a mean of zero in the absence
of variation. Thus, statistical analysis is needed to detect significant changes at
possible change point locations.

For the real data application, we look at The Fibroblast Cell Lines Data
(Snijders et al., 2001). This dataset provides results from a CGH experiment
including log2 Ti/ log2Ri measure with genomic location on multiple tissue cells
(fibroblast cell lines) at 2,464 locations across the genome, where Ti and Ri are
the copy numbers of the test and the reference samples, respectively, at location
i. In our analysis, we compare the results based on the asymptotic distribution
(Chen and Gupta, 2012) to the nonparametric bootstrap-based method. The
nonparametric bootstrap-based is selected as our simulation confirms that it is
more robust than the parametric bootstrap-based method when the empirical
Type I error rates are compared under various sample sizes and distributions.
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6.1 Results

In the following plots, the detected change points using the asymptotic distri-
bution (left) (Prime, 2020) and nonparametric bootstrap (right) are displayed
visually. The horizontal red line indicates the mean of each subsection of data.
On the other hand, the vertical lines indicate that a change point is found at
that location. At each vertical line, the dataset is split into two segments (the
binary segmentation method). For each segment, the change point test statistic
is applied again to detect more change point(s), if any, in these segments. It
is clear that the nonparametric bootstrap is capable of detecting more possible
change points while the asymptotic distribution-based approach seems to miss
at least a few important change points.

(a) Asymptotic Analysis of Prime
(2020)

(b) Nonparametric Bootstrap Analysis

Figure 2: Genome Analysis

Furthermore, the following is a table with data relevant to the genome data
analysis. It includes the change point, the iteration (number of binary segmenta-
tions applied) in which the change point is detected, and the p-value associated
with the respective change point.
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Location Iteration p-value
75 3 0.000
134 2 0.000
194 4 0.000
201 3 0.003
281 6 0.000
426 7 0.004
458 9 0.008
470 10 0.007
538 11 0.002
548 8 0.000
624 9 0.000
652 5 0.000
715 6 0.000
717 8 0.000
718 7 0.031
740 4 0.000
746 6 0.038
774 5 0.000
810 6 0.001
1428 10 0.005
1636 9 0.000
1656 8 0.000
1700 9 0.000
1752 11 0.018
1786 10 0.000
1904 7 0.030
1959 9 0.000
1984 8 0.006
2003 1 0.000
2054 2 0.000

Table 3: Results with B = 1000 nonparametric bootstraps at α = 0.05.

We notice that a majority of the change points are determined within the
first ten iterations. Each of these locations is associated with a very low p-value,
much less than the significance level of α = 0.05.
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7 Conclusion

Applying the nonparametric bootstrap to change point analysis is robust and
powerful when the goal is to identify mean changes in normal and exponen-
tial distributions. Examining the empirical Type I error rate indicates that the
change point is more accurately identified for a sample size of n ≥ 100. The
empirical power curves indicate a more accurate identification of a change point
if the change is close to observation n/2 for a sample of size n, i.e., the middle
of the dataset. These empirical power curves are also evidence that the larger
the sample size (n ≥ 100), the more accurate the analysis for identifying change
points.

In the application to real data, the nonparametric bootstrap demonstrated
improved change point identification when compared to the method based on
the asymptotic distribution. Many more locations of change points were iden-
tified and their means were calculated, as shown in Figure 2. This happens due
to the fact that the actual Type I error rate for the nonparametric bootstrap
method is closer to the prespecified significance level α value when compared to
the actual Type I error rate based on the asymptotic method of analysis, which
tends to be more conservative. As a result, an increased number of change
points identified by the nonparametric bootstrap method indicates a higher ac-
curacy of detecting CNV in the genome sample. Improving detection accuracy
is helpful in identifying chromosomal abnormalities.

When considering an additional medical application of change point analysis,
we can look at functional magnetic resonance imaging (fMRI) as a technique
for studying blood flow changes to the brain. When data from fMRI is acquired
during a resting state, it can be difficult to determine the exact location of a
deviation from stationary. In this ‘rest’ state, the brain is relatively free from
external stimuli and so any changes in blood flow can be attributed to brain
activity as a reaction to internal changes (Aston and Kirch, 2012). While these
deviations can be hard to identify by eye, change point analysis can help analyze
the fMRI plots developed at ‘rest’.
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