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ABSTRACT 
 

 The San Juan Thrust System represents the western elements of the Cascades orogen 
and preserves evidence for Cretaceous Cordilleran margin tectonics. The kinematics of 
deformation phases and their temporal relationship to accretionary wedge high-pressure low-
temperature metamorphism remains uncertain. The structural and metamorphic evolution of 
the San Juan Thrust System was studied on Orcas and Shaw Islands in Western Washington. 
Detailed field mapping indicates that a widespread S1 flattening fabric (formed during D1) is 
subparallel to and cut by an S2 fabric found within brittle-ductile shear zones that bound the 
terranes (formed during D2). Post-cleavage brittle structures (formed during D3) offset 
terrane contacts and S2 fabrics and include cm- to m-scale slip on normal, strike-slip, and 
thrust faults that have mutual crosscutting relationships. Metamorphic investigations utilizing 
vein mineralogy and fluid inclusion analysis reveal the pressure and temperature relations 
during each stage of deformation. Maximum temperatures of ~200˚C and pressures of ≥5.5 
kbar are indicated by both the preservation of aragonite within D1-D3 veins, and by a minor 
crystal-plastic component of quartz deformation within D2 shear zones. These conditions are 
interpreted to indicate deformation occurred in an accretionary wedge setting. 

Using pressure-temperature constraints and kinematics of each event, I suggest a 
tectonic model that includes (1) D1 terrane accretion and fabric formation somewhere south 
along the continental margin, (2) NW-directed translation along the margin during oblique 
subduction as terranes were assembled on top of one another into their current nappe stack 
along D2 shear zones, and (3) subhorizontal extension and vertical thinning along brittle D3 
structures. A predominance of margin-parallel extension in the forearc during D3 may be a 
response to “unbuttressed” collapse of an overthickened wedge, or from continued oblique 
subduction in the presence of a curved margin. This model supports previous interpretations 
of a NW-dominated thrust system, but high-pressure low-temperature constraints indicate 
that assembly of the nappe stack and later D3 brittle deformation represent continued 
structural evolution within an accretionary wedge. Results of this study indicate that the 
structures accountable for exhumation of the San Juan Thrust System and emplacement of 
terranes above the unmetamorphosed Wrangellia terrane are yet to be discovered. 
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Chapter 1 

INTRODUCTION 

The structural and metamorphic history of accreted terranes is important for 

understanding growth along continental margins during orogenic events. The kinematics of 

structures found within terranes and along their contacts are used to develop tectonic models 

for accretion along a continental margin. The San Juan Thrust System (SJTS), located in 

western Washington State, contains an assemblage of thrust-bounded terranes that are 

important for understanding the mid-Cretaceous tectonic development of the Pacific 

Northwest. The SJTS terranes contain a high-pressure low-temperature metamorphic 

signature (Glassely et al. 1976; Brandon et al., 1988; Maekawa and Brown, 1991), and 

previous workers (Brandon et al., 1988; Feehan and Brandon, 1999; Bergh, 2002) interpret 

that at least some of the deformation has occurred in an accretionary wedge. Three main 

kinematic models have been proposed; (1) SW-directed thrusting (Misch, 1966, Brandon et 

al., 1988, 1994; McGroder, 1991), (2), NW-directed thrusting (e.g., Brown, 1987; Maekawa 

and Brown, 1991), and (3) a two-stage model involving SW-directed thrusting followed by 

strike-slip faulting and NW-directed thrusting (Bergh, 2002). An attempt to reconcile the 

various SJTS models must include a comprehensive analysis of all the faults and fabrics as 

well as the metamorphic conditions during deformation. 

Exhumed accretionary wedges provide the opportunity to examine deformation related to 

the accretion process (e.g., Meneghini et al., 2009). High-pressure low-temperature (HP-LT) 

minerals aragonite, prehnite, and lawsonite have been recorded in structures of the SJTS, 

suggesting an accretionary wedge setting during at least some of the deformation (Brandon et 

al., 1988; Glassely et al. 1976; Maekawa and Brown, 1991). Both brittle and ductile 
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structures are present in HP-LT accretionary wedge environments, and controls on 

deformation styles include temperature, depth, fluid pressure, and strain rates (e.g., Davis et 

al., 1983; Davis, 1996). Metamorphic constraints on deformation in the SJTS can be used to 

determine the relationship between depth and the other controls on structural evolution 

within an accretionary wedge. 

The goal of this study is to investigate the kinematics and relative timing of structures 

along the well-exposed coastal outcrops of major terrane-bounding thrust faults on Orcas and 

Shaw Islands, Washington. Mineralogical, microstructural, and fluid inclusion constraints on 

pressure and temperature (P-T) conditions during each deformation event are used to 

interpret the evolution of terranes during and after deformation in an accretionary wedge 

setting. The new structural and metamorphic results are compared to previously proposed 

models of the SJTS. 

GEOLOGIC SETTING 

 The SJTS represents the westernmost elements of the Northwest Cascades system 

(NWCS) and developed along the Mesozoic Cordilleran convergent margin (Fig. 1; Brandon 

and Cowan, 1985; Brown, 1987; Brandon et al., 1988; Whitney and McGroder, 1989; Rubin 

et al., 1990; Maekawa and Brown, 1991; McGroder, 1991; Brown et al., 2010; Brown, 2012). 

The thrust system is bounded to the north and west by the Wrangellia terrane and the Coast 

Plutonic Complex-Coast Mountain orogen (Fig. 1). The SJTS contains six Paleozoic to 

Mesozoic ocean floor and island arc-derived terranes (Danner, 1966; Monger and Ross, 

1971; Brandon et al., 1988; Brown, 2012) that are now assembled in a SE-dipping stack of 
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four major nappes (Fig. 1; Brown, 2012). The Orcas thrust separates the Paleozoic 

Turtleback Complex and East Sound Group from the overlying Permian Deadman Bay 

terrane containing Deadman Bay volcanics and Orcas Chert ribbon chert (Brandon et al., 

1988). The Rosario thrust contains fault slices of the Permian-Triassic Garrison Schist 

terrane, and separates Orcas Chert from the overlying Late Jurassic Constitution terrane 

(Brandon et al., 1988). The Lopez Structural Complex (LSC) separates Constitution terrane 

from the overlying Late Jurassic Fidalgo ophiolite (Brandon et al., 1988). The SJTS thrusts 

typically have a younger-on-older sequence. The unnamed thrust emplacing the Turtleback 

Complex over the East Sound Group on Orcas Island (Figs. 1, 2) is one of the few older-on-

younger contacts. Evidence suggesting that the SJTS thrusts are major tectonic boundaries 

include 1) the presence of cataclasis along terrane boundaries and 2) slices of “exotic” 

Permian aged blueschist (Garrison Schist) faulted into the Rosario fault zone that suggests 

large displacements along terrane-bounding structures (Cowan and Miller, 1981; Brandon et 

al., 1988). Cowan and Brandon (1994) suggest a minimum of 30 km of slip along the Rosario 

thrust and the LSC alone in order to accommodate for the observed structural overlap of the 

terranes.  

Timing constraints for thrusting and metamorphism are determined from isotopic 

Ar/Ar ages, fossil records, and detrital zircon ages. The age of thrusting is broadly 

constrained by late Aptian foraminifera (115-112 Ma) faulted into the LSC, and by clasts of 

SJTS debris within the overlying Nanaimo Group containing 84 Ma fossils (Ward, 1978; 

Brandon et al., 1988; Brown et al., 2005). Brown (2012) further constrains the ages of 

faulting based on a correlation between the SJTS and NWCS (Brown, 1987). Turonian 



 
 

4 
 

fossils and detrital zircon ages bracket the emplacement of Turtleback terrane over 

Wrangellia from <114 to >93 Ma (Brown and Gehrels, 2007; Brown, 2012). Individual 

thrusts are not dated in the SJTS, but Brown (2012) used a combination of detrital zircons 

and fossil ages from the NWCS to bracket nappe emplacement as a younging-upward 

sequence, with the Orcas nappe being emplaced at 110-88 Ma and the LSC faulting being 

post-112 Ma. Metamorphic ages are difficult to determine because the low-grade rocks 

contain little to no white mica. A phengite 40Ar/39Ar age of blueschist-facies meta-volcanic 

rock in the LSC constrains the age of metamorphism for rocks in this complex to ~124 ± 1 

Ma (Brown et al., 2005).  

The three main tectonic models proposed for the SJTS suggest different thrust system 

settings and contrasting kinematics (Table 1). The SW-directed thrust model interprets 

terranes thrust in a convergent zone between North America and the approaching Wrangellia 

(Misch, 1966; Brandon and Cowan, 1985; Brandon et al., 1988; McGroder, 1991; Cowan and 

Brandon, 1994). In the NW-directed thrust model, terranes were accreted or deposited 

somewhere south along the margin before being moved coastwise and thrust into a reentrant 

formed by the already accreted Wrangellia and Coast Plutonic Complex (Brown, 1987, 2012; 

Maekawa and Brown, 1991; Friedman and Armstrong, 1995). The two-stage model suggests 

SW-directed thrusting of terranes along the margin before partitioned orogen-parallel strike-

slip faulting and NW-directed thrusting (Bergh, 2002). These tectonic models interpret that 

thrusting and HP-LT metamorphism took place in either an accretionary wedge setting 

(Brandon et al., 1988; Feehan and Brandon, 1999; Bergh, 2002; Schermer et al., 2007), in an 
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on-land thrust system (Brandon et al., 1988), or during obduction over Wrangellia (Maekawa 

and Brown, 1991; Brown, 2012).  

METHODS 

 Structural investigation involved detailed outcrop description and mapping, kinematic 

analysis of faults, and microstructural analysis of fault rock. Maps by Brandon et al. (1988) 

and Vance (1975) were used to identify the locations of terrane contacts along coastal 

exposures (Figs. 1, 2, and Appendix). Faults and fabrics were measured and described at each 

locality, and cross-cutting relations were established. Samples of fault rock within brittle-

ductile shear zones were collected for petrographic and microstructural analysis. Structures 

were plotted on equal area, lower-hemisphere stereonet projections using StereoWin v. 9.5.0. 

Kinematics were analyzed with FaultKinWin v. 7.4.1 (Allmendinger, 2016) using fault 

orientation, lineation, and slip sense data. 

 Sense of shear within shear zones and along faults was determined using outcrop- and 

microscopic-scale shear sense indicators. The sense of shear in shear zones was determined 

using S/C and Riedel fabrics (Berthe et al., 1979, Dresan, 1991), asymmetric porphyroclasts, 

folds, and slickenlines (Petit, 1987) and on faults using fault-propagation folds, chatter marks 

(Petit, 1987), en echelon extension veins (Shainin, 1950), slickenlines (Doblas, 1998), and 

shear veins (Durney and Ramsay, 1973). Microscopic-scale shear sense indicators in shear 

zones include S-C fabric geometries (Berthe et al., 1979), intrafolial folds of D1 foliation and 

veins, and sigmoid-shaped chlorite and wall rock porphyroclasts.  

 Veins were sampled to investigate mineralogy and to conduct fluid inclusion analysis. 

Samples were collected from structures with known kinematics and clear crosscutting 
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relationships. Twenty-three veins were analyzed using X-ray diffraction (XRD) for the 

presence of aragonite, lawsonite, and prehnite. Vein minerals were separated from the 

surrounding wall rock before being powdered to avoid sampling minerals not involved with 

vein formation. Samples were analyzed using a Rigaku Geigerflex X-ray diffractometer at 

Western Washington University and diffraction patterns were interpreted using JCPDS 

(1980) powder diffraction files. Forty-two samples were investigated for fluid inclusion 

analysis; detailed methodology, results, and discussion are presented in Chapter 2.  

DESCRIPTIONS OF STRUCTURES 

Structures on Orcas and Shaw Islands provide evidence of at least three different 

deformation events related to the SJTS (Table 1). Structures were tentatively grouped in the 

field using crosscutting relationships, deformation style, orientation, sense of slip, and 

apparent amount of strain accommodated along faults as evident by the amount cataclasite 

and/or fault zone width. Each deformation event is defined progressively as D1, D2, and D3 

(Table 1). D1 and D2 structures include penetrative fabrics and D3 structures include non-

penetrative faults, veins, and extension fractures. Data from Shaw island were contributed by 

Kenneth Frank (2015, written communication). 

Primary and D1 Structures  

A widespread S1 foliation exists within all terranes and dips gently to steeply NE to 

SW, averaging gently SE (Fig. 2). The S1 slaty-to-phyllitic foliation varies from well-

developed to weak and is most pronounced in fine-grained sedimentary rocks (Figs. 3A, 3B). 

Flattening along S1 is evident by truncated grain boundaries and isoclinal folds of bedding 

with limbs parallel to the S1 fabric (Fig. 3C). Lineations along S1 foliation planes were not 
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observed. Bedding and primary structures (S0) exist in most sedimentary units and include 

graded bedding in sandstones and alternating layers of chert and argillite in ribbon chert 

units. Bedding is typically parallel to the S1 foliation or is chaotically folded with no 

surrounding fabric (Figs. 3C, 3D). 

Due to a lack of crosscutting constraints, all folds outside of D2 shear zones and not 

related to D3 faulting are defined here as F1 folds. F1 folds are characterized as either 1) 

folds of bedding with axial planes parallel or subparallel to S1 foliation, or 2) folds with axial 

planes not parallel to S1, and lacking axial planar cleavage. Fold axes of folds with S1 axial 

planar cleavage plunge gently to moderately in most directions (Fig. 4A), are cm- to m-scale, 

tight to isoclinal, harmonic and disharmonic, and both symmetric and asymmetric. 

Hingelines of asymmetric F1 folds with S1 axial planar cleavage broadly define a girdle 

dipping 45˚ SSE and indicate a scattered relationship between clockwise and 

counterclockwise folds (Fig. 4B). F1 folds lacking axial planar cleavage vary widely in style 

and orientation (Figs. 3D, 4C). 

D1 veins are rare and include extension veins that are cut by and shortened 

perpendicular to S1. Veins consist of predominantly quartz, calcite, and aragonite with minor 

lawsonite (Table A1). Two of the four veins sampled contain aragonite (Fig. 5). 

D2 Shear Zone Fabrics and Folds 

The second deformation event (D2) is defined by brittle-ductile shear zones found 

both along and near terrane boundaries (Figs. 2, 6, 7, 8, 9). The D2 shear zones studied here 

were previously mapped by Vance (1975) as the Rosario thrust (Figs. 1B, 2, 9) and a 

complex “tectonic zone” (Figs. 1B, 2, 7) that lies structurally below the Orcas thrust within 
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the Turtleback terrane. D2 fabrics dip moderately SE with moderately SE-plunging lineations 

(Figs. 2, 4D). No shear zones are exposed where the Orcas thrust was mapped by Vance 

(1975) and are interpreted to be faulted out of view by D3 faults as these locations lack D2 

shear zone terrane contacts. Three locations with excellent coastal exposures of structures 

representative of D2 shear zones on Orcas Island (Figs. 7, 8, 9) were studied in detail.  

The tectonic zone near the Indralaya location (Fig. 7) is an imbricate shear zone 

juxtaposing the older Turtleback Complex above the younger East Sound Group. The D2 

shear zones and fabrics steepen progressively from moderately SE-dipping in the south to 

steeply SE-dipping in the north with consistent down-dip L2 lineations (Fig. 7C). Rigid 

blocks of Turtleback Complex diorite are separated by ~2 meter-thick serpentine-rich shear 

zones, whereas deformation in East Sound Group is distributed along numerous basalt-rich 

cataclastic zones that contain tectonic blocks of limestone, pillow basalt, and volcaniclastic 

rock (Fig. 7B). Shear sense is dominantly top-to-the-NW thrusting (Fig. 7C). 

A zone of imbricate faults at the Otter Bay locality (Fig. 8) is considered here to be 

part of the Orcas thrust zone as the younger Deadman Bay terrane ribbon chert is faulted 

above the older Turtleback terrane diorite within the footwall of one strand of the Rosario 

Thrust. A block of East Sound limestone is faulted into view along an older-on-younger 

thrust of unknown relative timing to the other thrust. The D2 shear zones and S2 fabrics dip 

gently east with L2 lineations plunging gently SE (Fig. 8C). Shear sense is dominantly top-

to-the-NW sinistral motion along the 1-2 meter thick shear zones located within and between 

the terranes (Figs. 8B, 8C). 

The Rosario thrust at the Ferry location (Fig. 9) imbricates the younger Constitution 

terrane sandstone above the older footwall Deadman Bay terrane ribbon chert. D3 normal 
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faults offset the fault contact, but there is evidence for at least two imbricate thrusts (Fig. 9). 

Strain is focused mostly within the argillite-rich units of the Deadman Bay terrane, with 

variable amounts of strain within the ribbon chert. S2 fabric orientations dip moderately NE 

and average L2 lineations plunge moderately SE (Fig. 9C). Kinematic indicators show 

predominantly top-to-the-NNW, thrust-sense shear (Fig 9C). Slices of the Garrison schist 

were found faulted into the Rosario thrust zone at a location north of Rosario Resort in East 

Sound (Fig. 2) but are not present at the Ferry location. 

D2 fault zone characteristics provide evidence of brittle-ductile deformation.  The 

shear zones contain argillite- or basalt-rich cataclasite with broken and rotated wall rock 

fragments (Figs. 6A, 6D). Shear zones contain cm- to m-scale elongate porphyroclasts and 

blocks that are aligned parallel with fault zone boundaries (Figs. 6A, 6D). A scaly S2 fabric 

consists of small-scale shear bands spaced mm to cm apart, and is defined by newly grown 

chlorite and flattened rock and mineral fragments (Figs. 6C, 6D, 10). A widely-spaced 

cleavage (~10 cm) occurs locally in argillite-rich ribbon chert (Fig 6C). Typically, the S2 

fabric contains S and C planes similar to ductile shear zone fabrics, with C-planes defining 

the overall orientation of the shear zone (Fig. 6C).  

F2 folds exist within D2 shear zones and bend S1 into S2 along shear zone 

boundaries and along the edges of blocks within shear zones (Figs. 6C, 6E). F2 fold axes 

plunge gently to moderately and broadly define a girdle dipping 38˚ to the SE (Fig. 4E). F2 

folds are dm- to cm-scale, tight to isoclinal, harmonic and disharmonic, and parallel and 

similar. 
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Outcrop- and microscopic-scale shear sense indicators show the sense of slip along 

D2 shear zones. L2 lineations are defined by slickenlines and elongated porphyroclasts, and 

agree with the slip directions calculated from brittle-ductile S/C fabrics and Riedel shears 

(Figs. 6D, 6F). Asymmetric porphyroclasts of basalt and sandstone are common in 

cataclastic-rich sections of D2 shear zones (Figs. 6A, 6D). F2 folds verge NW-NE (Fig. 4E). 

A predominant top-to-the-NW shear sense is evident within each D2 shear zone and 

collectively (Figs. 4D, 4E, 7C, 8C, 9C). Opposing thrust and normal shear sense along SE-

dipping shears is common. Additionally, NW-dipping normal-sense shears are found within 

zones dominated by SE-dipping thrust-sense shears. Microstructures indicate similar 

relationships (Fig. 10).  

D2 veins are rare on Orcas Island and include mm- to cm- thick shear veins parallel to 

the S2 fabric. The two veins sampled contain both aragonite and quartz (Fig. 5), with one 

sample also containing calcite. 

Post-cleavage Brittle Deformation 

Post-cleavage brittle faults (D3) cut D1 and D2 structures everywhere and have 

meter-scale offsets and centimeter- to meter- spacing (Figs. 7B, 8B, 9B, 11). D3 fault types 

are grouped using crosscutting relationships, fault orientation, lineation rake, and sense of 

shear. For simplicity, D3 faults are classified into dip-slip and strike-slip; faults with 

lineations raking ≤45ᵒ are considered strike-slip, and those >45ᵒ are considered dip-slip. 

Mutual crosscutting relationships between normal, reverse, and strike-slip faults were 

observed in outcrop (Fig. 12). 
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D3 faults have consistent fault rock characteristics but vary in sense of slip and 

orientation. D3 fault zones range up to 20 cm thick but are more typically discrete slip planes 

(Figs. 11A, 11D). Normal faults are the most common D3 structure (67% of faults) and dip 

in all directions, with two modes dipping moderately SE and gently to moderately NW (Figs. 

12A, 12B). Strike-slip faults (23%) dip moderately to steeply in all directions (Fig. 12D). 

Thrust faults are the least common D3 structure (10%) and dip either gently to steeply NNE 

and SSW or moderately to steeply E and W (Fig. 12G).  

Shear veins are commonly associated with D3 faults. Veins accompany ~50% of 

normal faults, ~65% of strike-slip faults, and ~80% of thrust faults. Veins contain quartz, 

calcite, and aragonite, are up to 5 cm thick, and lie along the fault planes (Fig. 11C). Eight of 

the 17 veins sampled contain aragonite (Fig. 10). Roughly half of the D3 normal and strike-

slip related veins contain aragonite, while D3 thrust faults contain only calcite (Fig. 10). The 

overall vein mineralogy varies locally with the surrounding rock type; veins are typically 

quartz-rich when cutting chert, argillite, or sandstone units and carbonate-rich when cutting 

basalt or limestone units.  

INTERPRETATION OF STRUCTURES 

Original Orientation of Structures 

The following discussion assumes that the D1-D3 structures have not been 

considerably reoriented since formation. The large-scale geometry of the Orcas and Rosario 

thrusts (Fig. 1B) suggests the presence of gentle, km-scale SE-plunging folds in the SJTS, 

which implies folding after D2. However, the relative age of the km-scale folding and D3 

structures is indistinguishable both in the field and by structural analysis. Systematic folding 

of D3 fault kinematics could not be assessed because structures were measured mainly in the 
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hinge of the large SE-plunging synform, rather than in fold limbs (Figs. 1, 2). Unfolding of 

S1 and S2 is impossible without constraints on their original orientations, as the fabrics were 

likely not horizontal during any initial deformation. However, the effects of folding on the 

interpreted shear sense for D2 of this study are considered minimal in the immediate study 

area because data were gathered near the hinge of the km-scale fold, and the SE-plunging 

fold axes of the km-scale folds are parallel with the majority of L2 lineations. This geometry 

would result in little rotation of L2 (Fig. 4D). Folding is therefore tentatively considered D4 

rather than D3. 

Paleomagnetic studies suggest clockwise rotations of crustal blocks along the western 

edge of the North American Cordillera (Beck et al. 1981; Irving, 1985; Cowan et al., 1997; 

Housen et al., 2003). Magnetic resetting is thought to have been widespread in rocks of the 

SJTS during the Cretaceous normal Superchron (118-83 Ma), and magnetic declinations now 

show significant deviations from the “expected” Cretaceous orientations. Work by Burmester 

et al. (2000) and Schermer et al. (2007) highlights the issues involved with producing 

accurate paleomagnetic reconstructions of the SJTS. Without constraints on the folding of S1 

and S2, it is impossible to determine the amount of scatter caused by the folding event(s) 

(Burmester et al., 2000). Additionally, Schermer et al. (2007) explain that between some 

outcrops, paleomagnetic orientations are similar while late brittle structures are scattered, 

whereas at other locations, the opposite is true. Therefore, the relative age of the 

paleomagnetic signature is not well constrained, making paleomagnetic reconstructions 

uncertain. Thus, D1-D3 structures presented here are considered to be in their original 

orientations.   
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D1 Flattening Fabric 

The S1 foliation is interpreted as a flattening fabric with a Z-axis plunging 

moderately to the NW. Shortening perpendicular to the S1 foliation is interpreted to result 

from solution mass transfer (SMT), as evident by truncated grains and aligned micas along 

S1. The lack of S1 foliation in massive sandstones indicates a varying degree of fabric 

development during S1 formation. Shearing during the D1 event is considered unlikely given 

the absence of lineations or other kinematic indicators along the S1 fabric. 

Folds of bedding are interpreted to result from D1 flattening (F1) and pre-S1 

deformation of uncertain significance. One interpretation of the chaotic folding of ribbon 

chert bedding is soft sediment slumping prior to S1 fabric formation. Asymmetric F1 folds 

with S1 axial planar cleavage do not define an axis of symmetry along a girdle representative 

of a shear zone, again suggesting flattening rather than shear (Fig. 4B).  

Assembly along Imbricate D2 Shear Zones 

Imbricate D2 shear zones are interpreted to be the faults responsible for the assembly 

of terranes on top of one another into their current nappe stack. D2 fabrics are concentrated 

along terrane boundaries, suggesting that D2 was responsible for terrane assembly. The 

abundant lineations, asymmetric fabrics, and fault-propagation folds associated with D2 

shear zones represent non-coaxial strain (Fig. 6). The severely fragmented fault rock, overall 

thickness of the shear zones, and presence of exotic fault slices (e.g. Garrison Schist) indicate 

that significant offset was accommodated along these structures. However, slip along 

individual shear zones is likely considerably less due to the number of shears. Evidence of 

the Orcas thrust within the imbricated section of the Rosario thrust at Otter Bay (Figs. 2, 8A, 
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8B) suggest that the Rosario thrust cuts the Orcas thrust and either roots into the Turtleback 

terrane, or reactivates an older on younger thrust.   

Shear sense is interpreted to be dominantly N- to NW-directed during terrane 

assembly. Sixty-six shear sense features indicate top-to-the-N or NW motion, and eight 

indicate top to SE (Figs. 4D, 4E). I suggest these opposing shear sense indicators are due to a 

flattening component together with non-coaxial shear. In this interpretation, SJTS terranes 

must have been located separately somewhere south along the continental margin prior to the 

D2 thrusting event.  

Kinematics of Post-Cleavage Faulting  

Post-cleavage faults with slip sense data were analyzed using FaultKinWin 

(Allmendinger, 2016) to determine the principal strain axes for each D3 fault set. 

FaultKinWin estimates the compression and tension axes (equivalent to compression and 

tension axes for earthquakes) for each fault using fault orientation, lineation orientation, and 

slip sense (Marrett and Allmendinger, 1990). Fault trace lengths and displacements are 

generally not observable on Orcas and Shaw Islands, therefore D3 structures were weighted 

evenly and kinematic axes were calculated using the linked Bingham analysis (Allmendinger, 

2016).  

Kinematics of D3 structures are variable, but are dominated by NW-SE extension. 

Analysis of D3 normal faults indicates overall NW-SE subhorizontal extension (Fig. 12C). 

The predominance of SE-dipping normal faults suggests preferential faulting down to the SE. 

Analysis of D3 strike-slip faults shows mixed subhorizontal extension and shortening in all 

directions (Fig. 12E). No significant crosscutting or conjugate fault relationships are 



 
 

15 
 

distinguishable (Fig. 12F). Analysis of D3 thrust faults shows a weak cluster of gently S-

plunging compression axes, suggesting N-S shortening during faulting (Fig. 12H). However, 

the small sample size of D3 thrust faults makes the significance of this fault set uncertain. 

Given the uncertainty in D3 thrusts, the lack of well-defined strain axes for D3 strike-slip 

faults, and the predominance of normal faulting during the D3 event, the stress field is 

interpreted as dominantly NW-SE extension with subvertical shortening during D3. The 

mutual crosscutting relationships between D3 normal, strike-slip, and thrust faults are 

interpreted to result from spatial and temporal overlap of small-scale structures formed in a 

locally heterogeneous stress field (e.g., Sassi and Faure, 1997; Maerten et al., 2002).  

INTERPRETATION OF PRESSURE AND TEMPERATURE CONDITIONS 

Pressure and temperature conditions for Orcas and Rosario thrusts are broadly constrained by 

vein mineralogy and D2 fault rock microstructures. Aragonite was found in structures of all 

ages in this study (Fig. 10). Lawsonite was only found in one D1 vein sample in this study, 

but has been reported along with aragonite in deformed veins overprinted by foliation and in 

veins that crosscut foliation and brittle-ductile shear zones (D2 of this study) (Brandon et al., 

1988; Maekawa and Brown, 1991; Cowan and Brandon, 1994; Bergh, 2002). The cross-

cutting veins are likely related to the prominent NE-SW striking D3 normal faults reported 

here, as Maekawa and Brown (1991) describe them as being perpendicular to a NW-SE 

stretching lineation. Therefore, the peak metamorphic assemblage of aragonite + lawsonite is 

interpreted to be relatively stable from D1 through at least part of the D3 deformation, and 

roughly constrains temperatures from 125 - 300˚C (Boettcher and Wyllie, 1968; Crawford 

and Hoersch, 1972; Frey et al., 1991). The evidence of intergranular slip and lack of 
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recrystallization of quartz in D2 shear zones limit maximum temperatures to <250˚C 

(Simpson and De Paor, 1993; Stipp et at., 2002). Furthermore, Carlson and Rosenfeld (1981) 

suggest that the preservation of aragonite is very unlikely when exhumed from temperatures 

higher than 200˚C. Pressure stability of aragonite at temperatures of 200 - 250˚C requires 

minimum pressures of 5.5 - 6.6 kbar (Boettcher and Wyllie, 1968; Crawford and Hoersch, 

1972). Consequently, P-T conditions are interpreted here to be relatively stable from D1 to 

D3 deformation at ~200˚C and ≥5.5 kbar.   

DISCUSSION 

The structural and metamorphic history interpreted above suggest that rocks on Orcas 

and Shaw Islands were affected by several stages of deformation, and has implications for 

models proposed by previous workers in the SJTS. First, discrepancies between the number 

and timing of fabrics proposed here and by previous workers are addressed (Table 1) 

(Brandon et al., 1988; Maekawa and Brown, 1991, 1993; Bergh, 2002). The kinematics of 

D2 shear zones are then compared and contrasted to those used to produce previous models 

of mid-Cretaceous thrusting in the SJTS (Brandon et al., 1988; Maekawa and Brown, 1991, 

1993; Cowan and Brandon, 1994; Bergh, 2002). Previous accounts of HP-LT mineralogy and 

the interpreted significance for models of the SJTS (e.g., Glassely et al., 1976; Brandon et al., 

1988; Feehan and Brandon, 1999) are considered in light of the new evidence for aragonite in 

late (D3) brittle structures. Lastly, the significance of margin-parallel extension and the 

scatter of kinematics during D3 are discussed.   
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Implications for Cretaceous Models of the SJTS  

Fabric Development and Associated Kinematics 

Previous work in the SJTS resulted in three hypotheses regarding the timing and 

number of fabrics (Table 1). Brandon et al. (1988), Cowan and Brandon (1994), and Feehan 

and Brandon (1999) argued for two fabrics; a cataclastic fabric located within terrane 

assembly fault zones (the first event of their study, but D2 of this study), and a later SMT 

fabric that overprints the cataclastic fabric and surrounding terranes during exhumation of the 

SJTS (Brandon et at., 1994). Maekawa and Brown (1991) cite the near-parallel relationship 

and similar metamorphic signature of these two fabrics as evidence for only one fabric-

forming event. Lastly, Bergh (2002) suggested that an early fabric (S1) is equivalent to both 

the cataclastic and SMT fabrics discussed by Brandon et al. (1988), and is followed by a 

second, roughly parallel shear fabric (S2) found within terrane-bounding shear zones (e.g., 

Rosario thrust and LSC).   

Several kinematic models have been proposed for the SJTS using the interpretation of 

structures similar to D2 of this study. Expanding on the fold analysis of Hansen (1971), 

Cowan and Brandon (1994) assumed that all folds and cataclastic shear zones were 

synchronous and that a systematic relationship exists among folds and shear zones that 

warrants the interpretation of overall SW-directed shearing and subvertical flattening during 

terrane assembly related to collision of Wrangellia with North America. Conversely, 

Maekawa and Brown (1991) interpreted these folds, along with abundant SE- and NW-

plunging lineations and shear fabrics, as the result of dominantly NW-directed subsimple 

shear during translation of terranes and emplacement over Wrangellia. The kinematic model 

of Bergh (2002) combined the NW- and SW-directed interpretations. Bergh (2002) suggested 



 
 

18 
 

that SW-directed thrusting was accommodated within the Rosario fault zone during D1, 

citing consistent asymmetric folds with an axial planar cleavage and lineations of stretched 

chert lenses, sandstone lenses, and quartz ribbons. Bergh (2002) further proposed that during 

D2, oblique subduction of the Farallon Plate produced NW-directed structures similar to the 

shear fabrics described by Maekawa and Brown (1991).   

The D1 and D2 structures interpreted in this study are inconsistent with some of the 

previous interpretations of the fabrics and kinematics in the SJTS. Brittle-ductile shear zones 

cut and drag foliation from the surrounding wall rock and along blocks within the D2 shear 

zones, and require two temporally distinct fabrics despite their regionally subparallel 

orientation (Figs. 6A, 7B, 8B, 9B). The lack of shear indicators along S1 fabrics within 

brittle-ductile shear zones that separate terranes indicate that D1 cannot be responsible for 

terrane assembly. Evidence of SW-directed thrusting (Brandon et al., 1988; and Cowan and 

Brandon, 1994; Bergh, 2002,) was not found on Orcas and Shaw Islands. Folds within and 

adjacent to D2 shear zones are not SW-vergent, nor are they systematically oriented to have 

been formed by SW-directed shearing (Figs. 10A-C). If SW-directed motion was 

accommodated along the brittle-ductile shear zones prior to D2 (as in Bergh, 2002), then 

evidence along the Rosario thrust on Orcas and Shaw Islands may have been completely 

erased during NW-directed thrusting. Therefore, kinematics during the D1 of Bergh (2002) 

cannot be assessed. My interpretation of NW-directed shear along the imbricated D2 shear 

zones is consistent with the model of margin-parallel translation during oblique subduction as 

proposed by Maekawa and Brown (1991) (Fig. 13). The oblique component of traction on the 

base of the forearc by the subducting plate may have led to the translation of nappes as 
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forearc slivers into a reentrant formed by the protruding Coast Plutonic Complex and already 

accreted Wrangellia, as proposed by Brown (2012) (Fig. 13).  

Relative Timing of HP-LT Metamorphism 

The timing of peak metamorphism relative to deformation has been interpreted 

differently by previous workers, leading to disagreement over which structures record 

deformation within the accretionary wedge setting. Orogen-normal contractional models 

(Brandon et al., 1988, 1993, 1994; McGroder, 1991; Cowan and Brandon, 1994; Feehan and 

Brandon, 1999) cite static veins of aragonite, lawsonite, and prehnite and deformed veins of 

lawsonite as evidence that HP-LT metamorphism postdates major slip along cataclastic shear 

zones (D2 of this study), and largely predates SMT cleavage formation (S1 of this study). 

Maekawa and Brown (1991, 1993) interpreted similar evidence to show that HP-LT 

conditions are coeval with faulting and fabric formation (D1 and D2 of this study), 

suggesting that terranes were assembled and thrust over Wrangellia during HP-LT 

conditions. The obduction model of Brown (2012) revised the interpretation of syn-thrusting 

HP-LT metamorphism and states that metamorphism ended prior to assembly. Brown (2012) 

proposed that assembly related shear zones are non-metamorphic, young upward, and 

separate terranes that have different metamorphic histories acquired independently before 

their assembly during thrusting over Wrangellia.  

The vein mineralogy of D3 structures requires a reassessment of models that argue 

for assembly faults post-dating metamorphism. Aragonite in D3 structures (and equivalent 

structures of Schermer et al., 2007) shows that HP-LT conditions likely continued after 

terrane assembly. HP-LT metamorphism is not reported for rocks of Wrangellia (e.g., 
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Surdam, 1973), making it unlikely that the HP-LT faults of the SJTS formed above the 

southern edge of Wrangellia. The post-cleavage aragonite also invalidates the interpretation 

that the SMT fabric formed after HP-LT metamorphism, during exhumation (Feehan and 

Brandon, 1999). Structures related to exhumation must be either late D3 faults lacking a HP-

LT signature (Fig. 5), or structures preserved elsewhere. These findings also suggest that the 

faults related to emplacement of HP-LT terranes as hanging wall to Wrangellia are yet to be 

discovered (Fig. 13). Perhaps the many waterways, Eocene sedimentary rocks, or Quaternary 

cover proximal to the San Juan Islands conceal the final emplacement structures (Fig. 1). 

Evidence of pre-assembly thrusting? 

 The fault contact between the Turtleback Complex and East Sound Group on Orcas 

Island represents one of the few old-on-young thrust contacts in the SJTS. Brandon et al. 

(1988) and Brown and Gehrels (2007) interpreted these two units as the same terrane, and 

suggested that the East Sound volcanics were deposited over the Turtleback plutonic rocks in 

an arc-volcanic setting. Map evidence (Figs. 1, 2) suggests a major thrust contact, as the 

Turtleback Complex now lies structurally above the East Sound Group. This thrust, in 

addition to the Orcas thrust, is cut by the Rosario thrusts (Fig. 2). Brown (2012) interpreted 

the SJTS nappes as forearc slivers originating somewhere south along the Cordilleran 

margin, and other workers have noted correlations between rock units in the SJTS with 

terranes in the Klamath Mountains (Cowan, 1980; Brown, 1987; Brandon et al., 1988). These 

hypotheses suggest that this old-on-young fault may represent a pre-assembly thrust. 

However, the NW-SE oriented lineations, top-to-the-NW shear indicators, and the SE-

dipping imbricate nature of brittle-ductile shear zones separating the two terranes at Indralaya 
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(Figs. 2, 7) are similar to D2 deformation discussed above. Without age constraints for this 

fault, I interpret juxtaposition of the East Sound Group and Turtleback Complex to have 

occurred during the D2 assembly, but prior to emplacement of Constitution terrane along 

Rosario thrust. 

Origin of D3 Structures  

Late brittle structures presented here signify the beginning of vertical shortening and 

horizontal extension. A predominance of margin-parallel extension similar to D3 structures 

described here and in Schermer et al. (2007) has been observed at locations with oblique 

convergence (e.g., Aleutians and Sumatra (McCaffrey, 1992 and 1996; Avé Lallemant and 

Oldow, 2000); the High Himalayas (Styron et al., 2011), Ryukyu arc (Kuramoto and Konishi, 

1989); and the Cretaceous plate margin of Venezuela (Avé Lallemant and Guth, 1990)). Avé 

Lallemant and Guth (1990) showed that margin-parallel extension may result from an 

increased margin-parallel component of slip along the length of a curved margin. However, 

the component of extension not parallel to the margin may instead signify internal adjustment 

of the wedge in response to overthickening during previous thrusting, additional 

underplating, or a combination of both (e.g., Platt, 1986; Carmignani and Kligfield, 1990; 

Wallace et al., 1993). Late brittle structures in the LSC reported by Gillaspy (2004) indicate 

orogen-normal thrusting prior to normal faulting in the SJTS. The predominance of orogen-

parallel extension may then represent the presence of a weak or nonexistent lateral buttress to 

an overthickened wedge. The evidence presented in this study can not distinguish the primary 

cause of D3 deformation.  
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The scatter of D3 kinematics may be the result of spatial and temporal variation in the 

regional and local stress tensors, mechanical interaction of closely spaced faults, and/or the 

inability to recognize separate post-cleavage events. Scatter of kinematics for each D3 

structure type could be related to the assumptions inherent to calculations of stress and strain 

directions. These assumptions typically include; 1) that there is homogeneous stress field 

where a group of faults are responding to a single stress orientation, and 2) that there is 

independent slip in which separate faults are not mechanically interacting (Wallace, 1951; 

Bott, 1959). Competency contrasts between different lithologies, preexisting layering within 

variably oriented rocks, and the close spacing of D3 faults on Orcas and Shaw Islands 

challenge these assumptions (Belanger, 2008). Additionally, it is possible that a 

homogeneous stress field during a single deformation event produced more than one 

structure type (e.g., normal and strike-slip). Earthquake focal mechanisms from historic 

seismic data and structural data gathered from recent coring investigations show that active 

faults in modern accretionary wedges can have mixed kinematics (e.g. Hayman et al., 2012). 

This scatter could make the identification of separate events with similar deformation styles 

difficult using crosscutting relationships alone. If the kinematics related to each event were 

variable, it would be difficult to distinguish events using structural analysis. 

The transition from brittle-ductile (D2) to brittle (D3) structures reflects a change in 

rheology and fault-fluid relationships in an evolving accretionary wedge. Temperature 

changes are often associated with varying deformation styles, although the interpretation of 

relatively constant temperatures (~200˚C) from D1-D3 indicate other controls on rheology. 

The shift from NW-directed thrusting during D2 to vertical thinning and horizontal extension 
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during D3 certainly reflect changing boundary conditions and/or plate interactions. Higher 

strain rates may have been associated with the onset the new D3 stress field. Additionally, 

strain hardening due to the loss of porosity during previous SMT may have caused the shift 

to brittle fault behavior (e.g., Moore and Byrne, 1987).  

SUMMARY AND CONCLUSIONS 

Structures on Orcas and Shaw Islands reveal a sequence of three main deformation 

events during the mid-Cretaceous orogeny in the Pacific Northwest. The widespread fabric 

found within terranes lacks evidence of non-coaxial strain and is interpreted as an SMT 

flattening fabric imprinted during initial accretion of the terranes to the continental margin. 

Brittle-ductile D2 shear zones several meters thick cut the flattening fabric and imbricate 

rocks both along terrane contacts and within the terranes themselves. The D2 shear zones are 

the main structures of the SE-dipping San Juan thrust system and are interpreted to 

accommodate slip during assembly of the SJTS nappe stack. Thrusting is dominantly top-to-

the NW and is interpreted to result from the translation of terranes northward along the 

continental margin into a transpressive stepover zone during oblique subduction as argued by 

previous workers (Brown, 1987; Maekawa and Brown, 1991; Brown, 2012). Post-cleavage 

brittle D3 deformation includes normal, strike-slip, and reverse faults and related veins. 

Kinematics are mixed for strike-slip and reverse faults, but the predominance of normal 

faults and their relatively consistent NW-SE oriented tension axes is interpreted to show 

overall margin-parallel extension and subvertical thinning during D3. The scatter of D3 

kinematics may result from spatial and temporal variation in the regional and local stress 
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field, the mechanical interaction of closely spaced faults, and/or the inability to recognize 

separate post-cleavage deformation events. 

The peak metamorphic assemblage aragonite + lawsonite is preserved in veins related 

to D1-D3, showing that all deformation discussed above took place within an accretionary 

wedge setting with relatively stable P-T conditions of ~200˚C and ≥5.5 kbar. The change in 

deformation styles during stable P-T conditions indicates that there are other controls on 

rheology during the development of the accretionary wedge such as fluid loss, strain 

hardening, and/or variable strain rates. Future work should focus on determining what 

structures accommodated exhumation of the HP-LT SJTS rocks, and determine if those 

structures are related to the emplacement of the thrust system over the unmetamorphosed 

Wrangellia terrane.  
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TABLES 

 

 

 

 

 

 

 

 

Study: Brandon and coworkers. 
†

Maekawa and Brown 
(1991, 1993)

Bergh (2002) Schermer et al. (2007) This study

Location: Western San Juan Islands Western San Juan Islands Rosario thrust, LSC, 
western and southern San 

Juan Islands

LSC and adjacent areas, 
southern San Juan Islands

Orcas and Shaw Islands, 
Rosario and Orcas 

thrusts, Turtleback and 
Eastsound Terrane 

contact

Event*

D1 SW-verging brittle 
thrusting; Cataclasis, 
folds, Riedel shears, Later 
static HP-LT 
metamorphism.

Not reported. SW-verging folds with axial 
plane cleavage (S1), NE-
SW stretching lineation 
(L1), coeval HP-LT 
metamorphism.

Not studied; “deformed” 
veins analyzed for aragonite 
indicate HP-LT 
metamorphism.

SMT flattening fabric 
(S1), HP-LT 
metamorphism.**

D2 SMT cleavage related to 
uplift, vertical thinning, 
NW-SE shortening.

NW-verging ductile, brittle-
ductile shear zones (S1) 
with extension and shear 
lineations (L1), coeval HP-
LT metamorphism.

Penetrative left-lateral NW-
verging shear zones (S2) 
subparallel to S1; drag folds. 
NW-SE stretching and 
shear lineations (L2), coeval 
HP-LT metamorphism.

Not studied; “early strike-slip 
shear” veins analyzed for 
aragonite indicate HP-LT 
metamorphism.

NW-verging brittle-ductile 
shear zones (S2) and 
shear lineations (L2), HP-
LT metamorphism.**

D3 Not reported. Late brittle structures not 
analyzed.

Not reported. NE- and SW-verging thrust 
cut D1 and D2 fabric. HP-
LT metamorphism.

Predominantly NW-SE 
extension via brittle faults 
and extension veins, HP-
LT metamorphism.**

D4 Minor veining, normal 
faults, insignificant strain. 

Not reported. Not reported. NW-SE and NE-SW 
extension via normal faults 
and extension veins. HP-LT 
metamorphism. 

Not reported.

D5 Not reported. Not reported. Not reported. Strike-slip faults and brittle-
ductile shear zones. Lower 
pressure than D4. 

Not reported.

D6 ?

†Brandon et al. (1988). Brandon et al. (1994), Cowan and Brandon (1994), Feehan and Brandon (1999).
LSC – Lopez Structural Complex; SMT – Solution Mass Transfer; HP-LT (high pressure – low temperature)
*Event numbers do not necessarily correlate with numbers in each reference but are generalized for the entire study area and deformational history. 
** Aragonite data are presented in Figure 5.
†† Cowan and Miller (1981); England and Calon (1991); Johnson (1985); Misch (1966); Tabor (1994)

Table modified from Schermer et al., 2007

TABLE 1. COMPARISON OF STRUCTURAL STUDIES IN THE SAN JUAN ISLANDS

----    NW-trending folds and dextral strike-slip faults (Eocene?)††    ----
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FIGURES 

   

     
 

Figure 1. Regional maps showing the geologic setting and rock units of the SJTS. (A) 
Regional map. CB – Chilliwack batholith, CBTS – Coast Belt Thrust System, CH – 
Chilliwack Group, INT – Intermontane terrane, MS – Mt. Stuart batholith, NA – Nanaimo 
Group, NK – Nooksack Formation, NWCS – Northwest Cascade system, OP – Olympic 
Peninsula terranes, SC-FRF – Straight Creek – Fraiser River fault, SH – Shuksan terrane, TS 
– Twin Sisters Dunite, WR – Wrangellia. (B) Rock units and locations of the major terrane 
bounding thrusts in the San Juan Islands. CO – Constitution Formation, DB – Deadman Bay 
Volcanics, ES – East Sound Group, FC – Fidalgo Complex, HS – Haro Formation and 
Speiden Group, LM – Lummi tectonic assemblage, LSC – Lopez Structural Complex, OC – 
Orcas Chert, TB – Turtleback Complex. White represents Eocene Chuckanut formation or 
Quaternary cover. Maps are after Brown et al. (2005), and Brown and Dragovich (2003). 
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Figure 2. Map of terranes and major fault zones on Orcas and Shaw Islands. Equal area 
stereonet plots show S1 and S2 fabric orientations (black and red lines, respectively) and L2 
lineations (red dots) from locations near major fault zones. Plot of poles to all S1 fabrics with 
1% area contours is located in the upper left corner. Contour interval is 2%. Locations of vein 
samples containing aragonite are plotted and colored according to their associated 
deformation phase. Sample numbers located in table A1. Kenneth Frank (2015, written 
communication) provided data for Shaw Island. The Tectonic Zone is mapped after Vance 
(1975).  
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Figure 3. Photographs of D1 structures. (A) Weakly-defined S1 foliation in Constitution 
terrane sandstone. D3 quartz extension veins cut the S1 fabric at a high angle. Pencil for 
scale. Site 34. (B) Well-defined S1 foliation in ribbon chert from the Deadman Bay terrane. 
Site 44. (C) Chaotic F1 folds in Deadman Bay terrane ribbon chert that lacks axial planar 
cleavage and show varied fold axes and axial plane orientations. Site 51. (D) D2 shear zone 
separating Turtleback terrane diorite from Deadman Bay terrane ribbon chert. The S1 fabric 
in the ribbon chert is sub-parallel the D2 shear zone. A carbonate D1 vein is cut by a D2 
shear zone. Chisel for scale. Site 55. (E) Folded S0 bedding with a well axial planar S1 
cleavage in Orcas Chert ribbon chert. Site 33.  
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Figure 4. Equal area stereonets of D1 and D2 structures. (A) F1 fold axes of folds with axial 
planes parallel or subparallel to S1. (B) Hingelines of asymmetric F1 folds with axial planes 
parallel or subparallel to S1. Open circles = counterclockwise vergence, solid circles = 
clockwise vergence. (C) F1 fold axes of folds with axial planes not parallel to S1. (D) D2 C-
plane fabrics and L2 lineations with arrows showing sense of slip. (E) F2 fold axes. The great 
circle represents the best-fit girdle for fold axes, and the arrow points in interpreted direction 
of shear. Open circles = counterclockwise vergence, solid circles = clockwise vergence. (F) 
Plot comparing lineations calculated from S-C fabric geometries (dots) and lineations 
measured along S2 C-planes (+). Each line plotted for measured lineations (+) represents the 
average orientation of lineations at locations in close proximity to where S-C geometries 
were measured. 
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Figure 5. Stacked bar plot representing the number of vein samples interpreted to contain 
aragonite based on XRD analysis. Results are plotted according to their deformation event. 
D3 veins are separated into the three main structure types discussed in the text.   

 

 

 

 

 

 

 

 

 

Figure 6. Photographs of D2 structures. Site numbers shown on figure A1. (A) Lens-shaped 
block of limestone within the Rosario thrust shear zone on Shaw Island. Many smaller 
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porphyroclasts of limestone are found throughout the shear zone. Site 55. (B) Centimeter-
scale D2 shear zone separating ribbon chert from Constitution terrane sandstone. The ribbon 
chert may either be a slice of the Deadman Bay terrane or the Constitution terrane; this shear 
is found structurally above the Rosario thrust on Orcas Island. The S1 fabric within the 
ribbon chert is subparallel to S2. A D3 normal fault offsets the D2 fault contact. Site 24. (C) 
Brittle-ductile fabrics (S, C, and Riedel) typically found within D2 shear zones. The S1 fabric 
is clearly cut and bent by the D2 shears. Brunton for scale. Site 37. (D) D2 shear zone near 
Indralaya containing porphyroclasts of wall rock fragments from the East Sound Group 
(basalt, limestone, and volcaniclastic sandstone) within basalt-rich cataclasite. Shear sense is 
top-to-the NW. Site 39. (E) Rosario fault zone (D2) showing the S1 fabric cut and dragged 
along D2 shears. Folds and asymmetric ribbon chert porphyroclasts show top-to-the NW 
shear. Site 69. 
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Caption on previous page. 
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Figure 7. Imbricate faulting between the East Sound Group and the Turtleback Complex 
near Indralaya (Indralaya; Fig. 2). (A) Geologic map of the coastline. (B) Cross-section; 
description as in figure 7B. (C) Equal-area stereonet of S2 and L2; description as in figure 
7C. 
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Figure 8. Orcas thrust imbricating the Turtleback and Deadman Bay terranes at Otter Bay 
(Otter Bay; Fig. 2). (A) Geologic map of the coastline. (B) Cross-section; description as in 
figure 7B. Faults are numbered in order from structurally lowest to highest, with thrust 0 
representing the contact between the two terranes. (C) Equal-area stereonet of S2 and L2; 
description as in figure 7C. 
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Figure 9. Rosario thrust near the Orcas Island Ferry (Ferry: Fig. 2). (A) Geologic map of the 
coastline showing the contact of Constitution Formation and Orcas Chert. (B) Cross-section. 
Cross-sections in figures 7-9 are produced from coastline sketches and measurements of 
faults and fabrics. Only major D3 faults are shown for each locality. No vertical 
exaggeration. (C) Equal area stereonets in figures 7-9 show D2 C-plane fabrics and L2 
lineations with arrows indicating the sense of slip.  
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Figure 10. Photomicrographs showing asymmetric fabrics within D2 shear zone rocks. Shear 
sense is top-to-the northwest in both images. Cross-polarized light. (A) Sigmoidal wall rock 
porphyroclasts, S-C foliations, broken and rounded wall rock fragments of chert, and shear 
bands. (B) Shear bands, broken and rounded wall rock fragments of chert, and a cut and 
dragged quartz vein that truncates the S1 fabric in sandstone (SS) wall rock fragments.  
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Figure 11. Photographs of D3 structures. Faults are outlined by dashed lines. Site numbers 
shown on figure A1. (A) D3 normal fault cutting a D2 shear zone. D3 quartz shear vein is 
parallel with the fault. Site 24. (B) Outcrop view highlighting the abundance of D3 normal 
and strike-slip faults that cut the surrounding fabrics. Site 29. (C) D3 shear vein along a 
strike-slip fault in the Constitution terrane sandstone. Site 23. (D) Brittle D3 normal faults 
cutting S1 foliation in Deadman Bay terrane ribbon chert. Notebook for scale. Site 48. 
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Figure 12. Equal area stereonet plots of D3 faults including poles to planes, slip directions of 
the hanging wall, and compression and tension strain axes from FaultKinWin (Allmendinger, 
2016) analysis. Symbols: squares = poles to fault plane, solid dots = compression axes, open 
dots = tension axes, and dots with arrows = lineations and direction of slip. (A) Poles to 
normal fault planes. (B) Normal fault planes with slip directions. (C) Compression and 
tension strain axes for normal faults. 1% area contour plot of tension axes for normal faults. 
Contour interval is 2%. (D) Strike-slip fault planes with slip directions. (E) Compression and 
tension strain axes for strike-slip faults. (F) Strike-slip fault planes. Left-lateral faults shown 
as black and right-lateral faults shown as red. (G) Thrust fault planes with slip directions. (H) 
Compression and tension strain axes for thrust faults. 
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Caption on previous page. 
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Figure 13. Schematic diagrams depicting the interpreted tectonic evolution of the SJTS-
NWCS. (D1) Terranes accrete separately along the North American margin as they enter into 
an accretionary wedge environment. Wrangellia is nearing collision with the continent 
somewhere north of the SJTS terranes. (D2) Oblique subduction is initiated and terranes are 
thrust and assembled on top of one another over the already accreted Wrangellia. 
Abbreviations as in figure 1. BP – Bell Pass Mélange terrane; EA – Easton.  (D3) D3 brittle 
structures accommodate horizontal extension with predominant margin-parallel extension. 
The future (unidentified) suture of the SJTS-NWCS terranes and Wrangellia is shown in 
gray. Schematics are modeled after Brown (1987) (D1) and Schermer et al. (2007) (D2 and 
D3). 
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Chapter 2:  Fluid Inclusion Results 

INTRODUCTION 
Understanding P-T conditions during deformation of accreted terranes is important 

for understanding the pathways rocks took during accretion and emplacement. Pressure and 

temperature conditions in the SJTS have been constrained by the presence of HP-LT 

minerals aragonite, prehnite, and lawsonite in veins and fault rock (Glassley et al., 1976; 

Brandon et al., 1988, 1993, Maekawa and Brown, 1991; Schermer et al., 2007). As discussed 

above, these constraints broadly indicate relatively stable metamorphic conditions of no more 

than ~200˚C at ≥5.5 kb during all (D1-D3) deformation events. In attempt to provide tighter 

constraints on the P-T conditions of each deformation phase, fluid inclusions within quartz 

and calcite veins from faults of known kinematics were analyzed. Pairing fluid inclusion 

results with metamorphic mineral assemblages can provide insight into how deformation 

relates to fluid flow and depth in an accretionary wedge. 

Physical and chemical conditions of fluids entrapped within a mineral at the time of 

mineral formation can be determined with fluid inclusion microthermometry (Roedder, 1984; 

Goldstein and Reynolds, 1994). If the morphology of fluid inclusions suggests that the 

volume of the inclusions within an assemblage has not changed since mineral formation, then 

microthermometry can be used to determine the minimum temperatures at the time of the 

deformation that produced the vein. After entrapment, the drop in temperature and pressure 

during exhumation cause the formation of a gas phase within fluid inclusions. 

Microthermometry provides a homogenization temperature (Th) that represents the minimum 

temperature required for the inclusion to homogenize back into an all-fluid state as it was 

during entrapment. Additionally, after freezing the inclusions, the final melting temperature 
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of ice (Tm) allows determination of the fluid’s composition. Combining Th and Tm produces 

an isochore (line of constant volume) on a P-T graph representing the possible pressures and 

temperatures of mineral formation. Th values only provide a minimum estimate of 

entrapment temperature and require a pressure correction to estimate actual entrapment 

temperatures. If pressure estimations from metamorphic minerals are available (e.g. 

aragonite, lawsonite, or prehnite), actual entrapment temperatures can be constrained, and 

vice versa.  

SAMPLE PREPARATION 

Coarse-grained quartz and carbonate veins associated with the D1 and D3 events 

were sampled for fluid inclusion microthermometry (Figs. 14, 15). Although other quartz and 

carbonate veins in the SJTS contain additional minerals such as lawsonite and prehnite, the 

sampled veins did not. Two of the samples analyzed using fluid inclusion microthermometry 

were confirmed to be aragonite using X-ray diffraction analysis. To identify optimum 

samples to be professionally polished, ~120µm thick quick-plates of 42 samples were ground 

to 600 grit on both sides and observed using water and a cover slip to improve clarity. Most 

samples lacked identifiable primary inclusions and were clouded by an abundance of 

inclusions too small to analyze. Fourteen samples with the best evidence for growth zones 

and their optical clarity (3 from D1 and 11 from D3) were doubly polished.   

Quartz-rich samples proved more useful than calcite for identifying primary 

inclusions, having 1) more inclusions, 2) better optical clarity for analyzing small inclusions, 

and 3) and easily identifiable fractures and secondary inclusion trails. Carbonate samples 

were rarely chosen for analysis. Cleavage planes in carbonate crystals are weak, and 
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assemblages along cleavage planes were avoided due to their high potential for fracturing 

and allowing entrapment of secondary inclusions during later geologic deformation (Fig. 

16A). Additionally, primary inclusions in carbonate samples are difficult to identify due to 

the high density of secondary fractures. Quartz samples possess abundant scattered inclusions 

and rare growth zones characteristic of primary inclusions (Figs. 16B-D). Assemblages of 

primary inclusions were identified as being parallel to grain boundaries and isolated from 

potential fractures (Roedder, 1984). Fifteen total assemblages were deemed primary, with at 

least one assemblage in each of the 14 samples. 

FLUID INCLUSION MICROTHERMOMETRY 

Microthermometry was conducted at Western Washington University under the 

supervision of Dr. Pete Stelling using an Olympus BX53 petrographic microscope and 40x 

objective, Linkam THMSG600 temperature-controlled geologic stage, and Linksys32 

temperature control and video capture software. The eutectic temperature (Te) and the final 

ice-melting temperature of ice (Tm) for each inclusion were measured prior to heating runs in 

attempt to avoid inclusion decrepitation (Roedder, 1984). Freezing was characterized by the 

“jerk” of the vapor phase bubble, slight darkening of the inclusions, or sudden disappearance 

of the vapor phase during ice formation. Aqueous inclusions were cooled to -60˚C during 

repeated cooling runs. Th values were measured using the bracketing technique described in 

detail by Goldstein and Reynolds (1994). Heating rates of 0.25-0.5 ˚C/min were chosen when 

nearing phase transitions. Tm was generally observed as a sudden jerk followed by a lack of 

observable bubble deformation, or as the vapor phase suddenly re-nucleated with no 
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noticeable post-nucleation bubble deformation. Salinity (weight % NaCl) was calculated 

using equations from Bodnar (1993).  

RESULTS 

Assemblages from both D1 and D3 vein samples have similar sizes, morphologies, 

and general fluid compositions. Inclusions are rounded to sub-rounded, averaging 3-5 um in 

the longest dimension (Fig. 16). All analyzed assemblages are two-phase (vapor-fluid) 

inclusions at room temperature with vapor volume % varying between 15 - 40%, averaging 

25%. First melting (Te) values averaging near -21.1˚C indicate a H2O + NaCl fluid system.  

Reliable data were difficult to obtain due to 1) vapor phases disappearing upon 

freezing cycles and failing to reappear when heating, 2) presence of accidentals (solids 

entrapped during mineral formation), 3) and a lack of observable bubble deformation during 

the melting. Small inclusion sizes and poor sample clarity amplified the latter problem. 

Analysis of four of the assemblages produced datasets large enough to allow for 

interpretation of fluid conditions (Fig. 17; Table 2); quartz samples ORC-10-6-15-1A and B 

from D1, and quartz samples ORC-7-23-15-1B and ORC-7-19-15-4C from D3 (normal 

faults). Tm values for D1 assemblages varied from -4.3 to 1˚C, averaging -1.9˚C (Fig. 15; 

Table 2). Th values for D1 assemblages are scattered between 157-248˚C (Fig. 17; Table 2). 

Tm values for D3 assemblages had two populations; in sample ORC-7-23-15-1B values 

ranged between -3.7 to -2.2˚C averaging -2.8˚C, while sample ORC-7-19-15-4C values 

ranged between -1.8 to 1.7˚C, averaging -0.7˚C (Fig. 17; Table 2). Th values for D3 

assemblages also show two populations; sample ORC-7-23-15-1B shows scatter between 

212-299˚C, while ORC-7-19-15-4C scatters between 168-230˚C (Fig. 17; Table 2).  
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INTERPRETATION 

Due to the wide variability in Tm and Th data for D1 and D3 assemblages, the 

inclusions are believed to have reequilibrated (change in volume and/or composition) and are 

deemed untrustworthy for estimating P-T conditions. Inclusions may have reequilibrated by a 

combination of (1) dislocation creep processes, (2) unstable crack growth during inclusion 

decrepitation, or (3) undetected necking down after a phase change (Goldstein and Reynolds, 

1994). A component of dislocation creep is evident as weak undulatory extinction in quartz 

grains (Fig. 16B). Kerrich (1976) states that even small amounts of strain can cause minor 

intracrystalline leakage of fluids yielding abnormally high temperature estimates. Relatively 

consistent gas-to-liquid ratios, lack of single-phase (all liquid) inclusions, and generally 

rounded morphology suggest necking was not the primary factor in causing Tm and Th 

variability. A more likely cause for reequilibration is a combination of volume changes by 

cracking (or stretching) and fluid leakage/refilling due to dislocation creep and/or fracturing 

(Goldstein and Reynolds, 1994). Positive Tm values in some samples may indicate 

metastability of inclusions as the vapor phase fails to re-nucleate until positive temperature 

values as a result of negative pressures caused by the disappearance of the vapor phase 

during freezing tests (Roedder, 1967). These positive values may also suggest the presence of 

other fluid components having positive melting temperatures, such as CO2 clathrates or other 

gas hydrates (Bozzo, 1975; Collins, 1979; Goldstein and Reynolds, 1994). Though the results 

do not allow an accurate interpretation of the exact fluid composition, they do suggest fluid 

with salinities <7 wt. %. 
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A preliminary fluid inclusion investigation by Gillaspy (2004) in the SJTS suggested 

similar findings of reequilibration after entrapment for assemblages in veins similar to D3 of 

this study. Gillaspy (2004) found similarly sized, two-phase H2O + NaCl aqueous inclusions 

with salinities of ~0.5 wt. % and Th values ranging from 177 to 206˚C. Th values represent 

minimum entrapment temperatures and are often lower than temperatures required by 

mineralogical constraints, however. In both Gillaspy’s (2004) data and data presented here, 

most of the minimum entrapment temperatures are too high for rocks preserving aragonite 

(Fig. 18; Carlson and Rosenfeld, 1981). Using isochores from Gillaspy (2004) and those 

calculated from data above (assuming inclusions are still in equilibrium), pressures as low as 

<0.25 kbar are required to agree with the interpreted maximum temperature of 200˚C (Fig. 

18). Aragonite does not form in equilibrium at such low pressures, as pressures of ~5.5 kbar 

(Boettcher and Wyllie, 1968; Crawford and Hoersch, 1972) and 6.5 kbar (Redfern et al., 

1989) are estimated for aragonite. These calculated low pressures can be explained by 

stretching of the fluid inclusions due to deformation during rising temperatures after fluid 

entrapment.  

 Further fluid inclusion work in the SJTS may be successful if veins are found with 

more conclusive evidence for primary inclusions, and if larger inclusions can be found or can 

be analyzed with higher magnification objectives (>40x). Additionally, cathodoluminescence 

of veins could be used to look for textural evidence of multiple generations of growth at 

different times.  
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TABLES 

 

Sample† Inclusion % Gas * Tm (˚C) Wt. % Salinity Th (˚C)
ORC-10-6-15-1A 1 35 -0.7 1.2 197
Quartz 2 30 -2.1 3.5 202.5

3 35 -1.2 2.1 202.2
4 25 -2 3.4 207
5 25 -2.5 4.2 216
6 25 -2.3 3.9 248
7 20 -3.8 6.2 227
8 25 -1.7 2.9 217
9 20 0 0.0 157
10 25 -2.4 4.0 237
11 30 -2 3.4 200
12 35 -2 3.4 247

ORC-10-6-15-1B 1 25 -4.3 6.9 218
Quartz 2 30 -3.1 5.1 233

3 20 -2.4 4.0 -
4 30 -2.2 3.7 192
5 35 -1.9 3.2 212.5
6 30 -1.5 2.6 197.5
7 20 0.3 - 182.5
8 30 -1.7 2.9 227.5
9 30 -1.8 3.1 197.5
10 20 -3.2 5.3 197.5
11 40 -3.6 5.9 182.5
12 30 -1.2 2.1 182.5
13 25 1 - 177.5

ORC-7-19-15-4C 1 15 -0.4 0.7 172.5
Quartz 2 20 -1.4 2.4 180

3 20 -0.6 1.1 168
4 20 2.5 - 165
5 20 1.7 - 180
6 30 -1.1 1.9 173
7 20 1 - 180
8 20 -1.3 2.2 226
9 20 -0.6 1.1 -

10 25 - 0.0 -
11 20 -1.8 3.1 181
12 30 -1.2 2.1 230
13 25 -0.6 1.1 -
14 15 -1.1 1.9 174
15 20 -1.1 1.9 201
16 25 -1.3 2.2 224

TABLE 2. MICROTHERMOMETRY DATA FOR FLUID INCLUSION ANALYSIS
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Sample† Inclusion % Gas * Tm (˚C) Wt. % Salinity Th (˚C)
ORC-7-8-15-4D 1 20 -0.1 0.2 -
Quartz 2 25 0.1 - -

3 20 2.3 - -
4 20 -2.3 3.9 -
5 20 -1.1 1.9 -
6 20 -1.4 2.4 -
7 25 -0.9 1.6 -
8 25 - - -
9 30 -0.8 1.4 -

10 25 -0.9 1.6 -
11 15 -0.8 1.4 -
12 30 -0.9 1.6 -
13 30 0.5 - -
14 30 -1.7 2.9 -
15 20 -0.9 1.6 -
16 30 -1.2 2.1 -

ORC-7-22-15-3D 1 25 - - 427
Quartz 2 30 - - 417

3 20 - - 432
4 25 - - -
5 25 - - 456
6 30 - - -
7 35 - - 463
8 30 - - -
9 30 - - 422

10 30 - - -
ORC-7-22-15-3E 1 30 - - 49.3
Quartz 2 50 -2.7 4.5 363

3 25 -4.5 7.2 -
4 25 - - -

TABLE 2. Cont'd
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Sample† Inclusion % Gas * Tm (˚C) Wt. % Salinity Th (˚C)
ORC-7-23-15-1B 1 25 -2.5 4.2 230
Quartz 2 35 -2.2 3.7 250

3 30 -2.5 4.2 245
4 25 -3.4 5.6 265
5 20 -2.9 4.8 274
6 40 -3.4 5.6 299
7 35 -2.8 4.6 281
8 30 -2.4 4.0 241
9 25 -2.6 4.3 215

10 20 -2.2 3.7 212
11 40 -3.7 6.0 253

ORC-7-29-15-4A 1 30 - - 242.5
Quartz 2 30 - - -

3 30 - - 208
4 30 - - -
5 30 - - -
6 30 - - 180
7 30 - - 239
8 30 - - -
9 30 - - -

10 30 - - 227
11 30 - - 230
12 30 - - 218
13 30 - - -

ORC-7-29-15-4C 1 40 -1 1.7 228.3
Quartz 2 25 - 0.0 -

3 40 -1.2 2.1 196.7
4 35 1.6 - 232
5 25 0 0.0 228.5
6 30 2 - 205
7 30 2.3 - 220

TABLE 2. Cont'd
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Sample† Inclusion % Gas * Tm (˚C) Wt. % Salinity Th (˚C)
ORC-9-3-15-1F 1 10 - - 177
Carbonate 2 25 - - 177

3 25 -1.6 2.7 165
4 25 - 0.0 -
5 30 -2 3.4 206
6 25 0.4 - 134

ORC-9-3-15-1F-2 1 30 1.9 - 263
Carbonate 2 30 2.3 - 267

3 30 0.5 - 209
4 30 2.1 - 251
5 30 -1.1 1.9 242
6 30 3 - 175
7 20 4.5 - 180
8 30 0.5 - -
9 30 0.5 - -
10 30 2.5 - -
11 30 4.4 - 188
12 30 - - 263
13 30 0.1 - -
14 20 -0.8 1.4 192
15 30 -1.1 1.9 192
16 30 -1.1 1.9 162
17 30 2.4 - -
18 30 3 - -
23 30 -1.2 2.1 170
25 30 -1.1 1.9 165

  †    Sample numbers listed for 12 of the 15 samples analyzed. Three samples produced 
        no data. Samples ending in A, B, C, etc. denote separate pieces of one polished   
        thick section. Samples ORC-9-3-15F and F-2 are two separate assemblages
        within one piece of the polished thick section. 
        Sample locations listed in table A1.
  *    Estmated volume % of the inclusion occupied by vapor.
" - " Represents lack of Th or Tm data for various reasons stated in text, or impossible
            salinity values correlating to positive Tm values (Bodnar, 1993).

TABLE 1. Cont'd
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FIGURES 
 

 

Figure 14. Geologic map of Orcas and Shaw Islands showing the locations of veins 
sampled for fluid inclusion investigations. Sample numbers located in table A1. 
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Figure 15. Outcrop photos of veins sampled for fluid inclusion work. (A) Carbonate D1 vein 
cut by a D2 shear zone. Sample 9-7-15-6. Site 26. (B) Carbonate vein along a D3 dextral 
strike-slip fault. Sample 7-18-15-1. Site 23. (C) Quartz vein along a D3 normal fault. Sample 
ORC-7-19-15-4. Site 24. 
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Figure 16. Photomicrographs of aqueous inclusions in thick sections of quartz and carbonate 
vein samples. (A) D3 carbonate vein (sample ORC-9-3-15-1) with primary inclusions 
amongst abundant cleavage planes. Photo taken in plane light. (B) D1 quartz vein (sample 
ORC-10-6-15-1B) with undulatory extinction and abundant scattered aqueous inclusions. 
Photo taken with crossed polars. (C) D3 quartz vein (sample ORC-9-3-15-1) showing an 
abundance of scattered inclusions. Dashed lines indicate a growth zone lacking inclusions. 
Fractures (some with secondary inclusions along them) cut these zones. Photo taken in plane 
light. (D) Primary aqueous inclusions in a D3 quartz vein (sample 7-23-15-1B) with two-
phase primary inclusions. Note both the small nature of inclusions and abundance of 
fractures. Evidence for a necked inclusion suggests that necking may have taken place in 
other inclusions. Photo taken in plane light.  
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Figure 17. Histograms of microthermometric data for fluid assemblages in D1 and 
D3 quartz veins. Only samples that produced large datasets are included for reasons 
discussed in the text. (A) Th data for D1 samples. (B) Tm data for D1 samples. (C) Th data 
for D3 samples. (D) Tm data for D3 samples.  
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Figure 18. Isochores calculated using microthermometry data (Table A1) and 
equations derived by Bodnar (1993) for H2O + NaCl fluid systems. Calculations assume 
inclusions have not reequilibrated. Labels at 200˚C highlight the pressures along each 
isochore that would be required to reach the interpreted maximum temperature indicated by 
the preservation of aragonite in the SJTS. 
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Appendix 

 

Structure* Sample Field Site # ** Map Reference # Σ Eastingɸ Northingɸ Analysis† Aragonite Calcite Quartz Prehnite Chlorite
D1 ORC-9-7-15-6 26 1 510804 5386225 FI x x x

ORC-7-30-15-2 34 2 510112 5383778 XRD/FI x x x
ORC-10-6-15-1 58 3 511022 5385904 XRD/FI x x
ORC-10-6-15-2 58 4 511022 5385904 XRD x x x
ORC-10-6-15-3 61 5 510544 5386414 XRD x x x
ORC-9-6-15-1 40 6 506045 5392036

D2 ORC-6-29-15-1 9 7 505868 5392624 XRD x x x
ORC-7-1-15-1 15 8 506103 5392233
ORC-7-19-15-1 23 9 511170 5385469
ORC-8-1-15-7 37 10 510058 5387605
ORC-8-3-15-3 40 11 509890 5387956 XRD x x
ORC-9-7-15-1 49 12 500666 5383418
ORC-9-7-15-2 49 13 500666 5383418
ORC-9-7-15-3 49 14 500666 5383418
ORC-9-7-15-4 49 15 498378 5384062
ORC-9-7-15-7 26 16 510804 5386225

D3 - Normal ORC-6-26-15-2 4 17 512782 5383171
ORC-6-30-15-1 4 18 507482 5388218
ORC-6-30-15-2 13 19 509030 5388327
ORC-7-8-15-1 12 20 507252 5388307
ORC-7-8-15-2 12 21 507252 5388307
ORC-7-8-15-3 12 22 507252 5388307
ORC-7-8-15-4 12 23 507252 5388307 FI x x
ORC-7-9-15-1 20 24 509672 5388256
ORC-7-9-15-2 20 25 509703 5388244
ORC-7-9-15-3 20 26 509703 5388244
ORC-7-9-15-5 21 27 509747 5388250
ORC-7-19-15-2 23 28 511170 5385469 XRD x x
ORC-7-19-15-4 24 29 511060 5385718 FI x x
ORC-7-21-15-3 27 30 510814 5386189
ORC-7-22-15-3 30 31 510064 5384410 FI x x
ORC-7-23-15-1 31 32 510083 5384311 FI x
ORC-7-29-15-2 33 33 510124 5383873
ORC-7-29-15-3 33 34 510124 5383873 XRD x x
ORC-7-30-15-1 34 35 510112 5383778
ORC-7-30-15-3 34 36 510112 5383778
ORC-7-31-15-5 35 37 510090 5383587 FI x x x
ORC-7-31-15-6 35 38 510079 5383575 XRD x x x
ORC-8-2-15-1 39 39 506105 5392263 FI x
ORC-8-2-15-2 39 40 506105 5392263
ORC-8-3-15-1 40 41 506046 5392078 XRD x x x
ORC-8-3-15-4 40 42 506045 5392036 XRD/FI x x x
ORC-8-3-15-6 40 43 506078 5392006
ORC-9-1-15-2 42 44 509024 5388328 XRD x x
ORC-9-3-15-1 48 45 501582 5384670 XRD/FI x x x
ORC-9-3-15-2 48 46 501582 5384670 XRD x x
ORC-9-3-15-3 48 47 501582 5384670 XRD x x x
ORC-9-4-15-2 50 48 500665 5383450
ORC-10-8-15-1 66 49 503615 5383088

Table A2. Sample data from Orcas Island.
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Structure* Sample Field Site # ** Map Reference # Σ Eastingɸ Northingɸ Analysis† Aragonite Calcite Quartz Prehnite Chlorite
D3 - Strike-Slip ORC-6-29-15-2 10 50 506574 5393382

ORC-7-9-15-4 21 51 509708 5388210 FI x
ORC-7-9-15-6 21 52 509815 5388143
ORC-7-19-15-3 24 53 511074 5385640
ORC-7-23-15-2 31 54 510079 5384284 FI x x
ORC-7-29-15-4 33 55 510123 5383852 XRD/FI x x
ORC-7-29-15-5 33 56 510123 5383852 XRD x x x
ORC-7-29-15-6 33 57 510123 5383852 XRD x x
ORC-7-31-15-3 35 58 510101 5383606
ORC-8-1-15-2 36 59 509885 5387964
ORC-8-3-15-5 40 60 506045 5392036 XRD x x x
ORC-9-1-15-1 42 61 509031 5388342
ORC-9-1-15-3 43 62 506584 5393370 XRD x x
ORC-9-1-15-4 43 63 506584 5393370 XRD x x x

D3 - Thrust ORC-7-22-15-1 29 64 509920 5384494 XRD x
ORC-8-2-15-3 39 65 506106 5392174 XRD x x
ORC-9-7-15-5 49 66 498378 5384062

Garrison Schist ORC-6-30-15-3 13 67 509054 5388289
ORC-6-30-15-4 13 68 509054 5388289
ORC-6-30-15-5 13 69 509054 5388289

Crenulation ORC-7-21-15-1 27 70 510855 5386085
ORC-7-31-15-2 35 71 510101 5383606
ORC-7-31-15-4 35 72 n/a n/a
ORC-8-1-15-1 36 73 n/a n/a
ORC-8-1-15-3 36 74 509890 5387956
ORC-8-1-15-5 37 75 510058 5387605
ORC-8-1-15-6 37 76 506078 5392006
ORC-9-2-15-1 45 77 501411 5384830
ORC-9-4-15-1 50 78 500665 5383450

  *    Deformation event that sample was related to, samples of Garrison Schist, and samples suspected to have a crenulation cleavage. 
 **  Field site numbers are shown in figures A1-A4 and include areas of structural observations.
  Σ   Sample map reference number is located in figures A5-A8 and represents the location within the field site where the samples were located.
  ɸ   North American 1983 coordinate system (zone 10N).
  †    Analysis used to test mineralogy and pressure-temperature conditions from samples. XRD - X-Ray Diffraction, FI - Fluid Inclusion. All samples were either made 
             into a thick (~120µm) or thin (~25-35µm) sections and observed under a petrographic microscope.

Table A2. Sample data from Orcas Island cont'd.
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Figure A1. Geologic map of Orcas and Shaw Islands showing site locations referenced in 
figures 3, 5, and 11. 
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Figure A2. Inset map showing detailed site locations shown on figure A1. 
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Figure A3. Inset map showing detailed site locations shown on figure A1. 
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Figure A4. Inset map showing detailed site locations shown on figure A1. 
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Figure A5. Geologic map of Orcas and Shaw Islands showing sample locations.  
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Figure A6. Inset map showing detailed sample locations shown on figure A5. 
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Figure A7. Inset map showing detailed sample locations shown on figure A5. 
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Figure A8. Inset map showing detailed sample locations shown on figure A5. 
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