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Three Challenges

1 Can we ensure structures
don’t collapse in high winds?

2 Can we predict and
characterize absorption
spectra molecules?

3 How can we build networks
without bottlenecks?



Graph Theory

A Graph G is a structure comprised of Vertices & Edges.
Things & Connections between them

1

2

3

4

5

⇐⇒ V = {1, 2, 3,4, 5}
E = {12, 13, 23, 34, 35, 45}



Vibrations
A First Example

Vertices & Edges → Masses & Forces
Spring constant k, [N/m]

Mass m, [kg]

m

m

1

2

k
md2x1

dt2 = −k(x1 − x2)

md2x2
dt2 = −k(x2 − x1)

If x1 = x2 ⇒ d2

dt2~x = 0~x ⇒ f1 = 0 , Equilibrium.

If x1 = −x2 ⇒ d2

dt2~x = −2k
m~x ⇒ f2 =

√
2k
m , First Resonance
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Solutions
The Discrete Laplacian

md2x1
dt2 = −k(x1 − x2)

md2x2
dt2 = −k(x2 − x1)

d2

dt2

[
x1
x2

]
= − k

m

[
+1 −1
−1 +1

] [
x1
x2

]

d2

dt2~x = −L~x, where L is the discrete Laplacian.

Such systems are solvable by separation of variables if

L~x = λ~x : λ a real constant.

λ is called an eigenvalue in the spectrum of L.

System has a resonant frequency of
√
λ.

Units [λ] = [k/m] = N/(m · kg) = 1/s2 = hz2
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4-cycle Vibrational Modes
The Discrete Laplacian

If k
m

= 1 then L =


+2 −1 +0 −1
−1 +2 −1 +0
+0 −1 +2 −1
−1 +0 −1 +2


L~x = λ~x λ1 = 0 λ2 = λ3 = 2 λ4 = 4

More springs per unit mass ⇐⇒ higher frequency mode



Cycle Graphs
Spectra



Random Graphs
Spectra



Hypercube Graphs
Spectra
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