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Abstract 

In the U.S., Potentilla recta is an invasive, exotic forb. Previous research suggests that 

the soil microbes of native congeners (relatives within the same genus as P. recta) may inhibit P. 

recta, presumably because phylogenetically similar species may culture and be susceptible to 

similar pathogens. Our study aimed to answer three questions: (1) how do the fungal 

communities within the roots of P. recta compare to the fungal communities within the roots of 

neighboring congeners Potentilla gracilis and Drymocallis glandulosa (hereinafter referred to as 

the congeners) and native forbs, (2) what are the effects of the whole microbial community 

(microflora, microfauna, and some mesofauna <2 mm), and the small microbial community 

(microflora, <20 µm) on P. recta, (3) is there evidence that conspecific soil microbes mediate the 

distribution of P. recta in the field?  

To address question one, we used high-throughput sequencing to compare the fungal 

communities within the roots of P. recta, its native congeners and neighboring forbs. To address 

our second question, we conducted a greenhouse experiment testing the effects of microbe 

fraction [none, small (< 20 µm), whole (< 2 mm)] and microbe source plant (congeners, forb, 

grass, and P. recta) on P. recta’s biomass. To address our third question, we observed and 

analyzed the distribution of P. recta in relation to its congeners in an intermountain grassland in 

Western Montana.  

The fungal communities within the roots of P. recta and its congeners were different 

from other neighboring forbs, but pathogen abundance did not correspond to P. recta biomass. 

Further, the fungal communities within the roots of P. recta were unchanged by neighboring 

plant identity. In the greenhouse, we found reduced P. recta biomass from the whole microbial 
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community collected from all source plants, but biomass did not differ significantly by source 

plant. Additionally, the magnitude of this negative effect was correlated with percent of 

colonization by arbuscular mycorrhizal fungi. We found neutral effects from the small microbe 

fraction, and no significant differences among source plant. In the field P. recta and other 

common grassland forbs were distributed at equal distances from the native congeners. We found 

no association between P. recta and the congeners co-occurring at the landscape scale. Overall, 

our results contradict previous findings and suggest that the direct and indirect effects of soil 

microbes on P. recta are nonspecific.  
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1 Introduction 

Invasive species reduce economic value and the resiliency of ecosystems (Vitousek 1997, 

Pimentel et al. 2005, Ehrenfel 2010). Plant invasion ecology is the study of which factors 

influence the spread, establishments, and ecological impacts of non-native plant species. The 

goal being to quantify, predict, prevent, or reduce the effects of invasion (Elton 1958, Levine and 

D’Antonio 1999). Ecologists have many hypotheses to explain why some plants species are 

successful invaders, when others are not. Broadly, these hypotheses consider invaded 

ecosystems, ecosystem and invader interactions, or only the invader (Jeschke et al. 2012). An 

area of ongoing research with consideration for the ecosystem and the invader is the interaction 

between invasive plants and soil microbes (Kulmatiski et al. 2008, Jeschke et al. 2012).  

Soil microbes are a diverse group of microorganisms spanning the three domains of life. 

They can be broadly grouped by size1 or functional group (i.e. pathogens, mutualists, and 

saprobes; Wall et al. 2012). One hypothesis particularly applicable to plant-soil-microbe 

interactions is the Enemy Release Hypothesis. The Enemy Release Hypothesis predicts that 

natural enemies (pathogens) limit invasive species in their native range, but not in their non-

native ranges (Elton 1958, Agrawal et al. 2005). This has been observed for invasive plants by 

negative effects such as reduced biomass (total or shoot) and reduced relative growth rate when 

grown with their native soil microbes compared to non-native range soil microbes relative to 

sterile soils (Reinhart and Callaway 2004, Maron et al. 2014). Additionally, in their non-native 

                                                 
1 Microfauna (<0.2mm) and mesofauna (0.2mm – 10mm) are protozoa, nematodes microarthropods and arbuscular 
mycorrhizal fungi (AMF) 
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ranges, invasive plant species may experience less negative soil feedbacks (smaller reduction of 

biomass) than native plant species (Klironomos 2002, Agrawal et al. 2005, van der Putten et al. 

2007). This suggests that plants are more responsive to their coevolved soil microbes.   

Phylogenetically related plants may culture and be susceptible to the same or similar plant 

pathogens. This has been found for plant species in the tropics where most plants were generally 

resistant to any given pathogen, but more related plants were susceptible to the same pathogens 

(Gilbert and Webb 2007). In a California grassland Parker et al. (2015) found, at the community 

scale, disease pressure (tissue lost to disease) was stronger when the plant communities were 

more phylogenetically related. However, the phylogenetic relatedness of plants in a community 

may not precisely predict plant and soil-microbe interactions. This was demonstrated by the 

meta-analytical findings of Mehrabi and Tuck (2015) that phylogenetic distance did not predict 

the magnitude of plant-soil feedbacks. Additionally, Ma et al. (2016), found that invasive plants 

more closely related to native plants tended to be less successful at the local scale (e.g. plant-to-

plant interactions), but unaffected by phylogenetic distance of the plant community at the 

regional scale (e.g. landscape). Therefore, phylogenetic distance between invasive plants and the 

native plant community may predict pathogen susceptibility but not necessarily the effects of all 

the soil microbes associated with the invader. Furthermore, research on the effects of soil 

microbes on invasive plants typically compares plant biomass when grown with all living soil 

microbes to sterile soils. Lost in this method is the ability to differentiate between the 

contributions of potential fungal pathogens (small-spored fungi and viruses) from mutualists (e.g 

big-spored arbuscular mycorrhizal fungi).  
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The interactions between plants and arbuscular mycorrhizal fungi (AMF) change with 

plant functional group and are contingent on environmental factors such as nutrient 

concentrations, and light availability (Roberts and Paul 2006, Hoeksema et al. 2010, Sun and He 

2010, Van der Putten et al. 2013, Bunn et al. 2015). AMF are generally considered plant 

mutualists that increase uptake of host nutrients such as phosphorus and nitrogen in exchange for 

plant-fixed carbon (Smith and Read 2008). However, this association is a continuum between 

mutualism and parasitism (Johnson et al. 1997, 2003). Mutualism is more likely when nutrients 

such as phosphorus and nitrogen are limiting and the plant benefits from AMF, while parasitism 

is more likely when nutrients are abundant and the plant derives less benefit from AMF (Johnson 

et al. 1997, 2003, Hoeksema et al. 2010, Werner et al. 2014). AMF may function to offset the 

effects of pathogens in some conditions (Newsham et al. 1995, Sikes et al. 2009). Because 

environmental factors (e.g. phylogenetic distance between invader and native plant community 

and nutrient concentration) may be confounding we build from past research on specific plant 

species to compare or control for those environmental factors.   

Potentilla recta (sulphur cinquefoil) is a Eurasian forb that is invasive in North America. 

P. recta has been documented in all U.S. states except for Arizona and Utah (“Potentilla recta L. 

sulphur cinquefoil” 2016). In grassland ecosystems of Montana, P. recta has been found to 

increase the biomass of experimental native forb communities and has a large range (occurring in 

many surveyed plots) and local abundance (high percent cover; Maron and Marler 2008, Pearson 

et al. 2016). In the same Montana landscape, McLeod et al. (2016), found invaded P. recta plots 

to have a higher nitrification potential (estimate of nitrifier abundance) and ammonia oxidizing 

bacterial gene abundance compared to paired native plant communities. Yet, they 
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found P. recta did not alter the concentration of nitrate (NO3
-) in the soil, aboveground net 

primary productivity, or ammonia oxidizing thaumarchaeal gene abundance in invaded 

compared to noninvaded plots (McLeod et al. 2016). Thus, the effects of invading P. recta on the 

ecosystem are mixed.  

Investigating the interaction between P. recta and the native plant community, researchers 

found that native relatives (congenrs) of P. recta may provide resistance against P. recta 

invasion (Maron and Marler 2008b, Callaway et al. 2013). Specifically, they found P. recta had 

smaller mean biomass when seeded into experimental monocultures of its native congener, 

Potentilla arguta, compared to experimental monocultures of other native, common, non-

congener forbs (Maron and Marler 2008). To test if P. recta were inhibited by conspecific soil 

microbes, Callaway et al. (2013) conducted two greenhouse experiments. First, they compared P. 

recta biomass when grown with soil (whole or sterile) from the experimental monocultures used 

by Maron and Marler (2008) of the native congener (P. arguta), a native grass (Festuca 

idahoensis), or itself. They found P. recta’s biomass to be significantly less when grown with 

whole compared to sterile soils from itself and the congener, but found no significant difference 

in biomass of P. recta in whole versus sterile soils of F. idahoensis (Callaway et al. 2013). 

Second, they used two congeners (P. arguta and P. gracilis), another relative (Dasiphora 

fruiticosa), a grass (F. idahoensis), and P. recta to culture soil microbes that they used as inocula 

for a plant-soil feedback experiment. In agreement with their first experiment, they found P. 

recta’s biomass to be significantly less when grown with whole compared to sterile soils cultured 

by the congeners and the relative, but found no significant difference in biomass of P. recta in 

whole versus sterile soils of F. idahoensis (Callaway et al. 2013). Thus, the reduction in biomass 
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of P. recta could be attributed to inhibition by conspecific soil microbes. Unanswered is whether 

the effects of conspecific soil microbes observed by Callaway et a. (2013) are significant in the 

field, or if the negative effects of pathogens outweigh any benefit from mutualists such as AMF. 

Our study aimed to answer three questions: (1) how do the fungal communities within the roots 

of P. recta compare to the fungal communities within the roots of neighboring congeners and 

forbs, (2) what are the effects of the whole microbial community (microflora, microfauna, and 

some mesofauna <2 mm), and the small microbial community (microflora, <20 µm) on P. recta, 

(3) is there evidence that conspecific soil microbes mediate the distribution of P. recta in the 

field?  
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2 Methods 

2.1 Site Description  

MPG Ranch is in the Bitterroot Valley of Western Montana (46.688N, -113.986W 

1375m; Figure 1). Currently, the ranch is a private research institution, but has a history of more 

than 100 years of raising cattle and crops. The sites we surveyed and collected soil microbial 

inocula are grasslands with interspersed pine trees and shrubs where P. recta and the native 

congeners Potentilla gracilis and Drymocallis glandulosa were all known to co-occur (A, B, C, 

D; Figure 1). Average yearly rainfall is 31.6 cm and average yearly temperature is 7.1 Cº 

(National Centers for Environmental Information 2016).  

 

Figure 1. Potentilla recta surveys were completed at sites A, B, C, and D on MPG Ranch in 
Western MT. We collected soil microbe inocula from sites A and B. Site A is also known as 
Whaley draw. 
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2.2 Potentilla recta description  

Potentilla recta is a perennial Eurasian forb, that produces erect stems (30-70 cm), 

reproduces by achenes, and forms a large woody root (Werner and Soule 1976). The leaves are 

coarsely serrate oblong and hairy on the top and underside (Figure 2; Werner and Soule 1976). 

The five petal flowers are sulfur yellow and have five green sepals and five additional bracts 

(Werner and Soule 1976). In the Blue Mountains of Northeastern Oregon, Tuitele-Lewis (2004) 

found P. recta’s maximum mean relative growth rate to be 1.01 g per gram of dry mass per 

week. P. recta flowers in late May and throughout June, and seeds begin to set in mid-June 

(Tuitele-Lewis 2004).   

2.3 Native congener species 

Two congeners of P. recta native to the grasslands of the intermountain west are 

Potentilla gracilis and Drymocallis glandulosa (formally Potentilla). P. recta has similar leaf 

shape is more closely related to P. gracilis than to D. glandulosa (Figure 2).  Using chloroplast 

DNA, Dobes & Paule (2010) found P. recta and P. gracilis to be in the core Potentilla group that 

diverged 4.6 – 8.1 million years ago, and they diverged from D. glandulosa 45.1 – 53.4 million 

years ago.   
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Figure 2. Leaf shape front and back of P. recta and its native congeners P. gracilis, and D. 
glandulosa (left). D. glandulosa leaves are compound and pinnate. Flowering P. recta (right). 

 

2.4 P. recta 2014 harvest  

At the end of June 2014, we harvested P. recta, co-occurring P. gracilis and D. 

glandulosa hereinafter referred to as “the congeners”, and other co-occurring native forbs. For 

each co-occurring plant pair, each plant was within 10 cm of the other plant. Plant pairs were at 

least 2 m apart. For each harvested plant, we took a sample of fine roots to use for molecular 

analysis of the fungal communities (molecular methods described in section 2.4.1). We washed 

then dried all harvested plants at 65 ˚C for 24 h and recorded dry mass (g). We collected 

rhizosphere soil and quantified the abiotic characteristics and those methods are described in 

section 2.7.2.  
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2.4.1 Molecular methods 

We extracted DNA from 25-30 mg of lyophilized root tissue using the MoBio 

PowerPlant® Pro-htp DNA isolation kit (MoBio Laboratories, Inc. Solana Beach, CA) following 

the manufacturer’s instructions. We used two-step PCR amplification to prepare tor Illumina 

sequencing. In PCR1 we amplified the ITS region using the general eukaryotic primer ITS4 

(White et al. 1990) and a mixture of the fungal specific forward primers fITS7 and ITS7o 

(Ihrmark et al. 2012, Kohout et al. 2014). We flanked each primer with 22 bp Fluidigm universal 

tags CS1 or CS2 (Fluidigm Inc. San Francisco, CA, USA). We performed all PCR1 in 12.5 μL 

reaction volumes containing 1μL of DNA extract as template, 0.05 pmol bovine serum albumin, 

20 pmol of each primer in 1X GoTaq® Green Master Mix [(Green GoTaq® Reaction Buffer, 

200μM dATP, 200μM dGTP, 200μM dCTP, 200μMdTTP and 1.5mM MgCl2) Promega, USA]. 

Each reaction was performed in a Techne TC-4000 thermoocycler (Bibby Scientific, Burlington, 

USA) under the following conditions: initial denaturation at 95 oC for 2 minutes followed by 35 

cycles at 95 oC for 1 min, 57 oC for 1 min, and 72 oC for one min, with a final elongation for 10 

min at 72 oC. We confirmed the presence of our target amplicon, using a 100 bp ladder 

(O’GeneRuler DNA Ladder, Thermo Scientific, USA) as a size standard, all reactions were 

analyzed by 1.5% agarose gel electrophoresis.  

We diluted amplicons generated during PCR1 1:10 to use as template in PCR2. PCR2 

primer complexes consisted of the same Fluidigm tags (CS1 or CS2) as PCR1 primers, 8 bp 

Illumina Nextera barcodes (Illumina Inc., San Diego, CA, USA), and Illumina adapters. PCR2 

was carried out in 25 µL reaction volumes containing 1μL of template, 20 pmol of each primer in 

1X GoTaq® Green Master Mix (Promega, USA). Each reaction was performed in a Techne TC-



10 
 

4000 thermocycler (Bibby Scientific, Burlington, USA) under the following conditions: 95°C for 

1 min followed by 10 cycles of 95°C for 30 sec, 60°C for 30 sec, 68°C for 1 min with a final 

elongation at 68°C for 5 min. 

We purified PCR2 amplicons using AMPure XP beads (Beckman Coulter Genomics, 

USA) and pooled based on band intensity before sequencing. Sequencing was done at the 

Institute for Bioinformatics and Evolutionary Studies (iBEST) genomics resources core at the 

University of Idaho (http://www.ibest.uidaho.edu/; Moscow, ID, USA). Amplicon libraries were 

sequenced using 2 x 300 paired-end (PE) reads on an Illumina MiSeq sequencing platform 

(Illumina Inc., San Diego, CA, USA).  

The DNA template were unintendedly held at 23˚C for 24 hours. To ensure that the 

thawed template would not significantly alter the results, we compared the fungal community’s 

beta diversity between pre and post thawed samples. We found no statistical difference between 

the fungal communities (Monte Carlo p <0.001) and we continued with our analysis.  

2.5 Molecular Bioinformatics 

MPG employee, Alexii Rummel, performed our molecular bioinformatics and they are 

detailed in Appendix B. Briefly, QIIME (Quantitative Insights Into Microbial Ecology, version 

1.9.0; Caporaso et al. 2010) was used to perform all analyses. The fastq-join method, allowing 

for 10% mismatch, was used to pair trimmed raw forward and reverse PE and ITS reads 

(Aronesty 2013). After demultiplexing, we used Uclust to cluster operational taxonomic units 

(OTUs) based on a 97% sequence similarity (Edgar 2010). We used ITS sequences from UNITE 

as seed clusters and OTU taxonomic assignment (Koljalg et al. 2013). Unmatched reads were 
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clustered de novo and we used the BLAST algorithm to compare sequences to Genbank 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al. 1990). We retained the reads that 

matched with fungi for analysis, but they were not assigned taxonomy. We used the FUNGuild 

reference database to assign functional traits to our OTUs (Nguyen et al. 2016). 

2.6 Greenhouse Study 

2.6.1 Experimental Design  

To determine if and which conspecific soil microbes cause disease in P. recta research 

could follow Koch’s postulates, that is to demonstrate a consistent association of a microbe and a 

disease, isolation and pure culture of the microbe, inoculation of a disease-free host with the 

cultured microbe, and reisolation of the microbe to pure culture (Stobel and Mathre 1970). 

Although it is important to identify causal agents of disease, this approach is limited in that it 

considers microbes in isolation. In the soil, plants are surrounded by a multitude of soil microbes 

(Fierer et al. 2007). Therefore, it is useful to investigate the net effects of all soil microbes on 

plant biomass replicating field conditions. However, while some soil fungal microbes may be 

pathogenic, others are mutualistic but the effects of each functional group have been tested 

together in previous P. recta and soil microbe research (Callaway et al. 2013, Maron et al. 2014). 

We therefore, simplified our experimental design by investigating the effects of small (<2 µm) 

versus large (< 2 mm) soil microbes, that generally separates the large-spored mutualists such as 

AMF from the small-spored potential pathogens (Wall et al. 2012).  

Our molecular analysis identified Coccomyces, Gnomonia, and Erythricium as pathogenic 

fungal taxa within the roots of P. recta. Ascospores of Coccomyces dentatus are 55 µm by 3 µm 

(Sherwood 1980). Ascospores of Gnomonia fragariae are 16 µm by 3.5 µm, and ascospores of 
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Rosaceae associated Gnomonia radicicola are 9-15 µm by 1.3-2.5 µm (Noordeloosh et al. 1989, 

Morocko et al. 2006). Ellipsoid basidiospores of pink disease causing Erythricium salmonicolor 

are 24 µm by 8-12 µm (Akrofi et al. 2014). The thinner profile of these fungal spores would 

allow these representative fungal taxa to pass through our 20 µm filter, unless they were oriented 

so that the longest edge was horizontal. Therefore, we are justified in using microbes filtered to 

20 µm for a fungal pathogen treatment.  

To determine the effects of the whole (>2mm) and small (<20µm) fractions of the soil 

microbial community and if the effects differed by source host plant, we conducted a greenhouse 

experiment. We grew P. recta inoculated with the soil microbes of either the native congeners, 

P. recta, any native forb, or any native grass. To isolate the effects of large versus small 

microbes, we deconstructed the soil community into three parts: none (sterile soil), small 

(microbes smaller than 20 µm such as fungal pathogens and bacteria), and whole (all living soil 

microbes). The soil microbial communities were not pooled and separation of these components 

was done individually for each replicate. Therefore, we had four microbe source plants, three 

microbial treatments, and 10 replicates for a total of 120 plants (Figure 3). The effect of small 

microbes is the ratio of P. recta biomass grown with small microbes to biomass grown with no 

microbes. The effect of the whole microbial community is the ratio of P. recta biomass grown 

with the whole microbe treatment to biomass grown with no microbes. P. recta grew in the 

Western Washington University Biology greenhouse for 12 weeks.  
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Figure 3. Diagram of the greenhouse experiment, n = 10, N = 120. Pot shading represents the 
source of the microbial inocula. 

 

2.6.1.1 Soil inocuum collection 

We collected soil used as inocula for the greenhouse experiment between 8 and 10 July 

2016. We collected soil from sites A and B (Figure 1). Mean water content, ammonium (NH4
+), 

nitrate (NO3
-), phosphate (PO4

3-) and pH of the two collection sites are found in Table 1 

(Methods in section 2.7.1). Soil was collected from monocultures (>40% cover of the source 

plant in a 1 m2 quadrat) for each source plant treatment (forb, grass, congener, P. recta). Each 

inoculum was made from three trowels of soil 10 cm deep within a 1 m2 area. There are 10 sets 

of experimental replicates and inocula for each set were collected from 10 distinct locations, at 
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least 50 meters apart. The source plant inocula (P. recta, congeners, native grass, and native 

forb) within each set were collected from the same general area, within a 25 meter radius. 

2.6.1.2 Small microbe treatment preparation 

To distinguish between the effects of small versus whole soil microbes, we prepared a 

soil microbial wash that excluded organisms larger than 20 µm for our small microbe treatment. 

We prepared each wash separately by set (10) and by source plant (P. recta, congeners, native 

forb, and native grass). Therefore, we made 40 distinct washes. We cleaned equipment in a 5% 

bleach bath between samples. We made each wash by mixing 90 mL of fresh soil with 135 mL 

of sterile water (135 mLwater : 90 mLsoil = 1.5water  : 1soil). The mixture was then allowed to settle 

for 5 to 10 minutes before it was filtered through a 125 µm mesh metal sieve. We used a vacuum 

pump apparatus with a Whatman #1 qualitative filter paper to filter the wash down to microbes 

smaller than 20 µm. We changed the filter paper between samples, and when it became too 

clogged with soil. To add a concentration equal to 60 mL of soil microbes, we added 90 mL of 

the final microbial filtrate to the pot that contained the corresponding sterilized inoculum 

(1.5filtrate : 1microbes = 90 mLfiltrate : 60 mLmicrobes). 

2.6.2 Growing conditions 

We use P. recta seeds collected from MPG in 2014 in our greenhouse experiment. To 

surface sterilize P. recta seeds we soaked them in 3% hydrogen peroxide for 2 hours, then 

quadruple rinsed them with distilled water. We sowed sterilized seeds into sterilized vermiculite 

in sterilized seedling trays in Western Washington University’s Environmental Science building 

(laboratory room number 306) on 22 August 2016 and kept them moist with distilled water until 

cotyledons sprouted. 



15 
 

On 8 August 2016, we transplanted the 17 day-old seedlings into 120 pots (v = 656 mL, 

the Deepot™, D40H, Stuewe and Sons. Inc. Tangent, Oregon) and added the microbial 

community treatment inocula. We composed all pots as follows: a base layer of polyester filling 

to prevent the sand and growing mixture from falling out of the bottom, followed by 100 mL of 

play sand (grainsize <1 mm), then 400 mL of growing mixture, then the microbial community 

treatment (none, small, or whole) and a final layer of the growing mixture. The growing mixture 

was equal parts sterilized sand, turface (PROFILE Products LLC), and sterilized field soil 

collected near the field survey sites in Montana. Exact Scientific Services, Inc. (Ferndale, WA; 

www.exactscientific.com) tested the nutrient availability colorimetrically (Bray solution for 

phosphorus) and pH of the growing mix. In the growing mixture, plant available nitrogen (NH4
+, 

N03
-) was 18 mg kg-1, phosphorus was 54 mg kg-1, potassium was 193 mg kg-1, and pH was 

6.92. We used 50 mL of sterilized inocula for the no microbe treatment. We added 30 g ± 2 g of 

whole soil inocula to the whole soil community treatment. We use mass instead of volume to 

save time and to prevent contamination between samples because 50 mL of our inocula weighed 

30 g on average. The small microbe treatment plants received 50 mL of sterilized soil inocula as 

well as 90 mL of microbial wash (contained microbes < 20 µm). Every pot that was not a small 

microbe treatment pot received 90 mL of autoclaved water. We applied the microbial wash and 

sterile water over a two day period to prevent the wash from leaching out from the bottom of the 

pots.  

The transplanted seedlings were kept moist by a misting system (7 minutes three times a 

day). Misting was reduced slowly until hand watering began on 2 September 2016. We watered 

the plants to field capacity when the top inch of growing mix was dry, about every three days. To 
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simulate a 16-hour day, the plants received natural sunlight in addition to 16 hours of 

supplemental lighting: S51 series luminaries (208W, 2.2A) high pressure sodium lamps and M59 

type (208V, 2.3A) metal halide lamps. On average, we either rotated trays of 12 plants or 

shuffled all plants to new positions every week throughout the growing period. In the greenhouse 

mean daily temperature was 22.38°C, mean daily relative humidity was 59.33%, mean daily dew 

point was 13.80 °C, and mean photosynthetic photon flux density during the 16 hour day was 

201 µmol m-2 s-1.  

2.6.2.1 Nutrient addition 

Around six weeks, some leaves yellowed indicating nutrient deficiency. We 

supplemented the plants with 20 mL of a reduced phosphate, 1/4 strength modified Hoagland’s 

nutrient solution on 13 August 2016. Therefore, each pot received 1.05 mg nitrogen and 0.155 

mg phosphorus. Six weeks later we observed yellowing again and added 10 mL of a 1/3 strength 

modified Hoagland’s nutrient solution. Each plant received 0.65 mg nitrogen and 0.096 mg 

phosphorus.  

2.6.2.2 Pesticide application 

The leaves of some plants displayed signs of insect damage. We concluded that the 

culprit was within the Thysanoptera order due to distinctive leaf damage (silver scars and small 

black excrement), however, this was not confirmed by viewing the larval stage of any insects. 

Fungus gnats were also present in the greenhouse. Spinosad (0.001% mixture of spinosyn A and 

spinosyn D) was applied weekly to the tops and undersides of every leaf starting 22 September 

2016, and lasting throughout October. Doktor doomTM total release fogger (0.40% pyrethrins and 

2.00% piperonyl butoxide) was applied, as directed, to the greenhouse on 29 September 2016.  
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2.6.3 Greenhouse harvest 

Destructive harvesting of the greenhouse plants began on November 14, 2016 and 

concluded on November 18, 2016. Bleach (5%) was used to sterilize the working area and 

harvesting tools before and between harvesting treatments (none, small, and whole). Each plant 

was removed from its pot, then its roots were rinsed clear of soil and organic debris using tap 

water. We separated the roots from the shoots at the crown. Root subsamples (three to five 

random selections of root 2 cm long) were taken from each plant to be used for determining the 

colonization by AMF. The wet mass of the root subsamples and remaining roots were weighed 

and recorded. The remaining roots and shoots were then placed in letter envelopes and dried at 

60ºC for at least 48 hours before recording dry masses (g).  

2.6.4 Root staining and scoring  

Root samples from the greenhouse experiment were placed in 2.5% potassium hydroxide 

(KOH) by volume solution on 18 November 2016 and left to clear for 48 hours at 1.5°C. After 

48 hours, the roots had not cleared completely; they were then placed into a 5% KOH solution 

for an additional 48 hours. Then they were left in distilled water for 5 days before being placed 

into a 5% KOH solution for 4 days. The roots were still not adequately cleared, so we used a 

90˚C hot water bath to warm the 5% KOH solution for approximately 6 hours the last two days 

of clearing. We rinsed the cleared roots with distilled water five to seven times before placing 

them into a 0.05% Trypan blue solution for 4 days. We kept the stained roots in distilled water 

for at least 12 hours before they were mounted on microscope slides. We scored an average of 

144 root intersections per plant, at 100x magnification, using a Nikon Eclipse 80i compound 

microscope to quantify the percent of AMF colonization as outlined by McGonigle et al (1990). 
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We scored root intersections for AMF presence if either (a) blue stained, aseptate, knobby 

hyphae; (b) blue stained vesicles; (c) blue stained arbuscules; (d) or blue stained vesicles and 

arbuscules were present (Figure 4). We calculated the proportion of colonization by AMF as the 

ratio of intersections where any AMF structures were present to total intersections scored. We 

then multiplied by 100 to calculate the percent colonized. We scored all the roots from the whole 

microbe treatment, and three of each source plant type for the no and small microbe treatments. 

We also counted the occurrence of Olpidium resting sporangia if they were stained blue, stellate 

bodies with thick folded walls lacking discharge tubes as detailed in Webster and Weber (2009; 

Figure 5).   

 

Figure 4. Vesicles (top) and arbuscule (bottom) in roots of greenhouse-grown P. recta. Image 
taken at 100x. Roots were cleared with KOH and stained with trypan blue.   
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Figure 5. Olpidium sp. resting sporangia in the roots of greenhouse-grown P. recta. Image taken 
at 100x. Roots were cleared in KOH and stained with trypan blue.  

 

2.7 Field Studies 

2.7.1 Abiotic Soil Characterization 

We measured pH, available nitrogen (NH4
+and NO3

-), phosphate (PO4
3-), and water 

content at sites A and B following Soil Sampling and Methods of Analysis (Carter 1993; Table 

1). To measure pH, 10 g of air-dried soil was mixed with 20 mL of distilled water, shaken 30 

minutes and left to settle for 1 hour. We measured pH in the liquid part of the solution with an 

Accumet Dual Channel pH/Ion/Conductivity meter (Pittsburg, PA, USA), without the probe 

touching the settled soil. We measured available nitrogen by mixing 10 g of fresh soil with 35 

mL of 2.0M potassium chloride for two hours, then let them settle at 4˚C overnight before they 

were filtered through a Whatman #1 filter. The filtrates were frozen immediately and available 

nitrogen was measured colorimetrically using a Synergy 2 Microplate Reader (BioTek, USA). 

Phosphate was extracted by shaking 2 g of air dried soil and 20 mL of a Bray solution (0.03M 
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ammonium fluoride and 0.1 M hydrochloric acid). It was shaken for 30 minutes and filtered 

through a Whatman #1 filter, then frozen immediately until phosphate was measured 

colorimetrically in a Synergy 2 Microplate Reader. We determined water content of the soil 

gravimetrically by weighing then drying 10 g of fresh soil in 100ºC for 48 hours and recording 

the mass of the dry soil. Water content of the soil was calculated by dividing the difference 

between the fresh and dry soil masses by the dry soil mass, therefore: soil water content = (fresh 

soil mass – dry soil mass) ÷ dry soil mass.  

2.7.2 Abiotic characterization of 2014 soil  

The soil that was collected from the rhizospheres of the plants harvested from MPG in 

June 2014, were analyzed by Ward Laboratories (Kearney, NE, USA). A LabFit AS-3010D 

(Burswood, Australia) was used to measure pH in a 1 soil : 1 water solution. Inductively coupled 

argon plasma optical emission spectrometry (ICP-OES; iCAP 7400 ICP-OES, Thermo Fisher 

Scientific, Beverly, Massachusetts, USA) was used to quantify aluminum, iron, manganese, 

calcium, and potassium (Hou and Jones 2000). Aluminum was extracted with 1 M potassium 

chloride and filtered with an Advantec (Dublin, CA, USA) #1 qualitative filter. Iron and 

manganese were extracted with diethylenetriaminepentaacetic acid and calcium and potassium 

were extracted with ammonium acetate. Nitrate and sulfate were extracted with calcium 

dihydrogen phosphate and phosphorus was extracted with Mehlich III solution analyzed by flow-

injected analysis (QuikChem 8500 Series 2, Lacat Instruments, Loveland, CO, USA; Frank et al. 

1998, Gelderman and Beegle 1998). Heratherm and Thermolyne ovens (Thermo Scientific, 

Beverly, Massachusetts, USA) were used to quantify organic matter by loss on ignition (Combs 

and Nathan 1998). 
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Table 1. Abiotic soil characteristics for sites A and B mean ± standard error (N=40)  

  

Different superscript letters indicate significant differences between sites (p<0.05) using 
ANOVA after meeting assumptions of normality and homogeneous variance. Loge transform 
were required for NH4

+, NO3
-, PO4

3-. 

 

2.7.3 Plant-to-plant level (neighbor survey) 

To determine if Potentilla recta occurs preferentially nearer to or farther from its native 

congeners we surveyed the distance to the congeners from P. recta relativized by other native 

forbs. The survey occurred between 13 and 16 June 2016 at four sites on MPG Ranch where P. 

recta and the congeners co-occur (Figure 1). At each site, we established five to six transects and 

each transect was 5 meters long. We established transects where P. recta, congeners, Geum 

triflorum, and one other focal native forb (Geranium viscosissimum, or Hieracium scouleri) co-

occurred. The focal forbs were G. triflorum, G. viscosissimum, or H. scouleri and were used as a 

comparison for P. recta’s relative distance to the congeners. G. triflorum was chosen because it 

is also in the Rosaceae family, but not a Potentilla. The other focal forbs were selected because 

they were found near the congeners with relative consistency and are not in the Rosaceae family.  

The focal plant surveyed (either P. recta, G. triflorum, G. viscosissimum, or H. scouleri) 

was within a half meter on either side of the transect and 50 cm apart from the last-surveyed 

plant. All plants surveyed were either flowering or displayed evidence of past flowering (old 

stems or a woody base larger than ½ cm). We measured the distance between P. recta and the 

Site Water Content (g g-1) NH4
+

 mg/kg NO3
- mg/kg PO4

3-mg/kg pH

A 0.22 ± 0.06a 2.04 ± 0.3a 1.12 ± 0.5a 17.6 ± 5a 7.07 ± 0.2a

B 0.42 ± 0.04b 3.03 ± 0.6b 1.19 ± 0.7a 20.9 ± 4a 7.22 ± 0.2a
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nearest native congener and P. recta and the nearest native perennial forb. Along the same 

transects we measured the distance between a focal forb and the nearest native P. recta congener 

and the focal forb and the nearest native perennial forb (Figure 6). For each focal plant (P. recta, 

G. triflorum, G. viscosissimum, H. scouleri), we calculated the relative distance to the congeners 

as (distance to congener – distance to forb) ÷ distance to forb.  

 

Figure 6.  Diagram of the Potentilla recta plant-to-plant (neighbor survey) where d1 = focal plant 
to nearest congener, d2 = focal plant to nearest forb. Relative distance = (distance to congener – 
distance to forb) ÷ distance to forb. N = 281; G. viscosissimum n = 48, G. triflorum n = 76, H. 
scouler n = 30, P. recta n = 127.    

 

2.7.4 Community level (abundance survey) 

We surveyed the percent cover of the focal plants, congeners, two most common neighbors 

(Arnica sororia and Lupinus sericeus), and native grass at the four sites. Within a 1 m x 1 m 

quadrat (1 m2; Figure 7), we recorded the percent cover of each plant as 0%, 1%, 5%, and 

increasing in increments of 5% up to 100%. At each site, we established an area of interest that 
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was representative of the vegetation recorded in the neighbor surveys; we excluded areas where 

trees and shrubs were dominant. We did this because we wanted to record the relative abundance 

of P. recta, the congeners, and other neighboring forbs recorded in the plant-to-plant, neighbor 

survey. The 1 m2 quadrat locations were selected randomly by using a list of computer-generated 

numbers as approximate coordinate locations on the grid of our area of interest. At each site, we 

surveyed approximately 1.67% of our area of interest (except C, the datasheet was mislabeled 

and one quadrat not recorded). At site A, we surveyed 15 quadrats within a 15 m x 60 m area. At 

site B, we sampled 20 quadrats within a 20 m x 60 m area. At site C, we survey 10 quadrats 

within an 11 m x 60 m area. At site D, we surveyed 15 quadrats within an 18 m x 50 m area. 

  

Figure 7. Flowering P. recta in a 1 m2 quadrat. The grids inside were used as guides to assign 
percent cover, where each square represents five percent of the 1 m2 quadrat.  
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2.7.5 Landscape level (complete MPG vegetation survey) 

MPG Ranch vegetation was surveyed in 428 equally distributed plots between 2011 to 

2012 by MPG staff. Percent cover was calculated from 200 points along four perpendicular 

15.24 m transects. Every 0.3 m along each transect a vertical stick was placed, and every plant 

touching the stick was recorded to species. Percent cover for each plant species within a plot was 

the number of times that species touched the stick divided by 200 and then multiplied by 100. 

For each plant species, we converted percent data to presence/absence data and then performed a 

co-occurrence analysis as described in section 2.8.6.  

2.8 Statistical Analysis 

All analyses were performed in R (3.3.2 R Core Team 2017).  All data figures were created 

using the ggplot2 package (Wickham 2009).  

2.8.1 Ordination  

The vegan package was used to ordinate the fungal OTUs using the “metaMDS” 

function. Environmental data were fit to the ordination using the “envfit” function in the vegan 

package. The “adonis2” function was used to calculate differences in community composition by 

host plant or neighbor.  

2.8.2 ANOVA 

The function “leveneTest” from the car package was used to test for homogeneous 

variance (Fox and Weisberg 2011). We used a one-way ANOVA to test for differences in the 
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proportion of mutualists to pathogens. The proportion of mutualists to pathogens was calculated 

as: 

   

We used a one-way ANOVA to test for differences between the relative distances to the native 

congeners between P. recta and the three focal forbs, the whole soil effect (whole:none) by 

microbe source plant, the whole soil effect grouping congeners versus noncongeners, the small 

microbe effect (small:none), and AMF colonization by source plant (α = 0.05). We used a two-

way ANOVA to test total biomass for differences between microbe fraction (whole, small, 

none), source plant (congener, forb, grass, P. recta) and the interaction of microbe fraction and 

source plant. The relative distance data were log10(x+1) transformed to reduce the skew of the 

data. The P. recta dry mass data (full factorial), whole soil effect, small soil effect, and AMF 

colonization data met the assumptions of normality and homogenous variance. Effect sizes 

(partial η2) were calculated as: (SSfactor)/ (SSfactor +SSerror). 

2.8.3 t-tests  

We used a two-sample, two-sided t-test to compare mean relative distances to P. gracilis 

from P. recta or the other focal forbs as a group. To test for a small microbe effect (small:none) 

we used a one-sample, two-sided t-test with a null hypothesis that the true mean equaled one. If 

the small effect mean is different from one, this suggests that the small microbe treatment 

affected the biomass of P. recta. If not different from one it suggests that the small microbe 

treatment was not different from the no microbe treatment.  

 
(AMF  ÷2000)

(Pathogens ÷2000)
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2.8.4 Tukey’s HSD 

We used Tukey’s HSD (honest significant difference) to test for post hoc, pair-wise 

differences among host plant for the proportion of mutualists to pathogens, differences among 

microbe fraction of P. recta grown in the greenhouse, differences in colonization by AMF by 

source plant, differences in the small microbe effect (small:none) by source plant, and 

differences in the whole effect (whole:none) by source plant.  

2.8.5 Linear regression 

We used a linear regression to test if percent colonization by AMF or Olpidium sp. 

predicted P. recta biomass. These data met he assumptions of homogeneous variance. For the 

molecular data, we used linear regression to predict biomass by pathogen abundance. The 

pathogen abundance data were transformed (log10) to meet the assumptions of normality.  

2.8.6 Co-occurrence  

We used the package coocurr (Griffith et al. 2016) to determine if the observed instances 

of co-occurrence between P. recta and the congeners was greater than, less than, or equal to 

random chance. We define co-occurrences as two plants occurring in the same survey plot (1 m2 

or along a one of four 15.24 m transects). The “cooccur” function calculates the probability that 

two species co-occur at exactly j number of sites (p(lt)) using: 

 

N1 = number of sites where species #1 occurs, N2 = number of sites where species #2 occurs and 
N = total number of sites that were surveyed (where both species could occur). The probability 
that the two species co-occur less than expected by chance is (p(lt)), and the probability that the 
two species co-occur greater than expected by chance is (p(gt)) (Griffith et al. 2016). 
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3 Results 

3.1 Fungal Communities 

The unidentified fungal OTU denovo875 was the most abundant for every host plant (P. 

recta, P. gracilis, D. glandulosa, other neighboring forbs. Table 2). The fungal communities 

within the roots of P. recta and its congeners (P. gracilis and D. glandulosa) were similar to each 

other and significantly different from the fungal communities within the roots of the other 

neighboring forbs (Figure 8, Table 3). The fungal communities within P. recta were not 

significantly different by neighbor (P. gracilis, D. glandulosa, or other neighboring forb; Figure 

9, Table 4). P. recta and the congeners hosted a significantly lower ratio of AMF to pathogens 

relativized by the total number of OTUs than the other neighboring forbs (Figure 10). Within P. 

recta, the ratio of AMF to pathogens was not different by neighboring plant identity (Figure 11). 

P. recta biomass was not predicted by pathogen sequence abundance (Figure 12).   

Table 2. Top three most frequent OTUs within the roots of each host plant collected in 2014.   

 

Plant OTU Percent of all 
sequences

Taxon Trophic Mode

P. recta denovo875 17.6 unidentified
P. recta denovo1238 12.2 unidentified
P. recta denovo4156 9.8 unidentified

D. glandulosa denovo875 15.4 unidentified
D. glandulosa denovo1238 13.4 unidentified
D. glandulosa denovo4156 6.6 unidentified

P. gracilis denovo875 16.1 unidentified
P. gracilis denovo1690 13.6 Lachnum Saprobe
P. gracilis denovo351 12.5 unidentified

Other denovo875 29.0 unidentified
Other denovo501 4.6 Alatospora Saprobe
Other denovo4052 4.3 unidentified
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Figure 8. Ordination plot of the ITS OTU matrix by host plant with significant (p < 0.001) soil 
chemistry variables. Ordination stress was low (0.248, Non-metric R2 = 0.939). Ellipses denote 
the 95% confidence interval around the centroid (weighted mean of the group). N = 104. 

 

Table 3. Summary of Adonis results comparing the fungal species by host plant, is comparable to 
MANOVA results. Adonis partitions sums of squares using dissimilarities.  

 

df SS F p
Plant 3 3.61 5.77 0.001
Residuals 100 20.87
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Figure 9. Ordination plot of the ITS OTU matrix for P. recta only by neighbor. Ordination stress 
was low (0.236, Non-metric R2 = 0.94). Ellipses denote the 95% confidence interval around the 
centroid (weighted mean of the group). N = 50. 

 

Table 4. Summary of Adonis results comparing the fungal species within P. recta by neighbor, is 
comparable to MANOVA results. Adonis partitions sums of squares using dissimilarities.    

 

df SS F p
Neighbor 5 1.13 1.05 0.33
Residuals 44 9.42
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Figure 10. The ratio of AMF to pathogens relativized by total OTU abundance (F3,100 = 9.42, p< 
0.001). Center point is the mean and lines are one standard error from the mean. Different letters 
represent significantly different groups determined by Tukey’s HSD (p < 0.05). 

 

Figure 11. The ratio of AMF to pathogens relativized by total OTU abundance within P. recta 
roots by neighbor (F5,44 = 0.52, p = 0.75). Center point is the mean and lines are one standard 
error from the mean. Tukey’s HSD (p < 0.05) found no differences by neighbor identity.  
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Figure 12. Pathogen abundance (log 10 transformed to meet the assumption of normality) did not 
predict P. recta biomass (R2 = 0.02, p = 0.32). Grey shading denotes the 95% confidence 
interval.  

   

3.2 Greenhouse Study 

3.2.1 Whole and small microbe effects 

When all microbe fraction treatments were compared, P. recta grown in the whole 

microbial community treatment were significantly less in biomass (g) than plants growing in 

both the small microbial community and the sterilized no microbe treatments (Figure 13, Table 

5). We found parallel results for the roots, shoots, and root to shoot ratio (descriptive statistics in 

Table 1S). On average total biomass was reduced by 20 ± 2.8% by the whole relative to the no 

microbe treatment. Differences did not exist among source plants (Congener, Forb, Grass, P. 
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recta; Table 5). Because we did not pool our soil inocula, we were about to directly compare the 

biomass of plants grown in each microbial treatment by replicate. The whole soil effect is the 

ratio of total biomass of a single plant grown in the whole microbial treatment to a single plant 

growing in the corresponding no microbe treatment. Similarly, the small microbe effect is the 

ratio of total biomass of a single plant grown in the small microbe treatment to the corresponding 

no microbe treatment. There were no significant differences in the whole soil effect (whole:none) 

or the small soil effect (small:none) for total biomass by plant source and (Table 5, Figure 14). 

As described in the methods section 2.8.3, we grouped all the small effect (small:none) data to 

test if the mean for the entire group was different from one. We found that the small microbe 

fraction did not affect the growth of P. recta (t39 = -0.47, p = 0.63, µo = 1). The whole soil 

microbe treatment reduced the biomass of P. recta more than the small microbe, relative to the 

no microbe treatment (Figure 9, 14). Grouping non-congeners, we found that they reduced P. 

recta biomass more than congeners and P. recta as a group (F1,38 = 4.65, p = 0.037, partial η2 = 

0.109).  
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Figure 13. Total biomass mean ± one standard error by microbe source and microbial community 
fraction. There were significant differences among the microbial community fractions but not 
among the source plants, nor their interaction (Table 5). Letters represent significantly different 
groups determined by Tukey’s HSD post hoc analysis (p < 0.05).    

Table 5. Analysis of variance tables for the greenhouse experiment (full factorial), and plant 
source within the whole community only. 

 

df = degrees of freedom, SS= sum of squares, MS = mean square. 

 

df SS MS F p
Greenhouse 
experiment full 
factorial (2-way)
Source plant 3 0.04 0.01 1.66 0.18
Microbe community 2 0.68 0.34 39.5 <0.001
Source:community 6 0.10 0.02 2.12 0.06
Error 108 0.01 0.01
Greenhouse experiment
Whole microbe tmt 
only (total biomass)
Source plant 3 0.20 0.07 2.30 0.09
Error 36 1.05 0.03
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Figure 14. Biomass ratios for the whole (whole:none) and small (small:none) effects. The center 
horizontal line is the median and the vertical lines extending from each box are the maximum 
(top) and minimum (bottom) values, n = 10, N = 40 per effect. For the whole effect there was no 
difference by source plant (F3,36 = 2.30, p = 0.09), there were no pairwise difference determined 
by Tukey’s HSD post hoc analysis. For the small effect there was no difference by source plant 
(F3,36 = 1.88, p = 0.15), there were no pairwise difference determined by Tukey’s HSD post hoc 

analysis.      

 

3.2.2 Root colonization by arbuscular mycorrhizal and other fungi 

Root colonization by AMF from all source plants was low 15 ± 2.1% (mean ± standard 

error; Figure 15, Table 6). As described in the methods section (2.6.4), we calculated the 

proportion of colonization by AMF as the ratio of intersections where any AMF structures were 
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present to total intersections scored. We then multiplied by 100 to calculate the percent 

colonized. We found percent of root colonization by AMF differed by source plant (F3,36 = 2.825, 

p = 0.052, partial η2 = 0.191) and total biomass was negatively correlated with AMF colonization 

(R2=0.33, F1,38 = 20.06, p<0.001, N=40; Figure 16). We found AMF colonization only differed 

between by plants with microbes sourced from P. recta and the other native forbs (Tukey’s HSD 

p = 0.04; Figure 15). Resting sporangia of Olpidium sp. were found in P. recta’s roots with 

microbes sourced from 6 of 10 congener, 7 of 10 P. recta, 1 of 10 forb, and 1 of 10 grass root 

samples (Figure 17).   



36 
 

 

Figure 15. The top plot shows the percent of colonization by AMF by source plant (F3,36 = 2.825, 
p = 0.052, partial η2 = 0.191); the center is the median. The bottom left shows the percent of 
arbuscules found in the whole treatment roots by source plant. The bottom right shows the 
percent of vesicles found in the whole treatment roots by source plant. In total, we scored roots 
from 40 plants, 10 from each microbial source plant.   
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Table 6.  Mean and standard error of fungal structure percentages from the whole treatment roots 
by source plant. Statistical comparisons were not performed among source plants due to low and 
unbalanced n.  

 

 

 

 

Figure 16. Total biomass (g) was negatively correlated with percent of AMF colonization 
(R2=0.33, F1,38 = 20.06, p<0.001, N=40). Grey shading denotes 95% confidence interval.  

 

Structure Congener Forb Grass P. recta
Arbuscules 0.28 ± 0.11 0.70 ± 0.28 0.42 ± 0.21 0.42 ± 0.42

Vesicles 0.21 ± 0.21 0.96 ± 0.81 0.35 ± 0.16 0.21 ± 0.11
Olpidium 7.0 ± 3.6 0.76 ± 0.76 0.55 ± 0.55 3.9 ± 1.3
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Figure 17. Percent of Olpidium resting sporangia did not predict total P. recta biomass (F1,13 = 
0.16, R2 = 0.01, p = 0.70). Olpidium sp. resting sporangia were found in 6 out of 10 congener, 7 
out of 10 P. recta, 1 out of 10 forb, and 1 out of 10 grass root samples from the whole microbe 
treatment, N=40.  

 

3.3 Field Studies   

3.3.1 Plant-to-plant level (neighbor survey) 

Relative distance to the congeners ranged from -0.82 to 42 cm, but we found no evidence 

that relative distances differed among focal plant (p = 0.571, Table 4). Though, when the 

congeners are separated by species we observed a trend that P. recta was distributed farther from 

P. gracilis than D. glandulosa while the opposite was true for the other three native non-

congener forbs (Figure 18). However, this trend was marginally significant (t88 = -1.63, p = 
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0.11). This trend did not hold when we analyzed P. recta and P. gracilis co-occurrence at the 

community and landscape levels. 

 

Figure 18. Plant-to-plant level: mean relative distance [(distance to nearest congener – distance 
to nearest non-congener forb) ÷ distance to nearest non-congener forb] to the congeners from P. 
recta or three other focal forbs. Error bars represent one standard error from the mean. There 
were no significant differences for the relative distances between focal plants (N = 281; G. 
viscosissimum n = 48, G. triflorum n = 76, H. scouler n = 30, P. recta n = 127, F3, 276 = 0.67, p = 
0.571).  

 

3.3.2 Community level (abundance survey) 

Total abundance of the focal plants ranged from 0% to 35%. P. recta had a mean 

abundance of 3.45% and a range of 0 – 25% (Table 7). We define co-occurrences as two plants 
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occurring in the same survey plot (1 m2 or along a one of four 15.24 m transects). At the 

community level, P. recta and P. gracilis were predicted to co-occur 8 times, the actual instance 

of co-occurrence was 12. This suggests that the co-occurrence of P. recta and P. gracilis was 

positively associated, compared to random chance (p(gt) = 0.03), meaning they co-occurred 

more than expected based on their total number of occurrences. Yet, P. recta and D. glandulosa 

were predicted to co-occur 18 times and the observed instance of co-occurrence was 17. 

Therefore, we found the co-occurrence of P. recta and D. glandulosa to be no different from 

random chance (p(gt) = 0.76).  

Table 7. Mean ± SE and range for the abundance (percent cover in 1m2) of P. recta and the three 
focal plants at sites A, B, C, and D (N=59).   

 

 

3.3.3 Landscape level (complete MPG vegetation survey) 

Although at the community scale we found a positive pattern of co-occurrence between 

P. recta and P. gracilis, at the landscape level we found no evidence of a pattern (p(lt) = 0.78; 

Table 8). Consistent with the findings at the community level, we found P. recta and D. 

glandulosa to co-occur 25 times and the expected number of co-occurrence was 21; therefore, 

the two co-occurred randomly (p(lt) = 0.99).  

Mean ± SE Range 
P. recta 3.45 ± 0.68 0 - 25 
P. gracilis 1.77 ± 0.57 0 - 25
D. glandulosa 4.74 ± 0.81 0 - 25
G. triflorum 6.15 ± 0.94 0 - 30
G. viscosissimum 5.20 ± 1.04 0 - 35
H. scouler 1.83 ± 0.59 0 - 20

 cover (%)
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Table 8. Occurrence and co-occurrence of the native congeners with P. recta from landscape 
data (N=428). We define co-occurrences as two plants occurring in the same survey plot (1 m2 or 
along a one of four 15.24 m transects). The probability that the two species would co-occur at a 
frequency less than the observed number of co-occurrence sites if the two species were 
distributed randomly of one another is p(lt). 

 

  

Species Occurrence 
Coocurrence 
with P. recta 

Expected 
cooccurrence 
with P. recta p(lt)

P. recta 70
Congeners
D. glandulosa 20 5 3.3 0.91
P. gracilis 10 2 1.6 0.78
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4 Discussion 

Our field and greenhouse studies allowed us to evaluate the effect conspecific microbes 

have on the invasive Potentilla recta. Our study aimed to answer three questions: (1) how do the 

fungal communities within the roots of P. recta compare to the fungal communities within the 

roots of neighboring congeners and forbs, (2) what are the effects of the whole microbial 

community (microflora, microfauna, and some mesofauna <2 mm), and the small microbial 

community (microflora, <20 µm) on P. recta, (3) is there evidence that conspecific soil microbes 

mediate the distribution of P. recta in the field? To address question one, we compared the 

fungal communities within the roots of P. recta, its native congeners (P. gracilis and D. 

glandulosa), and neighboring grassland forbs. To address our second question, we conducted a 

greenhouse experiment testing the effects of microbe fraction (none, small, whole) and source 

plant (congener, forb, grass, and P. recta) on P. recta biomass. To address our third question, we 

observed and analyzed the distribution of P. recta in relation to its congeners in the field. In 

general, we found little support for conspecific inhibition of P. recta.    

4.1 How do the fungal communities within the roots of P. recta compare to the fungal 

communities within the roots of neighboring congeners and forbs?  

Molecular analysis of the fungal communities within the roots of P. recta, its congeners, 

and other neighboring forbs suggests that the congener and P. recta fungal communities are 

similar to each other, but different from those of other neighboring forbs (Figure 8, 10 and Table 

3). This provides support for a mechanism behind the findings of Callaway et al. (2013) that 

conspecific microbes inhibit P. recta. Further supporting this mechanism, we found P. recta and 
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its congeners to have a higher relative proportion of pathogens to mutualists than the other 

neighboring forbs (Figure 10). 

 In other invasive plant research on MPG, Gibbons et al. (2017) found Bromus tectorum 

(cheatgrass) to increase pathogen load in invaded field locations. Different from our findings and 

also on MPG, Lekberg et al. (2013) found invasive forbs, Centaurea stoebe and Euphorbia 

esula, to have higher AMF associations (percent AMF root colonization and OTU richness) than 

the native plant community. P. recta is a forb, and we would expect its fungal community 

composition to be more similar to previous findings of other invasive forbs than grasses, but that 

is not what we found. In paired native and invaded field plots also in Western Montana, P. recta 

invasion did not increase aboveground net primary productivity or extractable soil nitrate even 

though the ammonia oxidation bacterial gene abundance was significantly higher in invaded 

capered to native field plots. B. tectorum, C. stoebe, and E. esula did increase aboveground net 

primary productivity and extractable nitrate and had significantly higher ammonia oxidation 

bacterial gene abundance in invaded compared to native field plots. This suggests that P. recta 

may interact differently with soil microbes than the other problematic invasive plants in Western 

Montana.   

Within P. recta, the fungal communities and the ratio of mutualists to pathogens were not 

different by neighbor (Figure 11 and Table 4). This suggests that although P. recta’s root fungi 

are more similar to those of the congeners than other neighboring forbs, P. recta’s root fungi are 

not influenced by the identity of neighboring plants. This limits our ability to state that P. recta is 

affected by the fungal communities of its neighbors whether the neighbor is a congener or a 

noncongener forb. P. recta may be influenced by specific microbes from its neighbors, but the 
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whole fungal community was generally similar. Yet, P. recta biomass did not correspond to 

pathogen abundance (Figure 12). Thus, we observed no mechanism for conspecific fungal 

inhibition of P. recta.  

We propose two reasons why P. recta biomass did not correspond to pathogen 

abundance. First, the fungi identified as pathogens, may produce disease in some plants, but may 

function as endophytes within P. recta where P. recta is asymptomatic of disease (Porras-Alfaro 

and Bayman 2011). This has been found for the pathogen, Verticillium dahlia, that has a wide 

range of asymptomatic host plants (Malcolm et al. 2013). Similarly, through molecular methods, 

the U.K. native dune grass Ammophila arenariawas was found to host many potential pathogens, 

but displayed no evidence of disease in its non-native ranges of New Zealand and Australia 

(Johansen et al. 2017). Second, not all pathogens are identified on FUNGuild, the database used 

to assign functional traits to our fungal OTUs. Therefore, P. recta may be inhibited by 

conspecific pathogens that have not been identified on that database and in this analysis. We note 

that the effects of other plant pathogens such as viruses, bacteria, and those that infect leaves and 

stems were not captured in this study. The effects of those potentially conspecific pathogens 

could be detrimental to P. recta. Thus, to isolate the effects of conspecific soil pathogens we 

conducted a greenhouse experiment and we used microbes smaller than 20 µm to represent a 

small-spored pathogen treatment and microbes smaller than 2 mm as a whole soil microbe 

treatment.  
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4.2 What are the effects of the whole microbial community (microflora, microfauna, and some 

mesofauna <2 mm), and the small microbial community (microflora, <20 µm) on P. recta? 

In general, we found negative effects from the whole microbial community and neutral 

effects from the small microbial community (reduced total biomass from the whole relative to 

the no microbe treatment and similar biomass between the small and no microbe treatment). This 

suggests that P. recta are more responsive to the whole microbial community than the small. We 

found no effect of microbe source plant (congener, forb, grass, P. recta) from the whole or small 

microbe treatments on the biomass of P. recta. This suggests that P. recta are not inhibited by 

conspecific soil microbes whether large (< 2 mm) or small (< 20 µm). Furthermore, we did not 

observe signs of disease (lesions or decay) on any of P. recta’s roots. 

  In the whole microbe treatment, through microscopy, we found Olpidium sp. 

(Chrytridiales order) resting sporangia in the roots of plants with microbes from P. recta and the 

congeners (Figure 17). Olpidium bornovanus and Olpidium brassicae are vectors of viruses such 

as lettuce big vein virus, tobacco necrosis virus, and cucumber necrosis virus (Webster and 

Weber 2009). We found the occurrence of these resting sporangia did not correspond to trends in 

total plant biomass. This suggests that although P. recta and its congeners may culture Olpidium, 

the presences of Olpidium resting sporangia does not affect P. recta’s biomass production. As 

proposed by (Malcolm et al. 2013), we suggest that within P. recta, Olpidium functions as an 

endophyte. Olpidium were found through molecular methods in the mycoheterotrophic orchid 

Epipogium aphyllum, the authors did not note if the plants appeared diseased (Roy et al. 2009). 

Interestingly, we did not detect Olpidium in our molecular analysis of field collected P. recta 

roots from 2014. The general eukaryotic primer ITS4 that we used has been used previously to 
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amplify Olpidium, therefore it was either not present in our 2014 field samples, or not identified 

on the FUNGuild database (Sasaya and Hiroki 2006). We note that Olpidium may influence P. 

recta’s competitive ability, seed production, or tolerance to other stressors (Mordecai 2011), but 

those responses were not directly measured in this study. 

Within the whole microbial community treatment, AMF colonization was low. AMF are 

generally thought to form mutualistic associations with plants (Smith and Read 2008). 

Interestingly, we found biomass to be negatively correlated with colonization by AMF. 

Additionally, we found P. recta grown with microbes sourced from itself were less colonized by 

AMF than when grown with microbes sourced from other native forbs. Klironomos (2003) also 

found reduced biomass of P. recta when colonized by AMF compared to noncolonized controls. 

This suggests that P. recta may not benefit much from AMF associations. However, Klironomos 

(2003) also noted that the amount of colonization did not correspond to plants’ responsiveness to 

AMF.    

The interaction between AMF, low light levels, and elevated nutrient concentrations may 

explain the reduction in P. recta biomass found in the whole microbe treatment. To our 

knowledge, the effects of light exposure time, light intensity, and the interaction with AMF on P. 

recta have not been investigated directly. However, Johnson et al. (2015) found in the C4 grass, 

Andropogon gerardii, reduced biomass in mycorrhizal versus non-mycorrhizal treatments when 

under low light (66% reduction from 610-1047 µmol m-2 s-1) and with elevated nitrogen and 

phosphorus concentrations. The reduced light intensity used by Johnson et al. (2015) is 

comparable to the mean light intensity in our greenhouse experiment that was 201 µmol m-2 s-1. 

Similarly, our growing medium’s nitrogen and phosphorus (methods section 2.6.2) 
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concentrations were also comparable to those used by Johnson et al. (2015). It is important to 

note that forbs and C4 grasses respond differently to AMF associations in the field, in the 

greenhouse, and under different nutrient concentrations (Hoeksema et al. 2010). A recent review 

on the effect of AMF under low-light conditions found 13 cases of reduced biomass in 

mycorrhizal verses non-mycorrhizal controls with decreasing light intensity, eight cases 

independent of light intensity, and two cases where non-mycorrhizal plant biomass was reduced 

more with decreasing light intensity (Konvalinková and Jansa 2016). Research has also 

demonstrated a decreases in AMF abundance in plants with decreased light and fertilization (Liu 

et al. 2014, Shi et al. 2014). This is in line with the low levels of AMF colonization that we 

observed. To summarize the findings of our greenhouse experiment we found no evidence for 

conspecific microbial inhibition of P. recta. Thus, we look to our field observational studies to 

find evidence that congeners inhibit P. recta.  

4.3 Is there evidence that conspecific soil microbes mediate the distribution of P. recta in the 

field? 

4.3.1 Plant-to-plant level (neighbor survey) 

At the plant-to-plant level because P. recta and other co-occurring grassland forbs were 

equally distant from P. recta’s congeners, we have concluded that P. recta’s distribution was 

unaffected by the presence of its congeners (Figure 18). This suggests that the distribution of P. 

recta and its congeners are affected more by external factors than each other. Yet, in Figure 18, 

we can see that for all focal plants the relative distance to D. glandulosa is farther than the 

relative distance to P. gracilis, except for P. recta where the pattern is reversed. These data 

provided weak evidence (marginal statistical significance) that the relative distance between P. 
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gracilis and P. recta is larger than the relative distance between P. gracilis and the other target 

forbs. This indirectly supports the hypothesis that P. recta are inhibited by conspecific microbes, 

but the effect was only present for the more related congener (P. gracilis) to P. recta. Although 

this pattern is marginally significant, we discuss it here because the inocula used in our 

greenhouse experiment were collected from the rhizospheres of both congeners. Therefore, in 

our greenhouse experiment, any inhibition by P. gracilis microbes may have been diluted by D. 

glandulosa microbes. This possibly explains why we did not detect differences in P. recta 

biomass from different source plants (forb, congener, grass, P. recta). Our next question is if P. 

recta is truly inhibited by P. gracilis, then does this have any effect on P. recta’s distribution in 

the plant community and at the landscape level? 

4.3.2 Landscape and community levels 

To evaluate the observed compared to the expected instances of co-occurrence between 

P. recta and the native congeners we used vegetation survey data from two scales: community 

(2016) and landscape (2011). We define co-occurrence as two species occurring in the same 

surveyed plot either 1 m2 for the community or along one of four 15.24 m transects for the 

landscape. We failed to find evidence of a positive or negative association between P. recta and 

either congener at the landscape level. Thus, if P. recta is farther from P. gracilis at the plant-to-

plant level, this pattern does not scale up to observable landscape level inhibition. This is 

consistent with meta-analytical findings of (Ma et al. 2016) where invasive species did not do as 

well when the invasive plant and native plant community was more related at the local scale (i.e. 

plant-to-plant), but the invasive was unaffected by relatives at the larger regional scale such as 

the landscape. The lack of evidence for conspecific inhibition at the landscape level could be due 
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to the generally low abundance of native congener species. On the landscape, the congeners 

occurred a combined 30 instances out of 428, that is less than 10% of the surveyed plots. P. recta 

are prolific seed producers (Tuitele-Lewis 2004), and seeds landing on ground free of congeners 

and their  microbes is more likely than seeds landing on ground with congeners. We found a 

positive association between P. recta and P. gracilis at the community level (co-occurred more 

often than chance). This does not support the hypothesis that P. recta is inhibited by conspecific 

soil microbes. The positive association between P. recta and P. gracilis at the community level 

may be an artifact of the surveyed sites because P. recta and its native congeners were known by 

MPG staff to co-occur at those locations and that is why they were surveyed, even though 

generally on the landscape the congeners are less common.   

4.4 Additional considerations 

We note that our methodologies did not capture P. recta’s growth rate, fecundity, or stress 

tolerance so negative effects of conspecific microbes could manifest in these or other plant 

responses. In our greenhouse experiment, after approximately 6 weeks some leaves began to 

yellow and we acknowledge that light intensity, temperature, pathogens, and other environmental 

factors can induce changes in leaf color (Lers 2007). To relieve what we interpreted as nutrient 

stress, we fertilized the plants with a low phosphorus Hoagland’s solution, possibly exacerbating 

the interactive effects of excess nutrients, light, and AMF. Furthermore, the congener inocula 

were a composite of both P. gracilis and D. glandulosa soil microbes, therefore we cannot 

isolate the possible effects of each congener. However, the lack of evidence for inhibitory effects 

of conspecific microbes on P. recta may reflect a true null as our molecular findings suggest that 

the fungal communities within P. recta roots are unaffected by neighbor identity and at the 
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landscape level P. recta and either congener were found to co-occur as we would predict given 

their overall occurrences.  

4.5 Differences between our findings and previous P. recta research  

Our greenhouse study differed from the work of Callaway et al. (2013) in that we used 

soil inoculum collected directly from the field and they used inoculum that had been cultured by 

a host plant for one generation. Our method potentially introduced additional variation to our 

experiment, but was inherently more reflective of field conditions. Additionally, Maron and 

Mahler’s (2008) research used experimental monocultures of common grassland forbs, but this is 

not how many of these plant species are distributed in the field. Although our field studies were 

observational, and not experimental, we quantified how P. recta were naturally distributed from 

its native congeners relative to other neighboring grassland forbs. Finding that P. recta’s 

distribution was unrelated to the distribution of its congeners whether at the plant-to-plant or 

landscape levels. Synthesizing previous findings and our own, we conclude that P. recta may be 

inhibited by its congeners when they are densely established or have experimentally cultured soil 

microbes, but in the field, we did not detect any conspecific inhibition of P. recta or a fungal 

mechanism for conspecific inhibition. 

4.6 Synthesis 

Counter to previous studies, we found little evidence for negative effects of conspecific 

microbes on P. recta. We found higher proportions of pathogens relative to mutualists for P. 

recta, but pathogen abundance did not predict P. recta biomass. Nor was P. recta’s fungal 

community composition different by its neighboring plant. This does not support a fungal 
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pathogen mechanism for the conspecific inhibition found by Callaway et al. (2013). In the 

greenhouse P. recta had reduced biomass from the whole microbial community and not the small 

microbial community. However, we found no difference in this effect among the microbe source 

plants in either the whole or small microbe treatments. This suggests that P. recta is not inhibited 

by the conspecific soil microbial community. Furthermore, in the greenhouse, we found P. recta 

had low colonization by AMF, but experienced parasitism from AMF possibly due to the 

interactive effects of low light levels and nutrient fertilization. In the field, P. recta and other 

common forbs were similarly distant from P. recta’s congeners. This does not support the 

hypothesis that native congeners inhibit P. recta because we would expect P. recta to be farther 

from its congeners than the other forbs are from P. recta’s congeners. At the landscape level, we 

found no evidence that the instance of co-occurrence between P. recta and its congener are 

related. Again, this does not provide support for inhibition of P. recta by native congeners. At 

the community level, we found P. recta and P. gracilis to positively associate within 1 m2 areas, 

directly contradicting what we would expect if conspecific microbes inhibited P. recta. Taken as 

a whole, our combined findings suggest that P. recta is not functionally inhibited by conspecific 

soil microbes.  
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5 Appendix A:  

Table 1S. Mean ± standard error, and range for biomass (g) of the roots, shoots, and root to shoot 
ratio by source plant and microbial fraction whole (<2mm), small (<20µm), and none. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass
Microbe 

source plant Mean ± SE Range Mean ± SE Range Mean ± SE Range
Roots (g) Congener 0.912 ± 0.043  0.697 - 1.101 1.031 ± 0.050  0.881 - 1.308 1.078 ± 0.047 0.904 - 1.364

Forb 0.754 ± 0.070 0.467 - 1.058 1.049 ± 0.048  0.752 - 1.233 1.133 ± 0.029 0.900 - 1.221
Grass 0.828 ± 0.054 0.579 - 1.084 1.131 ± 0.036 0.973 - 1.378 1.029 ± 0.035 0.825 - 1.154
P. recta 0.886 ± 0.029 0.694 - 1.014 1.100 ± 0.052 0.806 - 1.365 1.097 ± 0.043 0.848 - 1.341

Shoots (g) Congener 0.706 ± 0.047 0.470 - 0.940 0.793 ± 0.041 0.620 - 0.990 0.823 ± 0.021 0.700 - 0.920
Forb 0.569 ± 0.054 0.310 - 0.770 0.760 ± 0.031 0.590 - 0.920 0.850 ± 0.017 0.770 - 0.930
Grass 0.624 ± 0.046 0.410 - 0.800 0.830 ± 0.022 0.690 - 0.940 0.830 ± 0.026 0.670 - 0.920
P. recta 0.720 ± 0.020 0.630 - 0.840 0.833 ± 0.024 0.750 - 1.010 0.839 ± 0.031 0.690 - 0.990

Root:Shoot Congener 1.322 ± 0.071 0.968 - 1.779 1.309 ± 0.042 1.077 - 1.449 1.321 ± 0.079 1.028 - 1.948
Forb 1.338 ± 0.048  1.152 - 1.603 1.390 ± 0.062 1.108 - 1.612 1.335 ± 0.033 1.140 - 1.540
Grass 1.343 ± 0.048 1.096 - 1.573 1.368 ± 0.044 1.209 - 1.646 1.251 ± 0.054 0.948 - 1.519
P. recta 1.232 ± 0.028 1.052 - 1.320 1.326 ± 0.063  0.960 - 1.576 1.309 ± 0.027 1.147 - 1.440

Whole Small None
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6 Appendix B: detailed bioinformatics methods from MPG Ranch 

Bioinformatics 

We performed all bioinformatic analysis using QIIME (Quantitative Insights Into 

Microbial Ecology, version 1.9.0, Caporaso et al. 2010). Raw forward and reverse PE ITS reads 

were trimmed at the 220 and 180 base pair position, respectively, before joining paired-ends 

using the fastq-join method (Aronesty 2013) with a minimum overlap of 20 nucleotides and 

allowing for 10% mismatch in the region of overlap. All low quality (phred<25) short (<200bp) 

reads were removed during demultiplexing and remaining reads were clustered into operational 

taxonomic units (OTUs) based on a 97% sequence similarity threshold using Uclust (Edgar 

2010). Sequences from the ITS reference database UNITE (Koljalg et al. 2013) were used as 

seeds for clusters and OTU taxonomic assignment. Any read that did not match a reference 

sequence was clustered de novo and compared against sequences from Genbank 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the BLAST algorithm (Altschul et al. 1990). Reads 

that matched with Fungi in Genbank were retained for analysis but were not assigned taxonomy. 

OTUs with a sequence abundance of less than 0.05% of the total number of sequences were 

removed in order to decrease artifactual OTUs generated through sequencing error (Bokulich et 

al. 2013). Function was then assigned to OTUs using the FUNGuild reference database (Nguyen 

et al. 2016).  
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