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Abstract 
 

 Bacterial sortases have been widely studied for their usefulness in protein 

modification, however, the variable substrate specificity and activity between 

homologs of these enzymes is not yet fully characterized. To attempt to further 

understand sorting signal recognition, we have made advances towards a 

substrate bound structure of Streptococcus pneumoniae sortase A (SrtApneu). 

This enzyme displays a wide tolerance for alternate amino acids within the 

canonical LPXTG sorting motif. Our strategy involves a non-cleavable peptide 

analog that can be docked into the active site, allowing for elucidation of a 

structure displaying the key contacts that allow the enzyme to recognize alternate 

sorting signals. To this end, ketomethylene-linked isosteres were designed and 

synthesized, one of which was incorporated into a peptide via solid phase 

synthesis to produce a non-cleavable sorting signal for SrtApneu. Preliminary 

analysis of the substrate analog LPAG(keto)G for inhibition of SrtApneu activity in 

a model transpeptidation reaction suggested that this peptide was an effective 

inhibitor. Work towards understanding the activity of SrtApneu in relation to its 

oligomeric state was also undertaken, revealing a strong relationship between 

the extent of oligomerization and relative activity of SrtApneu, where extensive 

oligomerization resulted in minimally active samples. Purification of SrtApneu 

samples was optimized to produce pure monomeric samples of the enzyme, 

which showed improved transpeptidation activity. This work has helped lay the 

foundation for future efforts in producing a substrate-bound structure of SrtApneu.	
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1. Introduction 

1.1 Protein Engineering and Sortase A 

Protein engineering chemistry is a rapidly growing field of research, 

proven to be broadly applicable to problems in chemistry, molecular biology, and 

medicine. In many cases, protein engineering seeks to endow proteins with 

expanded functionality through a variety of permanent modification methods.1-5 

Among the numerous methods available for protein modification, 

chemoenzymatic systems have seen increasing use, aiding in the production of 

fluorescent-labeled proteins,6 antibody-drug conjugates,7 and bioconjugated 

nanoparticles,8 within a growing catalog of useful products. This method typically 

provides site-specific and rapid attachment of a desired modification, achieved 

through recognition and alteration of amino acids or sets of amino acids within a 

protein of interest.2, 9 Frequently, genetic modification is used to produce a 

recognition site for an enzyme with the ability to catalyze addition of a desired 

modification. The range of modifications is vast, however; most enzymes for 

protein modification function in exactly the same manner: a specific sequence of 

amino acids is recognized and a modification is made to or within the recognized 

site (Figure 1).  

In general, an individual enzyme catalyzes only a single reaction, meaning 

for each type of modification, a separate chemoenzymatic system exists. 

Formylglycine generating enzyme (FGE) recognizes a CXPXR amino acid 

sequence and modifies the cysteine residue to formylglycine co-translationally,10, 
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11 which can be used to generate oximes through reaction with hydroxyamines,11, 

12 a simple click reaction. Lipoic acid ligase attaches lipoic acid to lysine within its 

recognition sequence. This enzyme has been particularly useful in protein 

modification, as alteration of its substrates to include the azide and alkyne click 

handles has allowed for site specific incorporation of these selective and rapidly 

derivatized groups.13 This enzyme has also been employed in studies of protein-

protein interactions.14 Biotin ligase also modifies the lysine sidechain within its 

recognition sequence, attaching a biotin molecule to the ε-amine.15 Biotin often 

functions as a site specific tag for binding biomolecules to materials, examples of 

which include nanoparticles16 and quantum dots,17  as this small molecule 

selectively and tightly binds to proteins avidin and streptavidin.  

 

 

 

 

 

 

Figure 1. Generalized schematic of chemoenzymatic modification of proteins. A 
protein with an endogenous or inserted peptide recognition sequence (shown in 
black) is recognized by the protein modification enzyme. The modification is 
attached covalently within the recognition sequence. 

 

The sortase enzyme family has been well studied for use in protein 

modification. Sortases are transpeptidases found in Gram-positive bacteria18, 19, 

Enzyme recognition sequence 

Protein modification enzyme 

Modification to be added 

Chemoenzymatically modified protein 
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all of which maintain a nucleophilic cysteine within their active site that serves as 

the primary residue for catalysis.18, 20, 21 Sortases can be divided into multiple 

classes (A-F)21, 22, each exhibiting different structural and biochemical traits, 

some of which are shown in Table 1. Of most relevance to this study is the class 

A sortase (SrtA), which resides on the extracellular membrane of bacteria, 

embedded via a transmembrane domain18 that can be removed to produce 

soluble, recombinant SrtA for use in vitro. In vivo, SrtA typically performs a 

“housekeeping” function by anchoring multiple protein types to the extracellular 

wall.18, 19, 23-26 It has been determined that many proteins appended to the cell 

wall by SrtA are key virulence factors,27 including collagen adhesion proteins,28 

fibronectin binding proteins,29-31 and immunoglobulin binders32 that aide bacterial 

cell colonization and inhibit the host immune response. This in vivo function of 

SrtA makes it a viable drug target in Gram-positive bacteria, as several studies 

have shown that Gram-positive bacterial strains without SrtA exhibit reduced 

virulence.33-37 This makes it prudent to develop an in-depth understanding of 

sortase enzymology, as it may benefit the development of novel therapeutics to 

replace the rapidly failing catalog of current antibiotic drugs.38 While many 

advances have been made towards understanding specific homologs of SrtA, 

other less studied homologs may serve as excellent targets for further analysis 

as tools and drug targets.9, 29, 31, 39 
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Table 1. Sorting signals, substrates, and species specificity of all known sortase 
classes. [from Bradshaw et al.21] 
Sortase Class Motif Example 

Substrates 
Species 

A LPXTG Surface proteins40 All low GC content 
Gram-positive 
bacteria 
 

B NP(Q/K)TN Haem acquisition 
proteins41 

Low GC content 
Gram-positive 
bacilli and cocci 
 

C (I/L)(P/A)XTG Pillin subunits42, 43 Both low and high 
GC content Gram- 
positive bacteria 
 

D LPNTA Endospore 
envelope 
proteins44, 45 
 

Bacillus species 

E LAXTG Pili46 
 

High GC content 
Gram-positive 
bacteria 
 

F Unknown Unknown Actinobacteria 
 

 As each class of sortase performs a separate set of functions, each also 

recognizes its own sorting motif; typically a five amino acid sequence that is 

accepted into the enzyme active site for modification.21, 22 Specifically, SrtA 

homologs typically recognize an LPXTG motif,18, 19, 23, 24 where X is any amino 

acid. In proteins containing this motif, it is followed by a string of hydrophobic 

residues and a highly polar tail, dominated by arginine and lysine residues. This 

full segment (the sorting motif, hydrophobic, and hydrophilic residues) is referred 

to as a cell wall sorting signal (CWSS), as it indicates which proteins should be 

embedded in the cell membrane and targeted for binding, cleavage, and ligation 
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to the peptidoglycan of the extracellular wall.23, 47, 48 While sortases vary in terms 

of their sorting motif preferences, they are all believed to catalyze 

transpeptidation reactions similiar to that depicted in Figure 2 for sortase A from 

Staphylococcus aureus (SrtAstaph). In the case of SrtAstaph, the enzyme cleaves 

between the threonine and glycine residues in the sorting motif, forming an acyl-

enzyme intermediate that is resolved by an N-terminal amine nucleophile (in S. 

aureus, the lipid II pentaglycine moiety within the peptidoglycan).26 After 

transferring the substrate, the enzyme releases the newly fused protein, now 

appended to the cell wall.  

 
Figure 2. In vivo mechanism of transpeptidation by SrtAstaph.  
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The innate ability of sortases to catalyze site-specific ligations has been 

used extensively in protein engineering chemistry to produce a large catalog of 

proteins and peptides conjugated to fluorophores,49 nanoparticles,8 lipid 

nanodiscs,50 other proteins,51 and even live cells52, 53 (Figure 3). The protein or 

peptide ligation partners can function as either the amine nucleophile or 

substrate (sorting signal) in the transpeptidation reaction, which further enhances 

the versatility of this approach.51, 54-56 This has been used to modify the C- and N-

termini of proteins, in addition to surface loops.51, 56 Several homologs of sortase 

have been used in protein modification efforts. While most studies are carried out 

with SrtAstaph, several modifications have been demonstrated with the SrtA 

homolog from Streptococcus pyogenes9, 49, 57 (SrtApyogenes) and, more recently, 

with the evolved mutants of SrtAstaph, which demonstrate higher reaction rates,58 

altered substrate profiles,58-60 and Ca2+ independence.61, 62 
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Figure 3. Protein modification using in vitro transpeptidation catalyzed by SrtA. 
This strategy can be applied to a variety of ligation partners, shown in the bottom 
half of the figure, facilitating the construction of diverse protein fusions. 
 

1.2 Expanded Substrate Tolerance of Sortase Homologs 

In addition to increases in the diversity of protein engineering applications 

that employ sortases, there have also been a number of studies focused on 

circumventing critical limitations of the method itself. With respect to SrtAstaph, 

slow reaction rates, reversibility, strict substrate specificity,63 and limited 

acceptance of structurally diverse amine nucleophiles63-65 reduce the usefulness 

of the enzyme for certain applications. Slow reaction rates can often be 

overcome by altering reaction conditions and reversibility can be diminished by 
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the use of specially designed substrates.66, 67 Our lab has previously developed 

substrates containing the Ni2+ binding motif GGHG on the C-terminus, which, 

upon cleavage, demonstrated a reduced capacity to function as a nucleophile in 

the reverse reaction to reform the substrate.66 Depsipeptides have also been 

used effectively modify the N-terminus of proteins, as processing substrates with 

an ester linkeage produces C-terminal fragments with no available amine, 

eliminating the possibility the reverse reaction to regenerate the starting 

material.67 In contrast to the issue of reversibility, substrate specificity and limits 

of accepted nucleophiles cannot be overcome by modifying the materials or 

conditions used in the reaction, as they are founded in enzyme structure and the 

mechanism of catalysis. In response, multiple groups have now generated 

evolved SrtA mutants with improved catalytic activity, modified substrate 

tolerance, and independence from certain reaction cofactors.48-52 While useful, 

these strategies often rely on laborious directed evolution strategies in order to 

identify useful mutations. As a complement to these approaches, our group has 

been exploring the reactivity of naturally occurring sortase homologs as a way to 

further expand the scope and versatility of sortase-mediated protein engineering.  

With respect to substrate specificity, bioinformatics studies suggest that 

the vast majority of SrtA homologs are specific for LPXTG motifs68. Using the 

CW-PRED2 algorithm, sortase substrates have been predicted from more than 

177 bacterial genomes.61 SrtAstaph was predicted to have between 15 and 21 

substrates across 13 strains, all of which demonstrated a high preference for 
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leucine in position 1, proline in position 2, threonine in position 4, and glycine in 

position 5. Position 6 was also analyzed and demonstrated no preference for this 

position in sortase substrates. Position 3, the variable position in the sorting 

motif, was frequently occupied by a charged residue; however, no strong 

preference for specific amino acids was determined for this position. 

Interestingly, substrate prediction demonstrated that in about 10% of substrates, 

the 4th position was occupied by alanine. In vitro analysis of these preferences 

with discrete peptide substrates shows there are some discrepancies between 

the actual and predicted sorting sequences of some sortase homologs. 

Specifically, it has been demonstrated that SrtAstaph has a preference for glycine 

in the 6th position, outside of the canonical LPXTG sorting motif.69 Further, 

studies by Kruger et al. have demonstrated that SrtAstaph accepts several amino 

acids in the 4th position of the sorting motif, a trait not predicted by bioinformatics 

algorithms.69 Building from these initial studies, our group has now shown that 

SrtA homologs can exhibit substantial differences in tolerance for amino acids in 

multiple positions of the sorting sequence. The most substantial deviations from 

the canonical LPXTG sorting motif were found in the 4th and 5th positions of the 

amino acid sorting sequence. An example for the 5th position tolerance is shown 

in Table 2. These data revealed that many SrtA homologs accept several amino 

acids in the 5th position of the sorting sequence. A particularly wide tolerance to 

substrates with non-canonical amino acids in the 5th position can be seen in 

Streptococcus pneumoniae SrtA (SrtApneu).  
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Figure 4. Amino acid preferences of selected SrtA homologs for the 5th position 
of the SrtA recognition sequence LPXTG [Nikghalb, Antos unpublished data]. 

 

In addition to the expanded substrate tolerance, the reaction completion 

percentages determined by HPLC and MS analysis of these model sortase-

catalyzed ligation reactions demonstrate that SrtApneu prefers the substrate 

LPATA in vitro, instead of the canonical LPXTG substrate. This is in clear 

contrast to SrtAstaph, which prefers only LPATG containing substrates. While 

some conversions are sub-optimal for use in protein engineering applications, the 

tolerance data shown in Figure 4 above is the result of unoptimized reactions, 

and even low percent conversions may be improved by modifying the reaction 

conditions. Importantly, this would provide a route for expanding the scope of the 

sortase-mediated protein engineering, potentially increasing the range of 

endogenous protein targets that are compatible with sortase without the need to 

insertion of a recognition sequence in the primary structure, ultimately saving 

V Y S W L Nle G A N F Q C 

S. aureus 3 1 1 0 0 0 86 2 0 1 2 5 

S. suis 2 2 67 0 0 2 71 74 58 3 3 73 

S. oralis 2 1 54 0 0 1 74 46 3 2 6 48 

S. pneumoniae 39 14 84 11 41 14 81 92 48 29 11 76 

L. monocytogenes 4 43 41 6 1 2 86 15 22 30 1 42 

E. faecalis 1 0 7 0 0 1 7 5 6 3 1 10 

L. lactis 5 1 44 0 1 1 83 66 28 2 1 32 

B. anthracis 1 2 8 0 0 1 42 22 17 1 0 17 

L. plantarum 1 1 2 0 3 0 18 3 2 1 1 8 

sortase A 
Abz-LPATZG-K(Dnp)  Abz-LPAT-NHOH + ZG-K(Dnp) 

H2N-OH 
excess 

Z   = 

Sortase A 
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time and resources. 

Regarding the homolog SrtApneu, its particularly broad substrate tolerance 

presents an interesting issue to be examined with respect to the mechanism of 

substrate recognition. It is known that SrtAstaph undergoes structural 

rearrangement upon correct substrate binding, which facilitates catalysis of 

transpeptidation.70, 71 The wide substrate tolerance described above for SrtApneu 

suggests that it may harbor a unique mode of substrate recognition. A thorough 

understanding this substrate recognition at the molecular level would benefit not 

only the continued development of SrtApneu for use in protein engineering, but 

would also contribute to our fundamental understanding of sortase enzymology. 

Unfortunately, no structure of SrtApneu has been published to date, which 

precludes a more in depth analysis of its substrate recognition and catalytic 

mechanism.  

 

1.3 Substrate Binding and Structure of SrtA Homologs 

Published solution NMR structures have been determined for SrtAstaph
71 

and sortase A from Bacillus anthracis (SrtAanth)72 with a bound substrate analog, 

referred to as LPAT*, which utilizes a disulfide bond forming linker on the C-

terminus that irreversibly binds to the enzyme active site.71 These structures 

have been instrumental in developing an understanding of the reverse 

protonation mechanism of catalysis73 and the enzyme-substrate interactions of 

the first four amino acids within the sorting sequence.  
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Figure 5. (A) Solution NMR structure of SrtAstaph. Arginine (blue), cysteine 
(yellow), and histidine (green) stick structures represent the key catalytic 
residues. (B) Predicted structure of SrtApneu from the Phyre 2 structural prediction 
server74. (C) Active site architecture of the solution NMR structure of SrtAstaph 
with the bound substrate analog LPAT* (PDB ID: 2KID). Side chains of residues 
surrounding the active are shown as stick structures, highlighting the number of 
hydrophobic interactions stabilizing the substrate-bound state.  
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 In terms of overall structure, sortases include an 8-stranded beta barrel 

fold considered to be unique to this family of enzymes.20 This β barrel is 

surrounded by combinations of α and 310 helices and loops that vary in size and 

conformation between classes and homologs.21, 23, 72, 75-77 In general, SrtA 

homologs contain three catalytic residues: cysteine, arginine, and histidine, within 

the active site.78, 79 In SrtAstaph, the active site floor, or binding groove, is formed 

from strands β4 and β7 (Figures 5 and 6). The walls of this binding pocket are 

composed of loops joining other β strands and α helices in the structure. Within 

the active site, bound substrates are found in an “L” shape, facilitated by the 

proline residue, which angles the scissile bond towards the active site cysteine. 

The leucine sidechain makes hydrophobic contacts with residues in the β6/β7 

loops and proline is buried in a hydrophobic groove formed by residues of the β4 

and β7 strands. The alanine residue displays a hydrophobic interaction with the 

H1 helix, however, it is important to note that space exists for projection of larger 

sidechains away from the enzyme, partially explaining the low specificity for 

amino acids in this position. The threonine in the 4th position of the amino acid 

sorting motif functions forces the sidechain of a tryptophan residue up and away 

from the active site, moving the catalytic cysteine residue towards the scissile 

peptide bond.71 This is considered to be one of the most important interactions in 

substrate recognition, as substrates with glycine at this position are completely 

inactive63. 

 Binding of the sorting motif in the active site induces further 
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conformational changes in some homologs of SrtA. In SrtAstaph, loop β6/β7 

undergoes a large disordered to ordered transition which is key to substrate 

binding, as the recognition of the sorting sequence leucine residue relies on 

multiple interactions in this strand.71, 80-82 The nucleophilic attack of the scissile 

peptide bond by the active site cysteine shifts the β7/β8 loop to reveal the 

backside of the active site to incoming nucleophiles.71 This also facilitates 

recognition of the threonine residue, as mentioned above. The size of the β7/β8 

loop is predicted to be important for recognition of the 5th position in the amino 

acid sorting sequence (Nikghalb and Antos, unpublished data). SrtAstaph displays 

a particularly large loop extending from the β7/β8 strands (Figure 5), which may 

account for the high selectivity for glycine in the 5th position of the sorting 

sequence.  

Apart from SrtAstaph, NMR data for SrtAanth bound to the LPAT* substrate 

analog72 shows a number of similar features, including the cys-his-arg catalytic 

triad and the structure of the substrate binding groove. The binding pocket in this 

enzyme appears to be mostly preformed, however, in contrast to that of 

SrtAstaph.
72 Other notable differences between these structures exist, particularly 

the direction of the threonine residue, which points down towards the guanidino 

group of arginine. This supports the presence of an oxyanion hole to stabilize the 

tetrahedral transition state in the catalytic cycle, as initially hypothesized from the 

structure of SrtBanth.
83 Additionally, the β7/β8 loop of this homolog demonstrates 

a similar structural transition upon substrate binding to that of SrtAstaph  β6/β7 
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loop, whereas the β6/β7 loop of is ordered in both the apo and substrate-bound 

forms of the enzyme. An interesting N-terminal appendage, similar to that seen in 

the SrtC subclass,84 is thought to protect the active site from hydrolysis of the 

substrate, facilitating reactivity with the intended N-containing nucleophile72. 

While a structure of SrtApneu bound to a substrate analog has not been 

reported, structure prediction tools reveal features that may play a role in the 

expanded substrate tolerance of this enzyme. One-to-one threading by the 

Phyre274 structural prediction server has allowed for prediction of the structure of 

SrtApneu (Figure 5). SrtApneu is predicted to have a smaller β7/β8 loop than that of 

SrtAstaph, which could account for its increased substrate promiscuity, as this 

region should be involved in recognition of amino acids in the 4th and 5th position 

of the sorting sequence. 

Another variable aspect of SrtA structure and substrate recognition can be 

seen in metal ion sensitivity. Many sortases20, 85-87 are Ca2+ dependent, where the 

bound ion improves the catalytic activity of the enzyme. SrtAstaph binds calcium 

with a set of acidic residues in the β6/β7 loop, stabilizing the substrate bound 

conformation70, 71, 80. The presence of Ca2+ ion in reactions with this homolog 

significantly increases the reaction rate20. Again, in contrast to SrtAstaph, sortases 

have also been discovered which are independent of Ca2+ ion88, 89. A recently 

determined example of this is Streptococcus suis SrtA (SrtAsuis), where Ca2+ ion 

has no effect on reaction rate or total conversion. Our lab has previously 

determined that Ca2+ ion has little to no effect on the reaction rates of SrtApneu, 
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which indicates it may recognize and bind substrates in a mechanism 

fundamentally different than SrtAstaph.  

 
 

 
 

 
 
 
 
 
 
 
 
 

  
Figure 6. (A) Surface structure representation of SrtAstaph with the bound 
substrate analog LPAT* (green). (B) Mechanism of transpeptidation within the 
active site of SrtA. The red box denotes the acyl-enzyme intermediate that 
closely resembles the structural state of the structure at left. 

 

Unfortunately, these structures lack a complete description of substrate 

binding and recognition, as they do not illustrate interactions between the fifth 

position of the sorting sequence and the enzyme. The substrate analog used to 

collect the data from the studies by Suree et al.71 and Chan et al.72 closely 

mimics the acyl-enzyme intermediate, designated in Figure 6 by the red box, 

which involves only the first four amino acids (LPAT) in the sorting motif. That 

said, additional work by Suree and coworkers has revealed some regions of 

SrtAstaph implicated in recognition of the nucleophile and fifth amino acid 

positions71 (Figure 7). 15N-HSQC monitored titration of triglycine resulted in three 

regions displaying perturbed backbone resonances, presumably from the binding 

S. aureus SrtA (PDB ID: 2KID) 

H
N

O

N
H OR1

R2

S

H
N

N
H OR1

R2S O

H2N
O

R2

S O

R1N
H

H2N-Gly5-Lipid II
S O

R1N
H

S O-

R1N
H

NH-Gly5-Lipid IIH
N

O

N
H

Gly5-Lipid II

R1

S

A 
B 



	 17	

of triglycine to these regions. These amino acids primarily lie around the sites 

where the 5th position amino acid should contact the binding pocket. Interestingly, 

sequence alignment of various SrtA homologs displays a marked difference in 

primary structure in these regions (Figure 7). This correlates with data from our 

lab (Figure 4) demonstrating the greatest differences from canonical LPXTG 

sorting motif recognition occur in the fifth amino acid, and highlights the need for 

a more rigorous assessment of contacts between the 5th position amino acid and 

SrtA during substrate recognition.  

Figure 7. (A) Sequence alignment of selected SrtA homologs90, 91. The regions of 
greatest difference (boxed) correspond to the regions highlighted in the structure 
(B), indicating the least sequence homology lies on the structural features 
predicted to interact with the 5th position of the sorting sequence. (B) Surface 
representation of SrtAstaph bound to substrate analog LPAT* (PDB ID: 2KID). 
Residues highlighted in magenta were determined to interact with the incoming 
nucleophile by analysis of peak perturbation during a 15N-HSQC monitored 
titration of SrtAstaph with G3. These residues primarily lie around the region of the 
binding pocket predicted to interact with the C-terminus of the sorting signal.71  
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1.4 Enzyme Activity as a Function of Oligomeric State and Active Site 
Modifications 
 

Previous studies have demonstrated the presence of both dimeric and 

monomeric forms of SrtA both in vivo and in vitro.87, 92-94 In vitro, SrtAstaph samples 

were subjected to several modes of analysis to confirm the presence of 

oligomers (Figure 8) and assess the strength of the dimer association. 

Specifically, analytical sedimentation equilibrium ultracentrifugation calculated an 

average Kd for the monomer-dimer equilibrium to be 54.6 ± 6.9 µM, considered a 

moderate interaction between the subunits of the complex.92 In vitro, SrtAstaph 

catalytic activity has been evaluated for both the monomeric and dimeric forms of 

the enzyme, where ligation reactions performed with monomeric preparations did 

not function as well as those with high concentrations of the homodimer.92 The 

dimer was predicted to be as much as 8 times as active as the monomer based 

on steady state analysis of reactions at various concentrations (Figure 9).  

 

 

 

 

 

 

Figure 8. In each panel, lane 1 is Coomassie staining and Lane 2 is Western 
Blotting with anti-His6x antibody. (A) SDS-PAGE analysis of truncated SrtAstaph. 
(B) SDS-PAGE analysis of wild-type SrtAstaph. (C) Native PAGE analysis of 
truncated SrtAstaph. (Adapted with permission from Lu et al.92 Copyright 2007 
American Chemical Society) 
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Figure 9. Steady state reaction velocity analysis with varying [LPETG] for (A) 
monomer and (B) dimeric SrtAstaph. (Adapted with permission from Lu et al.92 
Copyright 2007 American Chemical Society) 
 

 In vivo, Zhu et al. demonstrated that higher levels of monomeric SrtA 

increase the amount of sortase-catalyzed surface attached protein by inserting a 

non-dimerizing mutant of SrtA into a knockout strain of S. aureus.93, 94 This 

indicated greater catalytic activity for the monomeric form, in clear contrast to the 

in vitro studies. Further, the increased presence of surface attached proteins 

rendered bacteria with fully monomeric sortase more invasive than the wild-type 

strain. The dimerization observed in this homolog is anticipated to be biologically 

relevant as a mechanism for deactivating the enzyme when rapid attachment of 

proteins to the cell wall is not necessary.92, 94 Dimerization has been observed as 

a mechanism of regulation in other enzymes.95 Analysis of this monomer-dimer 

interplay has not been performed in other homologs of SrtA, however, based on 

the data above it is an essential piece of regulation which is not yet understood.  

Regarding the modes of oligomerization available to SrtAstaph, it is not 
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certain how this enzyme associates in vivo or in vitro, as no structure has been 

published to demonstrate this phenomenon. The crystal structure of SrtAstaph
96 

helped guide Zhu et al. in developing a set of mutants with diminished 

dimerization capacity.  SrtAstaph with any one of the mutations Y143A, K137A, or 

N137A demonstrated greater than 93% lower dimerization than the original 

truncated SrtAstaph. From these data, the authors hypothesized the Y143 and 

K137 mutations may disrupt a cation-π interaction which initiates dimerization. 

Cation-π interactions are seen in other proteins to facilitate dimerization and are 

often stabilized by additional charge interactions,97-99 which is believed to be why 

mutation of N137 also diminishes the presence of the sortase dimer. These 

contacts would facilitate structural rearrangement to create further hydrophobic 

and hydrogen bonding, generating stable homodimers.93  

Further information relevant to the work described here comes from a 

structure of SrtApneu (PDB ID: 4O8L) deposited in the Protein Data Bank but not 

yet published in a written article. This x-ray crystallography structure shows a 

domain swapped dimer, where a large portion of the anticipated active site 

associates with the complimentary enzyme (Figure 10). More specifically, 

strands β7 and β8 and loops β6/β7 and β7/β8 are rotated out of the enzyme core 

structure to form contacts with the opposite monomer in the domain swapped 

dimer. Enzymes in this state would most likely be inactivated, as the catalytic 

cysteine residue lies on β7 loop, and is therefore buried in the domain swapped 

form. While it is not known if this structure is an artifact of enzyme preparation or 
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an authentic representation of the enzyme in vitro, it does demonstrate the ability 

of SrtApneu to form stable, potentially inactivated, dimer constructs. 

 

Figure 10. (A) The domain swapped dimer of SrtApneu (PDB ID: 4O8L) (B) A 
domain swapped monomer from the structure of SrtApneu in (A). (C) Predicted 
structure of SrtApneu from the Phyre274 structural prediction server. In both 
structures, the green colored areas pertain to the domain swapped portion of the 
structure shown in (A).  

 

An additional factor that may contribute to sortase activity comes from the 

crystal structure of SrtApyogenes, where a stable sulfenic acid modification was 

discovered in the active site of a crystal structure.75 The sulfenic acid modification 

discovered was anticipated to be of a non-active form of the enzyme, as the 

active site cysteine would no longer be available to function as the primary 

nucleophile in catalysis. Interestingly, the modified cysteine stimulated 

conformational change in the enzyme similar to what is anticipated to occur with 
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a bound substrate, suggesting that structural rearrangement is an essential 

aspect to the mechanism of transpeptidation in SrtApyogenes.75
 The authors 

predicted that this could be biologically relevant as a potential method of 

inactivation by host immune systems releasing reactive oxygen species. 

McCafferty et al. determined that the reverse protonation mechanism of SrtAstaph 

confers protection from oxidation onto the active site cysteine, as the high pKa of 

this residue side chain resists oxidation.100 More recently, use of reactive Cu 

chelating peptides has demonstrated the potential for the active site cysteine of 

SrtAstaph to be oxidized to sulfenic acid, which the researchers in this study 

suggested would function as a form of irreversible activation101.  

 
1.5 Project Goals and Overview  

 Given the importance of sortases as tools for protein engineering and as 

targets for therapeutic development, it is critical to establish a detailed 

understanding of substrate recognition among homologs with diverse substrate 

tolerances. To this end, the long-term goal of this project is to determine the 

structure of the promiscuous enzyme SrtApneu covalently docked with substrate 

analog. As described in this thesis, our approach involves the construction of 

ketomethylene-based sorting signal analogs, which we anticipate to be non-

cleavable by the sortase enzyme (Figure 11). Importantly, the use of 

ketomethylene dipeptide isosteres will mimic amino acids in the 4th and 5th 

position of the sortase substrate motif, allowing for elucidation of key interactions 

between the enzyme and these residues. In addition, we believe this can provide 
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a more complete picture of substrate recognition in SrtA, and more specifically, 

the homolog from S. pneumoniae, as there is currently no published data 

regarding this enzyme’s structure. Here we describe progress toward 

synthesizing the requisite ketomethylene building blocks, as well as preliminary 

evidence indicating that these substrate analogs are able to interact with the 

enzyme active site. We also describe an unanticipated oligomerization of 

recombinant SrtApneu, and the development of methods for refolding, purifying, 

reproducibly generating preparations of SrtApneu with consistent activity. These 

studies provide an important foundation both for utilizing SrtApneu as a tool for 

protein engineering, and for further structural characterization of this enzyme. 

 

 
Figure 11. Anticipated mechanism of trapping for the proposed ketomethylene 
substrate analogs. 
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2. Preparation and Characterization of Recombinant 
Streptococcus pneumoniae sortase A (SrtApneu) 
 

2.1 Expression, Refolding and Purification of SrtApneu 

 Initial work on this project was aimed at producing a stock of SrtApneu to be 

used for structural characterization. To this end, an expression vector for SrtApneu 

was obtained via commercial gene synthesis from DNA 2.0, which encoded a 

truncated version of SrtApneu fused to an N-terminal His6 tag. In this construct, the 

first 80 amino acids, corresponding to the hydrophobic transmembrane region, 

were removed to increase solubility in aqueous buffers. Initially, SrtApneu was 

expressed from E. coli BL21(DE3) using standard molecular biology techniques. 

After cell lysis, the enzyme was isolated from the soluble fraction using 

immobilized metal affinity chromatography (IMAC).  Prior work in the laboratory 

had succeeded in producing an active preparation of this enzyme, hereafter 

referred to as batch 1. An additional enzyme stock was generated for this work 

(batch 2) using a batch purification protocol for initial binding of enzyme to nickel 

nitriloacetic acid (Ni- NTA) resin. The eluted material from the first round of 

purification was re-purified through standard gravity-flow IMAC protocols to 

improve the purity of these samples. The sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) analysis of batch 2 (Figure 12) showed an 

intense band near 26 kDa, in reasonable agreement with the calculated 

molecular weight of 20.1 kDa for SrtApneu This gel also demonstrated the good 

purity and high concentration of the collected samples. We also observed what 
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appeared to be SrtApneu dimer at ~50 kDa that persisted in the sample despite the 

reducing and denaturing conditions of the SDS-PAGE loading buffer. 

  

 

 

  

 

 

 
   
 
 
  
 

Figure 12. SDS-PAGE gel showing samples from the expression and purification 
of batch 2 SrtApneu  prepared from IMAC purification using Ni-NTA resin. 
  

 Model sortase-mediated ligation (SML) reactions using a known peptide 

substrate (Abz-LPATA-GK(Dnp)) and the strong nucleophile H2NOH were used 

to assess the in vitro reactivity of batch 2 (Figure 13). After a 24 hour incubation 

at room temperature, the reactions were analyzed by reverse phase high 

performance liquid chromatography (RP-HPLC). Surprisingly, the batch 2 

enzyme stocks produced only minimal product formation (4.8% reaction 

conversion) when compared to the batch 1 positive control (95% conversion).  
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Figure 13. RP-HPLC analysis of model SML reactions demonstrating the 
difference in activity between batches 1 and 2 of SrtApneu. Reactions were 
analyzed after 24 hrs of incubation at room temperature. 40 µM Abz-LPATA-
GK(Dnp) was used in this reaction. 

 

As a result of the low observed reactivity for batch 2, a new batch of 

SrtApneu  (batch 3) was expressed and purified by standard IMAC protocols from 

newly transformed E. coli to eliminate the possibility of issues with the previous 

cell line (Figure 14). As expected, an intense band was seen around 26 kDa, 

matching closely to the expected molecular mass of SrtApneu from SDS-PAGE 

analysis. We further analyzed these samples through mass spectrometry. 

Reconstruction of the enzyme molecular mass from the observed charge ladder 

(Figure 15) returned an uncharged mass of 20145 Da (expected MW = 20145 

Da). Model SML reactions prepared from the batch 3 SrtApneu also demonstrated 

low reactivity (Figure 16), where only 21% conversion of the peptide substrate 

was observed. 
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Figure 14. SDS-PAGE gel representative of SrtApneu batch 3  samples prepared 
from IMAC purification using Ni-NTA resin. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 15. (A) ESI-MS spectrum of batch 3 SrtApneu (B) Deconvoluted mass 
spectrum of SrtApneu batch 3. The primary mass shown here, 20145 Da, is 
identical to that predicted for this SrtApneu truncation. 
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Figure 16. RP-HPLC analysis of model SML reactions demonstrating the 
difference in activity between batches 1 and 3 of SrtApneu. Reactions were 
analyzed after 24 hrs of incubation at room temperature.  

 

 To further investigate the observed discrepancy in enzyme reactivity, we 

analyzed our catalog of SrtApneu samples by native PAGE (Figure 17). In 

contrast to reducing SDS-PAGE, which suggested that all enzyme stocks were 

monomeric and identical, native PAGE revealed some striking differences. In 

particular, native PAGE revealed a number of higher molecular weight bands in 

all samples of SrtApneu. Based on the absence of these prominent bands under 

denaturing conditions, we hypothesized that they represented oligomers of the 

enzyme, a phenomenon known to occur in other sortase homologs.87, 92, 94 
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Interestingly, batch 1 SrtApneu, which exhibited good in vitro reactivity and was 

used as a positive control in model SML reactions, showed a stark difference in 

the oligomer/monomer ratio when compared to newly prepared samples (batch 2 

and batch 3).  Specifically, batch 1 in lane 1 contained a lower concentration of 

oligomerized sortase bands, particularly in the area that we propose corresponds 

to trimeric and tetrameric SrtApneu, in addition to a higher concentration of 

monomer than batch 2 and 3 samples in lanes 2 and 3, respectively. While both 

batch 2 and batch 3 samples demonstrated oligomerization in this analysis, we 

elected to continue our analysis with the batch 3 SrtApneu samples, as these had 

been developed using identical IMAC purification procedures used in the lab. 
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Figure 17. Native PAGE gel demonstrating the presence of potential oligomeric 
states in stocks of SrtApneu. Samples were loaded in equimolar amounts. The 
predicted subunit count is given at right for each boxed region. Of particular 
interest here are lanes 1 and 3, which demonstrate variation in the band patterns 
between batch 1 and batch 3 SrtApneu. Specifically, batch 1 shows a smaller 
amount of higher molecular mass bands than batch 3, and a greater 
concentration of protein anticipated to be the SrtApneu monomer. Lane 2 came 
from the batch 2 SrtApneu expression and also displays the oligomerized band 
pattern, which differs from that of batch 1. 

 
The presence of SrtApneu in solution was further confirmed by size 

exclusion fast protein liquid chromatography (SE-FPLC), which was able to 

resolve samples of SrtApneu into its assembled components (Figure 18). 

Resolution of different molecular weight species was clearly seen in FPLC 

traces, and native PAGE analysis of fractions from SE-FPLC separation showed 
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the same band pattern as unprocessed samples of the enzyme (Figure 19). 

Based on these data, it was concluded that SrtApneu exists as about 93% 

oligomer in batch 3, which we reasoned was interfering with the enzymatic 

activity of the new preparation. In addition, given that the most active prep of 

SrtApneu (batch 1) appeared to have the highest monomer content (Figures 16 

and 17), we hypothesized that the monomer was the active form of the enzyme.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
Figure 18. SE-FPLC trace demonstrating the presence of multiple oligomeric 
species in a pure sample of batch 3 SrtApneu. This sample was separated at a 
0.75 mL/min flowrate. 
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Figure 19. Native PAGE of the SE-FPLC fractions 8-11 from the separation in 
Figure 18. Similar band patterns can be seen in the fractions as in a sample of 
the injected batch 3 SrtApneu in lane 1. 

 

To begin to explore this phenomenon and understand how to generate 

fully active, monomeric SrtApneu preparations, samples were subjected to 

conditions that potentiated disassembly of the enzyme oligomers. First attempts 

at this involved incubation of serial diluted samples of the batch 3 stock at room 

temperature to evaluate the possibility of high stock concentrations forcing the 

monomer-oligomer equilibrium towards the oligomerized state. Unfortunately, the 

presence of high molecular weight bands seen in native PAGE analysis of these 

diluted samples was unchanged (Figure 20). Notably, this observation did not 

align with previous accounts of sortase dimerization, as the dissociation constant 
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determined for SrtAstaph dimer/monomer equilibrium (55 µM) suggested that the 

low affinity interactions between monomers would favor dissociation at low 

concentrations92. This indicated that SrtApneu oligomerization could be 

fundamentally different from that found in SrtAstaph.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. Native PAGE gel of room temperature incubated serial dilutions of 
batch 3 SrtApneu.  
 

Fortunately, further attempts at disassembling SrtApneu were more 

successful. We next reasoned that oligomerization could be dependent on 

temperature. To evaluate this, samples of batch 3 SrtApneu were incubated at 37 

oC and room temperature for 24 hours at 50 µM, 100 µM, and 300 µM 

concentrations. The relative disassembly of the putative oligomers was analyzed 
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via native PAGE. It was immediately apparent from native PAGE that incubation 

at 37 oC for 24 hrs degraded the oligomers into monomeric enzyme, generating a 

band pattern that was similar to the active batch 1 preparation (Figure 21). In 

contrast, room temperature incubation yielded material that was identical to the 

original batch 3 stock. Lower incubation concentrations also appeared to slightly 

improve the monomer content, although this did not appear to be as substantial. 

SE-FPLC analysis of undiluted samples of batch 3 SrtApneu heated for more than 

24 hours also demonstrated an increase in peak area where the monomer was 

expected, mirroring the results of native PAGE experiments for shorter incubation 

times (Figure 22). Use of  “heat-disassembled” batch 3 samples in a model SML 

reaction resulted in greater product formation. In particular, enzyme samples 

incubated at 37 °C for 1 week (Figure 23) produced conversion percentages of 

95% after 48 hours, very near the batch 1 positive control reactions, which 

exhibited 97% conversion in the same period of time (Figure 24). Reactions 

using batch 3 SrtApneu produced only 35% conversion in this reaction set. This 

indicated that the oligomerized states of the enzyme most likely exhibit some 

control over the rate and effectiveness of SML.		While incubation of batch 3 

samples for extended periods of time (>24 hrs) resulted in somewhat greater 

dissociation of high molecular weight bands (Figure 23), aggregation was also 

observed in SE-FPLC traces of samples incubated for these extended periods of 

time  (Figure 22). 	
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Figure 21. Native PAGE gel demonstrating the effect of heating samples of 
SrtApneu. Lanes 1 and 3 contain diluted samples of batch 3 enzyme heated for 24 
hrs at 37 °C. The band patterns of the heated samples more closely resemble 
that of the batch 1 samples in lane 6 than the batch 3 stock in lane 5.  
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Figure 22. SE-FPLC traces showing the oligomer distribution in samples of 
SrtApneu heated for (A) 3 days and (B) 7 days at 37 °C. A peak centered around 
7.5 mL developed after longer periods of heating, anticipated to be aggregation 
of the enzyme.  
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Figure 23. Native PAGE gel demonstrating the effects of 7 days of incubation at 
37 °C on diluted samples of batch 3 SrtApneu with and without 10 mM 
dithiothreitol (DTT). As in Figure 21, the band pattern of the heat-treated batch 3 
samples looks more similar to the batch 1 SrtApneu than untreated batch 3 
SrtApneu.  
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Figure 24. RP-HPLC analysis of reactions assembled with preparations of 
SrtApneu from the gel in Figure 23. Reactions were incubated at room 
temperature for 48 hrs. The enzyme preparation used in the reaction is denoted 
by the lane number at the right of the trace. Heated samples of batch 3 SrtApneu 
produced similar conversion to the batch 1 stock reactions, which matches the 
gel showing similar band patterns between the three samples. 
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initial assembled state, and the desired monomeric SrtApneu remained present. 

Overall, this indicated the SrtApneu assembly process potentially involves an  

equilibrium that favors the monomeric form of the enzyme. As mentioned 

previously, however, dilution of the batch 3 stocks without heating did not appear 

to diminish the presence of high molecular weight bands. Along with the 

information collected from the heating experiments, this suggested the presence 

of an activation barrier for converting between the monomeric and oligomeric 

forms of the enzyme, which can be overcome by heating the samples.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Native PAGE gel showing batch 3 SrtApneu heat-disassembled for 24 
hours at variable concentrations and incubated for 24 hours at room temperature, 
4 °C, and -80 °C. All samples were loaded in equimolar amounts. 
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 To apply the information gained from the heating experiments to 

production of active SrtApneu samples, alternative expression temperatures were 

tested to determine if production of the protein at lower temperatures would 

minimize the oligomer concentrations. After expressions attempts at 16, 25, and 

37 oC, analysis by SE-FPLC determined there was no appreciable difference in 

the oligomer content following IMAC purification (Figure 26), as high relative 

oligomer concentrations could be seen in each injected sample. 

 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 26. SE-FPLC traces demonstrating relative monomer concentration in 
samples of SrtApneu expressed at variable temperatures and purified by standard 
IMAC protocols. (A) Expression at 37 °C, (B) expression at 25 °C, and (C) 
expression at 16 °C did not appear to alter the relative concentration of 
monomeric SrtApneu by this analysis. 
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 Based on the information gathered from the experiments described above, 

we next sought to explore a redesigned protocol for purifying SrtApneu that would 

maximize monomer content. After considering the data on heating to increase 

monomer concentration, a denaturing purification step followed by refolding was 

anticipated to provide a similar role as heating post-purification. Denaturation 

during purification would presumably eliminate any intermolecular contacts or 

domain swapping interactions that could hold together multiple units of the 

enzyme. Therefore, the original purification protocol was modified to include an 

initial denaturing purification with 8 M urea, where the E. coli were first lysed in a 

denaturing buffer, the protein purified from clarified lysate in denaturing buffer via 

IMAC, followed by the denatured sample being refolded with a non-denaturing 

buffer. Figure 27 shows the analysis of SrtApneu refolding via a rapid dilution of 

denatured SrtApneu into non-denaturing buffer (50 mM Tris pH 8.0, 150 mM NaCl) 

followed by an additional IMAC step to concentrate the refolded, soluble enzyme. 

Elution fractions from the rapid dilution refolding protocol were further purified by 

SE-FPLC to separate the sample into monomeric and oligomeric forms (Figure 

27). Analysis of SE-FPLC fractions by native PAGE analysis demonstrated that 

SrtApneu fractions with high monomer content could be isolated, however, a high 

relative concentration of enzyme was still trapped in the inactivated forms. 

Unfortunately, when refolded, monomeric SrtApneu tested in a model SML reaction 

continued to show diminished reactivity when compared to positive control 

reactions employing batch 1 SrtApneu (Figure 28). This was surprising, as we had 
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anticipated the pure monomer samples to perform as well as or better than batch 

1 SrtApneu. 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
Figure 27.  (A) SDS-PAGE gel showing the purity of SrtApneu samples obtained 
from Ni-NTA purification after denaturing and refolding steps. (B) Native PAGE 
gel of SE-FPLC fractions 8-12 from the separation of SrtApneu purified by the rapid 
dilution protocol. A sample from lane 7 of the (A) was injected to produce the 
samples in this gel. (C) SE-FPLC trace of an injected sample from lane 7 in (A). 
The fractions shown in (B) come from this separation. 
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Figure 28. RP-HPLC analysis of a model SML reaction prepared with SE-FPLC 
purified monomeric SrtApneu from the denaturing purification protocol. This 
reaction was incubated for 24 hrs at room temperature before analysis. Only 
minimal processing of the substrate was observed, corresponding to 3.5% 
conversion of the substrate. 

 

To continue improvement of the SrtApneu preparations, we next explored 

the use of reducing agents to promote oligomer disassembly and to ensure that 

the active site cysteine residue remained in its fully reduced form. Preliminary 

experiments with dithiothreitol (DTT) had demonstrated some efficacy for 

restoring SrtApneu activity in vitro after a 22 hour incubation period at 37 oC 
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band of the monomer doublet observed in native PAGE for SrtApneu (Figure 30). 
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While these native PAGE results were promising, the enzyme treated with these 

conditions failed to show any activity in vitro (Figure 29), despite the presence of 

significant monomer content in the enzyme sample. This prompted us to replace 

DTT with the non-sulfrous reducing agent tris(caboxyethyl)phosphine (TCEP).  

To our satisfaction, we observed that addition of 10 mM TCEP to SE-FPLC 

purified monomeric SrtApneu from the denaturing purification protocol greatly 

improved the percent conversion observed in model SML reactions by RP-HPLC 

analysis (Figure 31). Specifically, in the absence of TCEP, reactions reached 

only 3.5% conversion, whereas in the presence of TCEP reaction conversion 

increased to 60%. 
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Figure 29. RP-HPLC traces demonstrating the changes in product conversion 
produced by including 10 mM DTT during heat treatment of SrtApneu batch 3. 
Reactions were incubated at room temperature for 24 hrs before analysis. Heat-
treatment of SrtApneu for 22 hours at 37 °C increased substrate processing when 
10 mM DTT was added compared to samples which were not heated or heated 
without 10 mM DTT. Unfortunately, incubation of SrtApneu for 1 week with DTT at 
37 °C resulted in samples with diminished activity when compared to shorter 
heating times.  
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Figure 30. (A) Native PAGE gel demonstrating the effects of DTT on 22 hour 
incubations of batch 3 SrtApneu at 37 °C. (B) Native PAGE gel demonstrating the 
effects of DTT on 7 day incubations of batch 3 SrtApneu at 37 °C. Samples with 
DTT are denoted in the lane labels above. DTT appears to increase the intensity 
of the top band in the monomer doublet at the bottom of the gel, in addition to 
increasing overall monomer concentration. 
 
 

 
 
 

 
 

 
 

 
 
 

 
Figure 31. RP-HPLC traces displaying the increase in SML activity with 10 mM 
TCEP added to SE-FPLC purified monomeric SrtApneu the denaturing purification 
after it was isolated. Reaction with TCEP was incubated 23 hrs at room 
temperature and the reaction without TCEP was incubated 24 hrs at room 
temperature before analysis. 
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 In an attempt to combine the incremental improvements gained by 

enzyme refolding and the addition of TCEP, we ultimately settled on a revised 

SrtApneu purification/refolding scheme in which TCEP was added to 1 mM in all 

purification and storage buffers. First, SrtApneu was expressed at 37 oC, followed 

by IMAC purification under denaturing conditions in the presence if 1 mM TCEP. 

IMAC fractions were then rapidly diluted in non-denaturing buffer containing 1 

mM TCEP, followed by an additional IMAC step to concentrate the enzyme. 

Enzyme samples purified under these conditions had higher relative monomeric 

concentration as compared to our original batch 2/3 materials that were neither 

refolded nor treated with TCEP (Figure 32). TCEP addition also increased the 

intensity of the upper band in the monomer doublet observed in native PAGE 

gels of SrtApneu samples, which we presume to be the active component of these 

enzyme preparations. Using SE-FPLC, enriched monomeric samples could be 

easily isolated (Figures 32 and 33). After isolation, we were pleased to observe 

that monomeric SrtApneu performed equally as well as the batch 1 positive control 

in model SML reactions (Figure 34), where 95% conversion was observed for 

the TCEP purified SrtApneu samples.  
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Figure 32.  (A) SDS-PAGE gel showing analysis of the purification steps of 
SrtApneu with TCEP as a buffer component. The sample in lane 5 of this gel was 
determined to be of good purity and concentration before rapid dilution and 
reconcentration to produce the sample in lane 8. (B) Native PAGE gel of 
reconcentrated SrtApneu after refolding by rapid dilution. When compared to 
batch 1 SrtApneu in lane 3, the band pattern appears very similar, including the 
high intensity of the upper band in the monomer doublet. (C) Native PAGE gel of 
the SrtApneu monomer fractions from SE-FPLC purification of a 1 mL injection of 
the sample in lane 1 of (B). 
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Figure 33. SE-FPLC traces from the purification of SrtApneu  by standard IMAC 
protocol separated at 0.75 mL/min (A) and with our adopted protocol using a 
denaturing purification step, refolding by rapid dilution, and reconcentration with 1 
mM TCEP in all buffers separated at 0.5 mL/min (B)	.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 34. RP-HPLC traces demonstrating the improved reactivity of SrtApneu 
purified with 1 mM TCEP in all buffers. The percent conversion after 24 hrs of 
incubation at room temperature is very similar to that of the reaction assembled 
with batch 1 SrtApneu, indicating the activity of these samples was fully recovered 
by this purification process.  
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2.2 Analysis of Potential Modes of SrtApneu Inactivation 

Given that we were able to separate monomeric SrtApneu from oligomeric 

SrtApneu, we next explored how the reactivity of oligomerized enzyme compared 

to the monomer. Using oligomeric SE-FPLC fractions in model SML reactions, 

we observed significantly less conversion of the peptide substrate when 

compared to monomeric fractions from the same purification (Figure 35). SDS-

PAGE and native PAGE analysis of these reactions confirmed that total enzyme 

content was identical between reactions, and further showed that the assembly 

state of the enzyme was not altered by the presence of SML reaction 

components. Overall, these results demonstrate that monomeric SrtApneu 

provided the best in vitro reactivity, while preparations enriched in enzyme 

oligomer were significantly less successful.  
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Figure 35. (A) RP-HPLC traces demonstrating the variability in reactivity 
between monomeric (blue) and oligomeric (green) preparations of TCEP purified 
SrtApneu. After 7 hours of incubation at room temperature, the reaction containing 
monomer reached 88% conversion, where as the oligomer reaction reached only 
58% conversion. (B) Equimolar loading of samples from the SrtApneu catalyzed 
peptide modification reactions in (A) separated through polyacrylamide gel 
electrophoresis. Gel (1) contains SDS and gel (2) does not. Identical samples 
were loaded in the lanes of each gel. Boxed lanes correspond to samples from 
reactions in HPLC traces of the same color at left.  
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HEPES buffer for the labeling reactions. A 10x molar excess of the sulfenic acid 

probe NO2-alkyne was added to these samples. After 24 hours of incubation at 

room temperature, positive control reactions assembled with 1.5 eq of H2O2 to 

batch 3 SrtApneu yielded an uncharged mass of 20427 Da upon deconvolution of 

the mass spectrum from the single peak in the sample (Figure 37). This exactly 

matches the expected mass of 20427 Da for NO2-alkyne combined with SrtApneu. 

The mass of SrtApneu was also found in the sample. Deconvolution of the mass 

spectrum from the single peak in the experimental reaction did not display the 

expected uncharged mass for the NO2-alkyne+SrtApneu adduct for batch 3 

SrtApneu. This result suggests that batch 3 samples, which function poorly in 

sortase mediated ligation reactions, do not suffer from sulfenic acid modifications 

to the active site cysteine.  

 

  
 
 
 
 
 
 
 
 
 
 
Figure 36. (A) Structure of sulfenic acid probe NO2-alkyne used in the batch 3 
SrtApneu labeling reactions. (B) Mechanism of addition to a potential sulfenic acid 
modification in the active site of SrtApneu by the NO2-alkyne probe. This forms a 
stable thioether bond, allowing the change in mass to be easily recognized by 
mass spectrometry. 
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Figure 37. (A) Mass spectrum of the single peak found in labeling reactions for  
an unmodified sample of batch 3 SrtApneu after 24 hours of incubation with the 
NO2-alkyne sulfenic acid probe. (B) Deconvolution of the mass spectrum in (A), 
which returns an uncharged mass of 20144 Da as the major species, matching 
that of unmodified SrtApneu. (C) Mass spectrum of the single peak found in 
labeling reactions for a sample of batch 3 SrtApneu oxidized with 1.5 eq of H2O2 
and incubated for 24 hours with the NO2-alkyne sulfenic acid probe. (D) 
Deconvolution of the mass spectrum in (C) which shows two uncharged species 
in the sample. One species represents unmodified SrtApneu (20145 Da) and the 
other represents SrtApneu with the conjugated sulfenic acid probe NO2-alkyne 
(20427 Da). 
 

2.3 Conclusions and Future Directions. 

This section detailed the progress from inactive samples of SrtApneu to fully 

active samples of the enzyme. After evaluation of inactive SrtApneu samples 

showed a high degree of oligomerization, we began exploring methods of 

reducing the assembled forms of the enzyme. While heating samples of purified 

SrtApneu returned activity to the samples and removed most of the oligomerized 

enzyme, we believed more efficient procedures could be developed to achieve 

the same result. By adding a denaturing step to the purification, we were able to 

decrease some oligomerization in the SrtApneu samples. SE-FPLC purification of 

SrtApneu after disassembly of oligomers proved to be an effective method to 
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produce monomeric enzyme stocks. While we expected this to improve the 

catalytic activity of the preparations, activity was only regained after addition of 

the reducing agent TCEP to the purification buffer. The addition of TCEP to the 

total purification also improved the monomer:oligomer ratio in the samples, which 

afforded more available monomer for isolation by SEC. This purification 

procedure has now consistently yielded active batches of enzyme over multiple 

expressions in the lab.  

As noted previously, inclusion of a reducing agent in the SrtApneu buffers 

modifies the intensity of an interesting doublet that appears in monomer region of 

native PAGE gels. Previously, SrtApyogenes has been shown to have an altered 

conformation upon oxidation of the active site cysteine to sulfenic acid.75 We 

hypothesize that reducing conditions reverse some form of oxidation in SrtApneu, 

which ultimately leads to differences in protein conformation. Both oxidized and 

unoxidized forms of the protein could be present in solution, creating two 

alternative conformers which would appear as separate bands in native PAGE 

analysis. Additionally, based on the observation that reducing conditions diminish 

the presence of oligomerized SrtApneu in solution, oxidation of the enzyme may 

facilitate a conformation that is more susceptible to interactions with other 

enzyme units in solution.  

This thesis also marks the first account of oligomerized SrtApneu, along 

with the first attempts to understand the cause and dissolution of the assembled 

enzyme. The oligomerization of this SrtA homolog appears to be driven by highly 
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favorable interactions as determined by dilution experiments of these samples, 

where no effect on oligomer concentration in solution was observed. 

Interconversion between the dimer and monomer states of the enzyme appears 

to have a high activation barrier, as it can only be disrupted by heating or 

complete unfolding of the enzyme samples. Further, recovered monomeric 

SrtApneu does not appear to rapidly re-oligomerize, also supporting the hypothesis 

of a high activation barrier between the two states. Hypothetically, this behavior 

could be attributed to domain swapping of SrtApneu monomers, evidence of which 

comes from the structure of SrtApneu in a domain swapped conformation (PDB ID: 

4O8L).  

Three dimensional domain swapping is an interaction between two or 

more identical protein monomers, where one or more domains or segments of 

the monomers rotate out of the core structure and take the place of the same 

amino acids in the opposite monomer.104 This interaction generally results in 

identical interactions in both the closed monomer and domain swapped forms of 

the proteins, but may also result in additional favorable interactions within the 

domain swapped oligomers.104 In vivo, the open state that propagates 

oligomerization is most likely generated when monomers are transiently exposed 

to denaturing conditions, such as an acidic compartment within the cell.104 The 

open monomers become free to form domain swapped interactions, which 

creates the oligomerized forms of the protein. The process of converting between 

either monomer or oligomer most likely has a high energy barrier, as favorable 
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contacts must be broken to rotate protein domains out of the core structure.104 

This allows for different states of the same protein to be present in solution. 

Domain swapping has been simulated in vitro to afford not only dimeric 

proteins,105 but also trimeric106, 107 and higher order107, 108 assembly states, which 

suggests this phenomenon could produce the full range of oligomers seen in 

samples of SrtApneu. These observed qualities of domain swapped proteins, in 

addition to the domain swapped structure of SrtApneu, align with the data 

presented in this thesis, and suggests that SrtApneu undergoes domain swapping 

to form oligomerized enzyme. It would be beneficial to perform experiments 

probing the dissociation constant of the monomer-dimer equilibrium, as these 

could aide our understanding of the strength of the association between 

monomers. Additionally, more rigorous analysis of alternative purification 

conditions could be done to aide in our understanding of the mechanism of 

domain swapping in SrtApneu, while also potentially simplifying purification of the 

enzyme.  

Future directions for this aspect of the project revolve around 

crystallization of the monomeric preparations of SrtApneu. While trials towards this 

have already been undertaken, more work is needed to develop the conditions 

necessary for crystal growth.  
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Chapter 3. Design and Synthesis of Ketomethylene-based 
Substrate Analogs 
 

3.1 Design of Ketomethylene Isosteres  

Concurrent with our efforts to produce reliable preparations of active 

SrtApneu suitable for structural characterization, we have also undertaken the 

synthesis of substrate mimics that can be covalently anchored in the enzyme 

active site. To this end, we have designed substrate analogs in which the scissile 

amide bond of standard sortase substrates is replaced with a non-cleavable 

ketomethylene dipeptide isostere (Figure 38).  

 We anticipated that ketomethylene isosteres of SrtApneu substrates would 

serve as non-cleavable analogs for obtaining a structure of the substrate bound 

state. The proposed ketomethylene analogs for this purpose have been 

previously used as potent inhibitors of serine proteases,109 which share 

mechanistic characteristics with sortases.	We propose that the inserted ketone 

will be able to form a covalent bond with the active site cysteine which will be 

further stabilized by the remaining contacts present in standard sortase 

substrates. The synthetic processes laid out here allow for variability in the 

substitution present at either site in the ketomethylene-linked dipeptide. Further, 

the methods for developing these molecules allow for the production of 

fluorenylmethyloxycarbonyl (Fmoc) protected N-termini109, 110, affording products 

ready for incorporation into peptides via solid phase synthesis.  
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Figure 38. Comparison of a normal peptide substrate and a substrate with a 
ketomethylene linkage inserted between the 4th and 5th positions of the sorting 
sequence. The red box denotes the methylene substitution in the amide bond. R1 
and R2 can be any amino acid functional group and are only limited by the 
synthetic process.  
 

3.2 Preliminary Ketomethylene Analog Synthesis and Testing  

To evaluate the ability of a ketomethylene-linked peptide interacting with 

the active site of SrtApneu, we first synthesized a substrate analog incorporating 

commercially available 5-aminolevulinic acid. While this unit was not anticipated 

to be optimal with respect to enzyme recognition due to the lack of sidechains in 

position 4 and 5 of the substrate mimic, we elected to start with this compound as 

a proof of concept study. As described by Rogers et al.,111 synthesis began with 

solution-phase acylation of 5-aminolevulinic acid with the N-hydroxysuccinamide 

ester of Fmoc-Ala-OH (Fmoc-Ala-OSu) to produce an Fmoc-protected 

ketomethylene tripeptide analog of Ala-Gly-Gly, hereafter referred to as Fmoc-

A[G(keto)G]. This material was then used in solid-phase peptide synthesis 
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(SPPS) to generate a full size substrate analog (1).112 The identity of 1 was 

verified by ESI-MS, the material was purified to homogeneity by RP-HPLC, and 

the peptide was lyophilized prior to use (Figure 39).  

 

 
Figure 39. Synthesis and analysis of the preliminary ketomethylene substrate 
analog using the AG(keto)G block to install a non-cleavable linkage between the 
4th and 5th residues. 
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be expected for the model reaction system used in Chapter 2 of this thesis. 

Analysis via RP-HPLC suggested that analog 1 was able to act as an inhibitor, 

reducing reaction conversion at as low as 0.1 eq in relation to the Abz-LPATA-

GK(Dnp) substrate. Reaction progress was diminished by less than 50% at 1 eq 

of inhibitor, and reached as little as 30% relative conversion at 5 eq. Aside from 

the single expected peak from the inhibitor itself, no additional peaks developed 

when the inhibitor was added, demonstrating that it was not being cleaved by the 

enzyme. Overall, these data indicated that ketomethylenes can serve as non-

cleavable isosteres in SML, which in turn could be useful for structural 

characterization of enzyme/substrate complexes. 

 
 
 

 
 

 
 

 
 

 

 
Figure 40. RP-HPLC analysis for the inhibition of transpeptidation by 
ketomethylene substrate analog 1. These reactions were assembled with 
undiluted, 7 day heat-treated SrtApneu and allowed to incubate at room 
temperature for 24 hrs before quenching with N-ethylmaleimide (NEM) for 
analysis by HPLC. 
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3.3 Second Generation Design of Ketomethylene Substrate Analogs  

 Having successfully shown that 1 was able to impede an in vitro SML 

reaction, we next sought to design derivatives with substituents that mimic the 

side chains of position 4 and 5 in the sortase substrate motif. Ideally, these 

substituents would match the side chains of threonine and alanine residues for 

optimal structural overlap with the known LPATA substrate of SrtApneu. However, 

for synthetic ease we opted to focus on simple methyl groups, which would mirror 

the side chains of alanine residues. While it was known from previous work in our 

group that alanine was well tolerated in position 5 (see Figure 4), we wanted to 

verify that alanine was accepted at position 4 or in combination with alanine at 

position 5. To test this, peptide substrates displaying LPATAG, LPAAGG, and 

LPAAAG were prepared via SPPS and tested in model SML reactions. As shown 

in Figure 41, all variants were accepted by SrtApneu, however, the LPAAGG (53% 

conversion) and LPAAAG (20% conversion) substrates were not processed to 

the same extent as LPATAG (88% conversion). Nonetheless, these results 

suggested that simple methyl groups in positions 4 and 5 should suffice for 

enzyme recognition. Based on these results, two additional ketomethylene-linked 

peptide isosteres were designed to serve as substrate analogs of LPAAG (2) and 

LPAAA (3) (Figure 42). 
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Figure 41. Analytical RP-HPLC traces showing the variable activity of SrtApneu 
with substrates differing from its preferred sequence of LPATA. These reactions 
were incubated for 24 hrs at room temperature using a monomeric fraction of 
SrtApneu from FPLC purification with TCEP. 
 

 

 

 

 

 

 

 

 

 

 
 

 

  

SrtApneu Abz-LPATAG-K(Dnp)  Abz-LPAT-NHOH + AG-K(Dnp) 
H2N-OH 
excess 

0 5 10 

Abz-LPAXXG-K(Dnp)  

Elution time (min) 

XG-K(Dnp) 

RP-HPLC 

LPATAG 
LPAAGG  

LPAAAG  

A
bs

or
ba

nc
e 

(3
30

 n
m

) 



	 63	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42. Structures of the next generation of ketomethylene-based substrate 
analogs for SrtApneu. 2 represents the ketomethylene analog of LPAAG and 3 
represents the analog of LPAAA. These pseudopeptides will include substitution 
at the amino acid positions surrounding the non-cleavable ketomethylene linkage 
used to replace the scissile peptide bond. 
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Treatment with TFA was anticipated to remove the t-butyl ester protecting 

groups, followed by in situ decarboxylation to generate the desired keto 

methylene building blocks 7a or 7b. 

 

 

 

 

 

 

 

Scheme 1. Overview of the synthetic scheme from Budnjo et al.109 using an 
Fmoc-protected amino acid starting material.  
 
 

  

  

Scheme 2. Synthesis of the Fmoc-protected ketoester  
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procedure from Mathieu et al.110 involving catalytic 4-dimethylaminopyridine 

(DMAP) to activate the amino acid and excess t-butyl acetate to generate the 

enolate, was substituted for the procedure by Budnjo et al. (Scheme 2) which 

enabled us to synthesize the desired product 5 in 27% yield. With the ketoester 

in hand, we then prepared triflates 4a (72% yield) and 4b (73% yield) using triflic 

anhydride and 2,6-lutidine (Scheme 3) according to the procedure from Budnjo 

et al.  

 

 

 
 
 

Scheme 3. Synthesis of triflate compounds from t-butyl esters with varying 
substitution. 
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reaction turnover by including slight excesses of NaH only resulted in greater 

deprotection of the Fmoc-Ala t-butyl ketoester.  

 

 

 

 

 
 
Scheme 4. Synthetic process to generate the fully protected ketomethylene  
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Scheme 5. Overall synthetic scheme to produce Fmoc-protected ketomethylene 
dipeptide isosteres using Boc amino acids as starting materials. 
 

 

 

 

Scheme 6. Synthesis of the Boc-protected ketoester  
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resonance (NMR) spectroscopy of this product was too convoluted to accurately 

assign peaks, however, LC-ESI-MS was able to confirm the mass of the Na+ 

adduct of this material. 

 

 

 

 

 

Scheme 7. Synthesis of the fully protected Boc-ketomethylene. 
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Scheme 8. Synthesis of disubstituted Fmoc protected ketomethylene  
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4. Experimental 

Protein Expression and Purification 

Full sequence of SrtApneu protein used in this study: 

MESSHHHHHHAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGT
MKREQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTY
EIREVKRVTPDRVDEVDDRDGVNEITLVTCEDLAATERIIVKGDLKETKDYSQTS
DEILTAFNQPYKQFY 
 

Expression and purification of SrtApneu batches 1 and 3. The SrtApneu 

expression vector was obtained by commercial gene synthesis in a pJ414 

expression vector from DNA2.0 (Menlo Park, CA). The plasmid containing 

SrtApneu was transformed into BL21 (DE3) chemically competent E. coli by heat 

shock. Following addition of 1 mL Luria-Bertani (LB) broth, the cells were 

incubated for 1 hour at 37 oC with shaking. Cells were the plated on LB-agar 

plates containing 100 µg/mL ampicillin, and incubated overnight at 37 oC. A 

single isolated colony was selected and used to inoculate 50 mL of LB broth 

(containing 100 µg/mL ampicillin), which was then placed in a 37 oC shaking 

incubator to grow overnight. Roughly 30 mL of this starter culture were then 

added to 1 L of LB broth (containing 100 µg/mL ampicillin) to initiate large-scale 

growth. This culture was allowed to grow to an OD600 reading of 0.7-0.8 at 37 oC 

in a shaking incubator. Protein expression was then induced by the addition of 

isopropyl-β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. 

Cells remained at 37 oC with shaking for 3 hours to express SrtApneu, and were 

then isolated by centrifugation at 10000xg. The cell pellets were then 

resuspended in 30 mL lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.5 mM 
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EDTA), treated with lysozyme at a final concentration of 10 mg/mL, and 

incubated at room temperature for 1 hour. This mixture was sonicated for 2, 30 

second intervals at 50% output and the lysate was then clarified by centrifugation 

at 20000xg. This clarified lysate was added to a 5 mL His-Bind (Thermo-Fisher) 

Ni-NTA column equilibrated in wash buffer (20 mM Tris pH 8.0, 150 mM NaCl, 20 

mM imidazole). Bound protein was further washed with 10 column volumes of 

wash buffer, then eluted in two, 1 column volume aliquots of elution buffer (20 

mM Tris pH 8.0, 150 mM NaCl, 300 mM imidazole). These preparations were 

dialyzed against dialysis buffer (20 mM Tris pH 8.0, 150 mM NaCl) to remove 

imidazole. Glycerol was added to 10% v/v before the samples were stored at -80 

oC. Collected fractions were analyzed by native and SDS-PAGE. The activity of 

these samples was evaluated by model sortase-mediated ligation (SML) 

reactions with the known substrate LPATA. Were described, FPLC analysis of 

these samples was performed Samples of SrtApneu were subjected to various 

incubation temperatures for various times before purification and analysis on an 

NGC FPLC system (Bio-Rad) by size-exclusion chromatography using an Enrich 

SEC 70 column (Bio-Rad) with 50 mM Tris pH 8.0, 150 mM NaCl buffer as the 

eluent at 0.5 or 0.75 mL/min. Variable temperature expressions described in 

Chapter 2 were carried out by this procedure, except during expression, where 

the temperature was adjusted to 16 or 25 °C. 

Expression and purification of SrtApneu batch 2. The SrtApneu expression 

vector was obtained by commercial gene synthesis in a pJ414 expression vector 
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from DNA2.0 (Menlo Park, CA). The plasmid containing SrtApneu was transformed 

into BL21 (DE3) chemically competent E. coli by heat shock.. Following addition 

of 1 mL LB broth, the cells were incubated for 1 hour at 37 oC with shaking. Cells 

were the plated on LB-agar plates containing 100 µg/mL ampicillin, and 

incubated overnight at 37 oC. A single isolated colony was selected and used to 

inoculate 50 mL of LB broth (containing 100 µg/mL ampicillin), which was then 

placed in a 37 oC shaking incubator to grow overnight. Roughly 30 mL of this 

starter culture were then added to 1 L of LB broth (containing 100 µg/mL 

ampicillin) to initiate large-scale growth. This culture was allowed to grow to an 

OD600 reading of 0.7-0.8 at 37 oC in a shaking incubator. Protein expression was 

then induced by the addition of IPTG to a final concentration of 1 mM. Cells 

remained at 37 oC with shaking for 3 hours to express SrtApneu, and were then 

isolated by centrifugation at 6000xg. The cell pellets were then resuspended in 

30 mL lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.5 mM EDTA), treated 

with lysozyme at a final concentration of 10 mg/mL, and incubated at RT for 1 

hour. This mixture was sonicated for 2, 30 second intervals at 50% output and 

the lysate was then clarified by centrifugation at 18000xg. This clarified lysate 

was added to 5 mL of His-Bind (Thermo-Fisher) Ni-NTA resin in a conical tube 

and imidazole was added to 20 mM before the contents were mixed for 30 min at 

room temperature. The slurry was centrifuged at 700xg for 2 min and the 

supernatant removed. The resin pellet was resuspended in 25 mL of wash buffer 

(20 mM Tris, pH 8.0, 150 mM NaCl, 20 mM imidazole) and transferred to an 
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empty column. After settling, the wash buffer was drained to the resin bed and 25 

mL of wash buffer was passed through the column. Bound protein was then 

eluted in two, 5 mL aliquots of elution buffer (20 mM Tris pH 8.0, 150 mM NaCl, 

300 mM imidazole). To further purify the eluted protein, elution 1 of the initial 

purification was diluted 10-fold with dilution buffer (20 mM Tris, pH 8.0, 150 mM 

NaCl) and recirculated through a 5 mL Ni-NTA column. The bound protein was 

further washed with 10 mL of wash buffer and eluted in 3, 5 mL portions of 

elution buffer. The loading flowthrough of this purification was also 

reconcentrated using a 5 mL Ni-NTA column. After loading, the bound protein 

was washed with 15 mL wash buffer and and eluted in two, 5 mL aliquots of 

elution buffer. These preparations from the 2nd and 3rd purification steps were 

dialyzed against dialysis buffer (20 mM Tris pH 8.0, 150 mM NaCl) to remove 

imidazole. Glycerol was added to 10% v/v before the samples were stored at -80 

oC. Collected fractions were analyzed by native and SDS-PAGE. The activity of 

these samples was evaluated by model sortase-mediated ligation (SML) 

reactions with the known SrtApneu known substrate LPATA.  

SrtApneu expression, non-reducing/denaturing purification and refolding. A 

50 uL aliquot of BL21(DE3) cells in 50% glycerol containing the plasmid for 

SrtApneu was added to 50 mL of LB broth containing 100 µg/mL ampicillin and 

incubated with shaking at 37 oC overnight. Roughly 30 mL of culture were then 

added to one 1 L of LB broth containing 100 µg/mL ampicillin to initiate large-

scale growth. This culture was allowed to grow to an OD600 reading of 0.7-0.8 at 
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37 oC in a shaking incubator before induction with 1 mM IPTG. Cells remained at 

37 oC with shaking for three hours to express SrtApneu, and were then isolated by 

centrifugation at 6000xg. Cell pellets were resuspended in 30 mL denaturing lysis 

buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.5 mM EDTA, 8 M urea). The 

resuspended cells were sonicated for 2, 30 second intervals at 50% power output 

and the lysate was clarified by centrifugation at 18000xg. This clarified lysate was 

added to a 5 mL His-Bind resin (Thermo-Fisher) column pre-equilibrated in 

denaturing wash buffer (50 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole, 8 

M urea). Bound protein was washed with 10 column volumes of wash buffer and 

then eluted in two, 1 column volume portions of denaturing elution buffer (50 mM 

Tris pH 8.0, 150 mM NaCl, 300 mM imidazole, 8 M urea). The first eluted fraction 

was then rapidly diluted by addition to a 100x volume of dilution buffer (50 mM 

Tris pH 8.0, 150 mM NaCl). This material was then recirculated through a 5 mL 

Ni-NTA column equilibrated in wash buffer (50 mM Tris pH 8.0, 150 mM NaCl, 20 

mM imidazole). Bound protein was further washed with 10 column volumes of 

wash buffer, then eluted in two 1 column volume aliquots of elution buffer (50 mM 

Tris pH 8.0, 150 mM NaCl, 300 mM imidazole). Collected fractions were 

analyzed by native and SDS-PAGE. SrtApneu monomer was further purified on an 

NGC FPLC system (Bio-Rad) by size-exclusion chromatography using an Enrich 

SEC 70 column (Bio-Rad) with 50 mM Tris pH 8.0, 150 mM NaCl buffer as the 

eluent at 0.5 mL/min. Monomeric protein fractions were pooled, and if necessary, 

concentrated using centrifugal concentrators. The activity of these samples was 
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evaluated by model sortase-mediated ligation (SML) reactions with the known 

substrate LPATA. These samples were stored at 4 oC or -20 oC. 

SrtApneu expression, reducing/denaturing purification and refolding. The 

optimized procedure for the expression and purification of SrtApneu is identical to 

that for the non-reducing/denaturing purification described above, with the 

exception of 1 mM TCEP being included in all buffers used. 

Evaluation of protein concentration. UV-vis spectroscopy for determining 

concentrations of the prepared samples was performed on a NanodropTM ND-

1000 spectrophotometer (Thermo Scientific) at 280 nm using 17,440 M-1cm-1 as 

the estimated molar extinction coefficient from analysis of the protein sequence 

by ExPasy ProtParam. 

Protein LC-ESI-MS analysis.  Liquid chromatography electrospray 

ionization mass spectrometry (LC-ESI-MS) was performed using a Dionex 

Ultimate 3000 HPLC system (Thermo Scientific) connected to an expression L 

high performance compact mass spectrometer (Advion, Inc.) through analytical 

scale separations using a Phenomenex Kinetex 2.6 µm, 100 Å C4 column (2.0 x 

100 mm) with the method (Method A): MeCN (0.1% formic acid)/95% H2O, 5% 

MeCN (0.1% formic acid) mobile phase. Flow rate = 0.3 mL/min. Gradient = 10% 

MeCN (0.0-0.5 min), 10% MeCN to 90% MeCN (0.5-6.0 min), hold 90% MeCN 

(6.0-7.0 min), 90% MeCN to 10% MeCN (7.0-7.1 min), re-equilibrate to 10% 

MeCN (7.1-10.0 min). Data analysis was done in Advion Data Express software 

version 3.0. Mass spectrum deconvolution was achieved through a max entropy 
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goodness of fit algorithm to determine uncharged masses of samples. 

 

Analysis of SrtApneu Transpeptidation Activity 

Evaluation of enzymatic activity with various peptides containing the 

fluorophore-quencher pair 2-aminobenzoyl (Abz) and 2,4-dinitrophenol (Dnp) 

were carried out at room temperature with the concentrations shown in the table 

below for the model sortase mediated ligation reactions. Specific additives are 

noted where necessary within the presentation of the data. Reactions were 

prepared by combining all components shown in Table 4 except sortase, which 

was added to initiate the reaction. Conversion was analyzed by UV/VIS analysis 

of analytical RP-HPLC using a Dionex Ultimate 3000 HPLC system (Thermo 

Scientific) with a Phenomenex Kinetex 2.6 µm, 100 Å C18 column (3.0 x 100 

mm) with the method (Method B): MeCN (0.1% TFA)/H2O (0.1% TFA) mobile 

phase. Flow rate = 0.7 mL/min. Gradient = 10% MeCN (0.0-0.5 min), 10% MeCN 

to 90% MeCN (0.5-6.0 min), hold 90% MeCN (6.0-7.0 min), 90% MeCN to 10% 

MeCN (7.0-7.1 min), re-equilibrate to 10% MeCN (7.1-10.0 min).  

Percent conversion was calculated by dividing the area of the product 

peak by the addition of total 2,4-DNP containing reactant and product peak areas 

at 330 nm. 
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Table 2. Reaction conditions for sortase mediated ligation. Water was added to 
50 uL total reaction volume unless otherwise noted. 
Stock Solution Reaction Concentration 

Buffer (500 mM Tris, pH 7.5, 150 mM 
NaCl) 

50 mM Tris, pH 7.5, 150 mM NaCl 

Substrate (1:1 DMSO/Water) (0.5-4 mM) 40 or 100 µM 

Nucleophile (Water) (10 mM) 10 mM 

SrtApneu (50-300 µM) 10 µM 

 

Peptide Synthesis 

All chemicals were obtained from commercial sources and were used 

without further purification. Reactions were performed in flame-dried glassware 

under argon atmosphere. HPLC purification and analysis was performed using a 

Dionex Ultimate 3000 HPLC system. LC-ESI-MS was performed with API 2000 

Triple Quadrupole mass spectrometer (Applied Biosystems) and an Agilent 1100 

HPLC system equipped with a Phenomenex Aeris Widepore 3.6 µm 200 Å XB-

C8 column (4.6 x 150 mm). All samples were analyzed using the following 

method (Method C): H2O (0.1% formic acid) / organic (95% MeCN, 5% 

isopropanol, 0.1% formic acid) mobile phase. Flow rate = 1.25 mL/min. Gradient 

= 10% organic (0.0-1.0 min), 10% organic to 90% organic (1.0-10.0 min).  

Analytical separations for UV/vis analysis were performed with a 

Phenomenex Kinetex 2.6 µm, 100 Å C18 column (3.0 x 100 mm) with the method 

(Method B): MeCN (0.1% TFA)/H2O (0.1% TFA) mobile phase. Flow rate = 0.7 

mL/min. Gradient = 10% MeCN (0.0-0.5 min), 10% MeCN to 90% MeCN (0.5-6.0 



	 78	

min), hold 90% MeCN (6.0-7.0 min), 90% MeCN to 10% MeCN (7.0-7.1 min), re-

equilibrate to 10% MeCN (7.1-10.0 min).  

Semi-preparative separations for purification of peptides were performed 

with a Phenomenex Luna 5 µm 100 Å C18 column (10 x 250 mm) fitted with a 

Phenomenex SecurityGuard SemiPrep Guard cartridge (10 mm ID). Purification 

separations were carried out with the one of the following methods: (Method D): 

MeCN (0.1% TFA)/H2O (0.1% TFA) mobile phase. Flow rate = 0.5 to 4.0 mL/min 

(0.0-2.0 min), hold 4.0 mL/min (2.0-17.01 min), 4.0 to 0.5 mL/min (17.01-19.0 

min). Gradient = 20% MeCN (0.0-2.0 min), 20% MeCN to 90% MeCN (2.0-15.0 

min), hold 90% MeCN (15.0-17.0 min), 90% MeCN to 10% MeCN (17.0-17.01 

min), re-equilibrate to 10% MeCN (17.01-19.0 min) or (Method E):  MeCN (0.1% 

TFA)/H2O (0.1% TFA) mobile phase. Flow rate = 0.5 to 4.0 mL/min (0.0-2.0 min), 

hold 4.0 mL/min (2.0-17.01 min), 4.0 to 0.5 mL/min (17.01-19.0 min). Gradient = 

30% MeCN (0.0-2.0 min), 30% MeCN to 60% MeCN (2.0-15.0 min), 60 to 90% 

MeCN (15.0-15.01 min), hold 90% MeCN (15.01-17.0 min), 90% MeCN to 10% 

MeCN (17.0-17.01 min), re-equilibrate to 10% MeCN (17.01-19.0 min) 

Solid-phase peptide synthesis. Peptides were synthesized on a 0.1 mmol 

scale using rink amide MBHA resin. Deprotection was achieved by washing with 

20% piperidine/NMP (10 mL, 2x, 20 min) and was followed by washing with NMP 

(10 mL, 3x, 10 min). To the deprotected resin, a mixture containing an Fmoc 

protected amino acid (0.3 mmol), HBTU (0.3 mmol) and DIPEA solvated in NMP 

was added, which was left to incubate for 1 hr-24 hrs at room temperature with 
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shaking. Unreacted coupling components were removed and the resin washed 

with NMP (10 mL, 3x, 10 min) before repetition of this process to couple all 

amino acids. Acetyl capping of the N-terminus was achieved by combining acetic 

anhydride (0.3 mmol), DIPEA, and NMP, which was added to the resin to couple 

for 2 hrs. Each peptide generated as a substrate for SML reactions contained the 

2-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) fluorphore-quencher pair to 

simplify analysis by UV/vis spectroscopy. Dnp was added as a conjugate to ε-

amine of a lysine side chain [Fmoc-K(Dnp)]. After completion of the peptide, the 

resin was washed with DCM (10 mL, 3x, 10 min) and incubated with cleavage 

solution (9.5 mL TFA, 0.25 mL H2O, 0.25 mL TIPS) for 30 min (5 mL, 2x). The 

cleaved peptide was collected and concentrated via rotary evaporation before 

being precipitated into dry ice-cooled diethyl ether. The precipitate was 

centrifuged at 5000xg for 5 min and the ether discarded to afford a peptide pellet, 

which was dried under vacuum for 24 hrs. Peptides were solubilized by a mixture 

of water and acetonitrile that was variable based on the amino acid composition. 

Purification from this state was achieved by RP-HPLC with either method D or E 

and the molecular mass of the peptides verified via LC-ESI-MS method C. 

Peptides were lyophilized and resolubilized in 1:1 water/DMSO or DMSO to 

produce stock solutions for use in reactions, which were further analyzed for 

purity by HPLC analysis using method B. Concentrations were estimated by 

UV/Vis spectroscopy on a NanodropTM ND-1000 spectrophotometer (Thermo 
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Scientific) at 365 nm using the molar extinction coefficient 17,400 M-1cm-1 for the 

Dnp chromophore. 

 

Synthesis of Small Molecules 

All chemicals were obtained from commercial sources and were used 

without further purification. NMR spectra were collected with a Brüker Avance 

spectrometer at 500 MHz for 1H. FID processing and figure generation was done 

using Mestrelab MestReNova software version 10.0.2-15465. Reactions were 

performed in flame-dried glassware under argon atmosphere. HPLC purification 

and analysis was performed using a Dionex Ultimate 3000 HPLC system. LC-

ESI-MS was performed with a Dionex Ultimate 3000 HPLC system connected in 

line to an expression L high performance compact mass spectrometer (Advion, 

Inc.). Analytical separations for MS analysis of synthetic products were achieved 

with a Phenomenex Kinetex 2.6 µm, 100 Å C18 column (2.0 x 100 mm) with the 

method (Method F): MeCN (0.1% formic acid)/95% H2O, 5% MeCN (0.1% formic 

acid) mobile phase. Flow rate = 0.4 mL/min. Gradient = 5% MeCN (0.0-0.5 min), 

5% MeCN to 90% MeCN (0.5-6.0 min), hold 90% MeCN (6.0-7.0 min), 90% 

MeCN to 10% MeCN (7.0-7.1 min), re-equilibrate to 10% MeCN (7.1-12.0 min).  

Ala-5-ALA synthesis. Fmoc-Ala-OSu (1.2 g, 3.0 mmol) and 5-

aminolevulinic hydrochloride (0.50 g, 3.0 mmol) were added to dry THF (40 mL) 

and cooled to 0 oC. DIPEA (0.52 mL, 3.0 mmol) was dissolved in dry THF (20 

mL) and then added dropwise to the stirred suspension across 120 minutes. The 
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reaction was allowed to return to room temperature and stirred for 23 days after 

which the mixture was filtered, concentrated by rotary evaporation and dissolved 

into ethyl acetate (50 mL). The organic layer was washed with water (3x, 50 mL) 

and extracted into 5% NaHCO3 (3x, 25 mL). The aqueous layer was then 

collected and acidified with 1M HCl until no further precipitation occurred. This 

heterogeneous mixture was then extracted with ethyl acetate (3x, 75 mL) and 

dried over MgSO4. The solvent was removed by rotary evaporation to produce a 

white solid which was used without further purification. IUPAC Name: (S)-5-(2-

((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanamido)-4-oxopentanoic acid 

(0.72 g, 57% yield). 1H NMR (500 MHz, D6-DMSO): δ 12.10 (br. s, 1H), 8.13 (m, 

1H), 7.88 (d, J = 7.6, 2H), 7.72 (t, J = 7.7, 2H), 7.55 (d, J = 7.7, 1H), 7.40 (t, J = 

7.3, 2H), 7.32 (t, J = 7.5, 2H), 4.26-4.18 (m, 3H), 4.11-4.05 (m, 1H), 3.98-3.87 (m, 

2H), 2.63 (t, J = 6.2, 2H), 2.39 (t, J = 6.5, 2H), 1.23 (d, J = 7.2, 3H). 

Ketoester synthesis. Boc-Ala-OH (7.0 mmol) was dissolved in dry THF (20 

mL), to which CDI (1.08 g, 7.7 mmol) was added under stirring in three portions, 

resulting in bubble formation. Within five minutes of CDI addition, 5 mol% DMAP 

was added to the reaction mixture. This was left to stir for one hour, during which 

t-butyl acetate (4.1 mL, 28.7 mmol) was added dropwise to 1 M LiHMDS (28 mL, 

28 mmol)  in THF (28 mL) at -78 oC under stirring across 5-10 minutes. This 

reaction was left to stir for 10-15 min at -78 °C, removed from cooling and stirred 

at room temperature for 10 minutes, then cooled to -78 °C and stirred for 20 

additional minutes before the activated amino acid was added dropwise at -78 °C 
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across 10 minutes. The combined reaction was allowed to stir for 1.5 hrs at -78 

°C before being quenched with 10% w/v citric acid (50 mL). The mixture was 

extracted with ethyl acetate (2x, 30 mL), washed with sat. NaHCO3 (30 mL) and 

sat. NaCl (3x, 30 mL) before being dried over MgSO4. After concentration by 

rotary evaporation, the crude product was purified by flash column 

chromatography (1:3 EtOAc/n-hexane) yielding the product as a white solid. 

IUPAC Name: tert-butyl (S)-4-((tert-butoxycarbonyl)amino)-3-oxopentanoate 

(1.44 g, 72% yield). 1H NMR (500 MHz, CDCl3): δ 5.19-5.09 (m, 1H), 4.42-4.32 

(m, 1H), 3.49, 3.42 (ABq, JAB = 16, 2H), 1.46 (s, 9H), 1.44 (s, 9H), 1.35 (d, J = 

7.2, 3H).  

Triflate synthesis. To a solution of t-butyl R-lactate or t-butyl 2-

hydroxyacetate (5.0 mmol) in dry DCM (20 mL) was added 2,6-lutidine (0.87 mL, 

5.0 mmol). The mixture was cooled to 0 °C and triflic anhydride (1.18 mL, 5.0 

mmol) was added dropwise across 70 minutes, during which the color changed 

to light red then orange. After stirring for 1 hour at 0 °C, the reaction mixture was 

diluted with n-hexane (100 mL), washed with 1:3 1M HCl/sat. NaCl (3x, 50 mL), 

and dried over MgSO4. The extract was concentrated by rotary evaporation and 

dried under vacuum to afford the product as a red or orange oil which was used 

without further purification. 

IUPAC Name: tert-butyl (R)-2-(((Trifluoromethyl)sulfonyl)oxy)propanoate 

(1.01 g, 73% yield). 1H NMR (500 MHz, CDCl3): δ 5.09 (q, J = 7.0, 1H), 1.66 (d, J 

= 7.0, 3H), 1.50 (s, 9H). 1H NMR consistent with previously reported spectra.109 
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IUPAC Name: tert-butyl 2-(((Trifluoromethyl)sulfonyl)oxy)acetate (0.96 g, 

72% yield). 1H NMR (500 MHz, CDCl3): δ 4.78 (s, 2H), 1.51 (s, 9H).  

Ketomethylene synthesis. Boc-Ala ketoester (0.50 g, 1.7 mmol) was 

solvated in dry DCM (10 mL) and added dropwise to a stirred suspension of NaH 

(60% in mineral oil, 0.21 g, 5.2 mmol) in dry THF (10 mL) at -5 °C. This mixture 

was allowed to stir for 20 min, after which triflate (1.74 mmol) in dry THF (5 mL) 

was added at -5 °C. The resulting contents were allowed to stir overnight at room 

temperature before being quenched with 10% w/v citric acid (20 mL). The 

quenched reaction was extracted with EtOAc (3x, 20 mL) washed with sat. NaCl 

(60 mL), and dried over MgSO4 before being concentrated via rotary evaporation 

to yield a yellow oil. This residue was purified by flash column chromatography 

with 1:3 EtOAc/hexane and the desired product fractions identified, pooled, and 

concentrated by rotary evaporation. This residue was solvated in 10% TFA/DCM 

and allowed to stir overnight at room temperature. After concentrating the 

resulting mixture by rotary evaporation, the residue was dissolved in DCM and 

reconcentrated by rotary evaporation (3x) after which the remaining solvent was 

removed in vacuo. Data for protected ketomethylene: IUPAC Name: di-tert-butyl 

2-((tert-butoxycarbonyl)-L-alanyl)succinate LC-ESI-MS: m/z calculated (M+Na+): 

424.5, observed: 424.3. 

Fmoc protection. The vacuum dried deprotected ketomethylene was 

dissolved in 1:1 water/MeCN (10 mL) and DIPEA (0.91 mL, 3 eq) was 

administered to bring the solution to pH ~8. Fmoc-OSu (0.59 g, 1 eq.) was added 
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and allowed to react for 24 hours before the addition of 10 mL of 1 M HCl, which 

formed a precipitate. The reaction was extracted into EtOAc (3x, 10 mL), washed 

with sat. NaCl (30 mL) and dried over MgSO4 before being concentrated under 

rotary evaporation. The residue was solubilized in 1:1 EtOAc/n-hexane (0.1% 

AcOH) and purified by flash column chromatography using 1:1 EtOAc/n-hexane 

(0.1% AcOH) until the product began to elute, at which point 3:1 EtOAc/n-hexane 

(0.1% AcOH) was used as the solvent. IUPAC Name: (S)-5-((((9H-fluoren-9-

yl)methoxy)carbonyl)amino)-4-oxohexanoic acid. LC-ESI-MS: m/z calculated 

(M+Na+) 390.4, observed 390.1. 

 

Inhibition of In vitro Transpeptidation Reactions. 

Transpeptidation inhibition assays. Reactions for analysis of the 

preliminary inhibitor substrate analog 1 were prepared from 7 day 37 °C heat-

treated batch 3 SrtApneu and incubated for 24 hours at room temperature before 

quenching with N-ethylmaleimide. Reactions were prepared by combining all 

components shown in Table 4 except sortase, which was added to initiate the 

reaction. HPLC analysis was performed using a Dionex Ultimate 3000 HPLC 

system, which allowed for monitoring by UV/Vis analysis of the separations using 

a Phenomenex Kinetex 2.6 µm, 100 Å C18 column (3.0 x 100 mm) with the 

method (Method B): MeCN (0.1% TFA)/H2O (0.1% TFA) mobile phase. Flow rate 

= 0.7 mL/min. Gradient = 10% MeCN (0.0-0.5 min), 10% MeCN to 90% MeCN 

(0.5-6.0 min), hold 90% MeCN (6.0-7.0 min), 90% MeCN to 10% MeCN (7.0-7.1 
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min), re-equilibrate to 10% MeCN (7.1-10.0 min). Percent conversion was 

calculated by dividing the area of the product peak by the addition of total 2,4-

DNP containing reactant and product peak areas at 330 nm. 

Table 3. Reaction conditions for sortase mediated ligation inhibition assays. 
Volume of components used are given in µL. Water was added to 50 uL total 
reaction volume unless otherwise noted. 
 
Reaction 1 2 3 4 5 6 7 
Buffer (500 mM Tris, 
pH 7.5, 150 mM NaCl) 
 

5 5 5 5 5 5 5 

SrtApneu (300 µM) 
 

1.7 1.7 1.7 1.7 1.7 1.7 1.7 

L-Alanine amide HCl 
(100 mM) 
 

5 5 5 5 5 5 0 

Abz-LPATA-GK(Dnp) 
(3.7 mM) 
 

1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Ac-
K(Dnp)LPAG(keto)GAA 
(1.0 mM) 

0 0.5 2.5 5 10 25 0 

 

 

Attempted detection of Sulfenic Acid Modification 

Sulfenic acid labeling reactions. Batch 3 SrtApneu in HEPES buffer (20 mM 

HEPES, 150 mM NaCl) was diluted to 50 µM before NO2-alkyne was added to 

500 µM. For the positive control reaction with H2O2, SrtApneu in HEPES buffer was 

diluted to 10 µM and H2O2 was added to 15 µM before NO2-alkyne was added to 

100 µM. After mixing the solutions, they were allowed to stand for 24 hours at 

room temperature before analysis by LC-MS Dionex Ultimate 3000 HPLC system 

(Thermo Scientific) connected to an expression L compact mass spectrometer 
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(Advion, Inc.) using a Phenomenex Kinetex 2.6 µm, 100 Å C4 column (2.0 x 100 

mm) with the method (Method A): MeCN (0.1% Formic acid)/95% H2O, 5% 

MeCN (0.1% Formic acid) mobile phase. Flow rate = 0.3 mL/min. Gradient = 

10% MeCN (0.0-0.5 min), 10% MeCN to 90% MeCN (0.5-6.0 min), hold 90% 

MeCN (6.0-7.0 min), 90% MeCN to 10% MeCN (7.0-7.1 min), re-equilibrate to 

10% MeCN (7.1-10.0 min). Data analysis was done in Advion Data Express 

software version 3.0. Mass spectrum deconvolution was achieved through a max 

entropy goodness of fit algorithm to determine uncharged masses of samples 

 
Table 4. Stock solutions and reaction concentrations of the components used in 
sulfenic acid labeling reactions for SrtApneu. All unlabeled values are in µL. * 
denotes the use of a 10 mM stock of NO2-alkyne probe, prepared from 10:1 
dilution of the 50 mM stock with HEPES buffer. 

 
                     Reaction   
  

Stock Solution Reaction 
Concentration 

 1 2 3 

HEPES Buffer (1x) 1x 66 66 92.6 

Batch 3 SrtApneu  
(150 µM) 
 

50 or 10 µM 33 33 6.7 

NO2-alkyne  
(50 or 10 mM) 
 

500 µM 0.5 - 1* 

H2O2 (2.0 mM) 15 um - - 0.75 
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6. Appendix I: NMR Spectra of Synthesized Compounds 
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