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Abstract 

Hemophilia A is an X-linked blood disorder that results in the inability to form proper 

blood clots and may also cause spontaneous bleeding in the joints or muscles. This disorder 

is caused by mutations in the F8 gene that attenuate or abolish the activity of its protein 

product, factor VIII. Blood coagulation factor VIII (fVIII) is a glycoprotein that serves as 

a cofactor for the serine protease factor IXa on the surface of activated platelets to form 

the intrinsic tenase complex, which activates factor X during hemostasis to enable blood 

clot formation. Previous studies have shown that the C-terminal (C2) domain of fVIII is 

responsible for binding to phospholipids in platelet membranes. However, there are 

conflicting models for its structural binding mechanism. Elucidating the mechanism of 

factor VIII binding to phosphatidylserine-containing membranes in activated platelets is 

essential in the understanding and progress towards improving current hemophilia A 

therapeutics. Some mutations that occur in the C2 domain result in nonfunctional factor 

VIII possibly due to its inability to bind platelet membranes and form the tenase complex. 

This research helps to further describe this mechanism by analyzing the atomic interactions 

between the C2 domain of factor VIII and phosphatidylserine membranes by X-ray 

crystallography and biochemical assays. A 1.4 Å resolution X-ray crystal structure of the 

porcine C2 domain of factor VIII in complex with O-phospho-L-serine (OPLS), a soluble 

moiety of the headgroup of phosphatidylserine, revealed a favorable electrostatic 

interaction between Arg2320 and OPLS, implying the importance of the universally 

conserved arginine at residue 2320. Within the human hemophilia A population, two 

mutations at that residue in fVIII, Arg2320Thr/Ser, are of interest due to the ability of 
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these fVIII mutants to stay in circulation as non-functioning proteins. Characterizing these 

mutants with phosphatidylserine membrane-binding enzyme-linked immunosorbent 

assays (ELISAs), affinity pull-down assays, and intrinsic fluorescence has allowed for a 

more comprehensive understanding of the binding mechanism of fVIII. Because the C1 

domain of fVIII is structurally homologous to the C2 domain, we attempted to study two 

naturally occurring mutations (Arg2163His and Arg2159His) in the C1 domain that likely 

interact with phosphatidylserine-containing membranes. Arg2163His is a mutation located 

in the same position structurally as Arg2320 in the C2 domain. However, we were unable 

to purify these C1 mutants to a level suitable for biochemical studies. Furthermore, 

phosphatidylserine lipid binding studies were conducted on an Arg2215Ala C2 domain 

mutant due to its proximity to the hydrophobic region of platelet membranes. We were 

able to express and purify all of the C2 domain mutants, and proper folding of these 

mutants was verified using affinity pull-down assays. Phosphatidylserine membrane 

binding ELISAs revealed that all the mutants studied were not able to bind to activated 

platelet phosphatidylserine-containing membranes in activated platelets. Preliminary 

intrinsic fluorescence analysis determined that Arg2320Ser was thermodynamically less 

stable than wild type, but was still predominantly folded. Our data further supported our 

activated platelet membrane binding mechanism that is centered on Arg2320, with two 

hydrophobic spikes docked within the hydrophobic lipid bilayer of platelet membranes, 

and nonspecific interactions between either the phosphate or carboxyl groups of 

phospholipids and the underlying basic residues of C2 (Arg2209, Arg2215, Lys2183, 

Arg2220, Arg2222, and Lys2249). 
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Introduction 

 

The encompassing processes of hemostasis are maintaining blood in the fluid state, 

producing a blood clot confined to the area of vascular injury to prevent hemorrhage, and 

inhibiting blood clot formation once a stable clot is formed. Our area of interest is blood 

clot formation. Initially, the development of a hemostatic plug involves platelet adhesion 

and aggregation to the damaged vessel wall, resulting in the production of a soft clot during 

primary hemostasis. Immediately following the action of activated platelets, the 

crosslinking of insoluble fibrin within the area of damage provides mechanical strength to 

harden the clot during secondary hemostasis (Nemerson and Pitlick 1972). This study 

explicitly focuses on the second hemostatic process, the formation of a fibrin clot, which 

is dependent on protein blood coagulation factors (Davie and Ratnoff 1964). When the 

activity of these coagulation factors is impaired, it causes blood disorders, generally 

referred to as hemophilias. The disruption of hemostasis in patients with these disorders 

can result in potentially life-threatening bleeding. Specifically, hemophilia A is caused by a 

deficiency in coagulation factor VIII (fVIII). The activity of fVIII is dependent on its 

ability to bind activated platelet surfaces (Gilbert and Arena 1996). Although previous 

studies have shown that the second carboxy-terminal (C2) domain of fVIII is the primary 

domain that interacts with activated platelet membranes (Arai et al. 1989), the molecular 

basis of this interaction is poorly understood. We investigated this specific association 

between the C2 domain and the components of platelet membranes to explain its role in 

hemostasis and in causing hemophilia A.  
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Primary Hemostasis 

Hemostasis describes the ability of an organism to prevent blood loss during injury. The 

two distinct events during hemostasis are primary and secondary hemostasis (Palta et al. 

2014). During primary hemostasis, a soft hemostatic platelet plug is formed, which 

involves platelet adhesion and platelet aggregation (Nemerson and Pitlick 1972). This 

platelet-rich soft plug can then provide a surface for the assembly of blood coagulation 

factor proteins during secondary hemostasis, in which this soft clot is strengthened by a 

hard fibrin clot (Davie and Ratnoff 1964). 

 

Platelet Adhesion—The initial event during primary hemostasis in forming a soft hemostatic 

plug is platelet adhesion onto damaged endothelial vessel walls (Nemerson and Pitlick 

1972). Platelets are non-nucleated cells produced from megakaryocytes in bone marrow 

that have a pivotal role in primary hemostasis. This adhesion process is mediated by the 

large multimeric glycoprotein, von Willebrand factor (vWF), which contains three A 

domains, three B domains, two C domains, and four D domains (Zhou 2012). vWF 

provides the link between platelets and damaged vessels. Upon vascular damage, vWF is 

immobilized to the damaged collagen-containing vessel walls by its A1 and A3 domains. 

The A3 domain binds to fibrillary collagen type I and III (Huizinga et al. 1997), while the 

A1 domain binds collagen type VI of the subendothelial connective tissue (Pareti et al. 

1987). Platelets can then adhere to the injured vessels indirectly by binding to the 

subendothelium-bound vWF. There are two receptors localized on platelet membranes 

that recognize vWF: the glycoprotein Ib-IX-V (GPIb-IX-V) receptor complex and integrin 
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αIIbβ3 (or also known as the glycoprotein IIb/IIIa complex) (Hantgan et al. 1990). 

Glycoprotein GPIbα of the GPIb-IX-V complex binds to the vWF A1 domain, acting as 

the initial tethering of platelets to the subendothelium surface (Emsley et al. 1998). Integrin 

αIIbβ3 then recognizes an Arg-Gly-Asp sequence within the C1 domain of vWF (Beacham 

et al. 1992). Under the localized high shear stress of blood flow around sites of vascular 

damage, the globular conformation of vWF changes in a way that exposes available 

receptor binding sites and thereby increases the interactions between vWF and platelets.  

 

Platelet Aggregation—Once platelets adhere to the subendothelium by means of vWF, they 

can then aggregate through platelet-platelet interactions to form a soft clot. The 

mechanism in which platelets aggregate is dynamic and complex, but the fundamental 

interaction is primarily mediated by integrin αIIbβ3, the transmembrane receptor that was 

also involved in vWF-mediated platelet adhesion (Jackson 2007). These receptors located 

on adjacent platelets can bind to fibrinogen, which allow the platelet-platelet interactions. 

ADP binding causes fibrinogen deposition, further encouraging these platelet-platelet 

interactions. During this process, platelets are also activated. The enzyme, scramblase, flips 

phosphatidylserine lipids nonspecifically between the two lipid bilayers of platelet 

membranes and this results in an increase in negatively charged phospholipids in the outer 

leaflet of the platelet membranes following platelet activation (Bevers et al. 1983, 

O’Donnell et al. 2014). These membranes can then provide a surface for secondary 

hemostasis in which a fibrin clot can formed to stabilize and strengthen this initial clot.  
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Secondary Hemostasis 

Traditionally, the hemostatic process in forming a hard fibrin clot was explained by the 

blood coagulation cascade model, which described a series of protein interactions 

propagated by the proteolytic activation of clotting factors. These interactions distinctly 

lead to the formation of a stable blood clot through the covalent crosslinking of insoluble 

fibrin. This cascade model is composed of an extrinsic and intrinsic arm that converge at 

a common pathway (Figure 1; Macfarlane 1964, Davie and Ratnoff 1964). The extrinsic 

arm is stimulated by endothelial tissue damage, with the exposure of collagen to platelets, 

while the intrinsic arm was stimulated by trauma within the vasculature. However, this 

model was insufficient in explaining the entire blood clotting process, as each of these 

pathways cannot function independently to promote a stable blood clot. Instead, a cell-

based model is now used to explain the existing coagulation cascade, which describes 

hemostasis in three distinct, but overlapping phases: initiation, amplification, and 

propagation (Figures 2/3/4; Monroe and Hoffman 2006). 
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Figure 1. Blood coagulation cascade. The traditional model of blood coagulation is termed the blood 
coagulation cascade, composed of an intrinsic pathway and an extrinsic pathway that converge at the final 

common pathway to generate fibrin that enables the formation of a stable blood clot. The intrinsic pathway 
is stimulated by blood vessel damage, which activates fXII. Factor fXIIa then activates fXI, which activates 

fXI to form the intrinsic tenase complex. The extrinsic pathway is stimulated by tissue damage, which 
activates fVII. The tissue factor-fVIIa complex and the tenase complex both activate fX. In the final 

common pathway, fXa forms the prothrombinase complex with fVa and activated platelets to generate 
large burts of thrombin. Fibrinogen is then proteolytically converted to fibrin, which enable sthe formation 

of a stable blood clot.    
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Initiation—The first phase of hemostasis, initiation (or also traditionally known as the 

extrinsic pathway of the blood coagulation cascade), provides low amounts of activated 

coagulation factors and platelets (Figure 2). This phase is stimulated by tissue damage, 

which results in the expression of tissue factor (TF) on the surface of endothelial cells. 

Therefore, the initiation step is localized on TF-bearing cells, which are normally located 

outside the vasculature (Monroe et al. 1996).  

 

During tissue damage, coagulation factor VII is activated (fVIIa) by trace active proteases 

circulating in the blood and TF is exposed to the bloodstream. Subsequently, fVIIa 

associates with its transmembrane receptor, TF, for the activation of factor IX (fIX) and 

factor X (fX) in small amounts (Lawson and Mann 1991; Monroe et al. 1996). Tissue 

damage additionally causes platelet adhesion to collagen and other extracellular matrix 

components of the damaged site, which promotes the secretion of partially activated factor 

V (fVa). Factor V (fV) can also be activated by fXa or thrombin to enable the formation 

of the prothrombinase complex, composed of fXa and fVa, on the surface of TF-bearing 

cells (Monkovic and Tracy 1990; Monroe et al. 1996; Briede et al. 2001). This complex is 

initially formed on TF-bearing cells to serve to convert sufficient amounts of prothrombin 

into thrombin, which functions as an initiating signal for platelet activation. In contrast, 

during the propagation phase, this complex is assembled on activated platelets to generate 

a burst of thrombin (Rosing et al. 1985) for a variety of procoagulant functions leading to 

the insoluble fibrin mesh. 
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Figure 2. Phase 1 of hemostasis: initiation. The process of hemostasis has three distinct, but overlapping 

phases: initiation, amplification, and propagation. The first phase, initiation is stimulated by tissue damage, 
which activates fVII and platelets. Tissue factor exposed on the surface of cells binds to fVIIa, and activates 

small amounts of fIX and fX. Activated platelets bind to collagen and activates fV. The prothrombina se 
complex composed of fXa, fVa, and tissue factor, produces small amounts of thrombin on tissue factor-

bearing cells for the use of the second phase of hemostasis.  

 

Amplification—The second phase of hemostasis is amplification, which results in the 

increased level of activated coagulation factors (Figure 3). The small amounts of thrombin 

produced during initiation is then able to activate factors V, VIII, and XI on platelet 

surfaces during amplification (resulting in factors Va, VIIIa and XIa, respectively). 

Thrombin also activates platelets during this phase, resulting in an increased level of 

negatively charged phosphatidylserine headgroups exposed on the surface (or outer leaflet) 

of platelet membranes (Bevers et al. 1983, O’Donnell et al. 2014). Mainly, amplification 

sets the stage for large-scale thrombin production in the third phase, propagation.  
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Figure 3. Phase 2 of hemostasis: amplification. The process of hemostasis has three distinct, but overlapping 
phases: initiation, amplification, and propagation. The second phase, amplification, elevates the levels of 

fVa, fXIa, fVIIIa, and activated platelets stimulated by sufficient amounts of thrombin generated during 
initiation. These activated factors and platelets are then used in third phase, propagation, for large-scale 

thrombin production. 

 

Propagation—The third phase, propagation, takes place on the surface of these newly 

activated platelets. It is traditionally known as the intrinsic pathway of the blood 

coagulation cascade model. This phase contrasts with the initiation phase in that the 

protein interactions are localized on activated platelet surfaces instead of on TF-bearing 

cells (Rosing et al. 1985). At this stage, large bursts of thrombin are produced. Thrombin 

then converts the soluble plasma protein, fibrinogen, into insoluble fibrin after a series of 

protein interactions. The crosslinking of fibrin gathered at the site of injury entangles red 

blood cells, leading to the formation of blood clots (Figure 4; Kanaide and Shainoff 1975).  

 

The specific protein interactions of the propagation phase begin with the stimulation of 

damaged blood vessels. The contact of factor XII to negatively charged surfaces 

spontaneously causes fXII activation (to fXIIa) (Cochrane et al. 1973; Griffin 1978), which 
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then activates factor XI. Factor XI can also be self-activated or activated by thrombin in 

the presence of negatively charged surfaces (Naito and Fujikawa 1991). Following fXI 

activation, fXIa converts fIX to fIXa (Fujikawa et al. 1974; Lindquist et al. 1978). The 

thrombin-activated fVIIIa then acts as a cofactor to serine protease fIXa and binds to 

phosphatidylserine exposed on the extracellular surface of activated platelets, forming an 

important complex termed the intrinsic Xase (tenase) complex due to its role in the 

activation of factor X (Bergsagsel and Hougie 1956; Dieijen et al. 1981). Subsequently, fXa 

associates with fVa on activated platelet membranes to form the prothrombinase complex, 

which causes large-scale thrombin production by activating prothombin (Rosing et al. 

1985). Thrombin proteolytically converts the soluble precursor, fibrinogen, to insoluble 

fibrin. This insoluble fibrin is then able to assemble into long fibrils that gather at the site 

of injury, leading to the formation of a stable, hard blood clot (Kanaide and Shainoff 1975). 

Due to the importance of the Xase complex (fVIIIa/fIXa/platelets) in promoting 

hemostasis, the structural characterization of fVIIIa lipid binding is an important concern.  
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Figure 4. Phase 3 of hemostasis: propagation. The process of hemostasis has three distinct, but overlapping 
phases: initiation, amplification, and propagation. The third phase, propagation, is also traditionally 

known as the intrinsic pathway of blood coagulation. Propagation is stimulated by vascular damage, which 
activates fXII. Activated fXIIa then activates fXIa, which activates fIXa, allowing for the formation of 

the intrinsic tenase complex composed of fVIIIa/fIXa/activated platelets. The tenase complex activates 
fXa that is used for the formation of the prothrombinase complex on the surface of activated platelets. The 

prothrombinase complex generates large-scale thrombin production, which then proteolytically converts 
soluble fibrinogen to insoluble fibrin that assemble into long fibrils that gather at the site of injury to form 

a stable, hard blood clot. 
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Inhibition of the Blood Coagulation Process 

Once a stable blood clot is formed, the blood coagulation process needs to be inhibited to 

prevent thrombosis. Inhibition of the blood coagulation process is modulated by (1) 

activated Protein C, (2) antithrombin III, and/or (3) tissue factor pathway inhibitor.  

 

Activated Protein C—The Protein C anticoagulant pathway inactivates the glycoproteins (fVa 

and fVIIIa) of the coagulation process and is mediated by thrombomodulin, a thrombin-

binding protein present on cell surfaces (Esmon and Owen 1981). The thrombomodulin-

thrombin complex serves to activate Protein C, a serine protease that inactivates fVa and 

fVIIIa upon binding phospholipid vesicles (Walker et al. 1979). Protein S acts a cofactor 

to Protein C to enhance Protein C phospholipid binding, resulting in the increased rate of 

glycoprotein inactivation (Walker 1981). Factor V can also serve to enhance inactivation 

rates of fVIIIa in the presence of Protein S (Varadi et al. 1996). The inactivation of fVIIIa 

can additionally be mediated by fXa, which can cleave at the same site as activated Protein 

C (Eaton et al. 1986).  

 

Antithrombin III—Another method of inhibition is through antithrombin III, a plasma 

glycoprotein that serves as a cofactor to heparin to inhibit serine proteases such as 

thrombin (Abildgaard 1968), fIXa, fXa (Kurachi et al. 1976), fXIa (Damus et al. 1973), and 

fXIIa (Stead et al. 1976) by forming a covalent carboxylic ester bond with the active site 

serine residue in the catalytic site of these proteases (Owen, 1975). 
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Tissue Factor Pathway Inhibitor—A more recently discovered method of inhibition is through 

the tissue factor pathway inhibitor (TFPI or also known as the extrinsic pathway inhibitor), 

which inhibits the initiation of blood coagulation by preventing the TF-fVIIa complex 

from activating factors fIX and fX (Sanders et al. 1985; Rao and Rapaport 1987; Broze et 

al. 1988; Wun et al. 1988). This pathway starts with TFPI binding fXa (Sanders et al. 1985; 

Rao and Rapaport 1987; Broze et al. 1988; Wun et al. 1988). This TFPI-fXa complex then 

inhibits the TF-fVIIa complex by the formation of a larger TFPI-fXa-TF-fVIIa complex 

(Broze et al. 1988).  

 

The complete process of hemostasis is complex and involves several different 

components. The focus of this study, however, is on the glycoprotein, blood coagulation 

factor VIII. Its central role is involved in forming of the important intrinsic tenase complex 

during propagation, which is essential in promoting the formation of a stable fibrin blood 

clot during hemostasis.  

  

Blood Coagulation Factor VIII 

Factor VIII (fVIII) is a glycoprotein that is essential in promoting proper hemostasis. It is 

primarily synthesized in liver sinusoidal cells (Webster 1971), but has been shown to be 

synthesized in other tissues as well, such as in the spleen, lymph nodes, and kidney (Wion 

1985). Mature fVIII is initially synthesized as a single polypeptide with the domain 

structure A1-a1-A2-a2-B-a3-A3-C1-C2 and consists of 2332 residues (Figure 5; Vehar et 



 13 

al. 1984; Toole et al. 1984). The A domains have short spacers (a1, a2, and a3) containing 

acidic regions, harboring clusters of Asp and Glu residues.  

 

 

Figure 5. A schematic view of the fVIII construct. First, fVIII is synthesized as a single 2332-residue 

polypeptide chain with domains A1-a1-A2-a2-B-a3-A3-C1-C2. The lower-cased domains are acidic 
linker regions. Cleavage at Arg1313 and Arg1648 result in fVIII processing, which is secreted from the 

cell as an inactive heterodimer A1-a1-A2-a2-B/a3-A3-C1-C2. Factor VIII is then activated by 
thrombin cleavage at Arg372, Arg740, and Arg1689, which results in fVIIIa. Sites for fVIIIa 

inactivation are Arg336 and Arg562. 

 

Upon secretion from the cell, fVIII is processed by cleavage occurring at the Arg1313 and 

Arg1648 residues within the B domain of fVIII, resulting in a heterodimer consisting of a 

heavy chain (A1-a1-A2-a2-B) and a light chain (a3-A3-C1-C2) that is held together by a 

metal ion bridge (Figure 5; Vehar, et al, 1984; Kaufman et al. 1988). The light chain of 

this inactive heterodimer is bound tightly in a noncovalent complex with the glycoprotein, 

von Willebrand factor (vWF). The fVIII/vWF complex maintains fVIII stability in 
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circulation by preventing premature inactivation by activated Protein C and blocking 

phospholipid interactions (Fay et al. 1991). During vascular injury, fVIII becomes 

proteolytically activated into a heterotrimer (A1-a1/A2-a1/A3-C1-C2) either by thrombin 

or fXa, which leads to the dissociation of fVIIIa from vWF upon removal of the acidic a3 

region of fVIII (residues 1649-1689) (Eaton et al. 1986; Lollar et al. 1988). Thrombin 

activates fVIII by cleaving at Arg372 and Arg740 in the heavy chain and Arg1689 in the 

light chain (Eaton et al. 1986; Pittman and Kaufman 1988; Nogami et al. 2000). Factor Xa 

can also activate fVIII by cleaving at the same sites as thrombin, but additionally, it can 

cleave at Arg1721 (Eaton et al. 1986). However, the main activator of fVIII is thrombin 

because vWF inhibits fXa proteolysis of fVIII, whereas vWF does not affect thrombin 

cleavage of fVIII (Koedam et al. 1990).  

 

An X-ray crystal structure of a B domain-deleted fVIII has been reported to a resolution 

of 3.7 Å to demonstrate the unambiguous placement of the domains (Figure 6; Shen et 

al. 2008). The function of fVIIIa is to act as a cofactor for serine protease fIXa on the 

surface of activated platelets, which forms the intrinsic tenase complex during the 

propagation phase of hemostasis to promote the formation of a stable blood clot (Dieijen 

et al. 1981). Previous findings from various labs have shown that the C2 domain of fVIIIa 

is the central domain involved in activated platelet membrane binding (Arai et al. 1989; 

Foster et al. 1990). 
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Figure 6. Factor VIII X-ray crystal structure. A 3.7 Å resolution X-ray crystal structure of a B domain-

deleted fVIII heterodimer composed of a heavy chain (A1-A2) and a light chain (A3-C1-C2). The 
structure showed unambiguous modeling of domains A1 (blue), A2 (green), A3 (blue), C1 (orange), and 

C2 (pink) (PDB ID 2R7E; Shen et al. 2008). 
 

 

C2 Domain of fVIII  

Although fVIIIa contains five domains, the main domain of interest is the second carboxy-

terminal (C2) domain of fVIII. The C2 domain has been shown to have binding sites for 

vWF (Saeneko et al. 1994), but the focus of this study will be on the structural basis for C2 

domain binding to activated platelet membranes (Aria et al. 1989; Foster et al. 1990). 

Currently, there is controversy in the phospholipid binding mechanism of fVIII C2 
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domain. Previous studies have shown that residues 2303-2332 within the C2 domain are 

important for phosphatidylserine (PS) lipid membrane binding due to the ability of the 

2302-2332 peptide to inhibit fVIII PS membrane binding (Foster et al. 1990). In 1999, a 

1.5 Å resolution X-ray crystal structure of human fVIII C2 domain revealed two 

hydrophobic beta-hairpin loops that protrude from a ring of basic residues (Figure 7A/B; 

Pratt et al. 1999). From this crystal structure, it was suggested that the C2 domain-

phospholipid binding interface was centered on Arg2220 (Figure 7C). This model had the 

hydrophobic beta hairpin loops (Leu2251-Leu2252 and Met2199-Phe2200) and residue 

Val2223 embedded within the lipid membrane. The model also included electrostatic 

interactions between the underlying basic residues (Lys2227, Arg2220, Lys2249, and 

Arg2215) and negatively charged phospholipid head groups of activated platelet 

membranes (Figure 7C). In support of this binding mechanism, an electron 

crystallographic structure of fVIII in its membrane-bound state was resolved to 1.5 nm 

and revealed that a loop containing residues Trp2313-His2315 was involved in membrane 

binding (Stoilova-McPhie et al. 2002). This binding mechanism, however, did not agree 

with recent ELISA binding studies from our lab, which will be explained later in the 

“Binding Analysis of Porcine C2 with 3E6 FAB and G99 FAB” section (Walter et al. 2013; 

Brison et al. 2015). Due to the large number of basic residues underlying the hydrophobic 

beta-hairpin loops, it is difficult to pinpoint the specific phospholipid binding site. Our 

goal is to define this mechanism with less ambiguity. The relevance of focusing on this 

mechanism is that when fVIIIa is unable to bind to activated platelet membranes, it causes 

the blood disorder, hemophilia A. 
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Figure 7. Factor VIII C2 domain X-ray crystal structure. A 1.5 Å resolution X-ray crystal 
structure of human fVIII C2 domain (PDB ID 1D7P; Pratt et al. 1999). (A) A ribbon 
diagram displaying the hydrophobic beta hairpin loops of hC2 include residues Met2199-Phe220 
and Leu2251-Leu2252 (light gray). The ring of underlying basic residues consists of Arg2200, 
Arg2215, Arg2320, and Lys2249 (blue). (B) Coulombic surface coloring (generated in Chimera) 
shows the positively charged basic residues (blue) and the hydrophobic residues (light gray). 
Negatively charged residues are red. (C) The previously proposed model of C2 domain lipid binding 
centered on Arg2220. A loop containing residues Trp2313-His2315 (yellow) was hypothesized 
to be involved in lipid binding (Stoilova-McPhie et al. 2002). The dotted line and gray tinted area 
represents the phospholipid membrane of activated platelets.  
 

Hemophilia A 

Deficiency in fVIII clotting activity causes hemophilia A, an X-linked blood disorder that 

prevents proper blood clot formation. It is estimated that 1 in 5,000 male births is affected 

by hemophilia A worldwide (Soucie 1998). The other types of hemophilias are caused by 

deficiencies in factor I (fibrinogen), factor II (prothrombin), factor V, factor VII 

(proconvertin), factor X (Stuart-Prower factor), factor XI (which causes hemophilia C), 

factor XII (Hageman factor), factor XIII (fibrin stabilizing factor), and factor IX (which 
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causes hemophilia B) (Bolton-Maggs et al. 2004). Von Willebrand disease, caused by 

deficiency in vWF, is another bleeding disorder that results in a similar phenotype as 

hemophilias (Ginsburg et al. 1985). Hemophilia A, however, is the most common type of 

hemophilia, representing 80% to 85% of the total hemophilia population (Srivastava et al. 

2013). Individuals with this disorder are characterized as having severe, moderate, or mild 

hemophilia, with fVIII activity levels of less than 1% of normal, 1% to 5% of normal, and 

5% to less than 40% of normal, respectively. Phenotypes of patients with severe 

hemophilia include two to three spontaneous bleeding incidents into joins or muscles each 

month, while moderate and mild hemophilia only have seldom or none, respectively. 

Abnormal and prolonged bleeding with trauma or surgery are overlapping characteristics 

of all three types (Srivastava et al. 2013). 

 

Hemophilia A is inherited in an X-linked recessive pattern, passed down by a pathogenic 

variant of the fVIII gene (F8) located on the long arm of the X chromosome at position 

28 (Xq28; Gitschier et al. 1984). There are many different possible mutations within the 

fVIII gene that can affect protein clotting activity listed on the Factor VIII Gene Variant 

Database provided by the European Association for Haemophilia and Allied Disorders 

and the Structural Immunology Group from the University College London (Rallapalli et 

al. 2014). The four types of DNA mutations that may occur are deletions, insertions 

(including duplication), inversions, and substitutions (Tuddenham et al. 1994). These types 

of mutations can either be caused by nonsense (a point mutation in which the codon is 

changed to a stop codon), missense (a point mutation in which the amino acid is changed), 
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splice site change, frameshift, large structural change (>50 bp), or small structural change 

(<50 bp), mutations. Nonsense and missense mutations are point mutations that cause 

substitution mutations, with missense mutations being the most common in hemophilia. 

Splice site change mutations also primarily cause substitutions, but can additionally cause 

deletion, duplication, and insertion. Frameshift, large structural change, and small 

structural change mutations can cause deletion, duplication, or insertion. Large structural 

changes can additionally cause inversion. Mild hemophilia A is predominantly caused by 

substitution point mutations in the form of missense DNA mutations, while moderate 

hemophilia A can be caused by a large mix of different mutation types. Severe hemophilia 

A is primarily caused by debilitating substitution and deletion mutations in the form of 

nonsense, missense, splice site change, frameshift, large and small structural change 

mutations.  

 

On rare occasions, hemophilia A can also be acquired through autoimmune processes in 

which there is a spontaneous development of inhibitory antibodies against endogenous 

fVIII (Lottenberg et al. 1987). Cases of acquired hemophilia A have occurred mostly in 

postpartum women and in patients aged 62 years and beyond. These antibodies inhibit the 

function of endogenous fVIII within the patient, causing the attenuation of hemostasis. 

To mediate the effects of hemophilia A, replacement therapies have been developed. 
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Hemophilia A Therapeutics 

Therapeutics of hemophilia A include direct infusions of either plasma-derived or 

recombinant human fVIII (hfVIII) concentrates for replacement therapy (Coppola et al. 

2010). These can be either be used on-demand as episodic infusions, or be used to treat 

severe hemophilia A prophylactically, i.e., receiving regular infusions of fVIII concentrates 

for hemorrhage prevention. The advantage of prophylactic treatment over episodic 

infusions is the reduction in the number of bleeding episodes, thereby improving patient 

quality of life (Smith et al. 1996; Konkle et al. 2015). Plasma-derived human fVIII is 

prepared by extracting and purifying the glycoprotein from cryoprecipitate prepared from 

human plasma (Addiego et al. 1992). Complications associated with this are the 

transmission of viral contaminations and diseases. Current technology has eradicated this 

possibility by treating the plasma with viral inactivation methods and improved disease 

detection (Centers for Disease Control 1988). Treatment with recombinant hfVIII for 

replacement therapy is more common in the United States than the use of plasma-derived 

hfVIII. These proteins are primarily produced by Chinese hamster ovary (CHO) or baby 

hamster kidney (BHK) cells transfected with the human fVIII gene (Kaufman et al. 1988). 

To ensure safety, the concentrated proteins are then subjected to viral inactivation 

methods, even though they are considered free of viruses.  

 

There are currently many recombinant fVIII products available. Common recombinant 

fVIII therapeutic products include Advate (Baxter), Xyntha (Pfizer) and Kogenate FS 

(Bayer Pharmaceuticals). Their doses are based on a person’s deficiency of fVIII activity, 
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their weight, and the circumstance of bleeding. They are administered through intravenous 

infusion via IV bolus as soon as the bleeding episode occurs to promote proper hemostasis 

(McDaniel 2013). Recently in 2015, Adynovate (BAX 855), a PEGylated full-length 

recombinant fVIII based on Advate, was approved for on-demand and prophylactic 

treatment of hemophilia A (Konkle et al. 2015; Horling et al. 2016). Adynovate has an 

extended half-life due to PEGylation of the recombinant fVIII and thus is an improvement 

in hemophilia A therapeutics. In patients with mild or moderate hemophilia A, 

prophylactic treatment may not be required. Treatment with desmopressin (or also known 

as DDAVP), which increases the levels of fVIII in plasma by inducing secretion from 

endothelial cells, instead of direct infusions of hfVIII is a viable alternative in this patient 

population (Rose and Aledort 1991).  

 

Inhibitory Antibody Development: Hemophilia A Treatment Complications 

and Management of Inhibitor Development 

Although these transfusions are highly effective, approximately 30% of the patients who 

receive these direct infusions of human fVIII (hfVIII) eventually develop inhibitory 

antibodies that attenuate or abolish the function of the newly infused hfVIII (Bray et al. 

1994; Lusher et al. 2003). This complication leaves the individual with the inability to form 

stable blood clots due to nonfunctional hfVIII being cleared from circulation. In these 

cases, and in cases of acquired hemophilia A, several options for treatment are available. 

Immune tolerance induction can be employed as an attempt to eradicate inhibitors and 

normalize pharmacokinetic parameters by means of frequent administration of 
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concentrates long-term, with success rates between 60% and 80% (DiMichele and Kroner 

2002). Often, immune tolerance induction is accommodated by immunosuppression of 

either the T- or B-cell pathways to prevent the production of these inhibitory antibodies 

by the use of immunosuppression agents such as corticosteroids (Miao 2010). Although 

the mechanism of action is not well known, desmopressin (DDAVP) has been clinically 

used as an immunosuppressant as well (Franchini and Lippi 2011). Bypassing agents, such 

as activated prothrombin complex concentrates and recombinant fVIIa replacements, are 

also commonly used as first-line therapies to treat patients with inhibitory anti-hfVIII 

antibodies (Hoffman and Dargaud 2012). Adynovate (the PEGylated recombinant fVIII), 

and rfVIIIFc (a fusion protein composed of a recombinant fVIII covalently attached to 

the Fc domain of human IgG) may also be used in lieu of traditional recombinant fVIII 

concentrates, as they have been shown to have an extended half-life in circulation (van der 

Flier et al. 2015; Horling et al. 2016). Adynovate is also able to evade the immune response, 

making it a better alternative for fVIII infusions (Horling et al. 2016). Porcine fVIII 

(pfVIII) as a second-line therapeutic is another option due its low cross-reactivity to anti-

hfVIII antibodies, especially inhibitory antibodies that prevent proteolytic activation of 

fVIII, relative to hfVIII (Hay et al. 1996; Barrow and Lollar 2006; Brison et al. 2015). Other 

reasons pfVIII is an appropriate fVIII replacement is that pfVIII is more stable and more 

active due to the A2 domain being in a tighter complex within the active form of pfVIII 

(Lollar et al. 1992). 
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The antibodies developed against fVIII can either be completely or incompletely 

inhibitory, which corresponds to either type I or type II inhibition behavior, respectively 

(Gawryl and Hoyer 1982). The epitopes of inhibitory antibodies are primarily located in 

the A2, A3, and C2 domains of fVIII (Fulcher et al. 1985; Scandella et al. 1989). Within 

the C2 domain, there are 5 different structural epitopes to which these inhibitory antibodies 

can bind, and display two main mechanisms of inhibition (Meeks et al. 2007). Classical (e.g. 

3E6 and BO2C11) antibodies bind at either group A, AB, or B epitopes and inhibit the 

function of fVIIIa by blocking phospholipid and/or vWF binding (Figure 8; Arai et al. 

1989; Barrow et al. 2001). The other, “nonclassical”, mechanism of inhibition prevents  

thrombin or fXa activation of fVIII, by antibodies (e.g. G99) that bind at either group BC 

or C epitopes of C2 (Meeks et al. 2008).  
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Figure 8. Examples of the inhibitory binding epitopes of the C2 domain. A 2.47 Å resolution X-ray 

Crystal ternary structure of hC2 (pink)/G99 FAB (yellow)/3E6 FAB (dark green) (pdb ID 4KI5; 
Walter et al. 2013) superimposed with a 2.0 Å crystal structure of hC2/BO2C11 FAB (blue) (pdb ID 

1IQD; Spiegel et al. 2001). 3E6 and BO2C11 are both classical antibodies that bind at either the A 
or AB epitope of C2, while the nonclassical antibody, G99, binds to the BC epitope of C2.  

 

Structural Characterization of Human fVIII C2 Domain Interactions with 

Antibodies 3E6 FAB and G99 FAB 

Specific residue interactions between the two classes of anti-C2 inhibitory antibodies and 

human fVIII C2 domain were elucidated in a 2.47 Å resolution crystal structure of a ternary 

complex (C2 domain/3E6 FAB/G99 FAB), which was solved in our lab (Figure 9, Walter 

et al. 2013).  
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Figure 9. An X-ray Crystal structure of a ternary complex (hC2 domain (pink)/3E6 FAB (yellow)/G99 

FAB (dark green)) determined to 2.47 Å resolution (pdb ID 4KI5; Walter et al. 2013). 

 

This revealed that the classical epitope face of C2, where 3E6 binds, has a positively 

charged surface potential (Figure 10A) that interacts electrostatically with the oppositely 

charged surface of the 3E6 variable region (Figure 10B; Walter et al. 20013). Residues 

Lys2183 and Gln2213 in C2 are 80% buried upon binding 3E6 FAB, based on analysis using 

NACCESS (S. Hubbard and J. Thornton 1992-6), which divides the measured buried 

surface area by the free accessible surface area (Walter et al. 2013). Lys2183 has a possible 

cation- interaction with Trp90 of 3E6 FAB (Figure 10C).  
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Figure 10. A coulombic surface coloring (generated in Chimera) of a 2.47 Å resolution X-ray crystal 
structure of the 3 E6 FAB epitope in human C2 domain and of the 3E6 FAB surface where human C2 

binds. (A) The classical epitope face of hC2 where 3E6 FAB binds is predominantly negatively charged 
(blue) and (B) the variable region of 3E6 FAB has a positively charged surface (red) that interacts with 

hC2. White colors represent hydrophobic residues. (C) Specific residue interactions of 3E6 FAB (yellow) 
and hC2 (pink) involve Asp2187 and Lys2183 of hC2 and Ser30, Ser91, and Trp90 of 3E6 FAB 

(PDB ID 4KI5; Walter et al. 2013). 
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Similarly, the nonclassical epitope face where G99 FAB binds showed an electrostatic 

interaction where the nonclassical G99 FAB has a negatively charged anionic pocket 

(Figure 11A) that allowed for the basic Lys2227 residue within the nonclassical epitope 

face of C2 to bind (Figure 11B). 

 

Figure 11. A coulombic surface coloring (generated in Chimera) of a 2.47 Å resolution X-ray Crystal 

structure of the G99 FAB epitope in human C2 domain and of the G99 FAB surface where human C2 
binds. (A) The nonclassical epitope face of hC2 is predominantly positively charged (blue), (B) while the 

surface potential for the G99 pocket where hC2 binds is negatively charged (PDB ID 4KI5; Walter et al. 
2013). 

To understand the lowered cross-reactivity of pfVIII, a crystal structure of pfVIII C2 

domain was determined to a resolution of 1.7 Å by a former member of our lab (Brison et 

al. 2015). This structure was superimposed with the ternary hC2/3E6 FAB/G99 FAB 

complex, revealing the specific differences between hC2 and pC2 in terms of the classical 

and nonclassical epitope faces. Overall, the tertiary structures are similar with a root-mean-

square deviation (RMSD) value of 0.282 Å (Figure 12) and have a sequence identity of 

80%.  
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Figure 12. The crystal structures of human C2 (pink, PDB ID 4KI5) and porcine C2 (yellow, PDB ID 

4MO3) superimposed with an RMSD of 0.842 Å (Walter et al. 2013; Brison et al. 2015). 

The electrostatic surface potentials of hC2 and pC2 reveal that the differences between the 

3E6 classical epitope faces are not as striking as the differences between hC2 and pC2 G99 

nonclassical epitope faces. Sequence alignment shows that the differences between the 

human and porcine classical epitope faces are functionally minimal, with the most drastic 

change being the basic Lys2207 residue to a polar, uncharged Gln2207.   This is further 

supported by observing that the electrostatic surface potentials of the classical epitope 

faces in the human and porcine structures are both primarily positive (Figure 13A/B). 

However, the surface potential of the nonclassical epitope face is primarily negatively 

charged in pC2 due to the acidic Glu2227 residue, whereas in hC2, the same residue is a 

basic Lys2227 (Figure 13C/D). Functional studies agreed with the observed differences 

between the two epitope faces between human and porcine C2 domains, providing a 

structural rationale for the observation that porcine fVIII is an effective alternative to 

human fVIII for replacement therapy in patients with nonclassical anti-human fVIII C2 

inhibitory antibodies.  
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Figure 13. A coulombic surface coloring (generated in Chimera) of a 2.47 Å resolution X-ray Crystal 
structure of fVIII human C2 domain (PDB ID 4KI5, Walter et al. 2013) and a 1.4 Å resolution X-

ray Crystal structure of fVIII porcine C2 domain (PDB ID 4MO3, Brison et al. 2015) visualized in 
Chimera. The differences between the 3E6 FAB epitope faces of hC2 (A) and pC2 (B) are electrostatically 

similar. In contrast, the G99 FAB epitope faces of hC2 (C) and pC2 (D) are oppositely charged, which 
demonstrates the structural reasoning as to why the human C2 antibody, G99 FAB, has a high affinity for 

hC2, but does not bind pC2. 
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Binding Analysis of Porcine C2 with 3E6 FAB and G99 FAB 

Inhibitory antibody binding analyses employing enzyme-linked immunosorbent assays 

(ELISA) showed that the binding affinities between human and porcine C2 with 3E6 mAb 

are more similar than with G99 mAb (Brison et al. 2015). Human and porcine C2 3E6 

mAb binding had approximate KD values of 2.2 and 4.3 nM, respectively (Figure 14A). In 

contrast, hC2 bound G99 mAb with high affinity, while porcine C2 was unable to bind 

G99 mAb (Figure 14B). Although 3E6 mAb binding was similar in both human and 

porcine C2, 3E6 mAb inhibits human fVIII activity significantly more than that of porcine 

fVIII, revealed in a Bethesda assay, with inhibitory titers of 0.8 BU/mg IgG and 41 BU/mg 

IgG, respectively (Figure 14C; Brison et al. 2015). Porcine fVIII activity was not affected 

by G99 mAb, which is consistent with its inability to bind G99 FAB (Brison et al. 2015).  
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Figure 14. Inhibitory antibody binding analyses using ELISAs showed (A) 3E6 mAb binding was not 
significantly different between porcine (closed squares) and human (open circles) C2, (B) while G99 mAb 

was only able to bind human C2 (open circles). (C) Factor VIII inhibition studies through a Bethesda 
assay showed G99 mAb did not decrease porcine fVIII activity (open triangles), but it did significantly 

inhibit human fVIII activity (open circles). 3E6 mAb inhibited human fVIII activity (closed circles) 
significantly more than porcine fVIII activity (closed triangles)  (Brison et al. 2015). 

 

To examine which epitope of C2 binds PS-containing membranes, an ELISA detecting 

antibody binding of phosphatidylserine-bound fVIII C2 was employed by Brison et al. in 

2015. This assay revealed which epitope was more solvent accessible when C2 is 
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immobilized on a membrane. Membrane-bound C2 was able to bind G99 mAb (with an 

affinity of 15.5 mM), but not 3E6 FAB (Figure 15). This led to the conclusion that C2 binds 

membranes at the classical epitope face, where 3E6 binds, and not the nonclassical epitope 

face, where G99 binds. Because the C2 classical epitope face is centered on Arg2320, 

further studies were focused on this residue in C2. 

 

Figure 15. ELISA studies for phosphatidylserine (PS)-bound C2 and the two antibodies showed that the 

G99 epitope face was more solvent accessible than the 3E6 epitope face of C2. PS-bound C2 was able to 
bind G99 mAb, but not 3E6 mAb indicating that the PS binding occurs at the 3E6 epitope face (Brison 

et al. 2015). 

 

Goals of this Study  

Currently, the fVIII C2 domain binding mechanism of phosphatidylserine-containing 

activated platelet membranes remains controversial. The docking of the hydrophobic beta 

hairpin loops in C2 to platelet membranes is universally accepted, however the controversy 

lies within which epitope face docking occurs and with that, which underlying basic 



 33 

residues interact with the negatively charged phospholipids of the activated platelet 

membranes (Figure 7A/B). Our previous research supports a new binding model that is 

centered on Arg2320 within the classical epitope face. Therefore, we studied the two 

naturally occurring hC2 mutants Arg2320Ser and Arg2320Thr that cause mild and 

moderate hemophilia A, respectively (Rallapalli et al. 2014). It is plausible that these 

mutations yield non-functional fVIII due to the inability of these mutants to bind 

membranes based on the concept that Arg2320 is one of the underlying basic residues that 

stabilize the membrane-C2 interaction. There are two other mutations, Arg2320Trp and 

Arg2320Met that occur naturally at this residue, but they were not examined. Arg2320Trp 

causes severe hemophilia A and likely does not fold correctly. Expression of the 

methionine mutation was attempted; however, the protein was unstable and could not be 

isolated in pure form. We also studied was an unnatural mutation, Arg2215Ala, because 

Arg2215 appears to be a positively charged residue that is positioned within the 

hydrophobic lipid bilayer during lipid binding and likely causes an unfavorable interaction. 

This observation led us to hypothesize that this C2 mutant would have a greater binding 

affinity to phospholipid membranes due to the removal of the positive charge. Because the 

fVIII C1 domain has also been shown to aid in the binding of factor VIII to phospholipid 

membranes (Meems et al. 2009; Lu et al. 2011), we extended two naturally occurring Arg 

mutations (Arg2159H and Arg2163H) to the isolated C2 domain of human fVIII. The C1 

and C2 domains have a 40% sequence identity and a high structural homology, with an 

RMSD value of 3.08 Å (Figure 16). Studies with the Arg2163H mutant would be 

complementary to our hC2 mutant studies due to this mutation being at the same structural 
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location as the Arg2320 residue within the C2 domain (Figure 16). However, these hC1 

mutants were difficult to purify and no further studies could be carried out. With these 

hC2 domain mutants, we analyzed (1) hC2 protein stability of Arg2320Ser and 

Arg2320Thr, and (2) hC2 membrane binding of Arg2320S, Arg2320Thr, and Arg2215Ala. 

In addition to studying these mutants, we also determined the X-ray crystal structure of 

wild type pC2 in complex with the soluble headgroup of phosphatidylserine, O-phospho-

L-serine (OPLS). 

 

Figure 16. Structural alignment of the C1 (green) and C2 (pink) domains of human fVIII, with an 
RMSD value of 3.08 Å. Arg2320 within the C2 domain is in the same residue location as Arg2163 

in the C1 domain. Arg2215 in the C2 domain and Arg2159 in the C1 domain were also of interest. 
These arginines were mutated to Arg2320Ser, Arg2320Thr, Arg2215Ala, Arg2163His, and 

Arg2159His for further analysis of C2 phospholipid membrane binding. (PDB ID 2R7E; Shen et al. 
2008) 
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 (1) Evaluation of Mutant Protein Stability—Functional studies of C2 Arg2320Ser and 

Arg2320Thr mutants were investigated to ensure proper folding and to analyze protein 

stability compared to wild type. These studies included (1) affinity pull-down assays and 

(2) intrinsic fluorescence. Pull-down assays showed whether mutants bound to anti-C2 

antibodies. The nonclassical G99 antibody was used to assess proper protein folding, while 

the classical 3E6 antibodies determined whether the mutation in the classical epitope 

affected antibody binding. Intrinsic fluorescence evaluated tertiary structure stability, by 

measuring protein unfolding upon chemical denaturation. 

 

(2) Membrane Binding Analysis—Analysis of platelet membrane binding employed (1) X-ray 

crystallography and (2) ELISAs. X-ray crystallographic analysis of the structure of wild 

type porcine C2 bound to the headgroup of phosphatidylserine, OPLS, allowed for 

elucidation of the structural interactions between fVIII pC2 and phosphatidylserine. This 

method first required the production of a high-quality protein crystal. Soaking the crystal 

in a solution of a small molecule allows for the molecule to diffuse into the crystal lattices 

if the interactions are favorable. The crystal is then exposed to X-rays, resulting in 

diffraction patterns based on the placements of atoms within the protein crystal. These 

diffraction patterns are then integrated and transformed using XYZ software to produce 

an electron density map. The locations of each atom within a protein can then be modeled 

into the electron density. As a result, an atomic resolution structural model of a protein is 

constructed. The main descriptors for evaluating the agreement between the protein model 

and the X-ray diffraction data are the R values. These R values measure how well the 
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crystallographic model predicts the experimental electron density map. The lower the R 

values, the better the fit between the model and the density map. Rfree specifically describes 

the fit following removal of 10% of the reflections data to verify unbiased fitting (Brunger 

1992). Therefore, Rfree should always be larger in value than Rwork. In cases when Rfree is 

lower than Rwork, the model had been biasedly over-fitted into the density map. An R value 

of approximately 0.6 or higher indicates random fitting of a model, while R values below 

0.2 infer high quality fitting (Brunger 1992).  Next, the analysis of membrane binding in 

the Arg2320Ser, Arg2320Thr, and Arg2215Ala hC2 mutants were determined using 

ELISAs. This is a colorimetric method that detects the amount of proteins bound to lipid-

coated plates as a function of increasing protein concentration.  

 

The main goal of this study was to elucidate the binding mechanism of fVIII to the 

phosphatidylserine-containing activated platelet membranes. Comprehension of the 

binding mechanism of fVIII allows for us to contribute to the advancement of hemophilia 

A therapeutics. With this information, we can help to improve recombinant fVIII 

replacement therapies by identifying potentially beneficial mutations that will cause an 

increase in coagulant activity.  
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Materials and Methods 

 

Human C2 Cloning and Expression 

The gene for wild type human fVIII C2 domain (residues 2171-2332) in a pET15b plasmid 

was prepared previously (Spiegel et al. 2004). Subsequently, former group members cloned 

this gene into a pSV plasmid. The human C2 (hC2) gene was excised from plasmid pSV in 

a 30 l double digestion reaction containing 1 g of hC2 pSV, 1x Cutsmart Buffer, 10 U 

BamHI, and 10 U XhoI. The restriction enzymes were purchased from New England 

Biolabs Inc. Vector pET32a(+) purchased from GenScript was also double digested using 

the same protocol. These reactions were incubated for four hours at 37C. A 2% (w/v) 

agarose gel was used to verify cleavage. The cleaved pET32a (+) plasmid and hC2 gene 

were extracted from the gel using the Qiagen QIAquick Gel Extraction Kit. Cleaved hC2 

and pET32a(+) was ligated with a 3:1 ratio of insert to vector using T4 DNA ligase and 

1x T4 DNA ligase buffer. This reaction was incubated at 24C for 10 minutes and ligase 

was heat-inactivated at 65C for 10 minutes. The pET32a(+) vector allows for the 

expression with an N-terminal thioredoxin/(His)6/S tag, and an enterokinase cleavage site 

(Figure 17). The sequence of the ligated vector was then verified by the Nevada Genomics 

Lab and transformed into New England Biolabs SHuffle B-line cells. Colonies were 

selected from Luria Bertani (LB) broth, ampicillin 50 g/ml (amp50) selection plates. One 

single colony was chosen and grown in 10 mL of LB amp50 media for 16 hours at 30C to 

produce a seed stock for large-scale protein expression.  
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Figure 17. pET32a (+) vector construct (LaVallie et al. 1993; Novagen). The human fVIII C2 
domain gene was inserted between XhoI and BamHI. Expression of C2 included thioredoxin/6 His/S 

tags. Enterokinase cleavage separates the thioredoxin/6 His/S tags from C2. 
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Site Directed Mutagenesis of Human C2 and C1 Domain Genes 

Human C2 (R2320S, R2320T, and R2215A) and C1 (R2159H and R2163H) domains were 

constructed using the Agilent Technologies QuikChange Lightning Site-Directed 

Mutagenesis Kit with pET32a(+)/6His-thioredoxin-S-fVIII C2 and C1 plasmid templates, 

respectively. Primers for the mutations were designed based on recommendations from 

the Agilent Technologies website and were purchased from Integrated DNA 

Technologies.  

 

Mutagenesis of wild type genes of human C2 and C1 isolated domains was performed 

using a QuikChange Lightning Site-Directed Mutagenesis Kit from Agilent Technologies . 

The temperatures for denaturation, annealing, and extension were 95C, 60C, and 68C, 

respectively, with 18 total cycles.  

 

DNA Extraction 

To extract the plasmids containing the hC2 mutants from the XL10-Ultracompetent cells, 

the QIAquick PCR purification kit purchased from Qiagen was used. The overnight cells 

suspended in 950 l of LB-Amp50 were pelleted at 4969 x g and resuspended in 500 l of 

P1 buffer. P2 and N3 buffers were added at 500 l and 700 l, respectively, and mixed by 

inversion. The solutions were centrifuged for 10 minutes at 17,000 x g and the supernatant 

was transferred to a spin column that contained resin that bound DNA. The column was 

washed with 500 l of PB and 750 l of PE buffer. The plasmids were eluted with 50 l 

of nanopure water.  
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DNA Sequencing 

Sequencing at Nevada Genomics allowed for verification of the DNA mutations. Each 

DNA mutation had two samples prepared with either T7 promoters or T7 terminators due 

to the average reliable sequencing results extending to approximately 500 to 600 base pairs. 

From the T7 promoter, the thioredoxin/His/S tags alone contained 560 base pairs prior 

to our gene inserts. T7 terminators were closer to our insert and used to verify our 

mutations more reliably. Samples were prepared with 880 to 3500 ng of DNA and 10 

picomoles of primer.  

 

Transformation of Competent SHuffle® T7 B Cells with Mutated Plasmids 

Subsequently, chemically competent SHuffle® T7 B E. coli cells purchased from New 

England Biolabs Inc. were transformed with pET32a(+) plasmids encoding each hC2 and 

hC1 mutant. Approximately 100 ng of DNA were incubated with the competent cells for 

30 minutes on ice. They were then heat shocked at 42C for 30 seconds, with a 5-minute 

recovery time on ice. Room temp LB medium was added up to 1 mL in the mixture and 

shaken at 200 rpm at 30C for 60 minutes. The cells were spread onto LB/ampicillin50 

plates. A single colony was chosen to prepare a seed stock for subsequent overexpression 

of the mutant proteins.  

 

Overexpression and Purification of hC2 and hC1 Mutants 

Overexpression of each hC2 and hC1 mutant was carried out in 1 L of LB-amp50 broth 

with 10 g dextrose incubated at 30C. Cells were inoculated with saturated 10 mL 
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overnights and induced with 0.4 M isopropyl-β-D-thiogalactopyranoside (IPTG) when 

OD600 readings reached 0.5-0.6 AU. The temperature was adjusted to 16C following 

induction. After approximately 20 hours of expression at 16C, the cells were harvested at 

6000 rpm in an F12-6x500 LEX rotor from Thermo Scientific for 10 minutes. The cells 

were resuspended in lysis buffer (300 mM NaCl, 20 mM Tris-HCl pH 7.5, 10 mM 

imidazole pH 8.0, 10.0% (v/v) glycerol, and 0.5% (v/v) Triton X-100) and lysed by 

sonication using a Branson Sonifier 450 probe at power output five and duty cycle 50% 

for 90s. To remove cell debris, the lysed cells were centrifuged at 17,500 rpm in an F20-

12x50 LEX Thermo Scientific rotor for 35 minutes at 4°C. The high-speed supernatant 

was filtered through a 5 m, then a 0.45 m filter before purifying with 1 mL of settled 

TALON® cobalt immobilized metal affinity chromatography resin per 2 L of E. coli cell 

growth. Wash steps included 30 column volumes (CV) of lysis buffer and 30 CV of wash 

II buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.5, 10 mM imididazole pH 8.0, and 10% 

(v/v) glycerol). The protein was eluted with elution buffer (150 mM NaCl, 20 mM Tris-

HCl pH 8.0, 150 mM imidazole pH 8.0, and 10% (v/v) glycerol) following a 10-minute 

incubation time and dialyzed with 500 mL of storage buffer (150 mM NaCl, 25 mM Tris-

HCl pH 8.0, and 10% (v/v) glycerol) for every 15-20 mL of eluted protein sample. The 

resin was cleaned with recharge buffer (3 mM NaCl and 20 mM MES pH 5.0) and stored 

in 20% (v/v) ethanol.  
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Recombinant Enterokinase Cleavage 

The hC2 mutants were cleaved with recombinant enterokinase to remove the 

thioredoxin/His6/S tag. Four units of enterokinase were used to cleave every 1 mg of hC2 

protein. For every 1 unit of enterokinase, 25 l of rEKapture agarose resin were used to 

remove the enzyme. Removing the tags from the cleaved protein required 500 l of 

TALON resin. Both resins allowed for hC2 to be collected in the initial flow through due 

to its inability to bind either resin.   

 

HiTrap Capto S Column Purification 

When necessary, impure protein samples were purified on a 5 mL HiTrap Capto S strong 

cation exchanger column (GE Healthcare Life Sciences) connected to a fast protein liquid 

chromatography (FPLC) device, AKTAprime Plus manufactured by GE Healthcare Life 

Sciences. The column was equilibrated in buffer A (50 mM MES pH 6.5). Protein samples 

were diluted 1:10 into buffer A to prevent premature elution and precipitation. The diluted 

samples were loaded onto the column with a 10 mL Superloop. Buffer B (50 mM MES 

pH 6.5 with 1 M NaCl) was used to elute the protein with a gradient setting of 50% Buffer 

B in 20 CV. Elution of the proteins typically occurred at approximately 18% (180 mM 

NaCl) buffer B. The column was cleaned with 5 CV 1 M NaCl and 5 CV of 1 M NaOH 

after each injection and stored in 200 mM sodium acetate in 20% (v/v) ethanol.  
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Mass Spectrometry 

Protein samples were prepared by diluting the proteins to 10 M with nanopure water. 

Either 1 or 3 l of sample was injected into the Thermoscientific Ultimate 3000 UHPLC 

connected to a C18 column (Kinetex 2.6 m 100 Å) in-line with an Expression LCMS 

mass spectrometer (Advion).  

 

Affinity Pull-Down Assays 

Thioredoxin fusion hC2 mutants were incubated in 50 l of TALON resin for 15 minutes 

and washed four times with five CV of storage buffer (150 mM NaCl, 25 mM Tris-HCl 

pH 8.0, and 10% (v/v) glycerol). Antibodies were similarly incubated for 15 minutes and 

washed five times with five CV of storage buffer. The mass ratio of hC2 to antibody was 

2:3 (50 g of hC2 and 75 g of antibody). The complex was eluted from the resin after a 

5-minute incubation time with 2 CV of elution buffer (150 mM NaCl, 20 mM Tris-HCl 

pH 8.0, 150 mM imidazole pH 8.0, and 10% (v/v) glycerol). The elution step was repeated 

to ensure complete elution of the protein. Each elution fraction was analyzed with SDS-

PAGE.  

 

Enzyme-Linked Immunosorbent Assays (ELISAs) 

Nunc-Immuno MicroWell PolySorp 96 well solid plates were coated with 80% 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), 5% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE), and 15% 1,2-dioleoyl-sn-glycero-3-phospho-L-seri ne 

sodium salt (DOPS) at 10 g/ml. These lipids were purchased from Avanti Polar Lipids 
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Inc. (Alabaster, AL) as a 10 mg/ml stock dissolved in chloroform and were diluted to 10 

g/ml with methanol before plate coating. Negative control wells were coated with 100% 

DOPC at 10 g/ml. The wells were then blocked with a 1% (w/v) bovine serum albumin 

(BSA)/50 mM Tris-HCl pH 7.5/0 mM, 20 mM, 85 mM, or 150 mM NaCl solution with a 

45 minute incubation time at 37C and shaking at 75 rpm. Protein samples were prepared 

with serial dilutions of 1:2 in 1% (w/v) BSA/50 mM Tris-HCl pH 7.5/0 mM, 20 mM, 85 

mM, or 150 mM NaCl solution with initial protein concentrations of either 2000 nM, or 

4000 nM for 12 samples total. These samples were incubated for 90 minutes. Subsequently, 

Ni-NTA•HRP diluted to 1:1500 (in 1% (w/v) BSA/50 mM Tris-HCl pH 7.5/0 mM, 20 

mM, 85 mM, or 150 mM NaCl solution) was incubated for 30 minutes. Lastly, 2,2′-Azino-

bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was the colorimetric reagent was used 

to detect binding at 405 nm after incubation times of 30 minutes, 45 minutes, 1 hour, 1.5 

hours, and 2 hours. All incubation steps were at 37C and shaken at 75 rpm. Between each 

incubation, the wells were washed with a 1% (w/v) BSA/ 50 mM Tris-HCl pH 7.5 

solution. 

 

Intrinsic Fluorescence  

Chemical denaturation of mutants using a gradient of guanidine-HCl was monitored by 

intrinsic fluorescence. A 2 mL native sample was prepared with a protein concentration of 

0.1 mg/ml and diluted with a buffer composed of 150 mM NaCl, 25 mM Tris-HCl pH 

8.0, and 5% (v/v) glycerol. Additionally, a denatured sample was prepared with the same  

protein concentration and with the same buffer conditions, but with 6 M guanidine-HCl. 
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The native protein sample was titrated with the denatured sample by removing either 100 

or 125 l from the native sample and adding back the same amount removed with the 

prepared denatured sample for a total of either 23 (for 100 l titrations) or 19 (for 125 l 

titrations) samples. Each sample was excited at 280 nm and emission spectra were collected 

between 300-400 nm with a 1 nm step size and an integration time of 1 second. The slit 

widths for both excitation and emission were 0.69 mm in a Photon Technology 

International Fluorometer (Horiba Scientific). 

 

X-Ray Crystallography 

A porcine fVIII C2 domain crystal was prepared by a former group member, Caileen 

Brison, using the hanging drop vapor diffusion method with a 2:1 ratio of crystallization 

buffer (0.1 M CHES (pH 10.4), 0.1 M magnesium acetate, and 10% (v/v) ethanol) and 2 

mg/mL porcine C2 domain. This porcine C2 domain crystal was soaked with a 5 mM 

solution of the headgroup of phosphatidylserine, OPLS. Diffraction data were collected at 

beamline 5.0.1 at the Advanced Light Source (Lawrence Berkeley National Labs, Berkeley, 

CA). These diffraction data were indexed, merged and scaled with HKL2000 (Otwinowski 

and Minor; HLK Research, Inc. Charlottesville, VA), and the phases were determined by 

molecular replacement using Phaser within the Phenix software package. The previously 

published structure of porcine C2 (PDB ID 4MO3; Brison et al. 2015) was used for Phaser 

molecular replacement. Initial refinement with Phenix.refine included settings: 3 cycles, 

rigid body, occupancies, and individual B-factors.  The program, Coot (Crystallographic 

Object-Oriented Toolkit), provided a means to manually change the locations of the atoms 
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to fit the electron density map. After each set of manual refinements within Coot, an 

automatic refinement of the model was performed using Phenix.refine (Afonine et al. 

2012) with the refinement parameter settings: 10 to 30 cycles, XYZ coordinates, real-space, 

TLS parameters, simulated annealing (torsion angles), occupancies, and individual B-

factors. These settings were chosen based on several 3-cycle refinements with various 

combinations of settings. The TLS parameters setting is especially important in that it is a 

relatively new parameter that improves refinement (Zucker et al. 2010). For this structure, 

this parameter reduced Rwork by 7.6%. The combination of parameter settings that 

provided the lowest Rfree and Rwork numbers were the parameters used for further 

refinements. Individual water molecules were added with the Phenix.refine program during 

the last few sets of refinements by including the ‘update waters’ setting. These waters were 

manually modeled in Coot and again, automatically refined in Phenix.refine. OPLS was 

manually added in Coot where there was positive density that was unaccounted for, then 

automatically refined in Phenix.refine. Secondary structure was predicted using the 

secondary structure assessment program STRIDE (Frishman and Argos 1995) and 

assigned manually in PyMol.  
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Results 

 

Mutant hC2 Expression and Purification 

Production and isolation of hC2 mutants with immobilized metal affinity chromatography 

(IMAC) TALON® cobalt resin were successful, albeit in low yields with low purity (Table 

1, Figure 18A). Additional purification steps employing HiTrap Capto S cation strong 

exchanger columns improved the purity of the thioredoxin fusion and the enterokinase-

cleaved proteins (Figures 18B/C/D/E).  

 
Table 1. Approximate average protein yields per 6 L E. coli growths and percent recovery yields following 

recombinant enterokinase cleavages. 

 

Protein Average Yields for 6 L of 

Overexpression (Post IMAC) 

% Recovery of Protein Following 

Enterokinase Cleavage 

Wild Type hC2 ~30 mg, ~90% pure ~13% 

hC2 R2320S ~5 mg, ~60% pure ~20%  

hC2 R2320T ~ 5 mg, ~50% pure ~20% 
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Figure 18. Purification and Analysis. SDS-PAGE results for hC2 Arg2320Ser following purification 

and cleavage with recombinant enterokinase. (A) Arg2320Ser hC2 thioredoxin fusion samples with a 
molecular weight of 35.8 kDa following immobilized metal affinity chromatography with TALON resin 

IMAC were visualized on SDS-PAGE. All lanes are of the post IMAC samples, but lane 1 was 
purified protein expressed with an addition of 10 g of dextrose. (B) Samples combined from lanes 3 and 4 

of gel A were purified with a HiTrap Capto S column. Lane 2 shows the eluted peak number 3 that 
contained the purified Arg2320Ser hC2 thioredoxin fusion protein. Lanes 3 and 4 shows eluted peak 2 

and the flow through, respectively, contained the contaminants in the post IMAC sample. (C) The 
hC2Arg2320Ser thioredoxin fusion protein was cleaved with recombinant enterokinase and had a 

molecular weight of 18.7 kDa following cleavage (lanes 2 and 3). (D) The two cleaved samples from gel 
C were combined and further purified using a HiTrap Capto S column. (E) The UV chromatogram 

(blue) profile of the Capto S column purification of recombinant enterokinase cleaved Arg2320Ser mutant 
shows the flow through peak (peak 1), removing unwanted contaminants and the elution peak (peak 2) 

containing the cleaved Arg2320Ser mutant. The elution gradient is indicated by the green graph. Peak 2 
corresponds to lane 1 in D. 

 

 

E 
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Mass Spectrometry 

Mass spectrometry results indicated correct protein expression and cleavage at the correct 

site. DNA sequencing results also verified correct hC2 mutant sequences (Appendix 

Figure 1). The mass of cleaved wild type hC2 was 18.796 kDa. Masses of mutants hC2 

Arg2320Ser and Arg2320Thr cleaved were 67 Da and 57 Da and below that of wild type, 

respectively (Table 2). This was expected since serine and threonine are 69 Da and 55 Da 

lower in mass, respectively, than arginine. Similarly, wild type thioredoxin (trx) fusion hC2 

protein had a mass determined to 35.724 kDa, while hC2 Arg2320Thr-trx fusion had mass 

that was 56 Da lower. The purity of the hC2 Arg2320Ser-trx fusion sample for mass 

spectrometry was low compared to that of WT and Arg2320Thr, likely contributing to the 

discrepancy in mass. The mass spectrometry data are reported in the appendices.  

Table 2. Mass spectrometry verification of correct protein expression and cleavage at the correct site. See 

appendix for the mass spectrometry spectra. 

Protein Expected Mass Actual Mass Difference 

hC2 WT-trx fusion 35,859 Da 35,724 Da 135 Da 

hC2 Arg2320Ser-trx fusion 35,790 Da 35,733 Da 57 Da 

hC2 Arg2320Thr-trx fusion 35,804 Da 35,668 Da 136 Da 

hC2 WT rEK cleaved 18,801 Da 18,798 Da 3 Da 

hC2 Arg2320Ser rEK cleaved 18,731 Da 18,731 Da 0 Da 

hC2 Arg2320Thr rEK cleaved 18,745 Da 18,741 Da 4 Da 

 

 



 50 

Affinity Pull-Down Assays 

To evaluate proper folding of the mutant proteins, pull-down assays were utilized. The 

antibodies were immobilized on TALON resin before incubation of the hC2 mutants. 

Binding of the mutant hC2 proteins to the antibodies was assessed by the presence of both 

the antibody and hC2 mutant in the elution lanes. The pull-down assays showed both G99 

FAB and hC2 mutants in the elution lanes, indicating that all the mutants bound the 

nonclassical G99 FAB (Figure 19A/C/E). This suggests proper folding of the mutants. 

However, the hC2 Arg2320Ser mutant was unable to bind 3E6 FAB, indicated by the lack 

of a 3E6 FAB band in the elution lanes (Figure 19B). This implies that the serine residue 

caused a significant unfavorable electrostatic change for the binding of 3E6. Classical 3E6 

was able to bind both hC2 Arg2215Ala and hC2 Arg2320Thr mutants (Figure 19D/F).  

Though, the 3E6 FAB bands in the elution lanes appear to be less intense compared to the 

hC2 bands. These mutations likely attenuated the electrostatic interactions between the 

hC2 classical epitope in the mutants and 3E6 FAB due to removal of the positive charge 

provided by arginine. Lastly, the Arg2320Ser mutant was not able to not bind 3E6 FAB 

while the other mutants were able to likely because it caused the most significant 

electrostatic change. 
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Figure 19. Affinity pulldown assay results of hC2 mutants with either G99 FAB or 3E6 FAB. The hC2 

mutants were immobilized on TALON resin and washed several times with storage buffer to rinse non-
bound hC2. Antibodies were then flowed through the column and was also washed several times with 

storage buffer. Flow through (FT) and the last wash steps were visualized on SDS-PAGE to verify non-
bound proteins were washed out of the column. Elution steps 1 and 2 (first and second 10 mL of elution, 

respectively) were visualized to determine antibody binding of the hC2 mutants. Presence of both antibody 
and hC2 mutant bands in the elution lanes (highlighted) indicated antibody binding and proper folding of 

hC2 mutants. The molecular weights of the mutants were approximately 35.8 kDa and the molecular 
weights of the antibodies were approximately 25 kDa. (A) Pulldown assay of hC2 R2320S with G99 

FAB indicated antibody binding and proper folding. (B) Pulldown assay of hC2 R2320S with 3E6 FAB 
indicated no antibody binding. (C) Pulldown assay of hC2 R2215A with G99 FAB indicated antibody 

binding and proper folding. (D) Pulldown assay of hC2 R2215A with 3E6 FAB indicated antibody 
binding and proper folding. (E) Pulldown assay of hC2 R2320T with G99 FAB indicated antibody 

binding and proper folding. (F) Pulldown assay of hC2 R2320T with 3E6 FAB indicated antibody 
binding and proper folding.  
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Intrinsic Fluorescence 

Intrinsic fluorescence revealed the tertiary stability of the mutants relative to WT hC2 by 

monitoring the fluorescence emission of tryptophan residues following excitement at 280 

nm during chemical denaturation. As buried tryptophan residues are exposed to solvent, 

water serves as an efficient quencher of tryptophan fluorescence. Gibbs free energy 

(∆GH20) of unfolding can be calculated from these denaturation curves (Walter et al. 2010). 

As predicted, the emission intensity at 335 nm decreased during the denaturation of WT 

hC2, indicative of protein unfolding (Figure 20; Munishkina and Fink 2007). In addition, 

an increase in fluorescence intensity was observed at around 355 nm due to the increase in 

solvent-accessible tryptophan (Munishkina and Fink 2007).  
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Figure 20. Intrinsic fluorescence of WT hC2. (A) Denaturation of WT hC2 with increased concentrations 

of guanidine-HCl showed a decrease in fluorescence around 335 nm indicative of fluorescence quenching 
from the exposure of buried tryptophan residues to solvent during unfolding. (B) Intensities at 324 nm were 

graphed with respect to increasing guanidine-HCl concentrations. (C) The most linear region of the 
denaturation curve was used to find the ∆GH2O of unfolding. 
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Interestingly, the denaturation patterns of the hC2 Arg2320Ser mutant did not resemble 

that of WT hC2. From 0 to 1.36 M guanidine-HCl, the intensity trend was inconsistent , 

with decreasing intensity from 0 to 0.3 M and increasing in intensity from 0.30 to 1.36 M 

guanidine-HCl (Figure 21). This is possibly due to conformational changes that are 

quenching the fluorescence of a particular tryptophan residue. The thermodynamic 

calculations indicated that the Arg2320Ser mutant was slightly less stable than WT hC2, 

with ∆GH20 values of 18.5 kJ/mol and 20.8 kJ/mol, respectively. The 2.3 kJ/mol difference 

may not be significant and they may have similar tertiary stability.  
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Figure 21. Intrinsic fluorescence of hC2 Arg2320Ser mutant. (A) Denaturation of hC2Arg2320Ser 

with increased concentrations of guanidine-HCl showed a general decrease in fluorescence indicative of 
fluorescence quenching from the exposure of buried tryptophan residues to solvent during unfolding. 

However, fluorescence of the mutant from 0 M to 1.11 M guanidine-HCl conditions showed erratic 
intensity curves. (B) Intensities at 345 nm were graphed with respect to increasing guanidine-HCl 

concentrations. (C) The most linear region of the denaturation curve was used to find the ∆GH2O of 
unfolding. 
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Enzyme-Linked Immunosorbent Assays (ELISAs)  

ELISAs were employed to assess PS phospholipid binding. A composition of the 

phospholipids, 25% phosphatidylserine (PS) and 75% phosphatidylcholine (PC), that 

mimicked the activated platelet membranes was initially immobilized to the walls of 

hydrophobic 96-well plates and incubated with wild type (WT) hC2 and our hC2 mutants 

Arg2320Thr, Arg2215Ala, and Arg2320Ser. Each assay was performed in triplicate. Every 

hC2 mutation studied had significantly attenuated phospholipid binding, presumably due 

to the loss of the positive charge of arginine. Dissociation constants (KD) for hC2 WT and 

Arg2320Thr binding 25% PS/75% PC were 1600 nM and 9100 nM, respectively, in 0 mM 

NaCl conditions (Figure 22A). Human C2 Arg2215Ala and Arg2320Ser had binding 

affinities of 2400 nM (Figure 22B) and 4.8x1020 nM (Figure 22C), respectively which 

indicates these mutations inhibited binding compared to wild type. However, the large KD 

for the Arg2320Ser mutant may have been inaccurately calculated due to the unsaturated 

PS-binding curve and can be interpreted as having no PS-binding characteristics. 

 

Interestingly, NaCl inhibited WT hC2 binding to 25% PS/75% PC with KD’s of 1300 nM, 

1300 nM, 4400 nM, and 5600 nM for 0 mM, 20 mM, 85 mM, and 150 mM concentrations 

of NaCl, respectively (Figure 22D). The dissociation constants between the 0 mM and 20 

mM NaCl conditions were not significantly different. However, at 85 mM NaCl, the salt 

significantly inhibited C2 phospholipid binding. These results concur with the binding  

studies performed by Novakovic et al. in 2011, indicating that NaCl competes with the 

basic residues within the fVIII C2 domain for negatively charged PS binding.  



 57 

 

 

Figure 22. ELISA results of the hC2 mutants binding phospholipids compared to wild type hC2. The 

binding affinities of hC2 Arg2320Thr (A), Arg2215Ala (B), and Arg2320Ser (C) to phospholipids 
were lower than that of wild type hC2. (A) ELISA of Arg2320Thr vs WT hC2 binding to 25% 

phosphatidylserine (PS)/75% phosphatidylcholine (PC) in 0 mM NaCl conditions. (B) ELISA of 
Arg2215Ala vs WT hC2 binding to 25% PS/75% PC in 0 mM NaCl conditions. (C) ELISA of 

Arg2320Ser vs WT hC2 binding to 25% PS/75% PC in 0 mM NaCl conditions. (D) ELISA of 
WT hC2 binding to 25% PS/75% PC with varying amounts of NaCl. Increasing concentrations of 

NaCl inhibited hC2 binding.  
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Crystal Structure of Porcine C2 Interacting with O-Phospho-L-Serine 

An X-ray crystal structure of pC2 soaked with the headgroup of phosphatidylserine, O-

phospho-L-serine (OPLS), was determined to a resolution of 1.4 Å to identify which 

underlying basic residues behind the hydrophobic beta hairpin loops interact with the 

negatively charged headgroup of phosphatidylserine (Table 3). The three-dimensional 

model of pC2 was initially created by molecular replacement in Phenix.MR using a 

previously solved structure of pC2 (PDB ID: 4MO3; Brison et al. in 2015), which 

determines the phase of the X-ray diffraction data. Several iterations of manual modeling 

within the program, Coot, and automatic refinement in Phenix.refine resulted in a final 

pC2 crystal structure with model refinement statistics of R factor (Rwork) and Rfree of 0.1522 

and 0.1791, respectively. The R values of OPLS-soaked pC2 structure indicated that the 

model fits the diffraction data with high quality due to the values being below 0.2 (Brunger 

1992). The Rwork value was lower than that of Rfree, which indicated non-biased model 

fitting into the X-ray diffraction data.  
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Table 3. X-Ray Data and Refinement Statistics of the pC2 OPLS structure. 

X-Ray Data Statistics Wavelength 1.00 Å 

 Resolution Range 31.322 Å - 1.401 Å 

 Space Group Orthorhombic I 2 2 2 

 
Unit Cell 

a = 48.99 Å   b = 68.20 Å c = 105.78 

Å  α = 90 β =  90 γ = 90 

 Total Unique Reflections 35,055 

 Redundancy 13.4 (12.2) 

 Completeness 99.7 (99.9) % 

 I/sigma(I) 45.1 (8.04) 

 Rpim 0.019 (0.121) 

Model Refinement Statistics Rfactor (Rwork) 0.1522 

 Rfree 0.1791 

Number of atoms Protein Atoms 1388 

 Water Molecules 249 

 Protein Residues 157 

 Ligand 1 (OPLS) 

 

RMS Bond Length 

Restraints 0.007 Å 

 

RMS Angles Angle 

Restraints 1.283 

 Ramachandran Favored 95.1% 

 Ramachandran Outliers 1.10% 

 Rotamer Outliers 0.00% 

 C-beta Outliers 0 

 Clashscore 6.21 

 Overall Score 1.68  

Average B-factor Protein 23.68 Å2 

 Solvent 35.94 Å2 

 Ligand 90.78 Å2 
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Figure 23. Manual molecular modeling and refinement of OPLS within the pC2/OPLS crystal structure  
using Coot. Blue density shows density that was accounted for during automatic refinement in Phenix. Red 

stars respresent individual water molecules. (A) Molecular modeling in the program, Coot, showed positive 
density (green) that was unaccounted for in the electron density map. (B) OPLS and a water molecule were 

manually added within the program to fit into this positive density. (C) Further refinement using the 
software, Phenix, showed an acceptable fit of OPLS. 

 
 

The purpose of this crystal structure was to investigate which of the basic residues 

underlying the hydrophobic beta hairpin loops interact favorably with the negatively 

charged headgroup of phosphatidylserine. Modeling of OPLS placement was near 

Arg2320, because of the presence of a positive density within the electron density map 

(Figure 23). In this structure, we found that Arg2320 was the positive residue that directly 

interacted with the negatively charged OPLS, with a distance of 3.5 Å (Figure 24).  
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Figure 24. A 1.4 Å crystal structure of pC2 bound to O-phospho-L-serine (OPLS). In cyan is the 
Arg2320 residue that interacts with the OPLS (green), with a distance of 3.5 Å. The beta hairpin loops 

(gray) are embedded into the hydrophobic membrane (represented by the dashed line and gray -shaded area). 
A ring of basic residues (blue) possibly interact with negatively charged phospholipid headgroups during 

activated platelet membrane binding, but Arg2320 is likely the main contributor to phosphatidylserine 
membrane binding.  

 

The placement of OPLS was in close proximity to the solvent-exposed hydrophobic beta-

hairpin loops hypothesized to be embedded within lipid membranes during binding (Pratt, 

et al 1999; Gilbert et al. 2002). This provided structural evidence to support our ‘new’ 

classical epitope membrane binding model compared to the old model suggested in 

previous studies by other labs (Pratt, et al 1999; Stoilova-McPhie et al. 2002) because the 

old model appears to have OPLS floating well above the platelet membrane (Figure 25).  
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Figure 25. The ternary complex of fVIII/3E6 FAB/G99 FAB overlayed with the OPLS (red)/pC2 

crystal structure to demonstrate the (A) new versus (B) old membrane binding models of C2 (PDB ID 
4KI5; Walter et al. 2013). 

 
 

In addition, it is possible that Arg2215 has favorable electrostatic interactions with the 

negatively charged phosphate group of OPLS, provided that this Arg2215-containing loop 

has high flexibility. A coulombic surface coloring showed the region of OPLS binding  

within pC2 is primarily positively charged (Figure 26). Our binding model revealed that 

Arg2209, Arg2215, Lys2183, Arg2220, Arg2222, Lys2249, and Arg2320 in pC2 are likely 

the basic underlying residues that form salt bridges with the exposed negatively charged 

phospholipids on the surface of activated platelet membranes, with Arg2320 being the 

main contributor to the direct interaction between OPLS and C2 (Figure 24). 
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Figure 26. Coulombic surface coloring (generated in Chimera) of (A) pC2 domain of fVIII in complex 

with OPLS and (B) a zoomed-in image of the binding interface. The predominantly positively charged 
(blue) binding region of pC2 interacts favorably with the oppositely charged OPLS (green molecule).  
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Discussion 

 

FVIII binds to PS-containing membranes primarily with its C2 domain. Within the C2 

domain, the two hydrophobic beta hairpin loops penetrate the lipid layer of platelet 

membranes. This observation is supported by several different structural and functional 

studies from other labs (Pratt et al. 1999; Gilbert et al. 2002; Shen et al. 2008; Madsen et 

al. 2015). Several basic residues underlying the hydrophobic beta hairpin loops are 

hypothesized to form salt bridges with the negatively charged headgroups of PS on the 

surface of activated platelet membranes. However, the specific basic residues that form 

these interactions are currently not well defined. 

 

Our research proposes a binding model that is distinct from the older binding model 

proposed by Pratt et al. 1999 and other labs (such as Stoilova-McPhie et al. 2002) at the 

non-classical epitope face. Previous studies performed in our lab have provided evidence 

of the new model at the classical epitope face of C2. Mainly, the C2-bound 

phosphatidylserine (PS) was able to bind the non-classical G99 mAb, but not the classical 

3E6 mAb, revealing that PS blocks 3E6 mAb binding because they bind at the same C2 

epitope (Brison et al. 2015). This indicates PS binds at the classical epitope face, and not 

the non-classical epitope face. This sparked our interest in elucidating the atomic-level 

details of C2 bound to OPLS for the purpose of providing structural evidence to identify 

which underlying basic residue directly interacts with the negatively charged phospholipid, 

PS.  
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Through this pC2-OPLS crystal structure, we found that the conserved Arg2320 residue 

is the main basic underlying residue that forms a salt bridge with PS, with a distance of 3.5 

Å (Figure 24). This finding supports our new model in which the binding of 

phosphatidylserine-containing membranes occurs at the Arg2320-centered classical 

epitope face (Figure 22). In support of this Arg2320-OPLS interaction, molecular 

membrane binding simulations of the C2 domain completed by Madsen et al. in 2015 

revealed that basic residues within C2 interact with the phosphate or carboxyl groups of 

PS lipids transiently and in a nonspecific manner, except for the two residues: Arg2220 

and Arg2320. They found that these two residues can interact directly with the acidic 

headgroup of PS lipids. These two direct interactions, however, are mutually exclusive. For 

the orientation of C2 to form direct interactions between Arg2320 and PS, this direct 

interaction cannot occur for Arg2220. The differences between the old model centered on 

Arg2220 and the new C2 membrane binding model centered on Arg2320 exhibit this 

precise difference. Furthermore, they employed the same membrane binding simulation 

study on the C1 domain and discovered that Arg2163, the residue corresponding to the 

same location as Arg2320 within C2, was able to achieve a tight interaction with PS 

(Madsen et al. 2015). The equivalent residue of Arg2220 in C2 is Ser2063 in C1, indicating 

that the Arg2320 interaction may be more robust since it is conserved between both the 

C1 and C2 domains.  

 

In support of the finding that Arg2320 is a central residue involved in PS membrane 

binding, the ELISA binding studies showed that the mutations at this residue, Arg2320Ser 
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and Arg2320Thr, inhibited phospholipid binding. This indicated the importance of the 

basic arginine at this residue location since the positive charge is lost with the serine and 

threonine mutations. In accordance with this, Arg2215Ala also caused a loss in C2 

phospholipid binding activity. In the new binding model, Arg2215 appeared to be docked 

within the hydrophobic layer of the lipid membrane based on its proximity to the 

hydrophobic beta hairpin loops, which generated an interest in removing this positive 

charge to probe whether this increases C2 phospholipid binding activity. However, our 

data showed that Arg2215Ala attenuated binding to phospholipids. This result indicates 

that the basic Arg2215 residue also plays an important role in forming a salt bridge with 

phospholipid membranes. We now hypothesize that Arg2215 may form a favorable 

electrostatic interaction with the negatively charged phosphate group within OPLS, given 

that this Arg2215-containing loop is highly flexible.  

 

From the pC2-OPLS crystal structure we also showed that there was no major 

conformation change upon OPLS binding. The difference in the pC2 and pC2-OPLS 

crystal structures were minimal, with an RMSD value of 0.810 Å, calculated in PyMol when 

outliers were not rejected (Figure 27). The main differences between the structures were 

in the highly dynamic regions of the beta hairpin loops, N-terminal, and C-terminal. 

Omission of these areas reduced the RMSD value to 0.532 Å (when calculated with 

residues 2173-2195, 2202-2249, and 2255-2329 and no outlier rejection).  

 



 67 

 
Figure 27. Superposition of the pC2/OPLS crystal structure (pink) and the previously solved pC2 
structure (cyan) (PDB ID 4MO3; Brison et al. 2015), provided an RMSD of 0.810 Å. The RMSD 

value with the omission of the dynamic regions of the beta hairpin loops, N-terminal, and C-terminal is 
0.532 Å. 

 

 

A caveat to our studies is that the methods employed only probed membrane binding of 

the isolated C2 domain, and not of full-length fVIIIa. The C2 domain within full length 

fVIIIa is structurally near the C1 domain. The C1 domain has also been shown to 

contribute to binding membranes (Meems et al. 2009). It is possible that the C1 domain 

may play a role in orienting the C2 domain during membrane anchoring (Lu et al. 2011). 

If this is the case, the new model supports this idea more so than the old model. 

Superposition of the pC2-OPLS crystal structure to the human full length fVIII structure 

(Shen et al. 2008) show that the classical epitope face of C2 (which includes Arg2320 and 

OPLS) faces the C1 domain, whereas the non-classical epitope face does not (Figure 28). 

The yellow residues in the back of the image within the C2 domain are the residues 
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involved in the old membrane binding model, which shows that the old binding model 

would cause C2 to tilt away from the C1 domain during membrane binding, instead of 

towards it in the new binding model. Future binding studies should include ELISAs 

performed with a C1-C2 construct. Studies should also include ELISAs with C2 mutants 

that have mutations in the basic residues involved in the old membrane model such as 

Lys2227 and Arg2220 to probe whether they attenuate C2 binding and thus, determine the 

importance of these residues for C2 membrane binding.  

 

 
Figure 28. The pC2/OPLS crystal structure superimposed with a structure of human full length fVIII 

(PDB ID 2R7E; Shen et al. 2008). The green OPLS and Arg2320 faces the C1 domain while the 
yellow residues involved in the ‘old’ phospholipid binding model do not. This further supports our new 

binding model and coincides with the idea that the C1 domain likely orients the C2 domain during 
membrane binding. 
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The pull-down assays and intrinsic fluorescence studies validated our ELISAs by providing 

information about whether the proteins were folded and their structural stability, 

respectively. All the hC2 mutants were able to bind to the nonclassical G99 FAB, which 

informed us that our hC2 mutant proteins were likely folded properly.  The pull-down 

assays also showed that the Arg2320Ser mutation disrupted 3E6 binding, which further 

supports our hypothesis that hC2 binds membranes at the same site as 3E6, at the classical 

epitope. It is also possible that the classical epitope face of C2 was not properly folded. 

However, this is unlikely because of the similar protein stability between the Arg2320Ser 

mutant and wild type C2. Intrinsic fluorescence revealed that the Arg2320Ser mutation 

also decreased protein stability, but only by approximately 11%. This finding, along with 

the results from the pull-down assays, suggest that the decreased membrane binding of the 

arginine mutants determined by the ELISAs were not due to improper folding of the 

mutants. They were most likely due to the removal of the positive charge by mutating the 

arginine to residues that have no charge.  

 

Interestingly, we also discovered that NaCl inhibited C2 phospholipid binding, even at the 

physiological salt concentration, 150 mM NaCl (Figure 22D). This finding has also been 

supported by a study from a different lab (Novakovic et al. 2011). The observed 

attenuation of phospholipid binding is likely due to NaCl competing with the basic residues 

of C2 for the negatively charged phosphatidylserine during binding. In the presence of 80 

mM NaCl, the KD increased by approximately 70% compared to binding with no salt 
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present. This leads to the conclusion that in vivo, C2 membrane binding is dependent on 

other factors, such as the proximity of the C1 domain. Thus, future lipid binding needs to 

be further investigated with intact fVIII to complement our isolated C2 domain studies. It 

has been found that the C2 domain binds membranes with a 40-fold lower affinity than 

intact fVIII (Novakovic et al. 2011), further indicating that fVIII membrane binding is 

complex and in order to understand the full mechanism, supplementary binding studies 

must be done. This observation, however, does not undermine our isolated C2 domain 

binding research as it still reveals the important basic residues within C2 that are involved 

in PS-containing membrane binding. Gilbert et al. in 2002 were unable to express an intact 

B-domain-deleted fVIII Arg2320Ala mutant. Because we were able to isolate the Arg2320 

mutants in the C2 domain, our studies showed the importance of this residue during PS-

membrane binding. This same group, nonetheless, was able to investigate an intact B-

domain-deleted fVIII Arg2215Ala mutant. The clotting activity of this mutant was similar 

to wild type revealed by an activated partial thromboplastin time assay (Gilbert et al. 2002). 

In contrast, our hC2 Arg2215Ala mutant was unable to bind PS compared to wild type 

hC2. This further suggests that the full-length fVIII lipid binding mechanism is more 

complex than that of isolated C2.  

 

Although this study was not all-encompassing, we have provided useful structural 

information about the phospholipid membrane binding mechanism of the isolated C2 

domain within fVIII. Mainly, the orientation of the C2 domain during membrane binding 

is likely centered on Arg2320Ser, and occurs at the classical epitope face. Specific 
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interactions between activated platelet membranes include favorable interactions of the 

two hydrophobic beta hairpin loops (Met2199-Phe2200 and Leu2251-Lue2252) with the 

hydrophobic lipid bilayer of membranes. The underlying basic residues Arg2209, Arg2215, 

Lys2183, Arg2220, Arg2222, Lys2249, and Arg2320 in pC2 likely form nonspecific salt 

bridges with negatively charged phosphate or carboxyl groups of phospholipids on the 

surface of activated platelet membranes, with Arg2320 being the main contributor to the 

interaction between C2 and OPLS (Figure 24). In the future, other researchers may use 

this information to design novel fVIII replacement concentrates that have an increased 

activity in phospholipid binding for the improvement in current hemophilia A 

therapeutics.  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 



 72 

References 
 

1. Abildgaard, U. (1968) Inhibition of the Thrombin-Fibrinogen Reaction by 
Heparin and Purified Cofactor. Scand. J. Haemat. 5: 440-453. 

2. Addiego, J. E. Jr, Gomperts, E., Liu, S. L., Bailey, P., Courter, S. G., Lee, M. 
L., Neslund, G. G., Kingdon, H. S. and Griffith, M. J. (1992) Treatment of 

Hemophilia A with a Highly Purified Factor VIII Concentrate Prepared by Anti-
FVIIIc Immunoaffinity Chromatography. Thromb Haemost. 67(1): 19-27. 

3. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, 
N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H. 

and Adams, P. D. (2012) Towards Automated Crystallographic Structure 
Refinement with Phenix.Refine. 68(4): 352-367. 

4. Arai, M., Scandella, D. and Hoyer, L. W. (1989) Molecular Basis of Factor VIII 
Inhibition by Human Antibodies: Antibodies that Bind to the Factor VIII Light 

Chain Prevent the Interaction of Factor VIII with Phospholipid. 
5. Barrow, R. T., Healey, J. F., Jacquemin, M. G., Saint-Remy, J. M. and Lollar, 

P. (2001) Antigenicity of putative phospholipid membrane binding residues in 
factor VIII. Blood. 97:169–174. 

6. Barrow, R. T. and Lollar, P. (2006) Neutralization of antifactor VIII inhibitors by 
recombinant porcine factor VIII. J Thromb Haemost. 4: 2223–2229. 

7. Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. (1992) Selective 
inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor 

by site-directed mutagenesis. J. Biol. Chem. 267: 3409-3415 
8. Bergsagel, D. E. and Hougie, C. (1956) Intermediate Stages in the Formation of 

Blood Thromboplastin. Brit. J. Haemat. 2:113-129. 
9. Bevers, E. M., Comfurius, P. and Zwaal, R. F. A. (1983) Changes in Membrane 

Phospholipid Distribution During Platelet Activation. Biochimica et Biophysica Acta. 
736: 57-66.  

10. Bolton-Maggs, P. H. B., Perry, D. J., Chalmers, E. A., Parapia, L. A, Wilde, 
J. T., Williams, M. D., Collins, P. W., Kitchen, S., Dolan, G. and Mumford, 

A. D. (2004) The rare coagulation disorders-review with guidelines for management 
from the United Kingdom Haemophilia Centre Doctors’ Organisation. Haemophilia. 

10: 593-628. 
11. Bray, G. L., Gomperts, E. D. Courter, S. et al. (1994) A Multicenter Study of 

Recombinant Factor VI11 (Recombinate): Safety, Efficacy, and Inhibitor Risk in 
Previously Untreated Patients With Hemophilia A . Blood. 83(9): 2428-2435. 

12. Briede, J. J., Heemskerk, J. W., Van’T Veer, C. et al. (2001) Contribution of 
Platelet-Derived Factor Va to Thrombin Generation on Immobilized Collagen- and 

fibrinogen-adherent platelets. Thromb Haemost. 85(3): 509-513. 
13. Brison, C. M., Mullen, S. M., Wuerth, M. E. et al. (2015) The 1.7 Å X-Ray 

Crystal Structure of the Porcine Factor VIII C2 Domain and Binding Analysis to 
Anti-Human C2 Domain Antibodies and Phospholipid Surfaces. PLOS One.  

0122447: 1-17. 



 73 

14. Broze, G. J., Warren, L. A., Novotny, W. F., Higuchi, D. A., Girard, J. J. and 
Miletich, J. P. (1988) The Lipoprotein-Associated Coagulation Inhibitor that 

Inhibits the Factor VII-Tissue Factor Complex also Inhibits Factor Xa: Insight into 
its Possible Mechanism of Action. Blood. 71(2): 335-343. 

15. Brunger, A. T. (1992) Free R Value: A Novel Statistical Quantity for Assessing the 
Accuracy of Crystal Structures. Nature. 355(6359): 472-475. 

16. Centers for Disease Control. (1988) Safety of Therapeutic Products for 
Hemophilia Patients. MMWR Morb Mortal Wkly Rep. 37 (29): 441-450. 

17. Cochrane, C. G., Revak, S. D. and Weupper, K. D. (1973) Activation of 
Hageman Factor in Solid and Fluid Phases. The Journal of Experimental Medicine. 138: 

1564-1583. 
18. Coppola, A., Capua, M. D., Minno, D., Palo, M. D., Marrone, E., Lerano, P., 

Arturo, C., Tufano, A. and Cerbone, A. M. (2010) Treatment of Hemophilia: A 
Review of Current Advances and Ongoing Issues. Journal of Blood Medicine. I: 183-

195. 
19. Damus, P. S., Hicks, M. and Rosenberg, R. D. (1973) Anticoagulant Action of 

Heparin. Nature. 246: 355-357.  
20. Davie, E.W. and Ratnoff, O.D. (1964) Waterfall sequence for intrinsic blood 

clotting. Science. 145(3638): 1310-1312. 
21. Dieijen, G. V., Tans, G., Rosing, J. and Hemker, C. (1981) The Role of 

Phospholipid and Factor VIIIa in the Activation of Bovine Factor X. The Journal of 
Biological Chemistry. 256(7): 3433-3442.  

22. DiMichele, D. and Kroner, B. L. (2002) The North American Immune Tolerance 
Resistry: Practices, Outcomes, Outcome Predictors. Thromb Haemost. 87(1): 52-57. 

23. Eaton, D., Rodriguez, H. and Vehar, G. A. (1986) Proteolytic Processing of 
Human Factor VIII. Correlation of Specific Cleavages by Thrombin, Factor Xa, 

and Activated Protein C with Activation and Inactivation of Factor VI11 Coagulant 
Activity. ACS Biochemistry. 25(2): 505-512. 

24. Emsley, J., Cruz, M., Handin, R. and Liddington, R. (1998) Crystal Structure 
of the von Willebrand Factor A1 Domain and Implications for the Binding of 

Platelet Glycoprotein Ib. The Journal of Biological Chemistry. 273: 10396-10401. 
25. Esmon, C. T. and Owen, W. G. (1981) Identification of an Endothelial Cell 

Cofactor for Thrombin-Catalyzed Activation of Protein C. Proc. Natl. Acad. Sci. 
78(4): 2249-2252.  

26. Fay, P. J., Coumans, J. V. and Walker, F. J. (1991) von Willebrand Factor 
Mediates Protection of Factor VIII from Activated Protein C-Catalyzed 

Inactivation. The Journal of Biological Chemistry. 266(4): 2172-2177. 
27. Foster, P. A., Fulcher, C. A., Houghten, R. A. and Zimmerman, T. S. (1990) 

Synthetic Factor VIII Peptides With Amino Acid Sequences Contained Within the 
C2 Domain of Factor VIII Inhibit Factor VIII Binding to Phosphatidylserine. Blood. 

75(10): 1999-2004.  
28. Franchini, M. and Lippi, G. (2011) The Use of Desmopressin in Acquired 

Haemophilia A: A Systematic Review. Blood Transfusion. 9(4): 377-382. 



 74 

29. Frishman, D. and Argos, P. (1995) Knowledge-Based Protein Secondary 
Structure Assignment. Proteins: Structure, Function, and Genetics. 23: 566-579. 

30. Fujikawa, K., Legaz, M. E., Kato, H. and Davie, E. W. (1974) The Mechanism 
of Activation of Bovine Factor IX (Christmas Factor) by Bovine Factor XIa 

(Activated Thromboplastin Antecedent). Biochemistry. 13(22): 4508-4516. 
31. Fulcher, C., de Graaf Mahoney, S., Roberts, J., Kasper, C. and Zimmerman, 

T. (1985) Localization of Human Factor FVIII Inhibitor Epitopes to Two 
Polypeptide Fragments. Proc Natl Acad Sci. 82: 7728–7732. 

32. Gawryl, M. S. and Hoyer, L. W. (1982) Inactivation of Factor VIII Coagulant 
Activity by Two Different Types of Human Antibodies. Blood. 60:1103–1109. 

33. Gilbert, G.E. and Arena, A. A. (1996) Activated of the Factor VIIIa-Factor IXa 
Enzyme Complex of Blood Coagulation by Membranes Containing Phosphatidyl-

L-serine. The Journal of Biological Chemistry. 271(19): 11120-11125 
34. Gilbert, G. E., Novakovic, V. A., Shi, J., Rasmussen, J. and Pipe, S. W. (2015) 

Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. 
Blood. 126(10): 1237-1244. 

35. Gilbert, G. E., Kaufman, R. J., Arena, A. A., Miao, H. and Pipe, S. W. (2002) 
Four Hydrophobic Amino Acids of the Factor VIII C2 Domain Are Constituents 

of Both the Membrane-binding and von Willebrand Factor-binding Motifs. The 
Journal of Biological Chemistry. 277(8): 6374-6381.  

36. Ginsburg, D., Handin, R. I., Bonthron, D. T., Donlon, T. A., Bruns, G. A., 
Latt, S. A. and Orkin, S. H. (1985) Human von Willebrand factor (vWF): 

Isolation of Complementary DNA (cDNA) clones and Chromosomal Localization. 
Science. 228(4706): 1401-1406. 

37. Gitchier, J., Wood, W. I., Goralka, T. M., Wion, K. L., Chen, E. Y., Eaton, D. 
H., Vehar, G. A., Capon, D. J. and Lawn, R. M. (1984) Characterization of the 

Human Factor VIII Gene. Nature. 312: 326-330. 
38. Griffin, J. H. (1978) Role of Surface in Surface-Dependent Activation of Hageman 

Factor (Blood Coagulation Factor XII). Proc. Natl. Acad. Sci. 75(4): 1998-2002. 
39. Hantgan, R. R., Hindriks, G., Taylor, R. G., Sixma, J. J. and de Groot, P. G. 

(1990) Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all 
involved in platelet adhesion to fibrin in flowing whole blood. Blood. 76: 345-353. 

40. Hay, C. R., Lozier, J. N., Lffan, M., Tradati, F., Santagostino, E., Ciavarella, 
N., Schiavoni, M., Fukui, H., Yoshioka, A., Teitel, J., Mannucci, P. M. and 

Kasper, C. K. (1996) Safety profile of porcine factor VIII and its use as hospital 
and home-therapy for patients with haemophilia-A and inhibitors: the results of an 

international survey. Thromb Haemost. 75(1): 25-29.  
41. Hoffman, M. and Dargaud, Y. (2012) Mechanisms and Monitoring of Bypassing 

Agent Therapy. Journal of Thrombosis and Haemostasis. 10: 1478-1485.  
42. Horling, F. M., Allacher, P., Koppensteiner, H., Engl, W., Scheiflinger, F., 

Abbuehl, B. E. and Reipert, B. M. (2016) Immunogenicity of BAX 855 in 
Previously Treated Patients with Congenital Severe Hemophilia Α. Blood. 128(22): 

2594.  



 75 

43. Huizinga, E. G., van der Plas, R. M., Kroon, J., Sixma, J. and Gros, P. (1997) 
Crystal Structure of the A3 Domain of Human von Willegrand Factor: Implications 

for Collagen Binding. Structure. 5(9): 1147-1156. 
44. Jackson, S. P. (2007) The growing complexity of platelet aggregation. Blood. 

109(12): 5087-5095. 
45. Kanaide, H. and Shainoff, J. R. (1975) Cross-linking of fibrinogen and fibrin by 

fibrin-stabilizing factor (factor XIIIa). J Lab Clin Med. 85(4): 574-597. 
46. Kaufman, R. J., Wasley, L. C. and Dorner, A. J. (1988) Synthesis, Processing, 

and Secretion of Recombinant Human Factor VIII Expressed in Mammalian Cells. 
The Journal of Biological Chemistry. 263(13): 6352-6362. 

47. Koedam, J. A., Hamer, R. J., Beeser-Visser, N. H., Bouma, B. N. and Sixma, 
J. J. (1990) The Effect of von Willebrand Factor on Activation of Factor VIII by 

Factor Xa. Eur. J. Biochem. 189: 229-234. 
48. Konkle, B. A., Stasyshyn, O., Chowdary, P., Bevan, D. H., Mant, T., Shima, 

M., Engl, W., Dyck-Jones, J., Fuerlinger, M., Patrone, L., Ewenstein, B. and 
Abbuehl. (2015) Pegylated, Full-Length, Recombinant Factor VIII for Prophylactic 

and On-Demand Treatment of Severe Hemophilia A. Blood. 126(9): 1078-1085. 
49. Kurachi, K., Fujikawa, K., Schmer, G. and Davie, E. W. (1976) Inhibition of 

Bovine Factor IXa and Factor Xaß by Antithrombin III. Biochemistry. 15(2): 373-
377. 

50. LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F. and 
McCoy, J.M. (1993) A Thioredoxin Gene Fusion Expression System that 

Circumvents Inclusion Body Formation in the E. coli Cytoplasm. Bio/Technology. 11: 
187–193. 

51. Lawson, J. H. and Mann, K. G. (1991) Cooperative Activation of Human Factor 
IX by the Human Extrinsic Pathway of Blood Coagulation. The Journal of Biological 

Chemistry. 266(17): 11317-11327. 
52. Lollar, P., Hill-Eubanks, D. C. and Parker, C. G. (1988) Association of the 

Factor VIII Light Chain with von Willebrand Factor. The Journal of Biological 
Chemistry. 263(21): 10451-10455. 

53. Lollar, P., Parker, E. T. and Fay, P. J. (1992) Coagulant Properties of Hybrid 
Human/Porcine Factor VIII Molecules. The Journal of Biological Chemistry. 267(33): 

23652-23657. 
54. Lottenberg, R., Kentro, T. B. and Kitchens, C. S. (1987) Acquired Hemophilia: 

A Natural History Study of 16 Patients With Factor VIII Inhibitors Receiving Little 
or No Therapy. Arch Intern Med. 147(6): 1077-1081.  

55. Lindquist, P. A., Fujikawa, K. and Davie, E. W. (1978) Activation of Bovine 
Factor IX (Christmas Factor) by Factor XIa (Activated Plasma Thromboplastin 

Antecedent) and a Protease from Russell’s Viper Venom. The Journal of Biological 
Chemistry. 253(6): 1902-1909. 

56. Lu, J., Pipe, S. W., Miao, H. et al. (2011) A membrane-interactive surface on the 
factor VIII C1 domain cooperates with the C2 domain for cofactor function. Blood. 

117(11): 3181-3189. 



 76 

57. Lusher, J. M., Arkin, S. and Abildgaard, C. F. (2003) Recombinant Factor VIII 
for the Treatment of Previously Untreated Patients with Hemophilia A. The New 

England Journal of Medicine. 328(7): 455-459. 
58. Lusher, J. M., Lee, C. A., Kessler, C. M. et al. (2003) The safety and efficacy of 

B-domain deleted recombinant factor VIII concentrate in patients with severe 
haemophilia A. Haemophilia. 9(1): 38-49. 

59. Macfarlane, R.G. (1964) An enzyme cascade in the blood clotting mechanism, and 
its function as a biochemical amplifier. Nature 202: 498–499. 

60. Madsen, J. J., Ohkubo Y. Z., Peters, G. H. et al.  (2015) Membrane Interaction 
of the Factor VIIIa Discoidin Domains in Atomistic Detail. Biochemistry. 54: 6123-

6131. 
61. McDaniel, M. (2013) Treatment of Hemophilia A and B. National Hemophilia 

Foundation. 1-9. 
62. Meems, H., Meijer, A. B., Cullinan, D. B., Mertens, K. and Gilbert, G. E. 

(2009) Factor VIII C1 Domain Residues Lys 2092 and Phe 2093 Contribute to 
Membrane Binding and Cofactor Activity. Blood. 114: 3938-3946. 

63. Miao C. (2010) Immunomodulation for inhibitors in hemophilia A: the important 
role of Treg cells. Expert Rev Hematol. 3: 469–483. 

64. Monkovic, D. D. and Tracy, P. B. (1990) Activation of Human Factor V by 
Factor Xa and Thrombin. Biochemistry. 29: 1118-1128. 

65. Monroe, D. M., Hoffman, M. and Roberts, H. (1996) Transmission of a 
Procoagulant Signal from Tissue Factor-Bearing Cells to Platelets. Blood Coagulation 

and Fibrinolysis. 7(4): 459-464.  
66. Monroe, D.M. and Hoffman M. (2006) What does it take to make the perfect 

clot? Arterioscler Throm Vasc Biol. 26: 41-48.  
67. Meeks, S. L., Healey, J. F., Parker, E. T., Barrow, R. T. and Lollar, P. (2007) 

Antihuman factor VIII C2 domain antibodies in hemophilia A mice recognize a 
functionally complex continuous spectrum of epitopes dominated by inhibitors of 

factor VIII activation. Blood. 110(13): 4234-4242. 
68. Meeks, S. L., Healey, J. F., Parker, E. T., Barrow, R. T. and Lollar, P. (2008) 

Nonclassical anti-C2 domain antibodies are present in patients with factor VIII 
inhibitors. Blood. 112(4): 1151–1153. 

69. Munishkina, L. A. and Fink, A. L. (2007) Fluorescence as a Method to Reveal 
Structures and Membrane-interactions of Amyloidogenic Proteins. Biochemica et 

Biophysica Acta. 1768: 1862-1885.  
70. Naito, K. and Fujikawa, K. (1991) Activation of Human Blood Coagulation 

Factor XI Independent of Factor XII. The Journal of Biological Chemistry. 266(12): 
7353-7358. 

71. Nemerson, Y. and Pitlick, F. A. (1972) The Tissue Factor Pathway of Blood 
Coagulation. Progress in Hemostasis and Thrombosis. 1: 1-37. 

72. Nogami, K., Shima, M., Hosokawa, K., Nagata, M. Koide, T., Saenko, E. L., 
Tanaka, I., Shibata, M. and Yoshioka, A. (2000) Factor VIII C2 domain 

contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at 
Arg1689. J Biol Chem. 275: 25774–25780. 



 77 

73. Novakovic, V. A., Cullinan, D. B., Wakabayashi, H., Fay, P. J., Baleja, J. D. 
and Gilbert, G. E. (2011) Membrane-Binding Properties of the Factor VIII C2 

Domain. Biochem. J. 435: 187-196. 
74. O’Donnell, V. B., Murphy, R. C., and Watson, S. P. (2014) Platelet Lipidomic: 

A Modern Day Perspective on Lipid Discovery and Characterization in Platelets. 
Circ Res. 114(7): 1185-1203. 

75. Owen, W. G. (1975) Evidence for the Formation of an Ester Between Thrombin 
and Heparin Cofactor. Biochemica et Biophysica Acta. 405: 380-387. 

76. Palta, S., Saroa, R. and Palta, A. (2014) Overview of the Coagulation System. 
Indian J. Anaesth. 58(5): 515-523. 

77. Pareti, F., Niiya, K., McPherson, J. M. and Rugger, Z. M. (1987) Isolation and 
Characterization of Two Domains of Human von Willebrand Factor That Interact 

with Fibrillar Collagen Types I and III. The Journal of Biological Chemistry. 262(28): 
13835-13841. 

78. Pittman, D. D. and Kaufman, R. J. (1988) Proteolytic Requirements for 
Thrombin Activation of Anti-Hemophilic Factor (Factor VIII). Proc. Natl. Acad. Sci. 

85: 2429-2433. 
79. Pratt, K. P., Shen, B W., Takeshima, K., Davie, E. W., Fujikawa, K. and 

Stoddard, B. L. (1999) Structure of the C2 Domain of Human Factor VIII at 1.5 
Angstrom Resolution. Nature. 402: 439-442. 

80. Pratt, K. P. (2015) fVIII binds platelets + fibrin: no PS! Blood. 3(10): 1158-1159. 
81. Rallapalli, P. M., Kemball-Cook, G., Tuddenham, E. G., Gomez, K. and 

Perkins, S. J. (2014) - Manuscript in Preparation. 
82. Rao, L. V. M. and Rapaport, S. I. (1987) Studies of a Mechanism Inhibiting the 

Initiation of the Extrinsic Pathway of Coagulation. Blood. 69(2): 645-651. 
83. Rose, E. H. and Aledort, L. M. (1991) Nasal Spray Desmopressin (DDAVP) for 

mild hemophilia A and von Willebrand Disease. Annals of Internal Medicine. 114(7): 
563-568. 

84. Rosing, J., van Rijn, J. M. L., Bevers, E. M., Dieijen, G., Confurius, P. and 
Zwaal, R. F. A. (1985) The Role of Activated Human Platelets in Prothrombin and 

Factor X Activation. Blood. 65(2): 319-332. 
85. Saenko, E. L. and Scandella, D. (1997) The acidic region of the factor VIII light 

chain and the C2 domain together form the high affinity binding site for von 
Willebrand factor. J Biol Chem. 272: 18007–18014. 

86. Sanders, N. L., Bajaj, S. P., Zivelin, A. and Rapaport, S. I. (1985) Inhibition of 
Tissue Factor/Factor VIIa Activity in Plasma Requires Factor X and an Additional 

Plasma Component. Blood. 66(1): 204-212.  
87. Scandella, D., Mattingly, M., de Graaf S. and Fulcher C. (1989) Localization of 

Epitopes for Human Factor VIII Inhibitor Antibodies by Immunoblotting and 
Antibody Neutralization. Blood. 74: 1618–1626 

88. Shen, B.W., Spiegel, P.C., Chang, C.H., Huh, J. W., Lee, J. S., Kim, Y. H. 
and Stoddard, B. L. (2008) The tertiary structure and domain organization of 

coagulation factor VIII. Blood. 111(3): 1240-1247. 



 78 

89. Smith, P. S., Teutsch, S. M., Shaffer, P. A., Rolka, H. and Evatt, B. (1996) 
Episodic Versus Prophylactic Infusions for Hemophilia A: A Cost-Effective 

Analysis. The Journal of Pediatrics. 129(3): 424-431.  
90. Soucie, J. M., Evatt, B. and Jackson, D. (1998) Occurrence of hemophilia in the 

United States. The Hemophilia Surveillance System Project Investigators. Am J 
Hematol. 59: 288–294. 

91. Spiegel, P. C., Jacquemin, M., Saint-Remy, J. R., Soddard, B. L. and Pratt, K. 
P. (2001) Structure of a factor VIII C2 domain–immunoglobulin G4k Fab 

Complex: Identification of an Inhibitory Antibody Epitope on the Surface of 
Factor VIII. Blood. 98: 13-19. 

92. Spiegel, P. C., Murphy, P. and Soddard, B. L. (2004) Surface-Exposed 
Hemophilic Mutations Across the Factor VIII C2 Domain Have Variable Effects 

on Stability and Binding Activities. The Journal of Biological Chemistry. 279(51): 53691-
53698. 

93. Srivastava, A., Brewer, A. K., Mauser-Bunschoten, E. P., Key, N. S., Kitchen, 
S., Llinas, A., Ludlam, C. A., Mahlangu, J. N., Mulder, K., Poon, M. C. and 

Street, A. (2013) Guideliens for the Management of Hemophilia. Haemophilia. 19: 
e1-e47. 

94. Stead, N., Kaplan, A. P. and Rosenberg, R. D. (1976) Inhibition of Activated 
Factor XII by Antithrombin-Heparin Cofactor. The Journal of Biological Chemistry. 

251(21): 6481-6488. 
95. Stoilova-McPhie, S., Villoutreix, B. O., Mertens, K., Kemball-Cook, G. and 

Holzenburg, A. 3-Dimentional Structure of Membrane-Bound Coagulation Factor 
VIII: Modeling of Factor VIII Heterdimer Within a 3-Dimentional Density Map 

Derived by Electron Crystallography. Blood. 99(4): 1215-1223. 
96. Toole, J. J., K Knopf, J.L., Wozney, J.M., Sultzman, L.A., Buecker, J.L., 

Pittman, D.D., Kaufman, R.J., Broown, E., Shoemaker, C., Orr, E.C., 
Amphlett, G.W., Foster, W.B., Coe, M.L., Knutson, G.J., Fass, D.N. and 

Hewick, R.M. (1984) Molecular Cloning of a cDNA Encoding Human 
Antihemophilic Factor. Nature. 312: 342-347. 

97. Tuddenham, E. G. D., Schwaab, R., Seehafer, J., Millar, D. S., Gitschier, J., 
Higuchi, M., Bidichandani, S., Connor, J. M., Hoyer, L. W., Yoshioka, A., 

Peake, I. R., Olek, K., Kazazian, H. H., Lavergne, J. M., Giannelli, F., 
Antonarakis, S. E. and Cooper, D. N. (1994) Haemophilia A: Database of 

Nucleotide Substitutions, Deletions, Insertions, and Rearrangements of the Factor 
VIII Gene, Second Edition. Nucleic Acids Research. 22(17): 3511-3533.  

98. van der Flier, A., Liu, Z., Tan, S., Chen, K., Drager, D., Liu, T. Patarroyo-
White, S., Jiang, H. and Light, D. R. (2015) FcRn Rescues Recombinant Factor 

VIII Fc Fusion Protein from a VWF Independent FVIII Clearance Pathway in 
Mouse Hepatocytes. PLOS One. 10(4): 1-23. 

99. Varadi, K., Rosing, J., Tans, G. et al. (1996) Factor V Enhances the Cofactor 
Function of Protein S in the APC-Mediated Inactivation of Factor VIII: Influence 

of the Factor VR506Q Mutation. Thromb Haemost. 76(2): 208-214. 



 79 

100. Vehar, G. A., Keyt, B., Eaton, D., Rodriguez, H., O’Brien, D. P., Rotblat, F., 
Oppermann, H., Keck, R., Wood, W. I., Harkins, R. N., Tuddenham, E. G. 

D., Lawn, R. M. and Capon, D. J. (1984) Structure of Human Factor VIII. 
Nature. 312(22): 337-342.  

101. Walker, F. J., Sexton, P. W. and Esmon, C. T. (1979) The Inibition of Blood 
Coagulation by Activated Protein C Through the Selective Inactivation of Activated 

Factor V. Biochimica et Biophysica Acta. 571: 333-342. 
102. Walker, F. J. (1981) Regulation of Activated Protein C by Protein S: The role of 

phospholipid in factor Va inactivation. The Journal of Biological Chemistry. 256(21): 
11128-11131. 

103. Walter, J. D., Littlefield, P., Delbecq, S., Prody, G. and Spiegel, P. C. (2010) 
Expression, Purification, and Analysis of Unknown Translation Factors from 

Escherichia coli: A Synthesis Approach. Biochemistry and Molecular Biology Education. 
38(1): 17-22.  

104. Walter, J. D., Werther, R. A., Brison, C. M., Cragerud, R. K., Healey, J. F., 
Meeks, S. L., Lollar, P. and Spiegel, P. (2013) Structure of the factor VIII C2 

domain in a ternary complex with 2 inhibitor antibodies reveals classical and 
nonclassical epitopes. 122(26): 4270-4278. 

105. Webster, W. P., Zukoski, C. F., Hutchin, P., Reddick, R. L., Mandel, S. R. 
and Penick, G. D. (1971) Plasma Factor VIII Synthesis and Control as Revealed 

by Canine Organ Transplantation. Am J Physiol. 220(5): 1147-54. 
106. Wion, K. L., Kelly, D., Summerfield, J. A., Tuddenham, E. G. D. and Lawn, 

R. M. (1985) Distribution of fVIII mRNA and Antigen in Human Liver and Other 
Tissues. Nature. 317: 726-729. 

107. Wun, T. C., Kretzmer, K. K., Girard, T. J., Miletch, J. P. and Broze, G. J. 
(1988) Cloning and Characterization of cDNA Coding for the Lipoprotein 

associated Coagulation Inhibitor Shows that it Consists of Three Tandem Kunitz-
type Inhibitory Domains. 263(13): 6001-6004.  

108. Zhou, Y.F., Eng, E.T., Zhu, J., Lu, C., Walz, T. and Springer, T.A. (2012) 
Sequence and structure relationships within von Willebrand factor. Blood. 120: 449–

458. 
109. Zucker, F., Champ, P. C. and Merritt, E. A. (2010) Validation of 

Crystallographic Models Containing TLS or Other Descriptions of Anisotropy. Acta 
Cryst. D66: 889-900. 

 
 

 
 

 
 

 
 



 80 

Appendix 
 

 
 
 

Appendix Figure 1. DNA sequencing results from Nevada Genomics. Highlighted yellow 
are the hC2 or hC1 gene sequences. Highlighted in green or cyan are the correct mutations.  
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Appendix Figure 2. Human C2 wild type thioredoxin fusion mass spectrometry results. 
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Appendix Figure 3. Human C2 R2320S thioredoxin fusion mass spectrometry results.  
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Appendix Figure 4. Human C2 R2320T thioredoxin fusion mass spectrometry results.  
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Appendix Figure 5. Human C2 wild type recombinant enterokinase cleaved mass spectrometry results.  
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Appendix Figure 6. Human C2 R2320S recombinant enterokinase cleaved mass spectrometry results.  
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Appendix Figure 7. Human C2 R2320T recombinant enterokinase cleaved mass spectrometry results. 
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