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Biological Oscillator Synchronization with the Cellular Potts

Model

Rose Una

March 2023

Abstract

Similar to the way in which neurons synchronize their firing in the brain, individual cells
of certain single-celled species can synchronize their internal molecular clocks to those of their
neighboring cells. We develop an abstract Cellular Potts Model (CPM) to analyze this oscillator
synchronization with two-dimensional cells on a square lattice. Model assumptions and constraints
are motivated by behavior in single-celled species of slime mold (Dictyostelium discoideum) and
slime bacteria (myxobacteria). In the CPM framework, cell-cell adhesion, which is influenced by
variable clock updates per time step, and cell movement are governed by the so-called Hamiltonian
energy function. The effects on oscillator synchronization of the spatial attraction parameter and
the neighboring clock coordination parameter are explored in this project. We find four distinct
steady phase states which cells’ clocks converge to as a result of different parameter value com-
binations: global synchronization, local synchronization, incoherence, and anti-synchronization.
Results include phase diagram, synchronization, and cell movement analysis. The findings of this
project are applicable to pattern formation in cell cultures.

1 Introduction

Pattern formation in biological cell clusters is the result communication and/or complex interactions
between the involved cells [5, 7]. Slime bacteria (myxobacteria) and slime mold (Dictyostelium dis-
coideum) are two species of single-celled organisms that display this type of behavior amongst colonies
of their own type. Under certain circumstances, these species form aggregates that go through a se-
quence of behavioral steps. A wave-like ripple effect can start traveling through the aggregate of cells.
Then, fruiting bodies form such that the cell aggregates grow into larger three-dimensional forms [7].
We seek to understand the mechanisms underpinning the aggregation of biological cells through the
development of an abstract computational model exploring cell movement and the processes causing
such aggregation behavior.

This form of cellular aggregation is believe to be motivated by synchronization of molecular clocks
housed within each cell of the cluster. The oscillation of these molecular clocks can be categorized by
the Kuramoto model of oscillatory mechanisms and synchronization in individual bodies [4, 3]. We
apply the point-based synchronization and movement oscillator Kuramoto-based model of O’Keeffe
et al. [4] to a Cellular Potts Model (CPM) [2], which considers the functionality of biological cells.
Therefore, our model combines the point-based oscillators with biological cells to capture movement,
adhesion interactions, and oscillator synchronization in two-dimensional cells. The CPM, also known
as the Glazier-Graner-Hogeweg model, is an computational agent-based model that simulates biological
cell behavior through optimization of features such as the shape, location, and adhesion of cells that
each take up some number of adjacent lattice sites on some form of a lattice grid. The CPM uses the
Hamiltonian energy function to minimize each cell’s energy at each time step.

Synchronization behavior of the cell oscillators, or clocks, is similar to the neurons firing syn-
chronously or fireflies flashing synchronously. To capture the synchronization of the included cells’
molecular clocks, we apply the Kuramoto-based oscillatory mechanisms [3] such that each cell has
an internal oscillating clock and the optimization Hamiltonian energy function in the CPM includes
a term that adjusts cell-cell adhesion dependent on neighboring cell clock times, also called phases.
Our model includes two primary equations, the Hamiltonian and a recursive cell-clock calculator. We
choose control parameters [8] that retain cellular integrity. We identify two manipulative parameters

1



that influence cell clock synchronization [4]. One manipulated parameter is responsible for the spa-
tial attraction between cells through influencing their adhesion strength to each other on the basis of
clock phase value differences. The second manipulated parameter is responsible for how cells orient
themselves with respect to their neighboring cells.

We model the behavior within a predetermined population of cells and between their individual
cell clocks. We seek to identify and understand the different steady phase states cells sort themselves
into based on their clock phase synchronization behavior and dependent upon different manipulated
parameter value combinations. We find four distinct phase states that the cells in a given simulation
run can converge to depending on the predetermined manipulated parameter value combination. When
cells seek to synchronize with their neighbors and are attracted to other cells with a like phase, as
preset by manipulated parameter values, then the there is global synchronization. Surprisingly, we
find faster global synchronization when cells seek to synchronize with their neighbors but are attracted
to other cells in an opposite phase than when they are attracted to other cells with in like phases.

We define the four distinct phase states qualitatively with a phase diagram and quantitatively
with order parameters. These phases states include global synchronization, local synchronization,
incoherence, and anti-synchronization. Effects of the different phase states on cell movement and
synchronization rate is explored.

2 Methods

We develop an abstract CPM [2] to investigate internal oscillatory synchronization and is motivated
by the behavior of slime bacteria (myxobacteria) and slime mold (Dictyostelium discoideum) species.
Each cell is modeled as a group of adjacent square sites in a square lattice. Each cell has an internal
oscillator. In our model, the number of cells on the lattice is predetermined as N . Motion of and
interaction between cells are based on an energy minimization scheme involving a Hamiltonian energy
function. In this discrete model, in the internal clock of each cell continually moves forward slowly
by default. However, by allowing adhesion between cells to be affected by clock phases of neighboring
cells, there is variability to clock phases. They can change depending on minimization conditions in
the Hamiltonian energy function and in the actual clock phase update function. Additional constraint
terms are incorporated into the Hamiltonian as seen fit. The governing Hamiltonian is

H =
∑

neighboring sites i, j

(1− δσ(i),σ(j))f(σ(i), σ(j)) + λ
∑
cell s

(Area(s)−Atarget)
2. (1)

Here σ(i) denotes the index of the cell occupying the lattice site i. The first term of the Hamiltonian
describes cell-cell adhesion between adjacent cells. δij is the Kronecker function: δ(i, j) = 1 if i = j,
and δ(i, j) = 0 if i ̸= j. The Kronecker function allows the Hamiltonian to not consider the same
lattice site twice. The cell-cell adhesion term f(σ1, σ2) is given by

f(σ1, σ2) =

{
J0(1− J cos(θσ1 − θσ2)) if σ1 ̸= 0 and σ2 ̸= 0

J0 if σ1 = 0 or σ2 = 0
(2)

where σ1 and σ2 are neighboring cells. Index σ = 0 represents extracellular matrix (ECM), which has
contact energy of J0. Equation (2) computes the adhesion energy between neighboring cells through
iterative computations and takes into consideration if the neighboring cells are merely ECM. Our
choice of J0 influences whether cells prefer to adhere to each other, regardless of phase, or prefer to be
completely surrounded by ECM.

The second term of the Hamiltonian is a cell area constraint term. We use Atarget and λ based
on previous studies [8]. Time evolution is modeled via Monte Carlos Steps (MCS). Thereby, each
cell’s energy is calculated at each MCS with all its actions (movements, growth, molecular clock
behavior) seeking to minimize its energy footprint via the Hamiltonian. Cell behavior established by
the Hamiltonian considers a cell and its neighbors. Neighboring cells of an individual cell are defined
as the cells and/or medium that shared common surface area with the individual. Therefore, cells
must be in contact to influence each other’s movements and, discussed later, their clock phases. We
use general neighbor order of two [4, 8].

Lattice sites are denoted by bold variables i = (i1, i2). Each lattice site i is occupied by one of
N cells or ECM. Hence, σ(i) = 0 if the medium occupies i and σ(i) = ”cell index” otherwise. Cell
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movement is determined in spin flips, which are probabilistic determiners of cell movement based on
whether or not a movement would minimize the cell’s energy through the Hamiltonian function. After
the energy for a step is calculated for each cell in a MCS via the Hamiltonian, a spin flip attempt occurs
at each lattice site and inherently for each cell to determine whether the cell will make a calculated
move to an adjacent lattice site, change shape, change size, etc. Spin flips are calculated by chance to
incorporate ∆H ≤ 0. The probability of a spin flip is given by

Pspin flip =

{
1 if ∆H ≤ 0

e
∆H
T if ∆H > 0

(3)

where T is the temperature of the system and ∆H is the change in energy that would result from a
cell making the calculated change (acting on the spin flip). Higher temperatures make it more likely
for spin flips to occur but also make it more likely for cells to fragment, dissolving into each other. By
equation (3), a spin flip is taken if ∆H ≤ 0 such that Pspin flip = 1 where a cell obtains a new lattice
site and grows or moves one of its pixels to a new lattice site. A spin flip is attempted at each lattice
site for each MCS. Spin flips are taken/successful with probability Pspin flip.

Our chosen parameter values are motivated by those of others’ model development [5, 8]. See the
below table for the control parameters used in our CPM. The only added constraint to the Hamiltonian
function (1) beyond adhesion and cell movement is target area. The constant clock speed parameter ω
is chosen on the premise of what is reasonable for tracking the oscillation of the cells’ molecular clocks.

Parameter Value Description

Lattice dimensions 126x126 *Cartesian (square) lattice size
T 20 Temperature
θ0 U([0, 2π]) *Uniform distribution of initial clock phases

ATarget 25 Target cell area
λ 25 Cell area stability term
ω 0.001 *Clock speed

JMM 0 Medium-medium contact local product adhesion energy
JCM = J0 16 Medium-cell contact local product adhesion energy
f(σ1, σ2) See (2) Cell-cell contact local product adhesion energy

2 Neighbor order
N 445 *Cell count

0.7 *Confluency

Table 1: Parameter Table. Control parameters from Zhang et al [8]. *Parameters we chose.

Now that we have addressed the foundation of the CPM, we look to the oscillatory processes housed
in each cell of the model that seek to simulate molecular clocks in real cells. Each cell s = 1, . . . , N in
the model has an internal oscillating clock. This clock reads phases, similar to times, as θs, which is a
time-dependent scalar that updates each MCS via

θt+∆t
s = θts + ω∆t · (1 +K · 1

# neighbors of s

∑
neighbor u of s

sin(θu − θs)) (4)

As shown in (4), a cell’s internal clock is influenced by the clocks of its neighbors. At the beginning of
the simulation run, initial clock phase values are randomly assigned for all cells in a uniform distribution
of [0, 2π]. Once the model simulation starts running, each cell’s clock phase changes according to (4)
and with speed ω. Cells’ clocks do not tick forward at a linear rate. The clock phases of a cell’s
neighbors influences the clock phase of the given cell. The correlation between a cell’s clock phase and
those of its neighbors is one of two primary interests in parameters. K, in (4), is the phase coupling
strength between neighboring cells [4]. It controls how neighboring cells’ clocks influence each other.
For K > 0, neighboring cells seek to synchronize their clock phases. For K < 0, neighboring cells seek
to anti-synchronize their clocks. To synchronize, neighboring cells have clock phases θi=θj in [0, 2π].
To anti-synchronize, neighboring cells have clock phases that off by pi such as θi = 0 and θj = π.
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The second parameter of of interest is J found in (2), which is the spatial attraction parameter
[4]. For J > 0, cells of like phases attract each other. For J < 0, cells of opposite phases attract each
other. Therefore, J influences cell-cell adhesion, thus influencing the rate at which cells synchronize
their internal clocks to those of neighboring cells.

Parameters K and J (see equations (4) and (2), respectively)) are of interest as they are potentially
the most influential parameters in determining cell oscillator synchronization. K is responsible for the
behavior of cells with respect to their neighbors. Therefore, K affects the synchronization patterns of
the cells. J , in 2, determines how clock phase differences affect cell-cell adhesion, ultimately deciding
if similar clock phases of neighboring cells lead to mutual attraction or repulsion [4]. We hypothesize
that for J > 0,K > 0, cells will aggregate into clusters of synchronized clocks. Therefore, our guiding
research question follows: how is the “regularity” of the pattern of cell aggregates influenced by the
strength of the synchronization of cell phases?

To implement the Cellular Potts Model, we use the open-source software CompuCell3D [6]. Com-
puCell3D uses Python, C++, and XML languages to implement ad develop biological cell models.
The implemented model is based on that of which is described in Alber et al[1].

3 Results

We test combinations of J,K parameter values to understand their role in cell aggregation and syn-
chronization. There are four long-term behavioral steady phase states of cell clock distribution based
on model predetermined J,K parameter values. The phase states are global synchronization, local
synchronization, incoherence, and anti-synchronization. See Figure 1 for visual distinction between
the phase states. Our results are to be similar to those by O’Keeffe et al [4] with variation by cells
with areal significance.

Variations in J and K express different priorities of the cells. Parameter J affects the adhesion
strength between cells. Parameter K influences a cell’s clock phase variability with respect to synchro-
nization with neighbors. See the table below describing the effects of different J and K values since
the sign of the manipulated parameter effects cell behavior.

Parameter Sign Effect of a cell’s phase

J J > 0 ”Phases attracts like phases”
J < 0 ”Opposite phases attract”

K K > 0 ”Neighbors seek to synchronize”
K < 0 ”Neighbors seek to anti-synchronize”

Table 2: Manipulated Parameter Table.

3.1 Phase Diagram

We identify the role of different J,K parameter combinations in equations (2) and (4) by comparing
long-term behavior of cell clocks with varying J and K. The corresponding phase diagram is the
representation of a parameter scan for J and K with consistent initial conditions for each run. Each of
the forty-nine squares in Figure 1 represent an individual simulation run with a different J −K value
combination but each with the same initial cell position and initial clock phase distribution.
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Figure 1: Phase diagram. Cells are colored according to their clock phase. For the possible ranges of J
andK, the four distinct phase states are present: global synchronization (K > 0), local synchronization
(J > 0,K ≤ 0), incoherence (J ≥ 0,K < 0), and anti-synchronization (J < 0,K ≤ 0). Simulation
runs were each of N = 445 cells for 250,000 MCS and the same initial conditions.

Since the cell clocks are ticking forward at rate ω beyond consideration of neighboring cell clocks,
we take each cell clock modulo 2π to retain oscillatory phase values. Without taking modulo 2π of
each cell clock, we consider the time each cell clock reads as a value that can trail off toward +∞
or −∞. We want to retain a mechanical clock pattern for keeping time such that the time-keeping
restarts at 0 over as soon a cell’s phase reads θ = 2π.

For manipulated parameter values, we chose J = [−0.95,−0.6333,−0.3167, 0, 0.3167, 0.6333, 0.95]
and K = [−1,−0.6667,−0.3333, 0, 0.3333, 0.6667, 1]. As for having seven terms for both J and K, we
needed few enough value options for computational efficiency but enough values for clear resolution
on cell sorting behavior. We expect that choosing smaller increments within the J and K sets, we
would get the same results at a finer resolution. The phase diagram shows all the cells in roughly
the same global-scale organization because EMC energy J0 = 16. Cells prefer to adhere to each other
as compared to adhering to the EMC since choice of J0 suggests cell-cell contact is less costly to
Hamiltonian energy than is cell-ECM contact.

The following are qualitative descriptions of each of the four phase state as well as quantitative
distinctions between them. We use order parameters to quantitatively distinguish between the observed
phase states. An order parameter is an expression equal to zero in one phase of the system and non-zero
in another phase, capturing the transition from one phase to another.

3.1.1 Global Synchronization

When all cells in a simulation run are in the same phase, we say the cells are in the phase state
of global synchronized. Neighboring cells synchronize their clocks such that the expressed phase of
each is identical. For K > 0, we find global synchronization. See Figure 1 where all the cells are the
same color. Global synchronization is expected for K > 0 because cells seek to synchronize with their
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neighbors. For both J > 0 (”like attracts like”) and J < 0 (”opposites attract”), neighboring cells
synchronize to the extent of global synchronization through agency of K > 0.

For K > 0, where we find global synchronization in 1, cells globally synchronize to different phase
values as seen as different colors in the phase diagram. Even though different runs result in different
phases (colors), we see primarily global synchronization forK > 0 because all the cells in any simulation
run are the same color. We ran each simulation of the phase diagram with the same initial conditions
(initial position, cell-clock uniform distribution, and cell clock assignment). Therefore, difference in
end-behavior phase is the result of the inherent stochasticity of the model through spin-flip probability.
The varying end-behavior phases are a matter of cells synchronizing to what we see as the majority of
cells. It would take further investigation to definitively if there is reasoning for differing end-behavior
phase value across globally-synchronized cells beyond the stochasticity of the CPM. However, our
interests lie in the sameness of cell clock at the end of each run, creating global synchronization for
specific K.

By our definition of global synchronization, some simulation runs in Figure 1 for K > 0 are not
completely globally synchronized. In these instances, we presume that all the runs for K > 0 would
reach complete global synchronization given enough MCS time steps, longer than the shown 250,000
MCS. Reasons for needing more time include the effects of the variation in magnitude of K and J as
well as the inherent randomness involved with a particular model run.

We use the Kuramoto order parameter to gauge the degree of synchronization within the cells of
a run at a given time step. This Kuramoto order parameter is based on the Kuramoto Model as used
in by O’Keefe et al [4]. The global Kuramoto order parameter [3] captures the transition from global
synchronization to any other phase states for the phase diagram in Figure 1. This order parameter is
given by

rglobal =

∣∣∣∣∣∣ 1N
N∑
j

eiθj

∣∣∣∣∣∣ (5)

where N is the total number of cells in the simulation run and the resulting r is such that r ∈ [0, 1]. The
rglobal quantifies how synchronized all cells’ clocks are within a single simulation at a specified MCS. If
r = 1, all the cells’ clocks are synchronized. If r = 0, all the cells’ clocks are entirely unsychronized or
anti-synchronized, meaning that all of their values are spread around the time clock evenly such that
all values cancel each other out or there are synchronized groups of opposite phases that cancel each
other out.

We calculate rglobal for the same simulations of the phase diagram in Figure 1.

Figure 2: Global synchronization order parameter heat map. Global synchronization is characterized
by r = 1. Synchronization was taken at the 250, 000th MCS.
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There is a clear distinction between globally synchronized combinations of J,K and the other phase
states. This distinction follows the phase diagram such that global synchronization occurs for K > 0
and all J .

3.1.2 Local Synchronization

Local synchronization is characterized by neighborhoods of cells synchronizing to the same phase
without synchronization between neighborhoods. Synchronization between neighborhoods would lead
to global synchronization. In Figure 1, the steady state behavior of local synchronization is visualized
by patches of cells within an individual simulation run that are the same color (phase). We find
local synchronization somewhere within the J > 0,K < 0 quadrant. Because cells seek cells in a like
phase but want to anti-synchronize with their neighbors, we have only local synchronization instead
of global synchronization. We see a transition somewhere in the J > 0,K < 0 quadrant from local
synchronization to incoherence. Roughly, this transition happens at the K = −J line. Further work
into this region analytically or computationally could find this division between local synchronization
and incoherence phase states more easily.

The local Kuramoto order parameter [3] describes the phase state of local synchronization. The
only difference to the global synchronization rglobal in Figure 5 is that synchronicity is measured over
neighborhoods of cells of order 2 instead of measured over the whole population of cells. Neighbor-
hood order is chosen to stay consistent with control parameters [8] used to run the model. Local
synchronization is calculated through

rlocal =

∣∣∣∣∣∣1s
s∑
j

eiθj

∣∣∣∣∣∣ (6)

where s is the number of neighbors cell j has and rlocal is calculated for every cell’s neighborhood.
Therefore, each cell has a local Kuramoto at any given MCS. For our calculations, the rlocal of each
cell is averaged over all cells in the simulation. Undoubtedly, there is local synchronization where there
is global synchronization because neighborhoods of cells must be synchronized, too.

Figure 3: Local synchronization order parameter heat map. Complete local synchronization of neigh-
borhoods to the second order is characterized by r = 1. Synchronization was taken at the 250, 000th

MCS and is the average rlocal of all individual cells’ rlocal.

In the above heat map, we find local synchronization for K > 0 and roughly J > 0,K ≤ 0. This
heat map clearly shows that somewhere in the second quadrant where J > 0,K ≤ 0 there is a transition
out of local synchronization into incoherence as J decreases toward 0.
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3.1.3 Anti-Synchronization

The anti-synchronized phase state is characterized by cells of opposite phases attracting each other
(J < 0). Furthermore, cells seek to anti-synchronize with their neighbors (K < 0). The resulting be-
havior is a chess board-style distribution of cell phases where cells minimize their energy by surrounding
themselves with cells of the opposite phase.

The chess board order parameter describes the anti-synchronization phase state. This order pa-
rameter is named after the contrasting cell phases that are located next to each other, creating a
chess board pattern. To quantitatively characterize anti-synchronization, we calculate the extent to
which neighboring cells’ clock phases are in opposite phase. We need some tolerance since neighboring
cells will not be completely in opposite phase all the time. We chose a tolerance of 6.25% from total
anti-synchronization between neighboring cells. To have neighboring cells in opposite phase, cell A
would have a clock phase of 0 while its neighbor cell B, whom which cell A shares common surface
area, would have a clock phase of π. In determining the locations of anti-synchronization in the J −K
plane, we find the following figure.

Figure 4: Chess board order parameter heat map. Anti-synchronization between neighboring cells is
seen found only for J < 0,K ≤ 0.

The chess board order parameter captures the specific combination of J and K that distinguishes
the anti-synchronization phase state from the other phase states. J < 0 signifies that cells of opposite
phase attract and K ≤ 0 signifies that cells prioritize having neighbors of opposite phase.

3.1.4 Incoherence

The incoherent phase state is characterized by randomness in how cells organize themselves based
on their clock phases. There does not seem to be a patterned organization to the cells. In Figure 1,
this state is observed by cells of any phase neighboring cells of any other phase. We find this in the
J ≥ 0,K < 0 quadrant, just like the local synchronization phase. However, this state is seemingly below
the K = −J line and we do see that there is a transition from local synchronization to incoherence in
the J > 0,K < 0 quadrant.

To characterize the incoherence phase state with order parameters, we can use the local Kuramoto
order parameter in Figure 3 and the chess board order parameter in Figure 4. By overlaying these two
heat maps, we would see that there is section within J ≥ 0,K > 0 where the order parameter is zero
or near zero in value. This ”missing piece” is where the incoherence phase state exists, not included
as locally synchronized nor anti-synchronized.
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3.2 Synchronization and Movement

Cells’ clocks synchronize such that after some time, their phases converge to a value a stay in that
place for the rest of the simulation. The cells reach a steady state that can be categorized into one
of the distinct phase states. To analyze the synchronization rates of simulations with different J −K
parameter value combinations, we analyze the Kuramoto rglobal over so many MCS.

Figure 5: Global synchronization of cells over time. Synchronization was calculated using the Kuramoto
equation (5). Each J-value plot has K = 1 and is the average of ten runs of the same J and K values,
just different initial conditions.

The Kuramoto r value captures the global synchronization of all the included cells’ clocks to
determine if they are the same. If the cells’ all have the same phase, meaning they are synchronized,
we will find r = 1. If there is complete incoherence or anti-synchronization of the cells’ clocks, we will
find r = 0. Neighboring cells seek to synchronize but spatial attraction varies from opposites attracting
(J < 0) to cells of like phases attracting (J > 0). We find synchronization of cells happen fastest in
simulations where J < 0. Even though cells attract and adhere to those in opposite phase, they end
up synchronizing faster than cells that seek to find cells in like phase as them.

The mean square displacement (MSD) of cells measures the distant a cell has traveled from its
initial position to its new position after some amount of MCS averaged over all the cells in a single
simulation run. We found that different J and K values affect the movement of the cells with respect
of how far they travel.
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Figure 6: Mean Square Displacement. This is the log-log plot over seven J values, all with K = 1.
Ten runs calculating the MSD to 400,000 MCS for each J −K combination were averaged to create
each of the given output functions.

Figure 6 shows that the larger the J-value, the more cells move and the smaller (and more negative)
a run is, the cells move less. We primarily studied MSD for only K = 1 and different J values to
conserve computational resources. Using K = 1, we remain in the global synchronization phase state
as we analyze how the spatial attraction term J affects cell movement. We conclude that cells need to
move most for J > 0 (like attracts like) because they seek out cells in like phase which requires lots
of movement from the initial random positions and clock phase distributions. The opposite case holds
true for J < 0 (opposites attract) such that cells of opposite phase attract, so individual cells do not
need to travel as far to satisfy minimal adhesion energy related to J . Cells still synchronize because
K = 1 but do so faster for J < 0, so they may not need to travel far to find others to synchronize to.

The data used to create 5 and 6 are the averages of ten runs simulations up to 400,000 MCS with
different initial conditions (cell positions and uniform cell clock distribution).

4 Discussion

Through use of our CPM, we find four distinct phase states of which a simulation run can settle
into depending on the predetermined J and K values. By changing whether or not cells seek to
synchronize or anti-synchronize with their neighbors (K) and whether or not cells seek out others with
the same or opposite phase (J), we find cells globally synchronize, only locally synchronize, globally
anti-synchronize, or incoherently mix. Most fascinating is the parameter combination of J < 0,K > 0
where cells of opposite phases attract and neighboring cells attract. Even though cells of opposite
phase attract (J < 0), global synchronization occurs faster that it does when cells of like phases
attract (J > 0). We believe that in this situation of faster synchronization, cells seek out other cells
in phases opposite of their own and in the process end up synchronizing. When cells of like phases
attract (J > 0), they must move farther than when J < 0 to minimize their adhesive energy and find
cells in like phase to them. Hence, synchronization happens slower for J > 0 than J < 0 when K > 0.

The CPM gets some criticism for the abstractedness of some of its parameters. The choice of
control parameters [8] is motivated by creating as realistic cells as possible. Even so, we find some
fragmenting of cells that blend with other cells for extreme values of J and K. Cell fragmentation is a
demonstration of energy minimization because cells are not bothered by blending together if there is
no energy cost to do so. We find fragmentation in cells of like phase for J > 0 and in cells of opposite
phase for J < 0.
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The CPM includes inherent randomness. This is beneficial from the naturalness of the model in
which there is an unpredictability to the model or movement of the cells within the Monte Carlo
component of the simulation. However, we must limit the randomness for the reproducibility of our
scientific investigation. We can control the initial position of cells as well as the distribution of initial
clock values by choosing the seed of each simulation and predetermined uniform distributions of cells
with specified confluences.

Beyond further exploration of the effects of more K and J parameter-value combinations, making
the model more realistic would make it more telling of what is happening in experimental work. This
means developing structural cell characteristics such as cell polarity and chemotaxis [7]. With respect
to further understanding phase synchronization, it would be worth exploring the rippling behavior of
cell clocks we see in the interim period after initial cell movements and before complete end behavior.
This behavior is most noticeable in the process of reaching local or global synchronization. Running
simulations with confluences other than 70% would test the the critical cell population and spatial
distribution necessary for aggregation and synchronization. A critique to this model is its lack of
reliance on experimental data. By incorporating experimental data into control parameters and model
constraints, we could take the next step towards connecting the phase states to physical cellular
behavior.
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