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Abstract 

Within Earth’s core, light elements (Si, O, C, S, N, H) are known to make up a small fraction of the total 
mass of the core with respect to heavy elements. The degree to which these elements exist in the cores of 
terrestrial planets have geophysical and geochemical implications, most notably the presence of core 
convection and a geodynamo, thermal conductivity within the core, and core temperature. Comparison of 
the composition of chondrites to Earth’s mantle composition and the Preliminary Reference Earth Model 
have given an estimation of about 10% light elements in Earth’s core. The concentrations of each light 
element have been characterized in previous literature by determining experimentally the partitioning of 
elements between metal and silicate phases at high pressure and temperature. Studies have constructed 
thermodynamic models using linear regressions, to predict the change of partition coefficients with 
pressure, temperature, and oxygen fugacity. However, there is a large variance among previous literature 
in resulting thermodynamic models, which is likely indicative in substantial regression errors and 
evidence of non-linearity ascribed to elemental depletions in partitioning experiments. Here, we used the 
random forest regression, a machine learning algorithm, to predict the partition coefficients of Si and O 
using MetSilDB, a database for metal-silicate equilibria (Boujibar et al., GSA Fall 2022 Conference) and 
assessed the accuracy of our models using cross-validation techniques. Using these methods, we built a 
model predicting elemental partitioning coefficients with a highly improved performance than previous 
models, finding Earth’s core being enriched in O (5.1 ± 1.4	wt%	) and depleted in Si (1.2 ± 0.3	wt%) 
aligning with seismic constraints. Our findings will help us infer the composition of the core more 
accurately. 

 

 

 

 

 

 

 



1. Introduction
The initial accretionary stages of Earth 4.56 billion years ago
(Halliday & Canup, 2022) are outlined by a period of high en-
ergy collisions of planetesimals and planetary embryos until
3.8 Ga (Tera et al. 1974). The energy delivered from impact
events generated a transient magma ocean, extending to about
half of the current mantle depth (Andrault et al., 2011, Fischer
et al. 2015, Wood et al., 2006, Drake & Righter 2002). Core-
mantle differentiation ceased 30-40 Myr after Earth’s formation
where 98% of Earth’s mass was accreted within this period
(Kleine et al. 2002, Yu & Jacobsen, 2011). Throughout Earth’s
differentiation by gravitational segregation of dense metallic
phases from the lighter silicates (Rubie et al., 2003, Wood et
al., 2006, Halliday & Canup, 2022), chemical reactions be-
tween these two phases lead to a quasi-irreversible change of
the Earth’s core composition. The abundances of iron-loving
elements, called siderophile elements became depleted in the
mantle. The affinity of the elements between metal and silicate
varies with the pressure and temperature conditions at which
these chemical reactions occur. Numerous studies have inves-
tigated these effects on the partitioning of elements between
metal and silicate by conducting laboratory experiments at high
pressure and temperature. The approximate depth of the magma
ocean was derived from experimental data showing that Ni and
Co become less siderophile at high pressure and temperature
( 50 GPa & 4000K) (Siebert et al., 2011, Fischer et al. 2015).
Since the Earth’s mantle show non-negligeable contents of Ni
and Co (McDonough & Sun, 1995), the magma ocean should
have extended to large depths allowing their retention in the
mantle.

The constraints on Earth’s density profile obtained from
seismic wave velocities (PREM model) show that the Earth’s
core comprises 90% heavy elements (Fe and Ni) and 10% light
elements (a combination of Si, O, S, C , N and H) (Dziewonski
& Anderson, 1981). The presence of light elements in the core
is critical for the geologic evolution of the Earth. They allow
a decrease of the melting temperature of the core, which de-
lay its solidification (Uchida et al., 2001, Morard et al., 2014).
They also lower down the core’s thermal conductivity, which
favors heat retention in the Earth’s interior (Pommier et al.,
2020). These factors enable mantle convection, the generation
and maintenance of the geodynamo, and the advent of plate tec-
tonics on Earth. It is therefore important to estimate the chem-
ical composition of the core to understand the conditions fa-
voring these global geologic processes. The concentrations of
elements in the core can be determined by studying their parti-
tioning between metal and silicate in a wide range of pressure
and temperature and with the knowledge of the Earth’s mantle
composition. Elemental distribution between metal and silicate
is conditioned by a number of factors, including oxygen fu-
gacity (fO2), pressure, temperature, and the presence of other
light elements in the metal (Boujibar et al. 2019, Siebert et al.

Fig. 1. Diagram representing core-mantle differentiation through the process of
gravitational segregation. The figure denotes an extensive magma ocean gener-
ated by impacting events, within the ocean, cooled iron droplets will fall to the
base of the ocean forming a pond on the boundary of the novel silicate mantle.
Gravitational segregation is the process of the denser condensed Fe-alloy metal
diapirs falling through the less-dense novel silicate mantle, and condensing at
the core

2013). Several studies have previously used experimental data
to calibrate thermodynamic models predicting this elemental
distribution. However, a wide variance among findings in the
literature, for example in the partition of light elements such as
Si and O between mantle and core (Siebert et al., 2013, Fischer
et al. 2015, Badro et al. 2015), indicates limited precision in
these models.

In this study, we used a newly compiled database Met-
Sil-DB consisting of 2155 elemental partitioning experiments
with 388 attributes from 121 peer-reviewed articles from 1993
– 2015 (Boujibar et al., GSA Fall 2022 Conference). We review
the elemental partitioning of Si and O using high-pressure and
temperature metal-silicate equilibria experiments from Met-
Sil-DB ranging from 1400 – 5700 K and 0.1 – 115 GPa. Our
aim is to compare the methodology of previous literature (Bou-
jibar et al., 2019) with a new approach using a machine learn-
ing algorithm, a random forest regression (RFR) from scikit-
learn libraries, to infer how O and Si partition in the core. Our
findings can assess the validity of current thermodynamic mod-
els given the importance of O and Si partitioning on equilibria
conditions in the primitive mantle (Boujibar et al., 2019). Us-
ing a continuously accreting Earth model (Bouhifd & Jephcoat,
2011, Fischer et al. 2015, Siebert et al. 2012, Andrault et al.



2011, McDonough & Sun 1995, Wood et al. 2013, Palme &
O’Neill 2003) we then model the continuous partition of light
elements into the core to quantify its chemical composition.

2. Methodology
2.1 Met-Sil-DB

A total of 625 and 1041 metal-silicate equilibria partitioning
experiments were obtained from 53 and 82 different studies,
respectively, from Met-Sil-DB database to evaluate the distri-
bution of O and Si in the core. Data were derived from exper-
iments utilizing several types of apparatuses including, laser-
heated diamond anvil cells (LHDAC), multi-anvil press (MA),
piston cylinder (PC), internally heated pressure vessel (IHPV),
vertical furnace, and the 1 atm furnace. Analytical techniques,
documented in Met-Sil-DB, were similarly varied and included
electron microprobe analyzer (EMPA), laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICPMS), sec-
ondary ion mass spectrometer (SIMS), Fourier transform in-
frared spectroscopy (FTIR) and Raman spectroscopy. Start-
ing samples were either natural or synthetic samples of vary-
ing compositions from chondritic to mixtures of metal alloys
with pyrolytic, basaltic or other kinds of powders or glasses.
These experiments encompass the broadest range of experi-
mental pressure and temperature conditions; those selected for
examining Si and O partitioning reported temperature and pres-
sure ranges of 1473 – 5700 K and 0.1 – 111 GPa. To model
the partitioning of Si and O, for each experiment, we selected
data on pressure, temperature, concentrations of sulfur and car-
bon. For the experiments where the samples were included in a
graphite capsules, carbon is known to systematically contami-
nate the metal phase (e.g. Boujibar et al. 2019). Therefore, we
calculated metallic carbon concentrations for these experiments
where its abundance was not directly measured by subtracting
the total of all elemental abundances to 100%. For all experi-
ments, we considered the elemental concentrations of Si and O
in both metal and silicate phases of experimental samples and
calculated the fO2 relative to the Iron-Wustite buffer following
previous studies (Boujibar et al. 2019).

2.2 Traditional Linear Modeling of Elemental Partitioning

To compare the statistical validity of our approach versus pre-
vious literature, we applied similar thermodynamic models to
quantify partitioning coefficients as outlined by previous stud-
ies (Boujibar et al., Siebert et al., 2013). The distribution of an
element M between metal and silicate can be described by the
redox reaction:

Mmetal +O2 = MOsilicate
n/2 (1)

Where the element M in the metal can be oxidized to form the

cation MOsilicate
n/2 in the silicate and vice versa. For a chemi-

cal reaction in equilibrium, an equilibrium constant K can be
derived from the activities of the reactants and products a, mea-
suring the deviation from ideality. An activity a is the product of
the concentration of the compound and the activity coefficient.
f O2 is the activity of O2 in the system. Taking Si as element
M, the equilibrium constant of reaction (1), Keq(1) is related to
the change in Gibbs free energy of the system, the ideal gas
constant R, and the system temperature T with:

ln(Keq(1)) = ln(
ametal

Si ∗ f O2

asilicate
SiO2

) =

−∆G
RT

=
−(∆H −T ∆S+

∫
∆V dP)

RT
(2)

Where ∆H is the enthalpy, ∆S is the entropy, ∆V is the vol-
umetric change, dP is the differential change in pressure, T
is the temperature, and R is the ideal gas constant. Instead of
calculating the equilibrium constant using all these thermody-
namic parameters which are unknown at the extreme pressures
and temperatures of core formation, it is usual to utilize exper-
imental data to predict the partition coefficients using similar
types of mathematical relationship to pressure, temperature and
chemical composition:

log(DSi) = a+
b
t
+

cP
T

+d ∗ log( f O2)+ e∗ (1−XO
metal)+

f ∗ (1−XS
metal)+g∗ (1−XC

metal)

(3)

This equation was derived by manipulating equation (2) which
describes chemical equilibrium for reaction (1). The usual reac-
tion controlling the distribution of O between core and mantle
is:

FeOsilicate = Femetal +Ometal (4)

Since this is not a redox reaction, the concentration of O in the
metal itself is considered with similar parameters to equation
(3), with the replacement of the oxygen fugacity by the FeO
concentration in the silicate:

log(Ometal) = a+
b
t
+

cP
T

+d ∗ log( f O2)+ e∗ (1−XS
metal i)+

f ∗ (1−XS
metal)+g∗ (1−XC

metal)

(5)
Using multiple experimental data from varying P, T and

chemical compositions, a linear regression can be conducted to
derive the parameters a-g, by selecting results where predicted
DSi or Ometal are the closest to the observed values.



2.3 Machine Learning Applications

Here, we considered an additional approach to constrain the
abundances of Si and O in the core. We used an ensemble
machine learning technique called random forest regression
(RFR). In particular, we used an RFR algorithm from the scikit-
learn libraries in python. This approach allows to model the
partitioning without making assumptions on the chemical ex-
change occurring between metal-silicate phases during core
formation. For example, in linear regressions, the partitioning is
assumed to be linearly dependent on the inverse of the tempera-
ture (see equations 3 & 5). Machine learning enables to predict
the partition coefficients without fixing these dependencies to
the considered variables. Independent variables (experimental
conditions) and dependent variables (DSi and Ometal wt%) from
Met-Sil-DB are separated into two separate data frames so the
algorithms can compare the desired output with respect to the
inputted variables. We additionally performed a cross valida-
tion, which is a resampling technique enabling to statistically
improve results. It consists of randomly splitting the data into
training and testing groups, where 90% of experiments drawn
from Met-Sil-DB are used to train the model, and 10% of ex-
periments are subsequently used to test the model.

The RFR generates its model predicting partitioning be-
havior by generating a series of decision trees (figure 2). We
begin the model by separating experiments drawn from Met-
Sil-DB into two data frames comprised of the equilibria con-
ditions and the measured partition coefficients. The partition
coefficients were calculated from analytical measurements of
elemental concentrations by weight percentage in silicate and
metal phases in literature. Secondly, we segment data into a
training set used to train the model comprised of 90% of ex-
periments and the testing set using 10% of experiments. Once
data preparation is complete, the model learns by creating a se-
ries of decision trees, each tree is comprised of a randomly as-
signed portion of the training data. Within each tree itself, the
model segments data based on a numerical qualifier, mapping
input variables to the desired numerical output. In this context,
a tree is comprised of a portion of the experimental data from
the training set. Branches in the tree are “junctures” in which
a specific experimental condition from the training set is sep-
arated, for example, in figure 2 the first branch in the decision
tree separates metal-silicate partitioning experiments based on
f O2 values being greater than or equal to the IW-1 value.

The model will learn by referencing analytically derived
partition coefficients with the experimental conditions to learn
to predict partitioning behavior as it recursively steps through
the branching process using data mapping of the inputted vari-
ables to the desired numerical result. At the bottom of each
branch (figure 2), based on the numerical branching the model
chose, it will generate a final predicted partition coefficient and
then will assess its own accuracy based on a statistical quali-

Fig. 2. Diagram depicting a single decision tree applied to predicting partition-
ing behavior using equilibria conditions. In the RFR, the model is comprised of
n-number of these decision trees. In this instance, the model chose to segment
data from MetSilDB using the oxidation conditions of Si metal-silicate parti-
tioning experiments firstly because the model assigned prediction importance
to oxygen fugacity first and foremost. The branching that occurs as you move
down the tree is analogous to the model understanding decreasing importance
to factor in when making a prediction on the partitioning behavior of Si. At the
bottom of each branch, the model makes a prediction on a partitioning coeffi-
cient based on the segmented data in the branches.

fier. The model will learn the relationship of equilibria condi-
tions with respect to a measured partition coefficient over the
set of decision trees comprising the model. In the training pro-
cess, we gave the model the option to use 800, 900, or 1000
decision trees to adequately train itself. Once the data mapping
is complete over the array of decision trees, the model will av-
erage the accuracy of all the data mapping within the decision
trees themselves to create the most effective set of numerical
qualifying questions to segment the equilibria conditions in the
order given by an importance percent (table 1), this process is
called final class voting. We can then assess the ability of the
model to predict partitioning behavior by applying the trained
model to the testing set, given that the model wasn’t trained on
the testing set.

Each machine learning algorithm must be cross-validated
to further improve upon the ability of the models to produce
predicted outputs. The use of cross-validation in the appli-
cation of machine learning algorithms to datasets is a com-
mon methodology to minimize validation loss or to minimize
how far the output partition coefficients are from the measured
value. In this study, we used k-fold cross-validation to cross-
validate the models. K-fold cross-validation is the technique
of assigning data into k amounts of folds, such that each fold
contains the total dataset. Each k-fold will contain a different
randomly assigned test-train split where each k-fold will train
its own set of decision trees. However, each k-fold will test its
trained model on the testing set from the other folds. Using the
output root-mean-square error (RMSE) from comparing mea-
sured to predicted partition coefficients, the model generating



Fig. 3. Two sets of graphs depicting measured versus predicted partition coefficients for Si and elemental concentrations for Ometal comparing linear regressions
used in previous literature and the random forest regression with studies listed. Within each figure, the black regression line represents the “ideal” fit y=x, such the
predicted partition coefficients matched the analytically observed coefficient perfectly. (a) These figures compare the ability for linear regressions and the RFR
to predict partitioning in Si, where linear methods produce an RMSE of 0.6621 and the RFR produces an RMSE of .11 among measured vs. predicted partition
coefficients. (b) These figures compare the ability of linear regressions and the RFR to predict partitioning in O, where linear methods produce an RMSE of 0.38
and the RFR produces an RMSE of .10 among measured vs. predicted partitioning in Ometal concentrations. For graphs depicting the results of the RFR, the
number of best estimators details how many decision trees were used. For figures a and b using experimental data from Met-Sil-DB, the shorthand reference
format from the database was color coded on the figures accordingly.

the smallest RMSE when comparing predicted versus measured
coefficients is selected.

3. Results
Once the most effective algorithms are selected, we then ap-
ply predicted partitioning behavior on an accreting Earth model
outlining metal-silicate equilibria conditions at the core-mantle
boundary (CMB) along increments of a fraction of Earth ac-
creted. These conditions include pressure at the CMB (Bouhifd
and Jephcoat, 2011, Fischer et al. 2015, Siebert et al. 2012), the
liquidus temperature of a bulk chondritic mantle at CMB depth
(Andrault et al., 2011), FeO by weight percent in the mantle
(McDounough & Sun, 1995), and light element factors (Wood
et al., 2013, Palme & O’Neill, 2003). Using the accreting Earth

model, we can quantify the amount of Si and O in the core by
weight percent derived using both linear methods and machine
learning algorithms to compare each approach.

3.1 Modeling Partitioning Behavior

Our findings suggest that the random forest regression is more
effective at predicting partitioning behavior than linear regres-
sions derived from equations 3 and 5. With respect to both
Si and O metal-silicate partitioning experiments from Met-Sil-
DB, our model decreased the RMSE when comparing analyti-
cally measured and predicted partition coefficients with respect
to the linear model. What’s more, our model was able to pre-
dict partitioning behavior with similar accuracy in both Si and



Table 1: These tables outline the resulting importance percentages and regression coefficient p-values for Si (left tables) and O
(right tables) partitioning behavior from the linear regression (bottom tables) and the RFR (top tables).

O metal-silicate equilibria. As compared to the linear model,
the RFR was able to produce substantially more accurate pre-
dicting behavior as it relates to the partitioning of Si between
metal-silicate phases. We found a RMSE from the RFR model
of predicted versus observed partition coefficients of 0.11 and
0.12, for Si and O, respectively. In contrast, linear regressions
yielded an RMSE of 0.66 and 0.37, for Si and O, respectively
(figure 3). What is notable specifically in these findings is the
increased accuracy by which we can predict the partitioning
behavior of Si and O between phases of equilibria.

3.2 Importance by Variable

We assessed the importance of each equilibria condition in ex-
perimental data by comparing the p-values and the importance
percentages by variable outputted using linear methods and the
RFR, respectively. Table 1 shows output importance percent-
ages from the RFR, the model derives importance percentages
of input variables from data mapping in the ensemble learn-
ing process during the training phase. With respect to Si parti-
tioning behavior, our model concludes the most important fac-
tors controlling the chemical equilibrium are both the oxidation
state and the pressure conditions that the phases are subjected
to. The next significant parameters for Si partition are C con-
centration in the metal and temperature. Conversely, O parti-

tioning behavior is more dependent on the intensive quantities
of the system: pressure, followed by temperature then the FeO
concentration of the silicate.

Looking at outputted p-values of regression coefficients
from table 1, findings from the importance of equilibria condi-
tions to resulting Si partitioning from the linear model show a
paramount dependence on the oxidation state, similarly to RFR
results. However, temperature and the oxygen concentration in
the metal have similar statistical dependence being second to
the previous variable. Lastly, the linear method shows the least
significant factors are S and C abundances and the pressure con-
ditions of equilibria. Using the linear approach, O partitioning
will be most influenced by the pressure conditions, the S con-
centration, and to a lesser extent the temperature. Furthermore,
the linear model has inferred less statistical importance given
to the Si and C content of the metal and the FeO abundance in
the silicate. Qualifying the importance by variables in the lin-
ear findings is also important. While there can be importance
by variables inferred based on the p-value itself, each vari-
able denotes a noteworthy influence on the model itself given
each value is within the threshold to indicate a statistical de-
pendence.



Fig. 4. Light elements in the core by weight percent along each step of the fraction of Earth accreted, calculated using both a linear regression (top figures) derived
from equilibria constant and Gibbs free energy equation in addition to the random forest regression (bottom figures). While the final Si and O concentrations in
the core are found similar with both methods, the random forest regression yields significantly smaller errors.

3.3 Continuous Core Accretion Model

Using a continuously accreting Earth model we outlined equi-
libria conditions, taken from literature, at 100 steps of the frac-
tion of Earth accreted. We consider a magma ocean extending
to half the depth of the current mantle (Bouhifd & Jephcoat,
2011, Fischer et al. 2015, Siebert et al. 2012), a mantle com-
position being primarily pyrolytic (McDonough & Sun 1995),
a liquidus temperature of a chondritic mantle calculated by the
pressure environment at the 50% CMB (Andrault et al., 2011),
and an oxygen fugacity calculated with respect to the IW-buffer
and mantle concentrations of FeO silicate. These conditions
can be described using the nomenclature P-T-XFeO-fO2. Us-
ing these outlined conditions evolving over an accreting Earth
model, we calculate inferred partition coefficient of Si and O el-
emental concentrations between the novel mantle and the core.
Between the two models, the linear regression and RFR, find-
ings for partitioned Si and O in the core do not differ between

the two models, both showing a core enriched in O (5.1-5.2%)
and depleted in Si (1.3-1.4%) (figure 4).

However, the RFR allowed for a significant reduction in
error associated when integrating over differential steps of the
fraction of Earth accreted. For Si in the core, the RFR improved
upon the accuracy of the linear model decreasing integration
error from ±1.9 wt% to ±0.3 wt%. Similarly, the RFR improved
on the accuracy of the linear model decreasing integration error
calculating O in the core from ±4.2 wt% to ±1.4 wt%.

4. Discussion and Implications of Core Formation
Using database improvements for experiments outlining metal-
silicate equilibria from Met-Sil-DB in application to both a less
accurate linear model taken from previous literature and the
RFR, we’ve inferred a core depleted in Si and enriched in O.
This inferred distribution of given light elements in the core
aligns with a previous study constraining P-T-XFeO-fO2 paths
with seismic considerations (Badro et al. 2015), outlining nec-



essary density constraints in the outer core from the AK135
radial seismological model (Kennett et al., 1995). These stud-
ies produce density constraints aligned with distributions of O
and Si to what we have inferred in this study. Our findings
thus agree with P-T-XFeO-fO2 paths outlining a hot liquidus
with pressure and temperature conditions of 55-60 GPa and
4100 – 4300 K (Badro et al., 2015), respectively. Importantly,
these paths produce inferred current mantle elemental concen-
trations (McDonough & Sun 1995). Our findings further align
with core formation conditions defined by early oxidizing con-
ditions, such that core formation is dominated by a high oxy-
gen content followed by reduced conditions to reach the cur-
rent mantle concentrations of 8% (Siebert et al., 2013). Accord-
ingly, our findings do not align with the literature suggesting a
core enriched in Si and depleted in O (Fischer et al., 2015),
suggesting equilibria conditions with pressure ranges similar
to our findings, but a significantly cooler temperature range of
3300-3400 K.

While our model is successful in predicting partition-
ing behavior given high pressure and temperature experimen-
tal conditions in metal-silicate equilibria, our inferences based
on the evolving equilibria conditions within the accreting Earth
and derived elemental concentrations in the core do have no-
table limitations. Our findings show the improved methodol-
ogy of modeling partitioning behavior between metal-silicate
equilibria using the RFR as opposed to linear regression. Given
that the linear method is derived from geochemical assumptions
based on the exchange between metal diapirs with the novel
mantle, it is likely that these assumptions introduce falsehood
to our thermodynamic findings. As such, the findings from our
accreting Earth model do provide insights into aligning find-
ings from previous literature on evolving thermodynamic con-
straints of the Earth as it gains mass. However, these findings
are supported by inferences made on namely the liquidus tem-
perature of the chondritic mantle, the pressure at the current
50% depth of the CMB, and the distribution of oxygen in FeO
silicates throughout the novel mantle. Our model is thus lim-
ited to the derivation of these system constraints being based
on interpretations from modeling these behaviors using linear
regressions as outlined in the studies above. With this, there
are some restrictions in our findings on the elemental concen-
trations of Si and O in the core, in addition to the equilibria
conditions they are most reliant on.

5. Conclusion
In this study, we have outlined Earth’s core being enriched in O
and depleted in Si using a novel approach in the application of
the RFR to experimental data in Met-Sil-DB. Additionally, our
findings align with seismic constraints of density in the outer
core, in addition to system conditions pertaining to equilibria
defined in previous literature aggreging with a higher concen-
tration of O in Earth’s core. Future studies should compound

upon the accumulation of metal-silicate equilibria experiments
in Met-Sil-DB, in addition to using the methodology outlined
above to apply machine learning algorithms to model partition-
ing behavior in metal-silicate equilibria. Experimental data in
Met-Sil-DB should be assessed to determine if samples reached
equilibria through the comparison of sample size given the ex-
perimental apparatus and the ideal diffusion times of Si and
O at lower to medium experimental temperatures (Bouhifd et
al., 2011, Hofmann, 1980). The certainty to which our findings
rest is reliant on assessing findings of the oxidation state of the
novel mantle, in addition to the equilibria conditions inferred
during core formation based on core-depletions of Ni and Co
(Bouhifd et al., 2011) and core-mantle distribution of Cr (Fis-
cher et al., 2015, Andrault et al., 2013) using our methodology.
The assessment of these findings can help future studies effec-
tively constrain the depth of the magma ocean in addition to the
general redox condition of the early Earth using the partitioning
behavior of Ni and Co, and Cr.
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