May 18th, 12:00 AM - May 22nd, 12:00 AM

Feasibility of Psychoacoustic Testing on Hearing-Impaired Individuals with a Portable Device

S. Adelaide Bock
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Communication Sciences and Disorders Commons

https://cedar.wwu.edu/scholwk/2020/2020/22

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Feasibility of Psychoacoustic Testing on Hearing-Impaired Individuals with a Portable Device

Presenter: S. Adelaide Bock | Advisor: Dr. Anna Diedesch

Introduction

- Portable Automated Rapid Testing (PART) was developed at the University of California, Riverside Brain Game Center.
- PART expands on a traditional hearing test by measuring individuals' auditory processing abilities.
- PART also features an untraditional method of testing by conducting the testing on a portable device.
- Lelo de Larrea-Mancera and colleagues (2020) established PART normative data from 150 undergraduate students at the University of California Riverside (Data was collected before 2020).
- This study aims to evaluate PART’s feasibility in the mild-to-moderate hearing-impaired population.

Methodology

- **Participants**
 - Normal hearing (NH) subjects (n = 9, mean age = 21, SD = 2.5)
 - Hearing impaired (HI) subjects (n = 8, mean age = 65, SD= 12.5)
 - Eligibility: MoCA score 26 or higher (out of 30)
- **Equipment**
 - PART calibration at National Center for Rehabilitative Audiological Research (NCRAR) in Portland, OR.
 - iPad and Sennheiser 280 Pro headphones calibration: Bruel & Kjaer Head and Torso Simulator
 - Tympanometry testing: Grason-Stadler (GSI) tympanometer.
- **Procedure**
 - Psychoacoustic tests measured:
 - Test stimuli presentation: an adaptive Two down/one-up procedure.
 - “1/2 interval 2 alternative forced choice” (12AFC) method was used for subject’s target selection.

Results

<table>
<thead>
<tr>
<th>Subject</th>
<th>2 kHz Notch Noise</th>
<th>Dichotic FM</th>
<th>Gap</th>
<th>Dichotic FM</th>
<th>Spatial Release</th>
<th>Spectral Temporal Modulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH Left Ear Audiometric Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask 400</td>
<td>-10.00</td>
<td>75.58</td>
<td>56.63</td>
<td>0.87</td>
<td>2.51</td>
<td>8.09</td>
</tr>
<tr>
<td>Mask 0</td>
<td>-10.00</td>
<td>7.88</td>
<td>2.57</td>
<td>1.25</td>
<td>2.9</td>
<td>7.96</td>
</tr>
<tr>
<td>NH Right Ear Audiometric Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask 400</td>
<td>-10.00</td>
<td>75.58</td>
<td>56.63</td>
<td>0.87</td>
<td>2.51</td>
<td>8.09</td>
</tr>
<tr>
<td>Mask 0</td>
<td>-10.00</td>
<td>7.88</td>
<td>2.57</td>
<td>1.25</td>
<td>2.9</td>
<td>7.96</td>
</tr>
<tr>
<td>HI Left Ear Audiometric Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask 400</td>
<td>-10.00</td>
<td>75.58</td>
<td>56.63</td>
<td>0.87</td>
<td>2.51</td>
<td>8.09</td>
</tr>
<tr>
<td>Mask 0</td>
<td>-10.00</td>
<td>7.88</td>
<td>2.57</td>
<td>1.25</td>
<td>2.9</td>
<td>7.96</td>
</tr>
<tr>
<td>HI Right Ear Audiometric Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask 400</td>
<td>-10.00</td>
<td>75.58</td>
<td>56.63</td>
<td>0.87</td>
<td>2.51</td>
<td>8.09</td>
</tr>
<tr>
<td>Mask 0</td>
<td>-10.00</td>
<td>7.88</td>
<td>2.57</td>
<td>1.25</td>
<td>2.9</td>
<td>7.96</td>
</tr>
<tr>
<td>NH mean (±SD)</td>
<td>76.81 (±0.71)</td>
<td>64.57 (±0.59)</td>
<td>1.84 (±0.56)</td>
<td>2.83 (±0.46)</td>
<td>7.96 (±0.36)</td>
<td>3.49 (±0.38)</td>
</tr>
<tr>
<td>HI mean (±SD)</td>
<td>75.26 (±0.71)</td>
<td>64.57 (±0.59)</td>
<td>1.84 (±0.56)</td>
<td>2.83 (±0.46)</td>
<td>7.96 (±0.36)</td>
<td>3.49 (±0.38)</td>
</tr>
<tr>
<td>NH mean (±SD)</td>
<td>76.81 (±0.71)</td>
<td>64.57 (±0.59)</td>
<td>1.84 (±0.56)</td>
<td>2.83 (±0.46)</td>
<td>7.96 (±0.36)</td>
<td>3.49 (±0.38)</td>
</tr>
<tr>
<td>HI mean (±SD)</td>
<td>75.26 (±0.71)</td>
<td>64.57 (±0.59)</td>
<td>1.84 (±0.56)</td>
<td>2.83 (±0.46)</td>
<td>7.96 (±0.36)</td>
<td>3.49 (±0.38)</td>
</tr>
</tbody>
</table>

Discussion/Future Directions

- PART has great potential for contributing to the field of clinical audiology practice by providing a fast, easy, and affordable addition to the current test battery.
- Significant differences found across groups can be valuable for future research.
- Significant differences were found in 2 kHz Notch Noise (Mask400) testing t(6)=2.73, (p=0.034 < 0.05). Dichotic FM testing t(8)=3.70, (p=0.006 < 0.05), and Co-located SRM testing t(15)=2.87, (p=0.012 < 0.05).
- These findings suggest that it is feasible to evaluate psychoacoustic tests using PART on a population with mild-to-moderate Hearing Loss.
- The implications of the app itself may further contribute to future research in hearing aids fitting where spectral and temporal processing ability is not currently considered.
- Due to the COVID-19 pandemic, some participants were not able to complete PART testing. Therefore, our findings are recommended to be re-tested for confirmation of the results in larger scale studies.

Acknowledgements

I am indebted to Western Washington University Research Department for supporting myonor’s capstone project by funding this research study. I am grateful for Dr. Diedesch’s initial consent of me writing a summary of this research project that was led by her and her colleagues. Especially, her long-term guidance and encouragement were indispensable to the completion of this paper. I want to thank Destine Halverson and Makayla Dordan for giving me a lot of helpful feedback on the paper’s editing and revision. I also thank Grace Young and Jess Mendiola who volunteered to collect participants’ data at the research lab. Lastly but most importantly, I want to thank all the research participants (some were my friends) for contributing their valuable time to the data collection. Their support was crucial in keeping the research running.

References

Picsures were retrieved from: https://braingamecenter.ucr.edu/games/p-a-a-c/.

I also thank Destine Halverson and Makayla Dordan for giving me a lot of helpful feedback on the paper’s editing and revision. I also thank Grace Young and Jess Mendiola who volunteered to collect participants’ data at the research lab. Lastly but most importantly, I want to thank all the research participants (some were my friends) for contributing their valuable time to the data collection. Their support was crucial in keeping the research running.