Feasibility of Psychoacoustic Testing on Hearing-Impaired Individuals with a Portable Device

S. Adelaide Bock
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/scholwk
Part of the Communication Sciences and Disorders Commons

https://cedar.wwu.edu/scholwk/2020/2020/22

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Feasibility of Psychoacoustic Testing on Hearing-Impaired Individuals with a Portable Device

Presenter: S. Adelaide Bock | Advisor: Dr. Anna Diedesch

Introduction

- Portable Automated Rapid Testing (PART) was developed at the University of California, Riverside Brain Game Center
- PART expands on a traditional hearing test by measuring individuals' auditory processing abilities.
- PART also features an unconventional method of testing by conducting the testing on a portable device.
- Lelo de Larrea-Mancera and colleagues (2020) established PART normative data from 150 undergraduate students at the University of California Riverside (Data was collected before 2020).
- This study aims to evaluate PART's feasibility in the mild-to-moderate hearing-impaired population.

Methodology

- **Participants**
 - Normal hearing (NH) subjects (n = 9, mean age = 21, SD = 2.5)
 - Hearing impaired (HI) subjects (n = 8, mean age = 65, SD = 12.5)
- **Equipment**
 - MoCA score 26 or higher (out of 30)
 - Confirm the health of the outer & middle ear status
 - Pure-tone audiometry testing configuration and thresholds
 - HI subjects: mild-to-moderate symmetrical Sensorineural Hearing Loss
- **Procedure**
 - Psychoacoustic tests measured:
 - 2 kHz Notch Noise, Dichotic Frequency Modulation, Temporal Gap Detection, Temporal, and Spectrotemporal Modulation
 - Speech audiometry: Grason-Stadler (GSI) tympanometer
 - Tympanometry testing: Brüel & Kjær Head and Torso Simulator
 - Sound resistant booth using a GSI 61 audiometer and ER-3 insert headphones
 - Portable Automated Rapid Testing (PART) was developed for confirmation of participants' data at the research lab.

Results

<table>
<thead>
<tr>
<th>Subject</th>
<th>2 kHz Notch Noise</th>
<th>Dichotic FM</th>
<th>Gap</th>
<th>Dichotic FM</th>
<th>Spatial Release</th>
<th>Spectral Temporal Modulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH Left Ear Audiometric Thresholds</td>
<td>250 Hz</td>
<td>500 Hz</td>
<td>1 kHz</td>
<td>2 kHz</td>
<td>4 kHz</td>
<td>Mask 400</td>
</tr>
<tr>
<td>Mask 400</td>
<td>75.56</td>
<td>56.63</td>
<td>0.87</td>
<td>2.51</td>
<td>8.09</td>
<td>69.34</td>
</tr>
<tr>
<td>Mask 0</td>
<td>78.88</td>
<td>2.57</td>
<td>1.25</td>
<td>2.9</td>
<td>7.96</td>
<td>3.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>2 kHz Notch Noise</th>
<th>Dichotic FM</th>
<th>Gap</th>
<th>Dichotic FM</th>
<th>Spatial Release</th>
<th>Spectral Temporal Modulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH Right Ear Audiometric Thresholds</td>
<td>250 Hz</td>
<td>500 Hz</td>
<td>1 kHz</td>
<td>2 kHz</td>
<td>4 kHz</td>
<td>Mask 400</td>
</tr>
<tr>
<td>Mask 400</td>
<td>80.00</td>
<td>60.00</td>
<td>1.34</td>
<td>2.81</td>
<td>11.86</td>
<td>71.31</td>
</tr>
<tr>
<td>Mask 0</td>
<td>94.91</td>
<td>3.94</td>
<td>1.93</td>
<td>2.33</td>
<td>10.43</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Discussion/Future Directions

- PART has great potential for contributing to the field of clinical audiology practice by providing a fast, easy, and affordable addition to the current test battery.
- Significant differences found across groups can be valuable for further research.
- Significant differences found in 2kHz Notch Noise (Mask400) testing t(6)=2.73, (p=0.034 < 0.05), Dichotic FM testing t(8)=3.70, (p=0.006 < 0.05), and Co-located SRM testing t(15)=2.87, (p=0.012 < 0.05).
- Significant differences were found in 2 kHz Notch Noise, Dichotic FM testing, and Co-located SRM testing.

Acknowledgements

I am indebted to Western Washington University Research Department for supporting my Honor's capstone project by funding this research study. I am grateful to Dr. Diedesch’s initial consent of me writing a summary of this research project that was led by her and her colleagues. Especially, her long-term guidance and encouragement were indispensable to the completion of this paper. I want to thank Destinee Halverson and Makayla Dordan for giving me a lot of helpful feedback on the paper’s editing and revision. I also thank Grace Young and Jess Mendiola who volunteered to collect participants’ data at the research lab. Lastly but most importantly, I want to thank all the research participants (some were my friends) for contributing their valuable time to the data collection. Their support was crucial in keeping the research running.

References

- Pictures were retrieved from: https://braingamecenter.ucr.edu/games/p-a-c-l