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Abstract 

Chapter 1 – Elk abundance estimation using genetic mark-recapture in the South Fork 

Nooksack Valley, Whatcom County Washington 

Non-invasive genetic mark-recapture is an increasingly useful method for estimating the 

abundance of elusive wildlife. This method was used to estimate the size of an elk population 

(Cervus canadensis) in the South Fork Nooksack River valley in northwestern Washington 

where dense forest cover can hamper aerial surveys. We genotyped 250 elk fecal DNA samples 

that were collected in a single sampling session. Only 103 samples amplified sufficiently after 

one PCR for genotype matching, which resulted in 49 unique genotypes. Program Capwire 

estimated a population size of 91 elk (95% CI = 83 - 130), possibly an underestimate of actual 

abundance. Unfortunately, funding limitations precluded necessary lab work to determine 

consensus genotypes so genotyping errors could not be corrected. For this reason, these results 

must be considered with caution. While genetic mark-recapture has many advantages over 

traditional mark-recapture methods, the potential for genotyping error can inflate laboratory 

expenses and should be carefully considered. 

Chapter 2 – Elk road ecology on state Highway 20 in Skagit Valley, Skagit County, 

Washington 

Wildlife-vehicle collisions pose a significant hazard to humans and wildlife. In Skagit 

Valley, Washington,158 elk (Cervus canadensis) roadkills were documented between 2002 and 

2014 on 34.8 kilometers of state highway 20 between the towns of Sedro-Woolley and Concrete. 

In the current study, I documented road crossing activity between July and December 2013 

between the towns of Sedro-Woolley and Concrete using string traps and remote cameras on 

game trails (n = 722 trail detections). Roadkill data were compiled from agency reports over 
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comparable time periods for spatial analysis (July to December 2013 (n = 22)) and modeling 

(January 2012 to January 2014 (n =103)). Roadkill locations were weakly correlated with road 

crossing locations across the study area (Kendall’s tau = 0.23, P < 0.001). Statistically significant 

hotspots were found for roadkills (n = 4) and road crossing activity (n = 5) (P < 0.05). One 

roadkill hotspot coincided with one road crossing hotspot. Presence / absence of road crossing 

activity and roadkills in 216 0.16-km road segments were each modeled against 10 habitat 

variables and 4 road variables using logistic regression. The best road crossing model indicated 

that road crossing activity was negatively associated with distance to forest, distance to streams, 

distance to crops, percent developed area, and guardrail length. Road crossing predictors with the 

highest relative importance values in the best model were Distance to forest (RI = 1.00), 

Distance to crops (RI = 1.00), and Distance to streams (RI = 1.00); however, Distance to streams 

had 95% confidence intervals containing zero. The best roadkill model indicated that roadkills 

were negatively associated with distance to pasture/hay, percent developed area, and roadside 

slope, and positively associated with percent forest cover. Roadkill predictors with the highest 

relative importance values were Distance to pasture/hay (RI = 01.00) and Percent forest cover 

(RI = 1.00). Understanding the spatial distribution of road crossing activity and roadkills, 

combined with the habitat and road factors associated with them, can inform management of 

wildlife and vehicles in rural areas. 
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Chapter 1 

Elk abundance estimation in the South Fork Nooksack Valley  

using genetic mark-recapture 

Introduction 

The North Cascades elk herd (Cervus canadensis1), also known as the Nooksack herd, is 

the northernmost elk herd in western Washington and the smallest of 10 major herds in the state. 

Managed by the Washington Department of Fish and Wildlife (WDFW) and the nine Point Elliot 

treaty tribes, the herd is important to hunters, wildlife enthusiasts, local private landowners, 

government agencies and Native American tribes who use elk as a cultural and subsistence 

resource (Danilson 2012). Maintaining an elk population of adequate size is necessary to realize 

the herd's many values, including its role in the North Cascades ecosystem.   

Elk have lived in western Washington for at least 6,000 years (Harpole and Lyman 1999). 

In Whatcom and Skagit counties, archeological elk remains between 100 and 3,000 years old 

have been found (Harpole and Lyman 1999) and Native American tribes in the area have hunted 

elk for millennia (McCabe 1981). With European settlement, hunting increased and elk 

abundance declined dramatically across the state; the historical North Cascades elk herd was 

apparently extirpated by overhunting around the turn on of the 20th century (Ware et al. 2014). 

Today's herd was re-established on historical range in the South Fork Nooksack River Valley 

and the Skagit River Valley following a series of reintroduction and augmentation efforts that 

began in 1912 (Figure 1-1). Most recently, the state and tribes relocated 98 animals from the 

Mount St. Helens area between 2003 and 2005. The genetic composition of today's North 

                                                      
1 Many authors continue to use Cervus elaphus to describe North American elk; however, phylogenetic research has 

shown them to be a distinct species (Cervus canadensis). Cervus elaphus now describes red deer species in Europe 

(Groves and Grubb 2011). 
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Cascades elk herd consists primarily of the introduced Rocky Mountain elk subspecies 

(Cervus canadensis nelsoni) from as far away as Yellowstone, as well as reintroduced native 

Roosevelt elk (Cervus canadensis roosevelti) from the Olympic Peninsula (WDFW 2017). 

 

Figure 1-1. Core and peripheral areas of the North Cascades elk herd (Davison 2002). 

The current abundance of the North Cascades elk herd is estimated to be between 1,569 

and 1,769 animals (WDFW 2017). Annual mark-resight population surveys by WDFW suggest 

that the population within the state Game Management Unit (GMU) 418 (Nooksack) and that 
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portion of GMU 437 (Sauk) north of the Skagit River between Lyman and Concrete is 1,269 

(95% CI = 1,170-1,379) elk. From 2006 to 2016, estimates of population size within the survey 

area indicate that the North Cascades elk herd has increased at a rate of 5-7% annually (Figure 1-

2). In addition, 200-400 elk occur elsewhere in GMU 437, primarily south of the Skagit River 

between Sedro Woolley and Marblemount, and at least 100 more within the Sauk River valley 

south of Rockport, according to biologists’ observations and other anecdotal information 

(WDFW 2017) (Figure 1-3).  

Historically, the herd reached a peak of between 1,400 and 2,000 elk the mid-1980s 

before a major decline in the early-1990s drove the population down to a few hundred elk 

(WDFW 2017). Causes of the decline included intensive timber management practices 

(including herbicide use that reduced early seral habitat), associated traffic and disturbance, 

overhunting on an expanded road network, elk-vehicle collisions, loss of habitat to development 

and agriculture, and lethal removal on conflicted agricultural lands (Danilson 2012).   

Figure 1-2. Mark-resight estimates of total elk, cow elk, and bull elk population size in GMU 418 

(Nooksack), 2006–2016. Estimates also include elk within the northern portion of GMU 437 north of the 

Skagit River between Lyman and Concrete. (WDFW 2017) 
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Figure 1-3. Overview map of study area. WDFW elk survey area is denoted in orange.
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Disturbance from recreational use of logging roads by off-road vehicles has also increased in 

recent years (Danilson 2012, Davison 2002). The herd has since rebounded with the support of 

augmentation, a hunting moratorium from 1997 to 2007, habitat enhancement projects, restricted 

vehicle access, and changes in silvicultural practices that have created a more complex mosaic of 

habitats (WDFW 2017).   

Managing agencies seek to increase the size of the herd to 1,950 elk (±10%, WDFW 

2017). WDFW reports that the North Cascades elk herd is not limited by available habitat despite 

a reduction in overall elk carrying capacity in Washington. This is due to a marked reduction in 

timber harvest that created early seral habitat (including on federal land where herbicide is not 

used), as well as an increase in human population and associated development (WDFW 2014). 

Elk currently inhabit agricultural lands in the Skagit Valley and South Fork Nooksack Valley, 

leading to frequent landowner conflicts. A WDFW aerial survey in March 2014 counted 129 elk 

in the South Fork Nooksack Valley (Paul DeBruyn, pers. comm.).  

Since 2006, the WDFW has conducted annual aerial mark-resight and sightability 

surveys to estimate and monitor abundance of the entire North Cascades elk herd 

(McCorquodale et. al 2012, WDFW 2017). The state surveys most of the herd’s core range 

including areas around Mosquito Lake, the town of Acme, the south fork of the Nooksack River 

near the Whatcom-Skagit county line and the middle fork of the Skagit River north of Highway 

20 between Sedro Woolley and Concrete. These areas fall within the WDFW Nooksack Game 

Management Unit (#418) and a small portion of the Sauk GMU (#437). Aerial detection is 

difficult in the North Cascades elk range due to low elk density and dense forest cover. 

McCorquodale et. al (2012) found "substantial limitations" in their sightability model, which 

likely underestimated abundance in 2011, while their mark-resight model may have 
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overestimated population size, leading to "biologically implausible" results (Figure 1-2). The 

2017 North Cascades Elk Herd Plan includes the objective to “implement a monitoring strategy 

that will provide a sound basis for herd size estimation using acceptable, cost-effective 

methodologies” by 2018 (WDFW 2017).  

Genetic mark-recapture is a recent method used to estimate abundance that could be 

advantageous in areas of dense forest cover that hinder aerial survey methods. In this approach, 

DNA from blood, tissue, hair, or feces is used to identify (or “mark”) individuals who may be 

detected again (“recaptured”) in one or more sampling sessions. A mark-recapture model can 

then be used to estimate population size. Other advantages of this non-invasive method over 

helicopter-based surveys include fewer hazards, reduced animal disturbance, no need to deploy 

and maintain radio collars, and potentially lower cost and fewer detection biases. Single-session 

genetic mark recapture models (Miller et al. 2005) are particularly useful for cutting field costs 

and effort, and improving the chances of satisfying model assumptions, particularly that of 

population closure: no births, deaths, immigration or emigration during the sampling period.  

Challenges associated with genetic mark-recapture include low DNA quality (particularly 

with fecal DNA) and resulting genotyping errors that can greatly reduce the accuracy of 

population estimates (Waits and Leburg 2000, Lampa et al. 2013). Software programs such as 

Dropout (McKelvey and Schwartz 2005) and Microchecker (Van Oosterhout et al. 2004) can be 

used to detect genotyping errors in a dataset such as allelic dropout and null alleles (alleles that 

fail to amplify), stuttering (caused by errors in the PCR process), and false individuals 

(individuals created by genotyping errors). A number of laboratory protocols have been 

developed to reduce genotyping error by re-amplifying samples in order to create consensus 
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genotypes; however, these procedures can greatly increase laboratory costs. Due to funding 

limitations, we were not able to follow these protocols, which include: 

1. Multiple tubes approach (Taberlet 1996) - Minimum 3 amplifications of all 

samples; accept heterozygous alleles detected twice; accept homozygous loci after up to 8 

reamplifications (very conservative and costly). 

2. Comparative multiple tubes approach (cMTA) (Frantz et al. 2003) - Accept 

heterozygous alleles after 2 detections. Follow step-wise protocol for up to 7 

amplifications for ambiguous samples. Reamplify samples with 1-2 mismatched alleles 4 

more times. 

3. Mismatch (per Paetkau 2003) - Reamplify only those samples that mismatch by 1 

to 3 loci 2 – 4 times. Accept heterozygous alleles detected twice. Reamplify homozygous 

loci 3 more times.  

4. Singles (Hettinga et al. 2012, Woods et al., 1999,  Poole et al., 2001) - Reamplify 

only singleton genotypes 2 – 3 times. This approach assumes that matches confirm each 

other. 

As co-managers of the North Cascades elk herd, the Stillaguamish and Tulalip tribes are 

interested in monitoring the size of the elk population in the South Fork Nooksack River Valley 

near the towns of Acme and Saxon in Whatcom County, Washington. This area is of particular 

interest due to ongoing agricultural damage caused by elk in the valley bottom. Between 2002 to 

2014, 17 elk damage claims were filed to WDFW in GMUs 407, 418, 437, 448, and 450, and the 

state paid a total of $78,555 to landowners for damage claims (WDFW 2017). Monitoring 

abundance on the South Fork Nooksack River valley floor could help determine the efficacy of 

efforts to reduce elk density such as hunting, hazing, killing problem elk, clearing and planting 

upland forage enhancement plots, and fencing agricultural fields.  
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Methods 

Study area 

 The South Fork Nooksack River Valley is located on the west side of the Cascade 

Mountains in the Western Hemlock (Tsuga heterophylla) zone of northwest Washington State at 

about 100 meters elevation (Franklin and Dyrness 1973). The valley bottom is approximately 

7,200 hectares and supports agriculture centered around the town of Acme (population 246). Elk 

habitat types in the valley bottom include agricultural fields of corn and hay, deciduous forests of 

primarily red alder (Alnus rubra) and big leaf maple (Acer macrophyllum), and second-growth 

evergreen forests dominated by Douglas fir (Psuedotsuga menziesii) and Western Red Cedar 

(Thuja plicata). 

 Elk scat sampling was restricted to the South Fork Nooksack River valley bottom. Given 

the relatively large area, the heterogeneous habitat distribution in the valley, and short sampling 

period required to assume a closed population, sampling effort was focused in areas where elk 

were reported by residents or detected by radio telemetry during the two weeks prior to 

collection. Elk fecal DNA has been shown to resist degradation for about 14 days in dry weather 

(Sager 2012 unpublished data). 

Sample collection 

 Staff, students, and volunteers from Western Washington University, the Stillaguamish 

Tribe, and the Tulalip Tribe collected 357 fecal genetic samples from elk scat in the South Fork 

Nooksack Valley on September 24-26, 2013. Samples were collected using a toothpick method 

developed by Dr. David Paetkau of Wildlife Genetics International and tested by Kim Sager of 

the Lower Elwha S’Klallam Tribe (Paetkau pers. comm.; Sager, unpublished data). A coarse 
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toothpick was gently dragged over the translucent mucus on the surface of the elk pellet to 

collect epithelial cells sloughed from the intestinal tract. Collection of fecal material on the 

toothpicks was avoided because fecal enzymes can degrade DNA and interfere with the DNA 

amplification process (Paetkau pers. comm.). We completed a pilot study of this method in 

January 2013 and found improved genotyping success using toothpicks compared to samples 

collected using cotton swabs (See Appendix A). The sampling procedure was performed twice 

for each sampled scat pile -- once with a pellet from the top of a pile and a second time with a 

pellet from the middle of the pile in case the first DNA sample was degraded by weather. The 

two toothpicks were then placed in a coin envelope, sealed, and labeled with unique sample 

identification numbers and quality score from 1 to 3 based on freshness of scat. The sampled scat 

pile was then covered with vegetation (grass or sticks) to prevent resampling, and geographic 

coordinates were recorded using Garmin GPSMap 60 C and 60 CSx units. We made no attempt 

to exclude calves from our samples so this population estimate includes all age classes. We 

avoided sampling the same individual in the same area by not sampling scat piles within 4.5 

meters (15 feet) of other scat piles. 

Samplers working in groups of 2 to 4 were instructed to survey fields starting along the 

forest edge about 5 to 30 feet apart depending on vegetation cover and visibility of scat piles. 

When an elk trail into the forest was encountered, two or more samplers would follow the trail 

with the lead sampler searching the trail itself and the second sampler searching 1 m on either 

side of the trail. Once a given trail system was surveyed, samplers returned to the field to resume 

the field survey. Once edges and trails were surveyed around a given field, samplers were 

instructed to survey the remainder of the field area (Figure 1-4, Figure 1-5).  



10 

 

Figure 1-4. Approximate area sampled based on track points from GPS units carried by samplers. 
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Figure 1-5. Geographic distribution of 357 elk fecal DNA samples in the South Fork Nooksack 

River Valley, Whatcom County, Washington. All 202 Quality 1 (green) and a random sampling of 

48 Quality 2 (yellow) samples were genotyped for population estimation. No samples were found in 

northwestern-most sampling areas in Figure 1-4.  
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Genotyping  

Due to limited funding for laboratory analysis, we selected 250 of 357 samples for 

genotyping based on sample quality in order to maximize genotyping success and better ensure 

population closure – a key assumption of the mark-recapture model (Miller et al. 2005). All 202 

of the high-quality samples (quality score = 1) and a random sample of 48 medium quality 

samples (quality score = 1.5 or 2) were sent to the Washington Department of Fish and Wildlife 

genetics lab in Olympia, Washington for genotyping. 

Genomic DNA was extracted from epithelial cells on sampled toothpicks following 

standard recommendations for DNeasy commercial single tube silica-membrane blood and tissue 

DNA isolation kit (Qiagen). Polymerase chain reaction (PCR) was used to amplify 13 previously 

characterized microsatellite loci and two sex markers in 5 multiplex reactions (Multiplex Cca-B: 

BM1225, BM4208, BM4513; Multiplex Cca-C: BM5004, ETH152, BMC1009; Multiplex Cca-

D: Texan4, BM888, BM4107, RT7; Multiplex Cca-E: OarCP26, BM203, RT27; Multiplex 

Gender: ZFX/Y, SRY41/121rd). PCR results were scored independently by two WDFW lab 

technicians. Only consensus allele base pair length scores were used for individual identification; 

mismatching scores were nulled. 

Genotyping error 

 Fecal DNA is generally of much lower quality than that from blood or tissue due to lower 

DNA quantity and potential degradation from fecal enzymes and moisture. This can cause errors 

in the genotyping process that can create false individuals and missing data, both of which cause 

significant inaccuracies (overestimation, typically) in mark-recapture population estimates 

(Waits and LeBurg 2000, Lampa et al. 2013). A number of protocols have been developed to 

systematically reamplify problematic samples in order to reduce genotyping error (see above; 
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Taberlet 1996, Paetkau 2003TK, Lampa et al. 2013). However, additional lab work in this study 

was precluded by lack of funding. This is a significant limitation and our results should be 

considered with caution.   

Matching genotypes 

The R package Allelematch was used to determine unique genotypes and match similar 

genotypes in order to develop a capture history (Galpern et al. 2013). Allelematch performs a 

pairwise comparison of all genotypes using the allele base pair length values and calculates a 

similarity score between all genotypes. This similarity score is then used to cluster genotypes 

into similar groups. This program was advantageous in this study because it can “match” 

genotypes while allowing for a minimal amount of error and missing data. This is accomplished 

in two ways: 1) by matching genotypes using allele base pair values rather than the more 

commonly used Probability of Identity for Siblings (PIDsib) (Woods et al. 1999) and 2) by 

allowing matches to differ by a determined number of alleles (this is called the allele mismatch 

parameter). Allowing no allele mismatches would likely create false individuals since we know 

that errors and missing data exist in the genotypes – it would be too fine of a filter. On the other 

hand, allowing too many mismatched alleles would prevent Allelematch from differentiating 

between individuals – it would be too coarse of a filter. The optimum allele mismatch value is 

determined by Allelematch by calculating the second minimum number of samples that match 

multiple unique genotypes as the number of allowed allele mismatches increases (Figure 1-6) 

(Galpern et al. 2013). 
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Population modeling 

 The mark-recapture modeling R package Capwire estimates population size from a single 

sampling session rather than the multiple sampling sessions (a “mark” session followed by 

“recapture” sessions) required by traditional mark-recapture models (Miller et al. 2005, Pennell 

et al. 2013). While standard methods pool multiple observations of an individual within a 

sampling session into just one observation, Capwire uses these multiple observations when 

estimating population size from a single session -- hence the name Capwire: capture with 

replacement (Miller et al. 2005). This saves a great deal of cost and effort, and can aid in 

satisfying model assumptions. Miller et al. 2005 found that Capwire consistently performs as 

well as or better than comparable models such as Mh-jackknife (Burnham & Overton 1979), Mh-

Chao (Chao 1988), the exponential rarefaction method of Eggert et al. (2003), and the hyperbolic 

rarefaction curve of Kohn et al. (1999). 

 

The assumptions of the single-session mark-recapture model in Capwire must be 

considered during sample collection and analysis:  

1) Closed population: There are no births, deaths, immigration, or emigration in the 

sampling area during the sampling period. This assumption was met by using a short 

sampling period of 3 days and genotyping only the freshest (most recent) scat 

samples. We estimate that all of our genotyped samples were no more than 3 days old 

when collected. 

 

2) Independent samples: Each genetic sample should represent a separate “occurrence” 

of the individual animal. This can be problematic when sampling a herd whose 
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individuals may defecate multiple times in one area. We avoided sampling the same 

individual in the same area by not sampling scat piles within 4.5 meters (15 feet) of 

another scat pile. 

 

3) Identical distribution: Individuals are distributed identically across the sampling area. 

This assumption can be problematic in the real world; however, Miller et al. (2005) 

found that Capwire is robust to unequal distribution in both real world datasets and 

grid simulations. 

 

4) Equal capture probability: All individuals have the same probability of being 

captured each time. This is less of an issue for scat sampling of herding animals than 

it would be for trapping carnivores, for example, where a trap effect could influence 

capture probability (Miller et al. 2005). Capture heterogeneity among individuals may 

still exist due to behavioral differences inherent to sex, age, or reproductive status. 

Missed or under-represented genotypes, possibly exacerbated by unequal sampling 

effort across an area, may introduce another source of capture heterogeneity. In this 

study, Capwire’s Likelihood Ratio Test rejected the Equal Capture Model and so used 

the Two Innate Rates Model (TIRM) that accounts for distinct capture probabilities 

(i.e. easy and hard-to-capture individuals) when estimating abundance. 

Results 

Out of 3,750 potential base pair scores (250 individuals * [13 microsatellite loci + 2 sex 

ID loci]), 1,963 (52%) consensus scores were produced. In other words, 48% of the genotype 

data could not be amplified or scored. This low rate of amplification success indicates low-
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quality, degraded DNA samples, likely due to exposure to moisture in the gastrointestinal tract 

and the environment. This is consistent with the results of our genotyping pilot study (see 

Discussion and Appendix A).  

To reduce error and ambiguity in the genotypes dataset, I culled samples with consensus 

scores at 8 or fewer loci (n = 147), retaining only those samples with consensus scores at 9 or 

more loci (n = 103) for further analysis, following WDFW lab protocol (Ken Warheit, pers. 

comm.). Next, I used program Dropout (McKelvey and Schwartz 2005) to estimate the error load 

in the dataset by creating a distribution of genetic differences based on a pairwise comparison of 

genotypes (Figure 1-6). A high number of genotypes that differ by 1 to 3 loci indicates a high 

number of errors in the dataset since true individuals should differ by 4 or more loci while false 

individuals – those created by isolated genotyping errors – will typically differ by 1 to 3 loci 

(McKelvey and Schwartz 2005). Figure 1-3 shows all but 9 individuals differing by 1 to 3 loci 

(not including the 25 matched genotypes differing by 0 loci), indicating many persistent errors.  
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Figure 1-6. Results of the Dropout bimodality test on the 13-loci, 103-sample dataset, which found 

78 genotypes that differ at 1 to 4 loci and 25 genotypes that match at all loci with non-missing data 

(“matches”).  

Additional software tests were used to detect errors so that problematic loci and samples 

could be removed from further analysis (Lampa et al. 2013, Micheline Manseau pers. comm.). 

The goal was to minimize loci that could introduce errors while retaining enough loci to 

differentiate between individuals (Waits and Leburg 2000, Lampa et al. 2013). Preliminary 

analysis using programs Genalex, MicroChecker, and Dropout found missing data, low observed 

heterozygosity (Ho), potential false individuals, potential null alleles, and potential stuttering at 

various loci (Table 1-1). To further remove errors, I culled four problematic loci from further 

analysis: BM203, RT27, RT7, and Texan4 (Table 1-2).  
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Table 1-1. Microsatellite loci and associated potential errors in 103 elk genotypes at 13 loci per 

Genalex, MicroChecker, and Dropout programs. 

BM1225 34% missing data, no errors detected    

BM203 False individuals, null alleles    

BM4107 Stuttering     

BM4208 Null alleles     

BM4513 No errors detected      

BM5004 Very low Ho (0.14), no errors   

BM888 Stuttering     

BMC1009 Null alleles     

ETH152 26% missing data, stuttering    

OarCP26 No errors detected      

RT27 Very low Ho (0.011), null alleles   

RT7 44% missing data, stuttering    

Texan4 34% missing data, very low Ho (0.254), stuttering 

 

Table 1-2. Summary statistics of elk genotypes before and after culls. (He = Expected 

heterozygosity. Ho= Observed heterozygosity. PIDsib=Probability of Identity for Siblings. Diversity 

= Allelic diversity (n total alleles / n loci). Missing data = n not amplified or nulled scores / n total 

scores) 

 

No cull  

(13 loci, n = 250) 

Sample cull  

(13 loci, n = 103) 

Loci cull 

(9 loci, n = 103) 

Mean He 0.532 0.512 0.550 

Mean Ho 0.368 0.411 0.452 

PIDsib 0.00035  0.00051  0.0036 

Diversity 3.7 3.7 3.6 

Missing data 48.4% 16.8% 14.1% 

 

Matching genotypes 

The remaining 9 loci were sufficiently variable to differentiate between individuals in the 

population (PIDsib for 9 loci = 0.00362, mean Ho = 0.452). In this dataset, allowing 5 

                                                      
2 Probability of Identity for siblings. This is the probability that two individuals in the dataset will be siblings 
due to chance (it’s more stringent than PID). The accepted cut-off for PIDsib between two matched 
samples is 0.05, which is different from this overall value from all loci. 
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mismatched alleles between matching genotypes resulted in the fewest non-zero multiple-

matched samples (n = 17, unclassified samples=6) (Figure 1-7). This is indicative of a 

“marginal” to “low-quality” dataset (Galpern et al. 2012). 

 

Figure 1-7. Allelematch unique profile output showing an optimum alleleMismatch value of 5. Note 

the emphasis to have “caution with optimum” since there are still multiple-matched samples. This 

is indicative of a “marginal” to “low-quality” dataset (Galpern et al. 2012)).  

I resolved the 17 multiple-matched samples and the 6 unclassified samples by manually 

reviewing the genotypes and judging the best matches based on fewest mismatched alleles and 

least missing data (Galpern et al. 2012). Four of the unclassified samples appeared to be unique 

genotypes, bringing the total estimated “unique genotypes” to 49. These genotypes and their 

matches were counted to determine a history of total captures and recaptures.  
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From 103 elk genotypes, I used Allelematch to identify 49 unique genotypes and 54 

matching genotypes. From these results, I developed a capture history. (Table 1-3).  

Table 1-3. Capture history for 9-loci, 103-sample dataset with 49 unique genotypes per Allelematch 

(alleleMismatch parameter = 5). 

Number of 

captures 

Number of 

Individuals 

1 31 

2 5 

3 6 

4 2 

5 1 

6 2 

9 1 

10 1 

 

I used this capture history with Capwire’s Two Innate Rates Model (TIRM) to calculate a 

maximum likelihood population estimate of 91 elk (95% CI = 83, 130) (Figure 1-5). Note that 

the confidence interval does not take into account the genotyping error in the dataset. This may 

be an underestimate of actual abundance since the allele mismatch parameter of 5 allowed 

genotypes to match with up to 5 mismatched alleles, potentially resulting in false matches, fewer 

unique individuals, and a lower population estimate in Capwire. As stated above, without further 

laboratory testing of genotyping errors, the accuracy of this estimate is unknown. However, it is 

the best estimate possible given the limitations of the error-ridden genotypes and Allelematch’s 

tolerance for some degree of error (See Discussion).  

I repeated the analysis using an allele mismatch parameter of 2 in an attempt to estimate 

the higher extreme of potential population estimates if in fact there were fewer genotyping errors 

than the above tests suggest. Two mismatches were chosen because one mismatch was 

unrealistic given the high potential for error in this dataset, and three mismatches would still 
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assume a high level of errors. This resulted in 84 unique individuals with 17 multiple matched 

samples. Resolving the multiple matches resulted in 77 unique individuals and a capture history 

(Table 1-3). Under TIRM, Capwire estimated a maximum likelihood population size of 236 

individuals (95% CI = 192, 400) (Figure 1-5). This is very likely a significant overestimate of 

actual elk abundance since the artificially low mismatch parameter of 2 results in fewer genotype 

matches and more unique genotypes (likely false individuals) than the recommended allowance 

of 5 mismatched alleles that would better account for genotyping error (Figure 1-8). 

Table 1-4. Capture history for 9-loci, 103-sample dataset with 77 unique genotypes per Allelematch 

(alleleMismatch = 2). 

Number of 

captures 

Number of 

Individuals 

1 61 

2 10 

3 2 

4 4 
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Figure 1-8. Two population estimates of elk in the South Fork Nooksack River Valley using 

Capwire with two capture histories based on different allele mismatch values in program 

Allelematch. 

 

Discussion 

Given the high potential for errors in the elk genotypes and the lack of funding to verify 

them in the laboratory, it is impossible to determine the accuracy of these population estimates. 

While Capwire assumes that genotype data is error-free when estimating population size, various 

error-checking programs suggest a high rate of genotyping error in our dataset. This hinders the 

reliability of our results.  
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A number of studies have found severely biased population estimates as a result of 

genotyping error. Using simulated data, Waits and Leburg (2000) found population estimates 

were overestimated by >200% when the probability of genotyping error was 0.05 per locus when 

7–10 loci were used. In a study estimating the size of a Eurasian badger population, Lampa et al. 

(2013) found 70% of samples had erroneous genotypes at 1 – 5 microsatellites after the first PCR 

when compared to consensus genotypes. These errors resulted in significant overestimation 

(~25%) of the population compared to error-controlled datasets using Capwire and other models.  

While Allelematch appears to be robust to small amounts of genotyping error and 

missing data when matching genotypes, this dataset may be outside these bounds. Galpern et al. 

(2012) found that, in general, Allelematch identified unique genotypes reliably and accurately 

when allelic diversity >= 7.8 alleles ⁄ locus, missing data <= 5% and allelic dropout rate <= 0.04. 

Elk genotypes were not diverse enough (3.6 alleles/locus) and lacked data (missing data = 14%) 

to meet this general standard (Table 1-2); the allelic dropout rate is not known since samples 

were not reamplified. Allelematch can still perform reliably and accurately at lower levels of 

diversity and with more missing data depending on dataset characteristics (Galpern et al. 2012). 

However, without a more robust estimate of allelic dropout (and other genotyping errors) in our 

dataset, further analysis of the reliability of these genotypes and Allelematch’s ability to match 

them is precluded. 

Sources of genotyping error likely stem from the low quality of fecal DNA. Fecal 

enzymes degrade DNA from epithelial cells (David Paetkau pers. comm.) as does moisture from 

both the gastrointestinal tract and the environment. Due to scheduling limitations, the three-day 

sampling session began about 12 hours after heavy rains so most scat piles were likely rained on. 

Despite protocols to sample and analyze the highest quality DNA possible (i.e. sampling from 
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middle of scat pile and subsampling the freshest samples), samples nonetheless amplified poorly. 

The genotyping success rates for the three days of sampling were 55%, 47%, and 56%, 

respectively. The average quality scores for each day as (subjectively) assigned by field samplers 

were 1.16, 1.22, and 1.20, respectively (lower score is fresher). The higher genotyping success 

rate on the third day -- despite a similar average quality score on day two -- may be due to the 

longer period without rain and potentially drier scat piles; however, the subjectivity of the quality 

score precludes a clear conclusion. Scat DNA samples collected for our genotyping pilot study 

amplified better than samples collected during the population study, likely due to colder and 

drier weather (see Appendix A). In the pilot study, toothpick samples collected during cold and 

clear weather (n = 13) showed a genotyping success rate of 61% at 9 loci, meaning that 39% of 

loci did not produce consensus scores. Pilot samples collected during cold and drizzly weather (n 

= 10) had a 59% success rate. The genotyping success rate for the population study was 52% at 

13 loci.  

Model assumptions 

Meeting all four assumptions of Capwire’s single-session mark-recapture model (closed 

population, independent samples, identical distribution, and equal capture probability) proved 

difficult in the real world. In some cases, sampling protocols meant to ensure a closed 

population, for example, made it more difficult to meet other assumptions. Still, we believe that 

we satisfied Capwire’s assumptions given its robustness and flexibility, except perhaps the 

assumption of sample independence. A discussion of model assumptions here is useful. 

Population closure can be assumed given the short (3-day) sampling period and focus on 

fresh scat samples. It should be noted, however, that sampling took place during bow hunting 
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season as well as the fall rut when bulls actively move across the landscape searching for cows, 

which herd together during this time.  

Rutting behavior also may have affected the distribution of elk across the valley, which 

was clearly not identical given the spatially clumped distribution of herds and heterogeneity of 

elk habitat. As stated above, Capwire is relatively robust to violations of the assumption of 

identical distribution (Miller 2005).  

The assumption of equal capture probability was violated since Capwire’s Likelihood 

Ratio Test rejected the Equal Capture Model. For this reason, Capwire used the Two Innate 

Rates Model to account for different rates of capture probability when estimating population 

size. A more systematic sampling approach may have resulted in equal capture probability; 

however, this assumption is exceedingly difficult to achieve in the field (Miller et al. 2005). A 

short and targeted sampling scheme was deemed necessary in order to assume a closed 

population and collect enough samples with limited time and resources. Sub-sampling fresh 

samples also likely influenced capture probability but was likewise necessary to maximize DNA 

quality and minimize the sampling period to assume population closure. Had we genotyped low 

quality (but randomly selected) scat samples, increased genotyping error and missing data would 

have also affected capture probabilities. Using low quality (older) samples would also expand the 

duration of the sampling window and would potentially violate the closed population 

assumption. Regardless, Miller et al. (2005) found that Capwire actually performs better with 

capture heterogeneity (i.e. unequal capture probability) across individuals in the dataset, reducing 

bias, narrowing confidence intervals, and lowering mean relative error compared to population 

estimates under the Equal Capture Model. 
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One risk of using Capwire is the potential for using samples from the same individual 

that may not be independent, possibly violating the model assumption of independent samples. 

While standard mark-recapture models using multiple sampling sessions pool repeated detections 

of an individual within the same sampling session into one observation, Capwire uses these 

repeated detections within a single sampling session (Miller et al. 2005). In general, we 

considered a sample to be independent if the animal defecated in a different place at a different 

time (spatiotemporal independence) but exact limits on these parameters are difficult to 

determine, particularly when animals are spatially clumped as with herding ungulates.  We 

sampled 78 fresh scat piles in close proximity on a 2.5-hectare (6.2-acre) field behind the Acme 

firehouse where a herd of elk had been reported a few hours prior. We avoided sampling scat 

piles within 4.5 meters of each other to maintain sample independence; however, this may not 

have been sufficient given the high number of recaptures found in this field. 

Of the 17 recaptured elk, 7 were captured more than once in the firehouse field. The elk 

captured a total of 10 times (W12631) was captured 5 times in this field within 50 meters and as 

close as 11.5 meters to the next nearest sample. Similarly, the elk captured a total of 9 times 

(W12597) was captured 6 times in the same field with the nearest samples just 13 meters apart. 

Another elk (W12735) was detected three times only in that field and nowhere else, as were elk 

W12647 and W12806, which were each captured twice. In all, 30% of the 69 total recaptures 

were in the firehouse field. In this situation, it is difficult to determine if these samples are truly 

biologically independent. Harris et al. (2010) rejected a Capwire population estimate of Argali 

sheep because 63% of single-session recaptures were found within 3 meters at the same site 

(which they identified with one GPS location). Since the samples lacked distinct geographic 

information, they concluded that this violated the assumption of sample independence, while also 
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producing falsely high precision. Our samples were more dispersed but the more focused 

sampling effort in the firehouse field – and other areas of high scat density -- may have violated 

sample independence, resulting in an excessive number of recaptures and hence a potential 

underestimate of the population size. In addition, individuals in this subherd may be more likely 

to be closely related compared to other subherds in the valley, possibly further increasing the 

probability of false matches. Despite these limitations, we decided to genotype these samples 

anyway to better ensure a closed population (by using fresher, more recent scat), and to 

maximize sample quality since the wet weather had likely degraded the fecal DNA, as seen in 

our pilot study (Appendix A). The low amplification success rate of even our higher quality 

samples suggests that our concerns were justified.  

Miller et al. (2005) suggest that the Capwire model could be improved by not requiring 

samples to be independent since this assumption is difficult to satisfy in the real world – samples 

will never be evenly distributed and samples in close proximity are always more likely to come 

from the same individual than random samples. This spatial autocorrelation is not accounted for 

in the Capwire model. 

Advantages and limitations of single-session sampling 

Capwire has given accurate estimates of abundance compared to multiple-session mark-

recapture models (Miller et al. 2005). In this study, the single sampling session made possible by 

Capwire is perhaps necessary in order to assume a closed population during the fall rut and the 

hunting season. However, given the potential for unequal capture probability, multiple sampling 

session models could better account for this and other capture processes that may bias the 

population estimate (Lampa et al. 2013, Harris et al. 2010, Luikart et al. 2010). 
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Comparison to ongoing mark-resight population surveys 

          Despite the potential for genotyping errors, our results appear to be comparable to aerial 

mark-resight population estimates in the same area. WDFW has been monitoring the core North 

Cascades elk herd range since 2006 using aerial surveys and a mark-resight model to estimate 

annual population size. In March 2014, WDFW counted 129 elk in roughly the same study area 

of the South Fork Nooksack River valley that we sampled in September 2013 (n = 91). Local elk 

migration patterns could explain this apparent seasonal fluctuation in herd size. Our survey was 

performed during the fall rut when elk were likely moving in and out of the valley bottom; bow 

hunting season may have also caused elk to remain at higher elevations. During the winter 

months, elk descend to lower elevations, likely increasing the herd size in the valley bottom, as 

the aerial survey results suggest. 

Cost 

Noninvasive genetic mark-recapture has many potential advantages over other methods 

but costs can increase dramatically depending on the amount of genotyping error in the dataset, 

as was the case in this study. Additional laboratory expenses required to determine consensus 

genotypes in an error-ridden dataset should be carefully considered and anticipated in the 

budgeting process. Table 1-5 shows cost estimates for the first round of three genotyping error 

reduction protocols for this study. The least expensive option would be to follow the singles 

protocol for the 103-sample dataset, which would have a minimum cost of $2,450 (Table 1-5). 

Additional lab work would be likely and would depend on results from round 1. These costs 

would be in addition to the first amplification of 250 samples already completed, which cost 

approximately $12,000. The estimated cost of the WDFW aerial surveys for mark-resight 

estimates over the entire survey area in Figure 1-3 is $47,000 per year not including staff time 
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(McCorquodale et al. 2012).  If the cost of genotyping analysis continues to decline, this 

approach will become more practical, particularly if the cost of aerial surveys by helicopter 

increases.  

Table 1-5. Cost estimates for the first step of three genotyping error reduction protocols at $49 per 

sample (not including first amplification of all samples). Multiple tubes approach mentioned above 

is omitted due to excessive cost.  

 cMTA Mismatch Singles 

 

1st cull (n = 129) 

(n = 129) 

$6,321  

(n = 90) 

$4,410  

(n = 65) 

$3,185  

 

2nd cull (n = 103) 

(n = 103) 

$5,097  

(n = 70) 

$3,430 

(n = 50) 

$2,450  

 

Management implications 

 Genotyping errors preclude our results from being used directly for management 

purposes. However, our population estimates provide a reasonable, if broad, range of elk 

abundance in the South Fork Nooksack River Valley. Additional laboratory analysis and perhaps 

a more objective sampling protocol are encouraged in future non-invasive genetic mark-

recapture studies.  
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Appendix A 

Elk fecal genetic sampling protocol pilot study 

Methods 

Sampling 

On January 10 and 16, 2013, tribal biologists and WWU researchers collected 46 elk 

fecal genetic samples in order to test the effect of sampling method, weather, and scat condition 

on genotyping success. Samples were collected at Hurn Field in Skagit Valley, Washington, a 

known elk grazing area. Samples were collected using a toothpick method developed by Dr. 

David Paetkau of Wildlife Genetics International and tested by Kim Sager of the Lower Elwha 

S’Klallam Tribe (Paetkau pers. comm., Sager, unpublished data). A coarse toothpick was gently 

dragged over the translucent mucus on the surface of the elk pellet to collect epithelial cells 

sloughed from the intestinal tract. Collection of fecal material on the toothpicks was avoided 

because fecal enzymes can degrade DNA and interfere with the DNA amplification process 

(Paetkau pers. comm.). The sampling procedure was performed twice for each sampled scat pile 

-- once with a pellet from the top of a pile and a second time with a pellet from the middle of the 

pile in case the first DNA sample was degraded by weather. Intestinal mucus was also sampled 

in this process where found. The two toothpicks were then placed in a coin envelope, sealed, and 

labeled with unique sample identification numbers and a quality score from 1 to 3 based on 

freshness of scat. This same protocol was followed using cotton swabs. The sampled scat pile 
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was then covered with vegetation (grass or sticks) to prevent resampling, and geographic 

coordinates were recorded using Garmin GPSMap 60 C and 60 CSx units.  

Genotyping 

Samples were sent to the WDFW genetics lab for genotyping. Genomic DNA was 

extracted from epithelial cells on sampled toothpicks and cotton swabs following standard 

recommendations for DNeasy commercial single tube silica-membrane blood and tissue DNA 

isolation kit (Qiagen). Polymerase chain reaction (PCR) was used to amplify 9 previously 

characterized microsatellite loci (BM1225, BM4107, BM4208, BM4513, BM5004, BM888, 

BMC1009, ETH152, RT7). Lab technicians amplified and scored each sample twice, and 

counted number of amplified alleles, number of mismatched alleles between PCR attempts (a 

measure of PCR pair concordance), and number of mismatched alleles between collection 

method subsamples (a measure of concordance).   

  Laboratory staff conducted a Principal Components Analysis on three variables: PCR 

pair concordance, collection method subsample concordance, and average number of amplified 

alleles. The first PC accounted for 71% of the variance, with all three variables highly correlated 

with the axis and with positive weights. This means that high PC 1 scores indicates successful 

extraction; low PC 1 scores means poor extraction. PC 1 scores were compared with field 

collection data (quality score, weather, and collection method).  

Results 

Samples with a quality score of 1 extracted successfully while samples with a quality 

score of 3 performed poorly (Figure A-1). Samples collected when weather was clear and cold 

(January 10) outperformed the samples collected during cold and wet weather (January 16) 
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(Figure A-2). Toothpick samples collected during cold and clear weather (n = 13) showed a 

genotyping success rate of 61% at 9 loci, meaning that 39% of loci did not produce consensus 

scores. Pilot samples collected during cold and drizzly weather (n = 10) had a 59% success rate. 

This is consistent with other studies showing improved genotyping success in winter (Harris et 

al. 2010, Hettinga et al. 2012). There was no difference in extraction quality between the cotton 

swab and toothpick extractions (Figure A-3). However, laboratory staff indicated that toothpick 

samples were much easier to process than the cotton swab samples.  

 

Figure A-1. Elk fecal genetic sample extraction success by field-determined quality score of scat 

sample freshness. The y-axis is Principal Component 1 in a Principal Component Analysis of PCR 

pair concordance, collection method subsample concordance, and average number of amplified 

alleles (see Methods). Figure courtesy Kenneth Warheit, WDFW Genetics Lab.  
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Figure A-2. Elk fecal genetic sample extraction success by weather conditions during sample 

collection. The y-axis is Principal Component 1 in a Principal Component Analysis of PCR pair 

concordance, collection method subsample concordance, and average number of amplified alleles 

(see Methods). Figure courtesy Kenneth Warheit, WDFW Genetics Lab.  
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Figure A-3. Elk fecal genetic sample extraction success by sample collection method. The y-axis is 

Principal Component 1 in a Principal Component Analysis of PCR pair concordance, collection 

method subsample concordance, and average number of amplified alleles (see Methods). Figure 

courtesy Kenneth Warheit, WDFW Genetics Lab.  
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Chapter 2 

Elk road ecology on Highway 20 in Skagit Valley, Washington 

Introduction 

Roads can dramatically affect wildlife populations by degrading habitat, restricting 

migration corridors and gene flow, and increasing mortality from vehicular collisions (Forman et 

al. 2003, Dodd 2007, Epps et al. 2005). In the U.S., estimated deer-vehicle collisions exceed 1 

million every year resulting in over 200 human fatalities, 26,000 human injuries and over $8 

billion in damages and medical costs (Conover et al. 1995, Huijser et al. 2007). Each year in 

Washington State, approximately 3,000 collisions with deer (Odocoileus spp.) and elk (Cervus 

canadensis3) take place on state highways alone (Wagner and Carey 2006). Between 2000 and 

2004, vehicle collisions on state and federal highways in the state killed at least 14,969 deer and 

415 elk (Myers et al. 2008).  

In Skagit Valley, Washington, elk-vehicle collisions are a common and dangerous 

occurrence on state Highway 20. Between 2002 and 2014, 158 elk-vehicle collisions were 

documented on 34.8 kilometers of Highway 20 between the towns of Sedro-Woolley and 

Concrete by Washington Department of Transportation (WDOT), Washington Department of 

Fish and Wildlife (WDFW), Washington State Patrol, and the Upper Skagit Indian Tribe (Figure 

2-1). This is probably an underestimate of total elk-vehicle collisions since many collisions likely 

go unreported. Elk-vehicle collisions more than doubled between the periods 2001-2006 and 

2007-2011 (WDFW 2017). In 2012, 62 elk collisions were documented on the 34.8 km between 

                                                      
2 Many authors continue to use Cervus elaphus to describe North American elk; however, phylogenetic 

research has shown them to be a distinct species (Cervus canadensis). Cervus elaphus now describes red 

deer species in Europe (Groves and Grubb 2011).  
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the towns of Sedro-Woolley and Concrete, which equals 53% of total hunting mortality that year 

(n =117). This marked a major increase in documented roadkills compared to previous years. 

However, this apparent increase may be due to improved reporting and coordination between 

agencies, rather than an actual increase in elk-vehicle collisions. The current annual number of 

elk-vehicle collisions is likely in the range of 20-30 (WDFW 2017). This apparent decrease in 

roadkills may be associated with the installation of nine flashing elk crossing signs that were 

installed on Highway 20 near areas of high elk activity in 2014.  Temporary warning signs were 

shown to reduce deer-vehicle collisions by 50 percent and reduce vehicle speeds in Utah, 

Nevada, and Idaho; however, the effectiveness of the signs in reducing speeds declined a year 

after installation, suggesting that drivers may ignore warning signs over time (Sullivan et al. 

2004). In addition to elk-vehicle collisions, WDFW reports that landowners have expressed 

concern about potential vehicle collisions with livestock when they escape from elk-damaged 

fencing, resulting in loss of property and creating an additional substantial threat to motorists 

(WDFW 2017). 

Roadkill data on Highway 20 show wide spatial variation between Sedro Woolley and 

Concrete, with some road segments having dozens more collisions than others (Figure 2-1). This 

may be due to spatial variability in the frequency of highway crossings or because elk are more 

vulnerable to collisions in some areas due to landscape or road factors. Distinguishing between 

these two possibilities has significant management implications. Roadkill hotspots that are 

closely associated with road crossing hotspots could potentially be mitigated with additional 

warning signs, reduced speed limits, or crossing structures. In this case, the use of fencing would 

probably only result in shifting the location of both the roadkill and road crossing hotspots. 

Roadkill hotspots less associated with road crossing hotspots may occur because of land cover or 
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road factors that create a condition more conducive to a collision. This could be better mitigated 

with a different strategy such as fencing, which could restrict crossing activity to less dangerous 

locations.  

 

Figure 2-1. Elk roadkills by reported mileage on Highway 20 between Sedro-Woolley to Concrete, 

2002-2014 (n =158).  

The population size of the North Cascades elk herd likely influences the number of elk-

vehicle collisions. Current North Cascades elk herd abundance is estimated to be between 1,569 

and 1,769 animals (WDFW 2017). Annual mark-resight population surveys by WDFW suggest 

that the population within the state Game Management Unit (GMU) 418 and that portion of 

GMU 437 north of the Skagit River between Lyman and Concrete is 1,269 elk (95% CI = 1,170-

1,379) (Figure 2-2). From 2006 to 2016, estimates of population size within the aerial survey 

area indicate that the North Cascades elk herd has increased at a rate of 5-7% annually (Figure 2-

3). In addition, 200-400 elk occur elsewhere in GMU 437, primarily south of the Skagit River 

between Sedro Woolley and Marblemount, and at least 100 more within the Sauk River valley 

south of Rockport, according to biologists’ observations and other anecdotal information 
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(WDFW 2017). Elk regularly traverse between the Skagit and Nooksack watersheds via Lyman 

Pass and other locations north of Hamilton and Birdsview (WDFW 2017). These movement 

patterns likely play a role in determining elk crossing and roadkill locations.  
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Figure 2-2. Overview map of study area. WDFW elk survey area is denoted in orange 
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The herd reached a peak abundance of between 1,400 and 2,000 elk in the mid-1980s 

before a major decline in the early-1990s drove the population down to a few hundred elk 

(WDFW 2017). Causes of the decline included intensive timber management practices 

(including herbicide use that reduced early seral habitat), associated traffic and disturbance, 

overhunting on an expanded road network, vehicle collisions, loss of habitat to development and 

agriculture, and lethal removal on conflicted agricultural lands (Danilson 2012). Disturbance 

from recreational use of logging roads by off-road vehicles has also increased in recent years 

(Danilson 2012, Davison 2002). The herd has since rebounded with the support of augmentation, 

a hunting moratorium from 1997 to 2007, habitat enhancement projects, restricted vehicle 

access, and changes in silvicultural practices that have created a more complex mosaic of 

habitats (WDFW 2017).   

Figure 2-3. Mark-resight estimates of total elk, cow elk, and bull elk population size in GMU 418 

(Nooksack) 2006–2016. Estimates also include elk within the northern portion of GMU 437 north of the 

Skagit River 372 between Lyman and Concrete. (WDFW 2017) 
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Managing agencies seek to increase the size of the herd to 1,950 elk (±10%) (WDFW 

2017). A larger population would likely increase the risk of vehicle collision. WDFW reports 

that the North Cascades elk herd is not limited by available habitat despite a reduction in overall 

elk carrying capacity in Washington. This is due to a marked reduction in timber harvest that 

created early seral habitat (including on federal land where herbicide is not used), as well as an 

increase in human population and associated development (WDFW 2014). Elk currently inhabit 

agricultural lands in the Skagit Valley and South Fork Nooksack Valley, leading to frequent 

conflicts with landowners. Human population growth in Whatcom and Skagit counties and the 

resulting increase in traffic volume may lead to more elk-vehicle collisions in the future (WDFW 

2017, Gagnon et al. 2006). 

Research elsewhere in Washington State has identified a number of factors associated 

with ungulate-vehicle collisions and road crossings (Table 2-1). Long et al. (2012) found that 

elk-vehicle collisions were associated with increased distance to forest cover, and negatively 

associated with the presence of concrete Jersey barriers on Interstate 90. Statewide, deer 

abundance strongly affected the number of collisions in a given area, as did roadside cover, 

forage, modest slopes, water sources, and southern exposure (Myers et al. 2008). In Arizona, 

Gagnon et al. (2006) identified traffic volume, proximity to riparian habitat, and season as 

factors contributing to the frequency with which elk cross roads, and Dodd et al. (2006) found 

that elk crossing and collision frequency was associated with proximity to riparian meadows. In 

Spain, Malo et al. (2004) found that non-riparian forest and diversity of forest and open habitat 

were positively associated with red deer (Cervus elaphus, a species closely related to elk) 

collisions while agricultural areas, urban areas, distance to forest, and guardrails were negatively 

associated with red deer collisions. In a review of spatial modeling of wildlife-vehicle collisions, 
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Gunson et al. (2011) found that both forest and open habitat surrounding roads increased 

ungulate collisions, as did landscape diversity, while agriculture and urban areas decreased them 

(Hubbard et al. 2000, Seiler 2005, Bashore et al.1985, Finder et al., 1999, Gunson et al. 2009, 

Malo et al. 2004, Nielsen et al. 2003, Puglisi et al.1974). Across the United States, deer-vehicle 

collisions were most probable on two-lane highways with moderate traffic volume (similar to 

Highway 20) rather than high volume interstate highways (Huijser et al. 2008). Time of day, 

visibility, movement patterns, elk density, and other factors may also influence wildlife-vehicle 

collisions. 
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Table 2-1. Significant variables in previous elk-vehicle collision and road crossing modeling studies 

Predictor Response +/- Species Scale Location Reference 

Habitat variables       

Distance to forest Collisions + Elk NA WA USA Long et al. 2012 

Distance to forest Collisions - Red deer* NA Spain Malo et al. 2004 

Proportion non-riparian 

forest cover  

Collisions + Red deer* 1000 m Spain Malo et al. 2004 

Percent forest cover Crossings + Red deer* 100 m Norway Meisingset et al. 

2013 

Roadside cover Collisions + Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Distance to riparian meadows Crossings - Elk 0.16 km AZ USA Gagnon et al. 2007, 

Dodd et al. 2007  

Diversity of forest and open 

habitat**  

Collisions + Red deer* 1000 m Spain Malo et al. 2004 

Distance to pasture Crossings + Red deer* NA Norway Meisingset et al. 

2013 

Amount of herbaceous cover Collisions - Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Size of grass patches Collisions + White-tailed 

deer 

800 m Iowa USA Hubbard et al. 2000 

Forage Collisions + Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Proportion open area Collisions + Moose 500 m Sweden Seiler 2005 

Proportion of agricultural 

area 

Collisions - Red deer* 1000 m Spain Malo et al. 2004 

Proportion of urban area Collisions - Red deer* 1000 m Spain Malo et al. 2004 

Proportion of crop fields Collisions - White-tailed 

deer 

800 m Iowa USA Hubbard et al. 2000 

Proportion agriculture Collisions - Moose 500 m Sweden Seiler 2005 

Road variables       

Roadside slope Collisions - Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Speed limit Collisions  Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Traffic volume (AADT) Collisions - Deer spp. + 30m,60m,0.8km W WA USA Myers et al. 2008 

Traffic volume Crossings - Elk 0.16 km AZ USA Dodd et al. 2007 

Traffic volume Crossings - Elk  AZ USA Gagnon et al. 2007 

Presence of guardrails Collisions - Red deer* 100 m Spain Malo et al. 2004 

*This study included red deer (Cervus elaphus), roe deer (Capreolus capreolus), and wild boar (Sus 

scrofa) 

**As measured by Shannon Diversity Index. 
+ Northwest white-tailed deer (Odocoileus virginianus ochrourus), Rocky Mountain mule deer (O. 

heminonus heminonus) 

 

In Skagit Valley, elk cross Highway 20 more frequently in the winter, possibly due to 

limited food availability and heavy snowpack at higher elevations. These elk tend to have small 

home ranges closely associated with riparian areas throughout the year and are known to 

frequent residential and agricultural areas, damaging lawns and gardens, tree farms, conifer 
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plantations, hay, pasture, alfalfa fields, green chop, feed corn, silage, blueberries, orchards, 

vineyards, potatoes, and other agricultural crops (WDFW 2017).   

 More information on local roadkill and crossing locations and the road and landscape 

factors associated with them is needed to better understand local elk road ecology and reduce 

road collisions (Gunson et al. 2011) This research will contribute to WDFW’s management 

objective to “minimize public safety risk by reducing the average annual number of elk-vehicle 

collisions along the State Route 20 corridor between Sedro Woolley and Rockport by 50% over 

the next five years.” (WDFW 2017) 

In this study, I compared roadkill and road crossing locations and modeled road and land 

cover variables where elk cross and are killed on Highway 20 between Sedro-Woolley and 

Concrete. My objectives were to identify where elk roadkills and elk crossings occur and identify 

factors associated with each of them. This information can be used to help reduce elk-vehicle 

collisions with potential mitigation strategies such as signage, speed limits, fences, and crossing 

structures, with the goal of reducing mortality and improving traffic safety in Skagit Valley and 

beyond.  

Methods 

Study area 

 Skagit Valley is located west of the crest of the Cascade Mountains in the Western 

Hemlock (Tsuga heterophylla) zone of northwest Washington state (Franklin and Dyrness 1973). 

The town of Sedro-Woolley (population 10,645, elevation 17 m) is located up-valley from the 

broad alluvial plain that stretches to Puget Sound. Agricultural fields fill the valley as Highway 

20 continues east to Hamilton (population 299), Lyman (population 437), and Concrete 
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(population 712) at 84 m elevation. Elk habitat types in Skagit Valley include agricultural fields, 

deciduous forests of primarily red alder (Alnus rubra) and big leaf maple (Acer macrophyllum), 

and second-growth evergreen forests dominated by Douglas fir (Pseudotsuga menziesii) and 

Western Red Cedar (Thuja plicata). 

 This study focuses on the 34.8 kilometers of Highway 20 between Sedro-Woolley and 

Concrete where the vast majority of roadkills, agricultural land, and conflicts with landowners 

are concentrated (Figure 2-4). 

Data collection 

Roadkills 

Reported roadkills are routinely responded to by Washington Department of 

Transportation (WDOT), Washington Department of Fish and Wildlife (WDFW), Washington 

State Patrol, and the Upper Skagit Indian Tribe. These agencies collect carcasses and record 

locations, which are estimates based on the nearest milepost and are often recorded to the nearest 

0.16 km (0.10 mile). For this reason, 0.16 km road segments will serve as the unit of observation 

for this analysis. GPS coordinates of roadkill locations were not consistently recorded, nor were 

sex or age data.  

Road crossing activity 

Road crossing activity data was gathered from two sources: elk trail monitoring and 

crowd-sourced observations from Skagit Valley residents and motorists.  
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1) Elk trail monitoring 

From July to December 2013, I monitored elk trails adjacent to Highway 20 between 

Sedro-Woolley and Concrete. I surveyed the north and south sides of Highway 20 for elk trails 

by riding a bicycle on the road shoulders between Sedro-Woolley and Concrete. I repeated this 

bike survey monthly to locate new trails while monitoring existing trails weekly by car. To 

determine frequency of trail use, I used a “string trap” consisting of a length of thin, brown 

sewing string tied to vegetation on either side of the trail at a height of about 1.5 meters (Larry 

Baumann, retired WDFW elk biologist, pers. comm.). Trail substrate varied from packed gravel 

to unconsolidated soil to herbaceous vegetation, so tracks were only recorded where substrate 

allowed. If possible, I cleared herbaceous vegetation so that tracks could be seen better; tracks 

were then erased each week. I used a combination of broken strings and track observations to 

determine trail use. Since sampling periods varied depending on when individual trails were 

found, I divided the total number of detections on each trail by the total number of days elapsed 

from the trail’s discovery to the end of the sampling effort to create an index of crossing activity 

(trail detections per day) for each trail. Trail detections per day were then totaled for all trails 

within each 0.16-km segment. This data has obvious limitations including the potential for other 

animals to break strings as noted in more detail in the Discussion.  

Remote cameras were also used to monitor some trails. Cameras provide richer and more 

accurate data since they record date, time of day, and number of elk on a trail. However, 

substantial limitations precluded widespread use of cameras for trail monitoring, including 

limited range of motion sensor detection, the need to point cameras away from the road to avoid 

vehicle-triggered photos, and substantially increased costs. I deployed up to nine cameras 

(Reconyx PC800, Bushnell Natureview) provided by the Tulalip tribe and WDFW at high use 
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crossings and incorporated these observations into the index of crossing activity. Successive 

photos documenting elk on both sides of the road counted as a trail detection for each trail, and 

only one such event per week was included in the crossing activity database in order to maintain 

consistency with string trap data across the study area.    

With both the string traps and the cameras, trail use on both sides of the highway was 

used to infer probable elk road crossings since actual road crossings could not be documented 

using these methods.
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Figure 2-4. Study area in Skagit Valley, Washington on State Highway 20. 
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3) Crowd-sourced observations 

 Some motorists and residents in Skagit Valley reported elk roadkill and crossing 

observations by phone, email, or using a smartphone mapping application developed by WDFW, 

which could also be accessed by web browser4. This application allowed observers to report GPS 

locations of real-time elk observations (alive or dead) as well as number of elk, direction of 

crossing, sex, and other data. I contacted a selected group of residents and workers in Skagit 

Valley to report observations using the smartphone app, as there were some concerns from state 

employees regarding the safety of more widespread smartphone use while driving. For this 

reason, this application is no longer supported by WDFW. Furthermore, location accuracy was 

severely limited because users marked locations at the full extent of the map without zooming in, 

resulting in unusable location data. For this reason, these observations were omitted from 

analysis. I also posted signs requesting elk crossing observations by phone and email on gas 

station bulletin boards. However, participation was limited and reported locations were not 

sufficiently precise to use for further analysis.  

Data preparation 

In ArcMap, I located 0.16-km markers from WDOT mile marker spatial data and 

segmented a shapefile of Highway 20 into 0.16-km segments around these points to correspond 

to the estimated accuracy of roadkill data. Percent land cover variables were calculated using 

circular 1-km buffers from each 0.16-km point (the mid-point of each road segment). Proximity 

variables were calculated from the center of each segment. Roadkills and road crossing activity 

                                                      
4 Link to WDFW elk reporting options (http://wdfw.wa.gov/viewing/observations/elk_hwy20/) 
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data (response variables) for each 0.16-km segment was then converted to binary presence (1) / 

absence (0) data for logistic regression analysis. 

I considered 10 habitat variables and 4 road variables for modeling of elk roadkill and 

crossing locations (Table 2-2). Variables were selected based on previous ungulate-vehicle 

collision research and those most relevant to elk ecology in the Skagit Valley (Table 2-1). The 

United States Geological Survey uses Landsat satellite imagery to classify terrestrial landscapes 

into 20 land cover types at a 30-meter resolution to create the National Land Cover Database 

(NLCD) (Jin et al. 2013). I reclassified some land cover types prior to modeling (Table 2-2). The 

Washington Department of Agriculture provides ground-truthed data of crop locations in the 

Skagit Valley that were used to calculate distances to crops and pasture/hay (WSDA 2013).  

Percent cover of four land cover types within a 1-km buffer around the road segment 

midpoint was calculated using the isectpolyrst (Intersect Polygons with Raster) tool in Geospatial 

Modeling Environment (Beyer 2014). For proximity variables, I calculated distance to land 

covers or features from each road segment midpoint using the ArcMap Near tool.  

I calculated road sinuosity within a 0.5-km buffer around each 0.16-km point (0.25 km on 

either side) using the ArcMap Calculate Sinuosity tool. Mean roadside slope angle was 

calculated within a 30-meter buffer on either side of the highway from a LiDAR-derived digital 

elevation model using the ArcMap Slope tool. I collected GPS locations of guardrails and 

summed the total guardrail length for both sides of the road within each 0.16-km segment.  
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Table 2-2. Model variables for elk roadkill and crossings analysis. Descriptions of land covers are 

abridged from National Land Cover Dataset metadata (Jin et al. 2013).  

Variables  Description Units 

Habitat variables 
  

Developed 

(Medium/High) 

NLCD Developed Medium, High combined   Percent area 

All forest NLCD Deciduous, Coniferous, and Mixed forest combined Percent area 

Hay/pasture/herbs NLCD Herbaceous and Hay/Pasture classes combined Percent area 

Cultivated crops Crops >20% of vegetation. Includes all land being actively tilled. Percent area 

Forest edge Perimeter length of NLCD forest (deciduous, coniferous, mixed) in 

1km buffer 

Length (m) 

Distance to developed 

land 

Euclidean distance to NLCD dev. land cover (med. and high) from 

road segment midpoint 

Distance (m) 

Distance to nearest 

stream 

Euclidean distance to nearest stream from road segment midpoint Distance (m) 

Distance to forest cover Euclidean distance to any NLCD forest class from road segment 

midpoint 

Distance (m) 

Distance to pasture/hay Euclidean distance to WSDA crop layer from road segment midpoint Distance (m) 

Distance to all crops Euclidean distance to WSDA crop layer (food and tree crops) from 

road segment midpoint 

Distance (m) 

Road variables 
  

Mean slope Mean slope in 30m and 60m buffers based on 6x6-ft resolution Lidar 

DEM 

Angle 

Guardrail Total length of guardrail on both sides of road within each road 

segment 

Length (m) 

Traffic volume 2013 average daily traffic count (WDOT) per road segment # of vehicles 

Sinuosity Deviation of highway route from shortest 0.5 km trail around segment 

midpoint 

Total length/   

shortest trail 

 

Data analysis 

  I used the ESRI ArcGIS Hot Spot Analysis (Getis-Ord Gi*) tool with a fixed distance 

band of 0.16 km to determine statistically significant spatial hotspots of road crossing activity 

and roadkills in 0.16-km segments for the sampling period from July 2013 to December 2013. 

To determine a hotspot, the local sum of roadkills or crossings of a 0.16-km road segment and its 

two nearest neighbors was compared proportionally to the sum of all segments using z scores. 

Local sums that were significantly different from the expected local sum are hotspots (ESRI 

2017). I used Kendall’s Tau correlation to test for a correlation between all trail detections per 
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day and all roadkills per day across the study area during this period. Quasipoisson regression 

was used to model roadkills per day against trail detections per day due to the under-dispersed 

nature of the data (Quinn and Keough 2002).   

I used Kendall’s Tau correlations to test for collinearity between model variables and 

logistic regression to analyze candidate models. Though continuous data was available for both 

elk roadkills and road crossings, binary presence (1) / absence (0) data for each road segment 

provided several advantages: reduced error within each dataset, improved comparisons between 

roadkill and road crossing data and model results, and fewer confounding or undocumented 

variables likely contributing to differences in local elk abundance across the study area. Local 

abundance likely influences the amount and locations of roadkills and crossings (Dodd 2007, 

Gunson 2011); lacking an empirical estimate of local abundance, a binary response variable also 

better reflected the ecological scope of this study.  

Model development 

 For the road crossings model, I used road crossing observations collected between July 

and December 2013 as the binary response variable in each 0.16-km road segment (1 = presence 

of a trail detection, 0 = no trail detection). For the roadkills model, I used elk roadkill data 

collected by state and tribal agencies between January 2012 and January 2014. This time period 

includes the peak of roadkills observed on this section of Highway 20 in 2012 as well as the 

sampling period for road crossings, providing comparable datasets.   

Candidate models were determined a priori based on variables used in previous ungulate-

vehicle collision research and knowledge of elk ecology in the Skagit Valley. Models were 

selected following an information theoretic approach using Akaike Information Criterion for 
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small sample sizes (AICc), pseudo-R2, and Akaike weight (wi) (Akaike 1973, Burnham and 

Anderson 2002, Symonds and Moussalli 2011). Variables were placed in groups pertaining to 

natural plant communities, agriculture, developed land, and road characteristics. Candidate 

models with the lowest AICc score from each category were then combined post hoc using an 

exploratory all-subsets approach to determine the best-fit models for elk roadkill and road 

crossing locations. The best models with cumulative Akaike weights up to 0.95 were included in 

a confidence set for multi-model inference to estimate parameter and error values derived from 

weighted averages across multiple models (Symonds and Moussalli 2011). The global model 

from each confidence set was tested for goodness-of-fit using the Hosmer and Lemeshow 

goodness-of-fit test for binary models (Quinn and Keough 2002). To evaluate the relative 

influence of variables in the averaged models, I considered confidence intervals and relative 

importance values derived from Akaike weights (RI) (Barton 2015, Meisingset et al. 2014)). I 

did not consider covariate interactions due to the small sample size of this study. I used the R 

program and R packages stats (R Core Team 2017), MuMIn (Multimodel Inference) (Barton 

2015), AICmodavg (Model Selection and Multimodel Inference Based on (Q)AIC(c)) (Mazerolle 

2017), and generalhoslem (Goodness of Fit Tests for Logistic Regression Models) (Jay 2017) for 

all statistical analyses. 
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Results 

A total of 722 trail detections were documented in 31 of 216 highway segments between 

July and December 2013 (Table 2-3, Figure 2-5). The index of crossing activity, which 

normalized trail detections by the sampling effort for each trail, totaled 7.679 trail detections per 

day across the study area (Figure 2-6). Five statistically significant road crossing hotspots were 

found: Hotspot 1) km 110.1 (mile 68.4); Hotspot 2) km 122.1 - 122.6 (mile 75.9 - 76.2), Hotspot 

3) km 125.2 - 125.4 (mile 77.8 - 77.9); Hotspot 4) km 137.7 – 137.9 (mile 85.6 - 85.7); and 

Hotspot 5) km 138.7 -138.9 (mile 86.2 - 86.3) (Table 2-4).   
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Table 2-3. Number of trail detections (Dets.) (total = 722), number of trails (total = 187), and detections per day (Det./day) (total = 7.679) 

are shown for each highway segment with at least one observed trail. Segments with no trails are omitted. All road segments were 

surveyed by bike six times between July and December 2013 to locate new trails. String traps were checked weekly (19 times). The 

number of trail detections in each trail was divided by the number of days elapsed between the discovery of the trail and the end of the 

sampling effort to determine trail detections per day. Trail detections per day were then totaled for all trails within each 0.16-km segment.  

Km Mile Dets. Trails Det./day Km Mile Dets. Trails Det./day Km Mile Dets. Trails Det./day 

109.6 68.1 19 5 0.185 122.1 75.9 17 7 0.179 129.4 80.4 11 2 0.145 

110.1 68.4 84 12 0.945 122.3 76 86 18 0.896 136.0 84.5 7 6 0.055 

110.2 68.5 8 3 0.117 122.4 76.1 144 21 1.455 136.1 84.6 45 9 0.300 

110.7 68.8 10 7 0.137 122.8 76.3 1 3 0.009 136.4 84.8 0 2 0 

110.9 68.9 2 1 0.026 122.9 76.4 0 1 0 137.1 85.2 0 1 0 

112.8 70.1 25 5 0.205 125.2 77.8 6 3 0.114 137.4 85.4 0 1 0 

113.0 70.2 1 1 0.011 125.3 77.9 74 9 0.563 137.6 85.5 5 3 0.037 

113.9 70.8 0 1 0 125.5 78 2 3 0.022 137.7 85.6 68 15 0.579 

114.1 70.9 18 7 0.143 125.7 78.1 0 1 0 137.9 85.7 12 5 0.088 

115.8 72 0 1 0 127.0 78.9 0 1 0 138.7 86.2 3 3 0.101 

116.0 72.1 1 1 0.008 128.4 79.8 0 1 0 138.9 86.3 12 9 0.519 

116.5 72.4 3 2 0.023 128.6 79.9 23 1 0.371 139.8 86.9 0 1 0 

117.6 73.1 10 1 0.081 128.7 80 3 1 0.039 140.3 87.2 0 1 0 

117.9 73.3 11 2 0.089 129.0 80.2 0 1 0 140.5 87.3 4 6 0.032 

121.2 75.3 0 1 0 129.2 80.3 7 2 0.206      
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Table 2-4. Statistically significant road crossing hotspots by road segment on Highway 20 between 

Sedro-Woolley and Concrete with detections per day, z value, and p value. To determine a hotspot, 

the local sum of a road segment and its neighbors within 0.16-km is compared proportionally to the 

sum of all segments. Local sums that are significantly different from the expected local sum are 

hotspots. 

Hotspot Mile Local sum of 

detections/day 

z value p value 

Hotspot 1     

   km 110.1 68.4 1.062 6.01 <0.001 

Hotspot 2     

   km 122.1 75.9 1.075 3.71 <0.001 

   km 122.3 76 2.531 9.29 <0.001 

   km 122.4 76.1 2.352 8.61 <0.001 

   km 122.6 76.2 1.455 5.20 <0.001 

Hotspot 3     

   km 125.2 77.8 0.677 2.19 0.029 

   km 125.3 77.9 0.677 2.84 0.005 

Hotspot 4     

   km 137.7 85.6 0.703 2.79 0.005 

   km 137.9 85.7 0.667 2.15 0.032 

Hotspot 5     

   km 138.7 86.2 0.620 1.97 0.049 

   km 138.9 86.3 0.620 2.57 0.010 
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Figure 2-5. Roadkill and road crossing hotspots (p < 0.05) on Highway 20 between Sedro-Woolley and Concrete, Washington. 
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Figure 2-6. Trail detections per day and roadkills per day by mileage on Highway 20 between Sedro-Woolley to Concrete (7/2013 to 

12/2013).  
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During the same time period (July - December 2013) elk roadkills were documented in 

14 of 216 highway segments for a total of 22 roadkills (0.12 roadkills per day) (Figure 2-6). Four 

statistically significant roadkill hotspots were found: Hotspot 1) km 109.4 (mile 68); Hotspot 2) 

km 122.1 - 122.4 (mile 75.9 - 76.1); Hotspot 3) km 127.1 - 127.3 (mile 79 - 79.1); Hotspot 4) km 

128.3 - 128.6 (mile 79.7 - 79.9) (Table 2-5). Roadkills per day and trail detections per day across 

the study area during this sampling period were correlated (Kendall’s tau = 0.23, p < 0.001) 

(Figure 2-7). 

Table 2-5. Statistically significant roadkill hotspots by road segment on Highway 20 between Sedro-

Woolley and Concrete with roadkills per day, z value, and p value. To determine a hotspot, the 

local sum of a road segment and its neighbors within 0.16-km is compared proportionally to the 

sum of all segments. Local sums that are significantly different from the expected local sum are 

hotspots. 

Hotspot Mile Local sum of 

roadkills/day 

z value p value 

Hotspot 1     

   km 109.4 68 0.011 2.47 0.014 

Hotspot 2     

   km 122.1 75.9 0.033 6.40 <0.001 

   km 122.3 76 0.038 7.53 <0.001 

   km 122.4 76.1 0.038 7.53 <0.001 

Hotspot 3     

   km 127.1 79 0.022 5.22 <0.001 

   km 127.3 79.1 0.022 4.15 <0.001 

Hotspot 4     

   km 128.3 79.7 0.016 3.03 0.002 

   km 128.4 79.8 0.022 4.15 <0.001 

   km 128.6 79.9 0.016 3.03 0.002 
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Figure 2-7. Quasipoisson regression of roadkills per day and trail detections per day between July 

2013 and December 2013 (P < 0.001, Kendall’s tau = 0.23) 

 

Roadkill modeling 

 Ten habitat variables and four road variables were used to model elk roadkills between 

January 2012 and January 2014 (Table 2-6). Elk roadkills were documented in 38 of 216 

highway segments for a total of 103 roadkills (0.14 roadkills per day) (Figure 2-8).  
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Table 2-6. Summary statistics for model variables 

Variables  Mean Median Range 

Habitat variables    
% Developed (Medium/High) 10.8% 7.5% 3.5% - 82.7% 

% Forest 33.4% 34.8% 0.1% - 64% 

% Hay/pasture 24.2% 25.3% 1.2% - 45.8% 

% Cultivated crops 1.7% 1.2% 0% - 10.1% 

Forest edge length (m) 
        

30,917  

      

30,660  1,080 - 52,860 

Distance to developed land (m) 517 404 0 - 2,137 

Distance to nearest stream (m) 191 105 0 - 935 

Distance to forest cover (m) 129 75 0 - 950 

Distance to pasture/hay (m) 515 185 3 - 2,930 

Distance to all crops (m) 437 155 3 - 2,477 

Road variables    
Mean slope (degrees) 7.2 6 1.8 - 23.3 

Guardrail length (m) 39.5 0 0 - 321.9 

Traffic volume (AADT) 
          

6,412  

         

6,100  4,800 - 13,500 

Sinuosity 0.991 0.998 0.93 - 1 
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Figure 2-8. Elk roadkills reported by mileage on Highway 20 between Sedro-Woolley to Concrete (January 2012 to January 2014 (the 

time period used for modeling the presence /absence of elk roadkills at each road segment)) (n = 103). 
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Out of 17 candidate models, the best models (lowest AICc) from each category were 

Distance to pasture/hay, Percent forest, Percent Developed area, and Slope (Table 2-7). All 

subsets of the best models were tested post hoc to determine a confidence set of three models 

(bolded in Table 2-7). Model-averaged parameter estimates indicate that the probability of an elk 

roadkill increases with decreased distance to pasture/hay, increased percent forest, decreased 

percent  developed area, and increased guardrail length (Table 2-8). The Hosmer and Lemeshow 

goodness-of-fit test for binary models showed that the global model in the confidence set is 

correctly specified with no evidence of a poor fit, indicating the same for all confidence set 

models (X2 = 4.304, df = 8, P = 0.829) (Symonds and Moussalli 2011). Predictors with the 

highest relative importance values were Distance to pasture/hay (RI = 1.00) and Percent forest 

(RI = 1.00) (Table 2-8). Figures 2-9 and 2-10 show predicted probabilities of the most important 

predictors. 
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Table 2-7. Candidate models for North Cascades elk roadkills (Jan. 2012 – Jan. 2014) considered a 

priori with AICc, ∆AICc (difference from lowest AICc score in each category), pseudo-R2, and 

Akaike weight (wi). Best model combinations were determined post hoc from candidate models with 

the lowest AICc score in each category (italics). A confidence set (bold) included models with 

cumulative Akaike weights < 0.95. 

Models by category AICc ∆AICc Pseudo-R2 wi 

Natural plant communities         

% Forest (1 km)  202.9 0 0.011 0.242 

Distance to forest 203.03 0.13 0.010 0.227 

Distance to streams 203.66 0.76 0.007 0.166 

Distance to forest + Distance to streams 204.38 1.48 0.013 0.116 

Distance to forest + Forest edge (1 km) 204.59 1.69 0.012 0.104 

Forest edge (1 km) 204.96 2.06 0.000 0.086 

Distance to streams + Forest edge (1 km) 205.71 2.81 0.007 0.059 

          

Agriculture         

Distance to hay/pasture 201.78 0 0.016 0.530 

Distance to crops 202.64 0.86 0.012 0.346 

% Cultivated area (1 km) 204.69 2.91 0.002 0.124 

          

Developed land         

 % Developed area (1 km) 202.23 0 0.014 0.763 

Distance to developed land 204.58 2.35 0.002 0.237 

          

Highway characteristics         

Roadside slope 204.25 0 0.004 0.286 

Sinuosity 204.58 0.33 0.002 0.243 

Traffic volume 204.71 0.46 0.002 0.228 

Guardrails 204.81 0.56 0.001 0.217 

Roadside slope + Traffic + Guardrails + Sinuosity  209.07 4.82 0.011 0.026 

          

Best models combined (post hoc)         

% Forest + Distance to hay/pasture + Slope 193.45 0 0.078 0.465 

% Forest + Distance to hay/pasture 194.86 1.41 0.061 0.230 

% Forest + Dist. to hay/pasture + % Dev. area + Slope 195.38 1.93 0.079 0.177 

% Forest + Distance to hay/pasture + % Dev area 196.86 3.41 0.061 0.085 

Distance to hay/pasture + % Developed area 200.44 6.99 0.033 0.014 

Distance to hay/pasture + % Developed area + Slope 201.27 7.82 0.039 0.009 

% Developed area + Slope 202.3 8.85 0.024 0.006 

% Forest + Slope 202.67 9.22 0.022 0.005 

% Forest + % Developed area + Slope 203.13 9.68 0.030 0.004 

Distance to hay/pasture + Slope 203.56 10.11 0.017 0.003 

% Forest + % Developed area  203.78 10.33 0.016 0.003 

*Pseudo-R2 is only comparative to other models 
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Table 2-8. Model-averaged parameter estimates from three elk roadkill models in the 0.95 

confidence set with unconditional standard error (SE), 95% confidence interval (CI), p values, and 

relative importance (RI) (sum of Akaike weights over all models in which the variable appears).  

Variable Estimate SE 95% CI RI 

(Intercept) -2.559 0.683  -3.905 to -1.212 NA 

Distance to pasture/hay -0.001 0.000  1.832 - 9.847 1.00 

% Forest (1 km)  5.840 2.034 -0.002 to -0.0003  1.00 

Slope -0.065 0.058  -0.187 - 0.011 0.74 

% Developed area (1 km) -0.268 1.627 -8.044 - 5.403  0.20 

 

 

 

Figure 2-9. Predicted probability of a roadkill as a function of Percent forest in 1 km radius 

estimated by model-averaged parameters from the confidence set.  
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Figure 2-10. Predicted probability of a roadkill as a function of Distance to pasture/hay estimated by 

model-averaged parameters from the confidence set. 

 

 

Road crossings modeling 

From 17 candidate models, the best models (lowest AICc) from each category were 

Distance to forest + Distance to streams, Distance to crops, % Developed area, and Guardrails 

(Table 2-9). All subsets of the best models were tested post hoc to determine a confidence set of 

four models (bolded in Table 2-9). Model-averaged parameter estimates indicated that the 

probability of a road crossing decreases with increased distance to forest, increased distance to 

streams, increased distance to crops, increased percent developed area, and increased guardrail 

length (Table 2-10). The Hosmer and Lemeshow goodness-of-fit test for binary models showed 

that the global model in the confidence set is correctly specified with no evidence of a poor fit, 

indicating the same for all confidence set models (X2 = 5.366, df = 8, P = 0.718) (Symonds and 

Moussalli 2011). Road crossing predictors with the highest relative importance values in the 
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model-averaged model were Distance to forest (RI = 1.00), Distance to crops (RI = 1.00), 

Distance to streams (RI = 1.00); however, confidence intervals for Distance to streams contained 

zero, suggesting a lack of statistical influence (Table 2-10). Figures 2-11 and 2-12 show 

predicted probabilities of the most important predictors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

Table 2-9. Candidate models for North Cascades elk road crossings considered a priori with AICc, 

∆AICc (difference from lowest AICc score in each category), Pseudo-R2, and Akaike weight (wi). 

Best model combinations were determined post hoc from candidate models with the lowest AICc 

score in each category (italics). A confidence set of best models (bold) included models with 

cumulative Akaike weights below 0.95. 

Models by category AICc ∆AICc Pseudo-R2 wi 

Natural plant communities     

Distance to forest + Distance to streams 165.9 0.00 0.206 0.894 

Distance to forest 171.64 5.74 0.168 0.051 

Distance to streams 173.37 7.47 0.159 0.021 

Distance to forest + Forest edge (1 km) 173.67 7.77 0.168 0.018 

Distance to streams + Forest edge (1 km) 174.37 8.47 0.164 0.013 

% Forest (1 km)  179.03 13.13 0.131 0.001 

Forest edge (1 km) 179.56 13.66 0.128 0.001 

     

Agriculture     

Distance to crops 178.23 0.00 0.135 0.647 

Distance to hay/pasture 180.23 2.00 0.125 0.238 

% Cultivated land (1 km) 181.69 3.46 0.118 0.115 

     

Developed land     

 % developed area (1 km) 178.11 0.00 0.136 0.764 

Distance to developed land 180.46 2.35 0.124 0.236 

     

Highway characteristics     

Guardrails 179.4 0.00 0.129 0.437 

Sinuosity 180.82 1.42 0.122 0.214 

Traffic volume 181.58 2.18 0.118 0.147 

Roadside slope 181.73 2.33 0.118 0.136 

Roadside slope + Traffic + Guardrails + Sinuosity  183.17 3.77 0.141 0.066 

     

Best models combined (post hoc)      

Dist. to forest + Dist. to streams + Dist. to crops + % Dev.+Guardrails 160.18 0.00 0.266 0.384 

Dist. to forest + Dist. to streams + Dist. to crops + Guardrails 161.28 1.10 0.250 0.221 

Dist. to forest + Dist. to streams + Dist. to crops 161.55 1.37 0.238 0.193 

Dist. to forest + Dist. to streams + Dist. to crops + % Developed area 162.04 1.86 0.246 0.151 

Dist. to forest + Dist. to streams + % Developed area + Guardrails 164.97 4.79 0.232 0.035 

Dist. to forest + Dist. to streams + % Developed area 166.84 6.66 0.212 0.014 

Dist. to forest + Dist. to streams + Guardrails 170.33 10.15 0.184 0.002 

Distance to crops + % Developed area + Guardrails 174.31 14.13 0.175 0 

Distance to crops + % Developed area 175.89 15.71 0.157 0 

Distance to crops + Guardrails 178.06 17.88 0.146 0 

Guardrails + % Developed area 178.11 17.93 0.136 0 

*pseudo-R2 is only comparative to other models 
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Table 2-10. Model-averaged parameter estimates from four road crossing models in the 0.95 

confidence set with unconditional standard error (SE), 95% confidence interval (CI), p values, and 

relative importance (RI) (sum of Akaike weights over all models in which the variable appears).  

Variable Estimate SE 95% CI RI 

(Intercept) 0.720 0.786 -0.827 - 2.266 NA 

Distance to forest -0.012 0.004 -0.020 to -0.004 1.00 

Distance to streams -0.003 0.002 -0.0066 - 0.0002 1.00 

Distance to crops -0.001 0.001 -0.0023 to -0.0001 1.00 

% Developed area -5.496 6.912 -22.713 - 3.210 0.64 

Guardrails -0.004 0.004 -0.014 - 0.002 0.56 

 

 

Figure 2-11. Predicted probability of a road crossing as a function of Distance to forest estimated by 

model-averaged parameters from the confidence set.  
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Figure 2-12. Predicted probability of a road crossing as a function of Distance to crops estimated by 

model-averaged parameters from the confidence set 

 

Discussion 

 Elk roadkills and road crossings on Highway 20 in Skagit Valley showed wide spatial 

variation across the 34.8-km study area between Sedro-Woolley and Concrete. Roadkill and 

crossing locations were weakly correlated (Kendall’s tau = 0.23, P < 0.001) and this was 

reflected in the differential spatial distribution between road crossing and roadkill hotspots 

(Figures 2-5 and 2-6). Roadkill hotspot 1 (km 109.4 (mile 68)) was 0.7 km from the nearest 

crossing hotspot. Similarly, roadkill hotspot 3 (km 127.1 - 127.3 (mile 79 - 79.1)) was 1.1 km 

from the nearest crossing hotspot, and roadkill hotspot 4 (km 128.3 - 128.6 (mile 79.7 - 79.9)) 

was 1.8 km from the nearest crossing hotspot. This spatial separation between roadkill and road 

crossing hotspots suggests that the roadkill hotspots could be more dangerous crossing locations 
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than the nearby crossing hotspots. Roadkill hotspot 2 (km 122.1- 122.4 (mile 75.9 - 76.1)) 

completely overlaps crossing hotspot 2 (km 122.1 - 122.6 (mile 75.9 - 76.2)). These spatial 

patterns may indicate the need for very different mitigation strategies (see Management 

Implications below).    

Modeling landscape and road factors showed that roadkill locations have a negative 

association with Distance to pasture/hay (RI = 1.00)) and a positive association with Percent 

forest (RI = 1.00). Road crossing locations have a negative association with Distance to forest 

(RI = 1.00) and Distance to crops (RI = 1.00), and have a weaker negative association with 

decreased Distance to streams (RI = 1.00).  

Roadkill model results 

In the averaged roadkill model, Distance to pasture/hay and Percent forest were 

important predictors (Table 2-8). These modeling results indicate that elk were more likely to be 

killed by a vehicle as the distance to pasture/hay decreases and as percent forest in a 1-km radius 

increases. In other words, roadkill risk may increase when pasture/hay is closer to the road and 

percent forest increases. 

Pasture and hay fields are sources of forage that attract elk and may motivate them to 

cross roads to reach them (Gagnon et al. 2007, Meisingset et al. 2014). In this way, the 

relationship between roadkills and pasture/hay may simply reflect a disproportionate use of this 

habitat compared to other land covers. This is somewhat consistent with the crossing model, 

which showed a significant negative association with Distance to all crops and Distance to forest 

(see below for further discussion). The Distance to pasture/hay and Distance to crops variables 

were highly correlated (Kendall’s Tau = 0.91), which may confound a clear comparison between 
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these models (these correlated variables were never used in the same model). This degree of 

comparison between the roadkill and crossing models may also be confounded by the difference 

in accuracy and methodology of the response variables (documented roadkills v. trail detections 

per day).  

 The roadkill – pasture/hay relationship is somewhat unexpected since visibility should 

improve in open land covers. Sight distance likely increases when pasture/hay abuts the road as 

compared to forest cover, which could obscure the sight distance of both driver and elk. 

Increased visibility in open areas has been shown to decrease collisions with other ungulate 

species in other areas (Bashore et al. 1985, Nielsen et al. 2003, Seiler 2005). Since most roadkills 

on Highway 20 occur in low-light hours (dawn, dusk, night) (Fenner Yarborough, WDFW 

biologist, pers. comm.), however, the visibility advantage in open areas is greatly reduced. At the 

same time, elk may see headlights even from within forest cover, which would increase the sight 

distance and further reduce the visibility advantage of an open habitat. In addition, elk tend to 

use forest cover more intensely in areas near roads (Hurley and Sargeant 1991, Prokopenko et al. 

2017). The lack of protective forest cover in pasture/hay habitat near the road may prevent elk 

from waiting near the road for cars to pass for a safer crossing, as has been observed in forested 

habitats on remote cameras on Highway 20 during this study. This could increase the probability 

of a collision in these open areas. 

Previous studies show a similar relationship between open areas and ungulate-vehicle 

collisions. In Norway, red deer collision risk also increased with proximity to pasture as well as 

percent forest cover near the road (Meisingset et al. 2014). Hubbard et al. (2000) found that deer-

vehicle collisions in Iowa increased with the size of grass patches in an 800-meter radius from 

the road. Tappe and Enderle (2007) found that deer collision locations were more likely with a 
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higher density of pasture and crop patches within 1200 m of a highway. In Sweden, Seiler (2005) 

found that moose-vehicle collisions increased with the proportion of open area in a 500-meter 

radius from the road. Though these are measures of area and not proximity, the mean distance 

from the mid-point of road segments on Highway 20 to pasture/hay was 515 meters, suggesting 

that the relationship in this study may be present at a scale comparable to previous studies (Table 

2-6).  

 Percent forest within a 1-km radius was an important positive predictor of roadkill 

locations (RI = 1.00). This result is consistent with red deer collision studies in Spain and 

Norway (Malo et al. 2004, Meisingset et al. 2014), as well as deer collision research in Western 

Washington (Myers et al. 2008). A concurrent effect of pasture and forest cover was also seen 

with red deer collisions in Norway (Meisingset et al. 2014) and deer collisions in Arkansas 

(Tappe and Enderle 2007). This suggests that effects on roadkill locations from both open and 

forested habitat are not mutually exclusive, and their concurrence may be an indicator of the 

importance of land cover diversity and/or forest edge habitat. Forest edge habitat is particularly 

important for elk due to the close proximity of food and protective cover. Behavioral research 

has also shown that elk select areas near roads if vegetation and topography obscure visibility to 

the road (Lyon 1979, Edge and Marcum 1991, Rowland et al. 2005, Montgomery et al. 2012). 

This could explain the concurrent effects of pasture and forest on roadkills.  

A positive relationship between land cover diversity and ungulate collisions is seen 

throughout the literature (Seiler 2005, Bashore et al.1985, Finder et al., 1999, Gunson et al. 2009, 

Malo et al. 2004, Nielsen et al. 2003, Puglisi et al.1974, Tappe and Enderle 2007). However, the 

methods used to measure land cover diversity are not consistent and include forest edge length, 

Shannon diversity index, density of forest patches, forest patch shape index, and ratio of open 
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and forested areas. In Skagit Valley, the Forest edge variable (length of forest edge within a 1-

km radius) was used to quantify the distribution of open and forested habitats; however, Forest 

edge did not appear in the best roadkill or crossing models. The 1-km scale of this variable may 

have been too coarse to detect an effect closer to the road. Additional metrics of land cover 

diversity may have shown a different result. A better understanding of which measure of land 

cover diversity is most relevant to elk ecology and road ecology could be an area of future 

research.  

The relationship between open and forested areas and roadkills appears to be inconsistent 

across other collision studies. Myers et al. (2008) found that herbaceous cover in Western 

Washington was negatively associated with deer-vehicle collisions while roadside cover was 

positively associated with them. This contrasts with the results in Skagit Valley and may be due 

to variation in the ungulate response to roads by species. Long et al. (2012) found a positive 

relationship between distance to forest and elk collisions, while Malo et al. (2004) found the 

opposite. These inconsistent findings across the literature suggest that the relationship between 

roadkill locations and open and forested habitats may be specific to a given study area. This 

echoes Gunson et al.’s (2011) recommendation for road-by-road and species-specific modeling 

to determine local roadkill factors and inform local management strategies when results over a 

broader geographic area are inconsistent. In Skagit Valley, elk movement patterns at a larger 

spatial scale (>1 km) may also influence roadkill and crossing patterns (WDFW 2017). This may 

be true in other areas where near-road factors appear to be inconsistent with other areas. 
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Road crossing model results 

In the averaged road crossing model, Distance to forest, Distance to crops, and Distance 

to streams were negative predictors (Table 2-8). Relative importance values were equally high 

for Distance to forest (RI = 1.00), Distance to crops (RI = 1.00), and Distance to streams (RI = 

1.00) because all models in the confidence set included these variables; however, the 95% 

confidence intervals for Distance to streams contained zero, discounting this variable (Table 2-

10). These results suggest that elk may be more likely to cross the highway as the distance to 

forest and crops decreases. 

Elk use forest cover for protection and may prefer to cross a road when they can approach 

it in the safety of forest cover. Elk are known to use forest cover more intensely in areas near 

roads (Hurley and Sargeant 1991, Propenko et al. 2017). This is consistent with observations 

from remote cameras on Highway 20 during this study in which elk were observed waiting near 

the road in forest cover as cars passed. Relatively few road ecology studies focus on road 

crossings rather than roadkills, likely due to the relative difficulty of documenting crossings. In 

Norway, red deer road crossings increased with percent forest cover near the road, as well as 

with proximity to pasture – another example of concurrent pasture-forest effect seen in collision 

studies and discussed above (Meisingset et al. 2013). A similar relationship between road 

crossings and forest was seen with moose, which crossed roads more frequently with proximity 

to forest and increased forest area (Becker 2011, Barnam et al. 2007).  

Elk are also attracted to agricultural crops in Skagit Valley, which may result in more 

road crossings near these habitats (WDFW 2017). This relationship is less clear when comparing 

similar studies. Tappe and Enderle (2007) found that deer collision locations were more likely 
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with a higher density of pasture and crop patches within 1200 meters of a highway. Conversely, 

Malo et al. (2004) found a decrease in elk collisions associated with higher proportion of 

agricultural area at a similar scale. Seiler et al. (2005) saw similar results with moose in Sweden. 

The effect of Distance to crops on road crossings may also reflect a more general 

association with open areas that provide forage since most crops in Skagit Valley are low to the 

ground for most of the year. This relationship is also seen in the literature. In Arizona, elk were 

more likely to cross the road near riparian meadows (Dodd et al. 2007, Gagnon et al. 2007). This 

habitat is similar to agricultural fields in Skagit Valley in that it provides forage in an open area. 

Barnam et al. (2007) also found that deer crossings increase with the presence of open cover 

types.  

The high relative importance value of Distance to streams (RI = 1.00) in Skagit Valley is 

also consistent with the findings in Arizona. This result is expected since elk are known to travel 

along drainages (Kie et al. 2005). This effect is documented in collision studies as well (Tappe 

and Enderle 2007). 

Comparison of roadkill and road crossing models  

The difference in predictors between the model-averaged roadkill and road crossing 

models suggests that different landscape factors may influence roadkill probability compared to 

road crossing probability. Both roadkill and road crossing model-averaged models had the 

predictor % Developed area in common, though it wasn’t influential. Distance to crops (RI = 

1.00) , Distance to forest (RI = 1.00), Distance to streams (RI = 1.00), and Guardrails (RI = 

0.56) were unique to the model-averaged road crossings model. Distance to pasture/hay (RI = 

1.00), Percent forest (RI = 1.00), and Slope (RI = 0.74) were the unique to the model-averaged 
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roadkill model. These differences are most likely explained by the disparity in location accuracy 

and methodology between response variables (roadkills v. trail detections per day). A general 

association between open land covers that provide forage and both roadkills and road crossings 

appears to exist. Further research with more accurate roadkill locations and road crossing data 

that is more comparable to roadkill data may help clarify this relationship.  

Relative abundance 

An important limitation of this study is the lack of relative elk abundance data across the 

study area. WDFW produces annual population estimates of the North Cascades elk herd across 

its core range from a mark-resight model but these estimates cannot be parsed into discrete areas 

(WDFW 2017). WDFW biologists were not able to provide estimates of variation in  abundance 

in different parts of the valley (Fenner Yarborough, WDFW biologist, pers. comm.) The 

distribution of elk across the study area likely influences the number and location of road 

crossings and collisions. Myers et al. (2009) found that deer concentration levels had a 

significant positive influence on collision counts in a rural setting. The absence of this data in the 

modeling process may contribute to the lack of a single, dominant, explanatory model in both the 

road crossing and roadkill confidence sets.  

Spatial autocorrelation 

Spatial autocorrelation occurs when nearby observations are more similar than distant 

observations. This can potentially violate independence assumptions of regression models. There 

is an ongoing discussion in the ecological literature about how much spatial autocorrelation 

actually biases results with some authors claiming that it does (Beale 2007, Kuhn and Dormann 

2012) and others claiming that it needn’t cause concern (Hawkins et al. 2007, Hawkins 2012). 
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Unpublished data simulations testing the effect of spatial autocorrelation on linear models show 

that the slope of a linear model can become inefficient with relatively high spatial autocorrelation 

but bias is not reported (Andy Bunn, WWU professor, pers. comm.). This discussion focuses on 

ordinary least squares regression and has only recently moved to spatial autocorrelation in 

generalized linear models, and what researchers can do about it (Saas et al. 2014). Unfortunately, 

suggested approaches within the scope of this study were not effective with binary response data. 

For these reasons, spatial autocorrelation was not explicitly incorporated in the modeling 

process.  

Data limitations 

String traps only showed presence/absence of an unknown species on monitored trails in 

a given week unless tracks could be found near the trail to confirm use by elk. Additional 

information such as time of day, date, number of elk crossing, number of crossing events, and 

number of animals in each crossing event would make it easier to compare road crossing data 

with roadkill data. String trap data also has some inherent bias toward existing trails. Dispersed 

crossing areas were more difficult to accurately sample unless there was a good substrate for 

documenting tracks. Spreading sand on road shoulders in open areas and near trails could 

improve track observations. Bike surveys can also be potentially dangerous due to high vehicle 

speeds, heavy traffic, and narrow road shoulders. 

Remote camera detection of road crossings provides richer data but is significantly more 

expensive and has its own limitations. Detecting more dispersed crossings and crossings in open 

fields lacking trails remains a challenge given a lack of hidden camera locations, large area, and 

traffic-triggered cameras. 
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Starting in 2013, the Tulalip and Stillaguamish tribes collared up to nine elk in the Skagit 

Valley with GPS collars. Adequate GPS collar data were not available for this study but could be 

used in the future to better understand road crossing behavior. Using GPS collar data to 

document road crossings has its own challenges, however, including the relatively low frequency 

of recorded coordinates that can preclude accurately locating a road crossing. Increasing the 

frequency of recorded coordinates would help but this results in reduced battery life and greater 

expense. One potential solution is to install transmitters near the road that can trigger GPS collars 

to increase the frequency of recorded locations when an elk is in range (Kelly McAllister, 

WDFW biologist, pers. comm.). Another limitation is the inability to document the number of 

elk that crossed with the collared individual.  

Roadkill data had limited accuracy due to the subjective nature of location descriptions. 

Including GPS coordinates with agency roadkill reporting would greatly improve roadkill 

location accuracy and potentially clarify modeling results. In late 2013, the Washington 

Department of Transportation installed 0.1-mile (0.16-km) mile markers near milepost 76 (km 

122.3) in an effort to improve roadkill location reporting accuracy. A program to improve the 

accuracy of roadkill documentation on Interstate 90 using GPS data collectors that automatically 

upload data to a central electronic data repository helped researchers compile baseline data and 

aid mitigation and monitoring efforts across multiple government agencies (Ament et al. 2011). 

In the same project, a citizen outreach program took advantage of motorist observations of 

wildlife (Long et al 2012); widespread handheld mobile technology may provide more 

opportunities to crowd-source wildlife observations. However, distracted driving could create 

additional hazards. Apps could be designed to only record observations when stationary. Users 

should be instructed to zoom in on a location map to a scale that allows for accurate recording of 
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locations. Expanding coordination between stakeholders through such programs will improve 

research outcomes and inform road and wildlife management.  

Management implications 

 This study and numerous others cited herein have shown that elk-vehicle crossings and 

collisions are not random, are spatially heterogenous, and are associated with particular land 

cover and road characteristics. For this reason, wildlife and transportation managers should 

consider these factors when planning road construction and mitigating wildlife-vehicle 

collisions. Skagit Valley is distinct in its concentration of private property around the highway, 

which is an important consideration when evaluating management strategies. The results of this 

study should be considered preliminary and should be interpreted with caution in terms of 

management applications given the low accuracy of roadkill locations and the limitations 

inherent in comparing hotspots from two datasets with varying accuracy and distinct data 

collection methodologies. Despite these limitations, this study presents an approach that could be 

used to guide the selection of alternative mitigation strategies.  

Elk are clearly attracted to open areas that provide forage (pasture/hay and crop land 

covers) in Skagit Valley, which exist in the valley bottom near roads and population centers. In 

an effort to keep elk above the valley bottom, biologists at the Tulalip and Stillaguamish tribes 

have created habitat enhancement plots by removing stumps from old clearcuts and planting 

nutritious, non-native forage plants such as clover. Elk are regularly documented in these fields 

but whether they are diverted from the valley bottom is unclear. Recent use of GPS collars may 

help clarify this issue. Rowland et al. (2005) also suggest that forest road closures may allow elk 

to remain on public land and away from private land (and potentially busier highways).  
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In 2014, transportation managers installed nine flashing elk crossing signs in the 

Highway 20 study area that were followed by a decrease in annual reported elk roadkills. 

According to WDFW, annual reported elk roadkills have remained below about 30 since then, 

which is about half of the maximum annual roadkills recorded in 2012 (n = 62) (WDFW 2017). 

A causal relationship can’t be confirmed, but flashing signs likely raise driver awareness, 

especially at night, dawn, and dusk when most roadkills occur. Despite the widespread use of 

wildlife crossing signs, there is little empirical evidence that they actually work to prevent 

wildlife-vehicle collisions; their use is likely influenced by financial considerations since they 

are considerably less expensive than fencing or crossing structures (Glista et al. 2009). 

Temporary warning signs were shown to reduce deer-vehicle collisions by 50 percent and reduce 

vehicle speeds in Utah, Nevada, and Idaho; however, the effectiveness of the signs in reducing 

speeds declined in the second year of the study, suggesting that drivers may ignore warning signs 

over time (Sullivan et al. 2004). Flashing signs triggered by a heat sensor that detects animal 

presence have reduced collisions in Europe (Bank 2002). Animal-triggered electronic signs were 

found to be most likely to cause drivers to reduce speeds according to driver surveys in Australia 

(Bond 2013). Electronic warning signs activated by the signal from radio-collared elk have been 

used near Sequim, Washington with mixed results. Uncollared elk can still cross the road without 

triggering the sign, which could be problematic if drivers are expecting a warning whenever an 

elk is present. In addition, collared elk can bed down near the highway and continually trigger 

the sign. Additional signage may help reduce roadkills on Highway 20 near roadkill and crossing 

hotspots, especially near km 122.3 (mile 76) where roadkill hotspot 2 and crossing hotspot 2 

coincide.  
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Lower speed limits are another common and cost-effective mitigation strategy. High 

speed limits have been shown to correspond with more animal collisions in Washington State 

and elsewhere (Wang et al. 2010, Bashore et al. 1985, Seiler 2005, Meisingset et al. 2014). 

Enforcement of lower speed limits in problem areas may help prevent elk-vehicle collisions. 

Lower speed limits may help reduce roadkills on Highway 20 near roadkill and crossing 

hotspots, especially near km 122.3 (mile 76) where roadkill hotspot 2 and crossing hotspot 2 

coincide (Figures 2-5 and 2-6).  

 Another strategy discussed in the literature is the removal of vegetative cover near 

roadways to improve visibility. Meisingset et al. (2014) tested the effect of vegetation removal 

on red deer -vehicle collisions in Norway and found a 53% decrease, but only in winter. This 

strategy has also prevented collisions in Europe in conjunction with wildlife crossing structures 

(Banks 2002). Behavioral researchers studying deer response to roads have recommended this 

strategy as well (Blackwell et al. 2014). Removal of edible vegetation also reduces habitat near 

roads and decreases the number of potential crossings (Olsson 2007). These strategies should be 

considered cautiously in Skagit Valley given the association with open areas like pasture/hay and 

crop land covers with roadkills and crossings. Vegetation removal could also be an issue for 

private landowners. Montgomery et al. (2012) recommend retaining vegetation that screen elk 

from road networks in areas to improve elk habitat.  

 Fencing has also been used to mitigate wildlife road crossings. Clevenger et al. (2001) 

found that ungulate-vehicle collisions decreased by 80 percent after the installation of highway 

mitigation fencing. Ascensao et al. (2013) report that strategically placed fencing alone, even 

without nearby crossing structures, may be the most effective and cost-effective option for 

mitigating road impacts on wildlife. The spatial separation of Highway 20 crossing hotspots from 
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roadkill hotspot 1 (km 109.4 (mile 68)), roadkill hotspot 3 (km 127.1-127.3 (mile 79-79.1)), and 

roadkill hotspot 4 (km 128.3-128.6 (mile 79.7-79.9)) suggests that these locations could 

potentially be mitigated by fencing that may divert elk to safer crossing locations nearby. This 

strategy would require further research into elk movement patterns at each of these sites, how 

those patterns might be affected by fencing barriers, and how those changes might affect 

collision risk. The concentration of private property along Highway 20 could complicate a 

fencing strategy if it diverted elk to private property.  

Fencing is often used in conjunction with wildlife crossing structures such as overpasses 

or underpasses to funnel wildlife toward crossing structures (Glista et al. 2009). Crossing 

structures have been successful in substantially reducing roadkills (Clevenger et al. 2001, 

Langbein et al. 2011). A lack of research comparing crossing rates before and after construction 

of structures hinders the robust evaluation of their efficacy but structures appear to be more 

effective at reducing collisions and reconnecting habitat and populations than cheaper and more 

widely used approaches such as signage (Glista et al. 2009). A crossing structure over or under 

Highway 20 may help reduce elk roadkills; however, its location would be limited to public land 

and/or willing private landowners. Based on the hotspot analysis, a crossing structure may be 

most effective near km 122.3 (mile 76) where roadkill hotspot 2 and crossing hotspot 2 coincide. 

This location abuts private land and construction of a crossing structure would require substantial 

landowner approval and participation, or a change of land ownership. Alternatively, a nearby 

bridge on Highway 20 over Red Cabin Creek could conceivably be raised to accommodate elk 

passage in conjunction with fencing, though elk show a strong preference for overpasses 

compared to underpasses (Clevenger 2009). Both of these options would require substantial 

capital investment as well as further research into elk movement patterns at each of these sites, 



 88 

how those patterns might be affected by fencing barriers, and how those changes might affect 

collision risk.    
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