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Figure 7. A CIS/ZnS QD 
cartoon depicting the 
chemical binding of the 
polymer ligand and the 
interdigitation of the 
polymer surfactant with 
the QDs native ligands, 
1-Dodecanethiol.

Uniform Dispersion of Nanoparticles in PMMA Waveguides for Luminescent Solar Concentrators 
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Background
• Luminescent solar Concentrators (LSCs) are a promising solution to 

rising global energy demands. [1]

• Before LSCs can be commercially viable, four key loss mechanisms 
must be addressed to ensure their efficiency: [2]

1. Insufficient Solar Absorption.

2. Non-Unity Photo Luminescent Quantum Yield (PLQY)

3. Compounding Self-Absorption and Escape Cone Losses

4. Scattering Losses due to Nanocrystal Aggregation

• Copper Indium Disulfide/ Zinc Sulfide (CIS) Nanocrystals (NCs) go a long 
way towards addressing loss mechanisms 1-3:

• With increasing QD loadings, CIS/ZnS NCs aggregate in Poly(Methyl 
Methacrylate) (PMMA).  Consequently, inconsistencies in the 
refractive index of the LSC matrix dramatically increases optical losses 
due to light scattering.

• Our work focuses on resolving such optical losses in order to achieve 
higher and commercially viable LSC efficiencies.
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Polymeric Dispersion Methods
Ligand Exchange

Polymeric Surfactants
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n-1 SH• A sulfur-terminated Poly(Methyl 

Methacrylate)-based ligand has been 
employed to increase the compatibility 
of CIS/ZnS QDs in the PMMA matrix of 
our LSCs. [4]

• A steric inhibitor ( “Linker” ) has been 
exploited to prevent the auto-formation 
of a thiolactone ring, keeping the 
terminal thiol chemically available to 
bind to the QD.

• Recent NMR and TGA experiments 
corroborate that the total polymer 
ligand exchange is about a 35% 
replacement for the native ligand DDT.

Figure 6. Sulfur terminated PMMA ligand. 
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Figure 9. PMMA-based alkyl surfactant.

• A PMMA-based surfactant (PS) with 
two alkyl chains has been designed 
to interdigitate with the surface 
ligands of the QD.  [5]

• The Polymer Surfactant has been 
shown to stabilize CIS/ZnS QDs in 
orthogonal solvent pairings.

• Future work will entail 
characterization of how well the PS 
disperses QDs in non-solvents and in 
PMMA LSCs.

• Our Copper Indium Disulfide/ Zinc Sulfide Quantum Dots are 
synthesized by a solvothermal “heat-up” method adapted from 
Klimov et. al. [3]

• In order to maximize LSC efficiency when paired with a solar cell, 
integrated luminophores must have near unity PLQY as well as an 
exceptionally red emission profile.

• By independently testing each synthetic parameter for the CIS core 
synthesis and the ZnS shell overgrowth, we have increased our NCs 
PLQY at redder emission wavelengths.

Table 1. Differences between a synthetic regime adopted from the work of 
Klimov et. al. and Patrick groups optimized synthetic recipe.

Optimization of Quantum Dot Synthesis

Figure 10. From left to right; QDs in hexanes 
atop acetonitrile with PS, QDs in hexanes 
atop acetonitrile, QDs in hexanes atop 
DMSO with PS, QDs in hexanes atop DMSO.

Klimov et. al. Optimized
Cu/In (mol) 1/1 0.75/1
Zn/Cu (mol) 8/1 4/1

Shell Growth Solvent 1-Octadecene Paraffin Oil
Shell Growth Steps 1 2

Mean PLQY 38% 80%
Mean Max Emission (nm) 650 754
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Figure 4. Normalized absorption (red) and 
emission (red) spectra of typical CIS/ZnS NCs. 
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Figure 5. OQE, the ratio of photons absorbed by 
an LSC to the photons delivered to its edge, 
plotted against illumination distance from the 
excitation beam to the aperture of an 
integration sphere. 

• Broad band solar absorption
• Potential for high PLQY
• Large effective Stokes shift 

Figure 2. TEM image of CIS/ZnS Core Shell 
structure. The average particle size is 3 ±
0.8 nm. 
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CIS/ZnS TEM Particle Size Analysis

Figure 3. CIS/ZnS particle size analysis 
from Fig 2. 

Figure 1. A cartoon CIS/ZnS absorbance and emission over a schematic solar spectrum displayed 
over a mock-LSC (a,b). Typical loss modes are cartooned for a hypothetical LSC (c).

Figure 11. A series of UV-illuminated LSCs ranging from 0.1 to 0.6 wt% QDs. 

Figure 8. Two LSCs. Left is constructed without use of the polymer ligand. The Right LSC utilizes
only polymer ligand functionalized QDs, improving its dispersion and clarity.
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