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• The system modeled by all approaches discussed here consists of a substrate 
that monomers (molecules or atoms) are fluxed onto at a constant rate F

• Monomers may move around and aggregate with other monomers, forming a 
cluster or stable island, but may not leave the substrate

• A stable island is formed when a cluster has one more monomer than the 
critical cluster size, i*

Mulheran & Blackman’s Semiempirical Model

𝐹 𝑠 =
αα

Г 𝛼
𝑠α−1exp(−α𝑠)

• Scales size distributions for Voronoi cell areas where s=cell size/average cell size
• Based on a model from a computational analytical experiment consisting of 

randomly dispersed particles, assigning Voronoi cells, and generating the above 
distribution from the outputs

Pimpinelli & Einstein’s Wigner Surmise Application

Amar & Family’s General Scaling Form:

Submonolayer nucleation and growth in vacuum-deposited films are well described 
by KMC models due to their small critical cluster sizes. However, systems with large i* 
values, such as those that occur during solution-phase nucleation, remain 
unexplored. Such systems are of particular interest for the fundamental 
understanding of the physics behind the growth of large, low-defect organic crystals 
via organic-vapor-liquid-solid deposition, which have novel semiconductor 
applications. Additionally, the MM is built on physical principals alone, while others 
have more empirical approaches; how will their behavior compare, and will these 
small i* intended models be able to scale large i* systems?

𝑃β(𝑠) = 𝑎β𝑠
βexp(−𝑏β𝑠

2)
𝑎β and 𝑏β are 

normalizing constants

α is a
normalizing constant

• A general scaling form applied by Amar and Family to determine critical island 
sizes in physical experiments where iron is deposited onto iron and copper 
substrates 

• Relates critical island size to island size scaling

• An approximation that describes spacing statistics that is derived 
from random matrix theory

• Induction: constant flux of 
monomers with no nucleation

• Nucleation: critical concentration 
n* is reached and nucleation 
begins

• Growth: monomers are more likely 
to join an island than aggregate 
with monomers, there is no 
nucleation and only island growth

• The MM simulates a burst nucleation regime under a classical nucleation theory 
approach 

• The MM includes a self-consistent treatment of i* that is integrated into a mean 
field approach, stochastic treatment of nucleation, and analytically calculated 
monomer diffusion via the 2D diffusion equation

• BN consists of phases and can be represented by couples rate equations

Our Goal

The Multiscale Model

• Both Mulheran & Blackman and Pimpinelli & Einstein approaches agree very well 
with the multiscale model’s nearest neighbor and Voronoi cell area distributions

• This suggests that these scaling forms hold true in large i* systems
• The Amar & Family fit predicts an i* of 38, where the multiscale model calculated 

an i* of 57 for the parameters run (Note θ is coverage and S is avg. island size)
• Although the parameters scaling these models to the multiscale models’ behavior 

do not have direct meaning in the large i* regime, the fact that the curves 
themselves fit show that these fundamental models don’t disagree with the multi-
scale model

• The scaling agreements also prove that such a simple, computationally inexpensive 
model can provide accurate scaling behavior 

• A predominant approach to modeling these 
systems is via kinetic Monte Carlo (KMC) 
simulation; however, they are computationally 
expensive for large i* systems 

• Mean free rate equation (MFRE) models 
consist of simple rate laws and are 
computationally inexpensive, but average 
over microscopic details that may be 
important

• Our novel multiscale model (MM) can achieve 
large i* systems without losing this detail
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Comparative Model Analysis

𝐶𝑖 and 𝑎𝑖 are 
normalizing constants

Scaling Models

• Nucleation is periodically checked at 
every grid space by weighing the 
probability of nucleation, based on 
P i∗, n , against a random number 
generator

• The end result is a 2D landscape where 
each grid space represents the 
monomer concentration at that location

• Areas of lower monomer concentration 
are lighter and areas of greater 
concentration are darker

• Islands are likely to be found in the 
centers dark circles, due to their 
behavior as monomer sinks
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N = supercritical stable cluster conce.
n = subcritical cluster conce.

K = collisions and capture kernel
P i∗, n = conce. of aggregates with

monomer conc. n and size i∗

F = flux
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