May 18th, 12:00 AM - May 22nd, 12:00 AM

The Past is the Key to the Present: Reconstructing Changes in Seasonal Precipitation Triggered by Ancient Climate Change

William Ward
Western Washinton University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Geology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Reconstructing Changes in Seasonal Precipitation Triggered by Ancient Climate Change

William B. Ward (wardw3@wwu.edu) and Dr. Camilo Ponton, Geology Department, Western Washington University, Bellingham, WA 98225

Ancient Climate Change

During the boundary between the Paleocene and Eocene epochs (~56 Mya), environmental instability led to a short-lived global warming event (known as the PETM). In less than 10,000 years, global temperatures rose by 5° - 8° C. There is evidence to suggest that these changes had lasting impacts on the hydrologic cycle, causing global increases in precipitation.

Evidence for Global Warming

- Carbonate minerals in rocks from the PETM indicate atmospheric CO₂ was much higher than today.

Evidence for Rainfall Variability

- Chemical composition (H isotopes) of plant molecules can record changes in precipitation at the time the plant was growing

Methods for Tracking Rainfall

- Sohxlet solvent extraction (Panel a)
- Column chromatography (Panel b)
- Gas chromatography (Panel c)

Research Objectives

- Extracting ancient plant leaf waxes preserved in PETM rocks
- Measuring changes in the hydrogen composition of these waxes
- Reconstructing changes in rainfall during this global warming event.

Summary & Implications

I successfully extracted and isolated plant waxes preserved in 56 myr-old rocks. Forthcoming isotopic analyses will inform on precipitation changes caused by the PETM, a global warming event. Since the PETM is an analog for anthropogenic climate change, our results can improve our understanding of future climate scenarios.