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ABSTRACT

Geomorphic and sedimentologic indicators of shore drift were used to 

delineate the boundaries of drift unit cells and their direction of net 

shore-drift along the 110 km of Pacific coastline of Clallam and Jefferson 

Counties, Washington. These indicators include changes in bluff 

morphology, sediment size gradation, beach width and slope, direction of 

spit progradation and stream mouth diversion, deposition and/or erosion at 

drift obstructions, identifiable sediment, and nearshore bar orientation. 

Drift determinations were based on a field oriented approach emphasizing 

such long-term indicators, supplemented by aerial photography, and 

literature relevant to the coast.

Wind from the south-southwest prevail and predominate over Western 

Clallam and Jefferson Counties. This results in a northerly net shore- 

drift direction dominating along the study area. However, short drift 

reversals do occur in the wave shadow of headlands, where waves are 

refracted around nearshore islands and stacks, and where the orientation 

of the coast differs considerably from the overall trend.

Thirty drift cells, ranging from 0.4 km to over 26 km in length, have 

been identified and their direction of net shore-drift determined along 

the Pacific coast of Clallam and Jefferson Counties. The predominant 

southwesterly wind-generated waves dominate the direction of net shore- 

drift as evidenced by a northerly drift direction in al 1 but six of the 

drift unit cells.
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INTRODUCTION

Understanding the coastal processes that shape and continually modify 

the shoreline is fundamental to any rational planning for use of coastal 

land. Shore drift is an intrinsic aspect of the coastal processes that 

directly influence the long-term morphology of a coast. Shore drift is 

defined as the process by which beach and nearshore sediment is 

transported parallel to the coast by beach drift and longshore drift. 

Seasonal variations of shore drift can occur in response to changes in 

wind and wave approach, but over a long period one direction of sediment 

transport will usually predominate. This is the direction of net shore- 

drift.

Short-term studies of net shore-drift, using such methods as 

artificial tracers or sediment traps, are prone to errors. These 

techniques record the drift direction only for the period of study, which 

may reflect a seasonal direction of shore drift, rather than a long-term 

direction. Drift determinations based on a mathematical modeling 

procedure, known as wave-hindcasting and the construction of wave 

orthogonals, are also subject to errors. This method uses wind data from 

recording stations to determine the direction of dominant wave approach 

and resulting shore drift by plotting wave orthogonal s. On crenulated 

coastlines, such as Washington's northern Pacific coast, serious mistakes 

can be made by using this method. Wind data are generally limited along 

the coast and thus must be extrapolated from inland recording stations, 

which may not be representative of surface conditions on the coast. In 

addition, coastal topography and fetch are not adequately considered in 

the wave modelling calculations.

There have been no previous investigations of net shore-drift along
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Washington's northern Pacific coast using geomorphic and sedimentologic 

indicators. Shore drift has been studied along the southern region of the 

Pacific coast of Washington by Plopper U978), Phipps and Smith (1978), 

and more recently by Schwartz and Bronson (1984), who employed the same 

methods applied in this study. Hopkins (1971) has investigated the water 

circulation over the continental shelf off Washington.

The purpose of this study is to delineate the boundaries of drift 

unit cells and to determine their direction of net shore-drift along the 

Pacific coast of Clallam and Jefferson Counties, Washington. There was no 

attempt to measure the rate or volume of sediment transport along this 

segment of coast. This study is based on a field-oriented approach, which 

emphasizes long-term geomorphic and sedimentologic indicators of shore 

drift. These methods have proven to be successful in coastal drift 

studies in Puget Sound (Keuler, 1980; Jacobsen, 1980; Chrzastowski, 1982; 

Blankenship, 1983; Harp, 1983; Hatfield, 1983; Taggart, 1984), on the 

Bering coast of Alaska (Hunter et al., 1979), and more recently on the 

north coast of Puerto Rico (Morelock et al., 1985) and along a coastal 

sector of Padre Island, Mexico (Schwartz and Anderson, 1985).

The Pacific coastline of Jefferson and Clallam Counties, Washington, 

is one of the few remaining undeveloped coastal zones in the contiguous 

United States. This rugged, but picturesque, wilderness coast has long 

been recognized for its scenic and recreational value. Because of its 

value, a 80-km-long coastal strip was added to the Olympic National Park 

in 1953, although it had been under National Park Service administration 

for some years prior to that date. This protected coastal sector allows 

for the study of an undeveloped coast in which natural processes are 

solely responsible for the present coastal geomorphology.
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REGIONAL SETTING

Geography

Clallam and Jefferson Counties are located in the northern Olympic 

Peninsula of western Washington ^Figure 1). The present study area 

encompasses the Pacific coastline of these two counties (Figure 2), with 

a total coastal length of approximately 110 kilometers. This coastal 

sector is bounded on the north by the Strait of Juan De Fuca and to the 

south by Grays Harbor County.

The crenul ated north-northwest-trending coastline of Cl al lam and 

Jefferson Counties is characterized by steep sea cliffs, sand-gravel 

beaches, wave-cut platforms and numerous offshore sea-stacks. Much of the 

land is undeveloped and under the authority of the Olympic National Park. 

The Park contains a Pacific coastal strip that stretches 80 kilometers 

from just above the Ozette Indian Reservation on the north to the border 

of the Quinalt Indian Reservation on the south. The remaining coastal 

property within the study area is under the jurisdiction of the Makah, 

Ozette, Quillayute, Hoh and Quinalt Indian Reservations.

The continental shelf off the Washington coast slopes westward at 3- 

4.5m/km and varies in width from 35-60 km (Hopkins, 1971). Several major 

submarine canyons have been incised into the upper continental slope, 

narrowing the shelf width at their heads. Six rivers and numerous streams 

discharge into the Pacific Ocean within the study area.

Geology

The tectonic history of the Pacific Northwest has clearly affected 

the rock formations of the Olympic Peninsula. Numerous workers have 

suggested that the core rocks of the Olympic Peninsula were formed as a

3
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Figure 1. Location map of western Washington Rafter Chrzastowski, 1982).
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Figure 2. Location map of western Clallam and Jefferson Counties 
^adapted from Terich and Schwartz, 1981).
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result of subduction of oceanic lithosphere, while the overlying 

sedimentary rock sequences were intensely deformed and accreted to the 

continental plate ^Stewart, 1971; Tabor and Cady, 1978). The presence of 

oceanic basalt and the overall structural complexity of the rocks lends 

support to this theory.

The oldest rocks exposed along the coast are those at the Point of 

the Arches, which are thought to be of at least Jurassic in age (Tabor and 

Cady, 1978). These plutonic rocks are composed of gabbro and diorite 

(Table 1). The Crescent Formation consists of volcanic rocks (basalt) 

with minor siltstone interbeds (Glassley, 1974), and crops out in the 

study area along wave-cut cliffs at Portage Head and Anderson Point. The 

Western Olympic lithic assemblege is exposed throughout the study area and 

is dominantly composed of sandstones with minor granular conglomerates 

(Tabor and Cady, 1978). Weaver's (1937) Hoh Formation, which is exposed 

along much of Jefferson County's Pacific coastline, has been reorganized 

by Rau (1973). Rau has divided the Hoh rocks into two major groups; the 

Hoh assemblege, and a second group referred to as a "tectonic melange". 

The Hoh rock assemblege is a group of intensely folded and faulted 

sandstone, siltstone, and conglomerate sequences. The other major group, 

tectonic melange, is a chaotic mixture of siltstone, sandstone, and 

conglomerate set in a relatively weak, unconsolidated matrix of siltstone, 

sandstone, and claystone.

Most of the bedrock along the Pacific coasts of Clallam and Jefferson 

Counties is overlain by unconsolidated glacial sediments, composed 

dominantly of sand and gravel, which were deposited at different times 

during the Pleistocene. Although four glaciations are recognized in the 

western Olympic Peninsula (Heusser, 1977), only two major events of 

deposition are apparent in the stratigraphy along the coast (Rau, 1980).
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Table 1. Stratigraphic units commonly exposed along western Clallam and 
Jefferson Counties ^adapted from Rau, 1980).
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•The northern region of the study area was partially occupied by the Juan

de Fuca lobe of the Cordilleran glacier complex during Salmon Springs and

Fraser glaciations iCrandell, 1965). In addition, alpine glaciers

originating in the Olympic Mountains deposited glacial sediment,

particularly in and adjacent to the major stream valleys of the Hoh,

Quillayute, and Bogachiel Rivers and Goodman Creek (Florer, 1972). After

the deposition of the two younger Pleistocene sands and gravels, and

probably before much vegetation had developed, windblown sand and silt

covered the coastal area of western Jefferson County to a depth of 1 m or

more ^Rau, 1980).

The geology of the coast is complicated by eustatic, isostatic, and 

tectonic changes in sea level relative to the mainland. In the late 

Pleistocene a small eustatic rise in sea-level of about 2 m may have 

occurred during the Hypsithermal (Danner, 1955). Rau (1980) has found 

evidence that the coastline was at one time during the Pleistocene farther 

inland than it is at present. Evidence for this is manifested by the 

essentially horizontal trace of an elevated wave-cut terrace at the top of 

many bedrock outcrops in the sea cliffs, stacks, and offshore islands 

within the study area. This erosional surface lies at approximately 35 m 

and is located along most of western Jefferson County (Rau, 1980).

South of the Hoh River, in southern Jefferson County, late 

Pleistocene sand and gravel deposits are exposed in wave-cut cliffs. Here 

coastal erosion rates have been estimated by comparing old land surveys to 

those made in recent years. These surveys show that there is an average 

erosion rate of 1.1 m/year along this coastal sector (Rau, 1973). Thus, 

Destruction Island, which lies 6 km offshore, would have been a part of 

the mainland some 6,000 years ago. This high rate of erosion is caused 

primarily by the susceptabi1ity to erosion of sand, gravel, and clay. The

8



tectonic melange of the Hoh Formation, which make up much of this segment 

of the coast, are also highly erodable. These melange deposits are 

structurally weak, in part, because of their clay minerals, which expand 

when wetted by waves and precipitation.
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CLIMATIC SETTING

The location and intensity of the semi-permanent high and low 

pressure areas over the North Pacific have a pronounced influence on the 

climate (National Oceanic and Atmospheric Administration, 1980). During 

the late spring and summer, the East Pacific high pressure system 

dominates the weather over Washington's Pacific coast (Figure 3). In the 

fall and winter, the Aleutian low pressure system is of major importance 

in controlling the weather. The gale-force winds and heavy precipitation 

produced by cyclonic storms are generated by the Aleutian low pressure 

system during the winter season. Annual precipitation ranges from 177.8 

to 254 cm along the Pacific coast of Clallam and Jefferson Counties, with 

approximately 84% of the rainfall occurring between the months of October 

and April (NOAA, 1980). High precipitation during this time increases 

stream discharge, surface runoff, and coastal bluff erosion, resulting in 

an increase of sediment available for transport along the coast.

Temperatures along the Pacific coastlines of Clallam and Jefferson 

Counties reflect the moderating effect of maritime air. Along the coast, 

the average maximum temperature in July is near 21° C, and the minimum 

temperatures in January range from 0° C to 3° C (NOAA, 1980).

Wind

The climate of Clallam and Jefferson Counties is dominated by

maritime air brought in from over the North Pacific by prevailing westerly

winds. The moderating effects of Pacific Ocean air masses on the climate

are shown by wet mild winters and cool dry summers.

Surface winds generate waves, which directly influence the shore-

drift process. The direction, duration, and velocity of surface winds

10
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Figure 3. Mean atmospheric pressure systems in the Northeast Pacific 
lafter Hopkins, 1971).
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Figure 4. Seasonal patterns of winds over western Washington |after 
Downing, 1983).
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over the Northeast Pacific vary seasonally ^Figure 4). These winds are a 

direct product of the two semi-permanent pressure systems over the north 

Pacific Ocean.

In the late spring and summer (June to September), a clockwise 

circulation of air around the East Pacific high pressure system brings a 

prevailing northwesterly and westerly flow of cool, relatively dry, stable 

air into the northwest Olympic Peninsula. The high pressure system pushes 

the Aleutian low pressure system and its related storm activity to the 

north. In the late fal 1 and winter ^October to May), the Aleutian low 

pressure system gradually intensifies and replaces the high pressure cell, 

pushing it to the south. During this season, storm systems crossing the 

Pacific follow a more southerly path, occurring at frequent interval s. 

The wind-flow pattern is directed counter-clockwise around the low 

pressure center, resulting in a prevailing flow of air from the 

southwest. This area receives the full force of storms moving inland from 

over the ocean; thus heavy precipitation and winds of gale force occur 

frequently during the winter season. Wind velocities at lower elevations 

can be expected to reach 144.8 to 160.9 km/hour once in 100 years ^N0AA, 

1980).

The exchange of location between the two cyclonic pressure systems in 

the northeast Pacific Ocean is a primary cause of the pronounced seasonal 

variation in wind conditions found off the northwest Olympic Peninsula. 

From June through September calm summer conditions exist, while winter 

storm conditions prevail the remaining two-thirds of the year ^NOAA, 

1980). The result of this annual exchange is that the prevailing winds 

^most frequent) are from the northwest during the summer season and from 

the southwest during the remainder of the year. However, the predominant 

winds ^which have the strongest influence on wave generation) are formed

13



The predominant southwesterly wind-generated waves dictate much of 

the net shore-drift direction along the coasts of those parts of Clallam 

and Jefferson Counties facing the open ocean. However, wind direction may 

be modified at the shore behind an island, in the lee of a headland, or 

within an embayment, causing possible drift reversals.

during the winter storm season and are from the southwest.
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OCEANOGRAPHIC SETTING

The oceanographic parameters that most affect the shore-drift process 

along the Pacific coast of Washington are wind-generated waves and tidal 

range. Wind-generated surface waves are the principal source of energy 

responsible for erosion and transportation of sediment along the shore. 

The tidal range determines the vertical and horizontal extent to which 

waves may impart their energy.

Wind-Generated Waves

Shore drift occurs due to the oblique approach of wind-generated 

waves. The potential energy of wind-generated waves is a function of the 

wind velocity, wind duration, and the fetch or distance of open water over 

which the wind can blow unimpeded. Changes in fetch are important up to 

about 1500 kilometers (Davies, 1980), thus this limiting factor is not 

significant in beaches facing the open ocean. With fetch being relatively 

unimportant along much of the northwest Pacific coast of Washington, wind 

velocity and duration are the primary controls governing the amount of 

energy available for wave generation in the study area.

Waves originate by the turbulent flow of wind over the water 

surface, and grow as the result of a pressure contrast that develops 

between their windward and leeward slopes (Bird, 1969). Waves formed in 

the zone of generation and that are actively under the influence of the 

wind are termed "sea waves". As the waves leave the area of formation, 

they are sorted out by period and thereby become more regular with 

smooth, rounded crests. Such regular waves are known as "swel 1". Once 

the waves enter shallow water, at a depth approximately one-half the deep­

water wave length, they interact with the bottom and begin a

15



transformation. May U982) refers to such waves as "shoaling waves". 

When waves reach the nearshore zone and enter water approximately as deep 

as the waves are high, they break on the shore as swash and backwash 

iKomar, 1976). Though wave period remains constant throughout the wave 

transformation process, the wave height of the breaking wave is greater 

than that of the deep-water wave.

The Pacific coast of Clallam and Jefferson Counties lie between the 

40° and 60° latitudes which Davies U980) defines as the storm-wave 

environment. This environment is characterized by a relatively large 

number of gale-force winds that generate high energy waves, which tend to 

dominate transport in the nearshore zone. Swell waves are of background 

significance.

Tides

Tides are periodic movements of the waters of the oceans induced by 

the gravitational effects of the sun and moon in relation to the earth 

iBird, 1969). The maximal tidal range (spring tide) occurs during new and 

full moon phases; when earth, sun, and moon are in alignment and have 

combined gravitational effects (see Figure 5). The minimal tidal range 

(neap tide) occurs at half moon phases (first and third quarters), when 

the sun and moon are at right angles to each other in relation to the 

earth, resulting in gravitational effects minimizing the tidal range. Due 

to the nearly monthly (28.5 solar days) revolution of the moon about the 

earth, there are twice-monthly spring and neap tides.

The nature of the tides, diurnal, semi-diurnal, or mixed, depends on 

the pattern and frequency of occurrence of high and low tides at any one 

location. Washington's Pacific coast experiences mixed tides, which means

16
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Third Quarter

To Sun

Figure 5. The gravitational attractions produced by the moon and sun 
combine at times of new and full moon to increase the range 
of the tides, and counteract each other at first and third 
quarters to reduce the tidal range lafter Wood, 1982).
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that there are two highs and two lows during the tidal day, with al1 of 

the tides of different heights. This diurnal inequality is caused by the 

declination of the earth's equatorial plane with respect to the plane of 

the earth's orbit around the sun and the moon's varying position above and 

below the plane of the earth's orbit about the sun ^Komar, 1976).

The significance of tidal range in coastal development has been 

widely recognized iDavies, 1980; Rosen, 1977). Tidal range directly 

limits the extent to which waves may impart their energy. Rosen U977) 

found that in areas with a large tidal range, where wave energy is 

dispersed over a broad inter-tidal zone, there is an overall decrease in 

coastal erosion. For areas with a small tidal range, wave energy tends to 

concentrate within a narrower area along the beach profile, resulting in 

an increase of coastal erosion.

Spring tidal range along Washington's Pacific coast is typically 

between 3 and 4 m, which is classified as mesotidal by Davies U980). 

Mesotidal tides tend to dissipate wave energy across the beach profile, 

resulting in a widening of shore platforms and beach foreshores.

18



PRINCIPLES

The following is a brief summary of two important aspects of coastal 

processes employed in studies of net shore-drift. These aspects are the 

dynamics of shore drift and the concept of a drift cell.

Dynamics of Shore Drift

As deep water waves approach the shore, they begin to adjust to 

the bottom contours. This adjustment, known as wave refraction, changes 

the direction of wave travel with decreasing depth of water so that the 

crests tend to parallel the bottom contours. Waves that are completely 

refracted arrive perpendicular to the coast and have little or no effect 

on the transport of sediment parallel to the shore. However, for most 

waves, the process of refraction is not complete, and waves arrive at a 

slight angle to the coastline.

Waves striking the beach at an angle produce an oblique upward rush 

of swash ^sediment and water) succeeded by the return of the backwash down 

the beach face. This drift pattern carries the swash up the beach at an 

angle, perpendicular to the breaking wave. The backwash, returning down 

the beach face under the influence of gravity, carries along the shore 

with the same force. This pattern results in an arcuate motion, parallel 

to the coast, of sediment along the foreshore. This type of sediment 

transport is termed beach drift.

In the nearshore zone, a longshore current is produced by wave 

action when waves approach at an angle to the shoreline ^Longuet-Higgins, 

1970a, 1970b). Sediment is transported by the current parallel to the 

shore in the same direction as the beach drift. This process is known as 

longshore drift.

The combined action of beach drift and longshore drift is called

19



shore drift iFigure 6). The direction of shore drift can vary on a daily 

or seasonal basis in response to changes in wind and wave approach. 

However, for most coastal segments one shore drift direction predominates, 

resulting in a net transport of sediment in that direction. Thus, net 

shore-drift is the direction in which the majority of sediment is 

transported over a long period of time, in spite of any smaller seasonal 

movement in the opposite direction iJacobsen and Schwartz, 1981).

Areas of no appreciable net shore-drift may exist along coastal 

segments where shore drift processes do not take place. This condition 

may occur due to factors such as a lack of sediment supply, a shore 

artifically or naturally modified so that it extends out to deep water, or 

a shore with low wave energy.

Concept of a Drift Cell

An important concept employed in many coastal studies is that of a 

"drift cell" of sediment transport along the coast. Along rocky or 

irregular coastlines, sediment transport occurs within discreet 

compartments, even under conditions of high wave energy, so that movement 

can usually be measured over a number of kilometers ^Jacobsen and 

Schwartz, 1981). The idealized drift cell consists of three different 

zones: a zone of sediment supply, a zone of sediment transport, and a zone 

of sediment accumulation. These zones, like drift cell boundaries, may 

consist of broad, generalized areas.

The origin of a drift cell may be a zone of fluvial input or long­

term erosion which supplies much of the sediment necessary for shore 

drift. Atypical drift-cell origin along Washington's Pacific coastal 

region would be characterized by a river mouth or by a vertical or near­

vertical devegetated bluff or cliff fronted by a wave-cut platform. The
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Figure 6. Schematic diagram depicting the shore drift process.



presence of only a narrow or no high-tide beach within this zone permits 

the continual under-cutting of the bluff, with the material from the bluff 

supplying much of the sediment for the drift cell. This zone sustains the 

highest energy waves impinging upon the shore and as a result the coast 

within this zone retreats at a greater rate than other sections of the 

coast. In this zone the primary transportable sediment is sand and 

gravel; while, conmonly, cobbles and boulders remain as a lag deposit. A 

zone of drift divergence results when two drift cells of opposing net 

shore-drift direction originate from the same zone of sediment supply.

Sediment is moved along the coast by shore-drift processes in the 

zone of transport, toward the drift cell terminus. Throughout the zone of 

transport, sediment may be lost, detained, or introduced into the shore- 

drift system. Sediment is removed from the shore-drift system when wave 

action agitates and suspends fine sediment, which is then carried offshore 

and deposited into deeper water. Sediment can be temporarily detained or 

withdrawn from the active part of the shore-drift system and deposited in 

a less active site, possibly along the backshore by storm waves. Sediment 

may be introduced into the zone of transport of a drift cell by input from 

streams, eroding bluffs, wave-cut platforms, and any local regions exposed 

to higher-energy waves. Some of this inf lux of sediment originates from 

localized erosional areas present within the larger drift- cell system. A 

fresh input of sediment rejuvenates the sediment budget by increasing the 

quantity and mean grain size of the sediment.

The terminus of a drift cell is a zone of long-term sediment 

accumulation. Sediment is deposited at the terminus when wave-energy 

decreases below the necessary level to sustain movement of sediment of a 

given size. A typical drift-cel 1 terminus in the study area would be 

characterized by a wel 1-vegetated upland slope fronted by a stable

22



accretionary landform, such as a prograded beach. Occasionally two drift 

cells converge at a common terminus, often in response to convergent wave 

regimes, and form a cuspate spit.
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INDICATORS OF NET SHORE-DRIFT

Coastal studies involved in the determination of net shore-drift

direction must take into account the variable nature of shore drift. The
/

use of engineering methods such as artificial tracers and sediment traps 

may only determine short-term or seasonal drift direction. None of these 

methods fully accounts for all the intricacies of shore drift, especially 

the possibility that relatively rare, extreme events may be responsible 

for most of the sediment transport. Along crenulated coastlines, such as 

Washington's Pacific region, the use of long-term geomorphic and 

sedimentologic indicators of shore drift tends to be more reliable, 

because they take into account the many variables involved in net shore- 

drift. This method has been shown to be highly accurate in coastal 

studies in Puget Sound ^Keuler, 1980; Jacobsen, 1980; Chrzastowski, 1982; 

Blankenship, 1983; Harp, 1983; Hatfield, 1983; Taggart, 1984) and along 

the Bering coast of Alaska ^Hunter et al., 1979). This technique relies 

heavily upon afield-orientated investigation, documenting physical 

evidence.

The following sections deal with the geomorphic and sedimentologic 

indicators used in this study of net shore-drift along Washington's 

Pacific coast. These drift indicators are divided into two groups: 

indicators that require observations over a distance, and indicators for 

which the direction of net shore-drift can be determined at a specific 

site. It should be emphasized that the occurrence of a single indicator 

is not sufficent evidence on which to base a conclusive determination of 

the direction of net shore-drift. Rather, the combined effects of 

numerous drift indicators should be used to build a case for a definitive 

direction of net shore-drift.
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Indicators Requiring Observation Over Distance

This category of indicators requires observation throughout the 

length of a drift cell before the direction of net shore-drift can be 

determined. The optimum conditions for observing these types of 

indicators are found along fairly straight coastlines that have a 

consistent, uniform influx of sediment. When sediment is added from 

a second source, repetition of these indicators may occur within the drift 

cell.

Sediment Size Gradation

It has been shown that mean sediment size decreases in the direction 

of net shore-drift ^Bird, 1969; Davies, 1980). This gradation is related 

to lateral variations in wave energy along a coast ^Bird, 1969). In 

general, as waves move down a coast their energy and competence decreases. 

As a result coarse sediment, which requires more energy for transport than 

does finer sediment, is moved only by less frequent, higher-energy waves. 

Fine sediment can be moved by more frequent, lower-energy waves. Thus, 

finer sediments tend to out-run the coarser sediments down a coast ^Self, 

1977; Jacobsen and Schwartz, 1981).

Typically, along Washington's Pacific coast, a drift cell that 

exhibits this type of gradation in sediment size would start with a beach 

composed predominantly of boulders and cobbles with lesser amounts of 

pebbles and sand. Downdrift, the beach would gradually change to a 

mixture of mostly cobbles with some sand and pebbles, and then to a beach 

composed of mostly sand with some pebbles ^Figure 7). This trend can 

often be obscured by the input of additional sediment into the drift cell 

from streams, eroding bluffs, wave-cut platforms, or any local region
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c
Figures 7a, 7b, and 7c. A series of photographs illustrating sediment

size gradation through a drift cell. 7a shows 
a zone of sediment erosion; 7b shows a zone of 
transport; and 7c shows a zone of sediment 
accumulation along Drift cell C-1.
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exposed to higher-energy waves. As a result, repetitions in sediment size 

gradation would be observed.

Beach Width

Beaches tend to widen and develop a broader backshore in their 

downdrift direction (Keuler, 1979; Jacobsen and Schwartz, 1981). This is 

primarily manifested by the downdrift increase in the abundance of 

moveable sediment. In most cases, the origin of a drift cell is 

characterized by a narrow or absent high-tide beach and the lack of a 

berm. Further downdrift, the volume of sediment gradually increases, 

causing a seaward displacement of the mean higher high water line. This 

results in a progressively wider high-tide beach and backshore in the 

direction of net shore-drift. This trend can be repeated by a fresh 

influx of sediment; possibly from a landslide, slump, or river, within a 

drift cel 1.

Bluff Morphology

This concept, described by Emery and Kuhn U982) and also by Keuler 

U979), has proven to be of great use in the determination of net shore- 

drift along Washington's Pacific coast. Trends in bluff morphology are 

directly related to the degree of wave attack at the base of coastal 

bluffs. At the beginning of a drift cell, bluffs generally show evidence 

of strong erosion. In this zone, the beach is narrow enough to permit the 

steady erosion of the bluff base, often producing a notch at the toe due 

to undercutting. The resulting slope of the bluff is near vertical and 

devoid of vegetation. Further down the drift cel 1, in the direction of 

net shore-drift, the beach gradual ly widens, providing an increasing 

degree of protection against wave attack at the base of the bluff. This 

protection results in the bluff slope becoming less steep and more heavily
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vegetated in the direction of net shore-drift. The development of a berm 

and wide backshore at the end of a drift cell offers additional 

protection for the bluff. Here the bluff slope takes on a more gentle 

profile and subaerial processes become the dominant type of bluff erosion.

Beach Slope

Beach slope has been found to be a function of particle size (Bascom, 

1951; Davies, 1980). Typically, fine-grained beaches have a low beach 

slope. Thus, as the mean size of sediment generally decreases in the 

direction of net shore-drift, so does beach slope. However, in glaciated 

coastal regions, beach slope tends to increase in the downdrift 

direction ^Keuler, 1979). This apparent contradiction can be explained by 

analyzing drift cell morphology where the shore is composed of glacial 

debris. At the origin of a drift cel 1, a wave-cut piatform typical ly 

fronts a steep bluff or cliff. Within this zone, the low-sloping 

platform is mantled with a coarse lag deposit. In the direction of the 

drift-cell terminus, the quantity of beach material gradually increases, 

forming a large sediment wedge across the foreshore. This results in a 

progressive increase in mean beach slope in the direction of net shore- 

drift.

Log-Spiral Beaches

A log-spiral beach, also called a headland-bay beach, can be a 

reliable long-term indicator of net shore-drift. Yasso U965, p.702) 

defines this type of beach "as a beach with a seaward concave plan shape 

that lies in the lee of a headland". When the predominant waves approach 

the headland, a wave shadow forms in its lee. This results in wave 

refraction, and to a lesser extent, diffraction, in the wave shadow. This
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wave action causes a local reversal in the direction of net shore-drift 

within the area in the lee of the headland (Jacobsen and Schwartz, 1981). 

Thus, sediment size and beach slope increase with increasing distance 

from the headland.

Site Specific Indicators

These indicators of net shore-drift are observable at a specific

site.

Spit Development

A spit is a depositional landform consisting of an embankment of 

sediment attached to the land at one end and terminating in open water at 

the other end (Evans, 1942). Spits form in response to wave-induced 

longshore sediment flow and prograde in the direction of net shore-drift 

(Bird, 1969). Preceding the development of a spit, a submarine platform 

is built out from the mainland in the direction of net shore-drift 

(Meistrell, 1972). This period of platform progradation is followed by a 

period of spit development atop the platform.

Cuspate spits are accumulation landforms that have a distinctive 

triangular form in plan view, which may be symmetrical or asymmetrical in 

shape. Symmetrical cuspate spits usually develop where two drift cells 

converge, as in the lee of offshore islands or stacks. Cuspate spits that 

are asymmetrical are indicative of unidirectional net shore-drift that 

continues around the spit from its longest side to its shortest side 

(Hunter et al., 1979). Spits are one of the most reliable long-term 

indicators of the direction of net shore-drift.
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Object Interruting Shore Drift

Any large object that is securely positioned more or less 

perpendicular to the shore will act as an impediment to the natural 

sediment movement involved in shore drift ^Komar, 1976). This will result 

in a pattern of accumulation and erosion of sediment around the object 

that can be indicative of a net shore-drift direction. Drift obstructions 

cause sediment to accumulate on the updrift side of the obstacle, while 

the downdrift side will experience efosion due to sediment starvation 

^Jacobsen and Schwartz, 1981). This process tends to widen and elevate 

the beach updrift of the obstacle relative to the downdrift side, which 

tends to be narrowed and lowered. When applying this technique for the 

determination of the direction of net shore-drift; the larger and the more 

permanent the obstacle, the more reliable it is as a long-term drift 

indicator.

Since man-made obstacles to shore drift are rare along the study 

sector on Washington's Pacific coast, attention must be given to naturally 

occurring obstacles. These include protruding drift logs, boulders, and 

headlands situated more or less perpendicular to the shore.

Stream Diversion

The mouths of streams or rivers that enter into a drift cell are 

commonly diverted in the direction of net shore-drift (Bird, 1969; 

Jacobsen and Schwartz, 1981). This process occurs when sediment is 

transported to the updrift side of a stream faster than the stream can 

remove it. As a result, sediment accumulates on the updrift bank of the 

stream, creating a spit-like form which causes the diversion ^Figure 8).

Stream or river-mouth diversions range in length from a few meters to 

several kilometers along Washington's Pacific coast. In some instances.
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Figure 8 An example of a stream mouth diversion to the north, 
immediately south of Abbey Island.

located
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even very small streams may reflect seasonal variations in shore drift. 

However, the diversion of larger streams or rivers is always in the 

direction of net shore drift.

Identifiable Sediment

If a readily identifiable beach sediment can be traced to a known 

point source, then the direction in which the sediment has drifted may be 

used as an indicator of net shore-drift ^Jacobsen and Schwartz, 1981). 

The identifiable sediment will be found predominantly downdrift of the 

source area, with particle size and overall abundance also decreasing in 

the downdrift direction. The longer the identifiable sediment has been 

adrift, the more reliable the indicator.

Nearshore Bars

Nearshore bars are generally composed of a sand-pebble mixture and 

are found in the inter-tidal zone. They form in response to wave action, 

which results in their orientation being perpendicular to the direction of 

the predominant wave approach ^Greenwood, 1982). The bar will angle away 

from the shore in the direction of net shore-drift. Thus, nearshore bars 

can be a useful aid in determining the net shore-drift direction. 

However, because bar formation is complex and controversial (Greenwood, 

1982; Schwartz, 1972), considerable care must be taken when using

nearshore bars as a drift indicator.



FIELD METHODS

Documenting evidence of net shore-drift by using geomorphic and 

sedimentologic indicators of shore drift requires a field-oriented 

investigation. Thus, information for this report was obtained in a 

walking survey conducted along the Pacific coast of Clallam and Jefferson 

Counties between June and September, 1984. In addition, a follow-up 

investigation was carried out during the winter of 1985 (February). 

Observations were recorded in a field notebook, with reference photographs 

taken for future documentation. Aerial photographs were used for 

particular coastal areas of interest, notably at river mouths, to observe 

recent changes in morphology. Field traverses were made during tidal 

stages of +2.0m or lower. This facilitated the observation of geomorphic 

features over most of the foreshore by providing maximum intertidal 

exposures.
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PREFACE JO THE 1^ SHORE DRIFT DISCUSSION

The direction of net shore-drift along the Pacific coast of Clallam 

and Jefferson Counties was determined by using the principles and drift 

indicators previously described. The location, boundaries, and net shore- 

driftdirection of each drift cell are illustrated on maps located in the 

map pocket. Drift cells are numbered consecutively, starting with number 

one in the south and increasing in number to the north.

A description of each drift cell is presented in the text discussion 

of net shore-drift. Each description includes the geomorphic and 

sedimentologic indicators used to determine the net shore-drift direction. 

Also discussed are selected geomorphic features of the coast and areas of 

no appreciable net shore-drift. While reading the discussion about net 

shore-drift, the map pertaining to the area under consideration should be 

consulted.

As was suggested by Keuler 11980), the reader should be aware of 

certain considerations when using this type of coastal map:

U) The maps show the long-term direction of net shore-drift.

Seasonal short-term reversals may occur.

[2) Quantifying the volume and rate of sediment transport was not an

objective of this study.

I3) Sediment supplied to the drift cell may not necessarily reach the 

terminus.

^4) Drift-cell boundaries are usually broad zones that may shift in 

response to changes in wave approach.

(5) The drift cell patterns delinated in this report apply to the

Clallam and Jefferson Counties Pacific coastline as of 1984. Subsequent 

modification of this coastal region could alter drift cell boundaries and
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net shore-drift direction.

To assist the reader's visual ization and interpretation of the net

shore-drift, a beach profile with current nomenclature has been provided 

in Figure 9.
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Figure 9. An idealized beach profile showing major geomorphic features 
^after Harp, 1983).
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NET SHORE-DRIFT DISCUSSION

JEFFERSON COUNTY

Drift Cell J-1

This drift segment includes a major middle portion and terminus of a 

drift cell originating in northern Grays Harbor County ^Schwartz and 

Bronson, 1984). The linearity of this north-northwesterly-trending 

coastal segment permits unimpeded sediment transport to occur. Some of 

the sediment is derived from the 10-15 m-high bluffs of glacial outwash 

and till that back the shore throughout this area (Figure 10). These 

bluffs are composed of abundant unconsolidated gravel and sand. The beach 

depositsinthisregionref1ect the grain size in the bluff,asthe upper 

foreshore is predominantly gravel, whereas sand occurs largely in the 

broad low-tide area. The predominant southwesterly waves produce the 

northerly net shore-drift observed in this coastal sector. This 

determination of drift direction is supported by many geomorphic and 

sedimentologic indicators.

In the southern region of Jefferson County, the Queets River is of 

particular interest because the position of its mouth has changed so 

frequently over the years. Presently a sand and gravel spit built in the 

direction of net shore-drift has caused a significant northward deflection 

of approximately 2 km. At different times in the past the river has 

entered the sea at various places through the spit. One channel, possibly 

the oldest, extended northward about 0.8 km north of the present mouth 

before reaching the ocean (Rau, 1973).

The presence of a wider backshore and berm north of the Queets River, 

compared to the area south of the River, indicates that the predominant 

movement of sediment from the river is to the north. Continuing
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Figure 10. Looking southward at a 8 m-high glacial bluff located 0.4 km 
north of Kalaloch Creek. Glacial bluffs some 8 to 15 m-high 
back the shore throughout the coastal region south of the Hoh 
River.
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northward, in a region approximately 1.8 km north of Kalaloch Creek, a 

small headland composed of relatively resistant sandstone, from the Hoh 

rock assemblege, protrudes across the foreshore enough to act as a partial 

obstruction to shore drift. This drift obstruction has resulted in 

sediment accumulation of approximately 1.5 m on the south side of this 

headland, relative to the north side, which has been narrowed due to 

erosion. Another headland causing a similar pattern of drift obstruction 

is located approximately 2 km south of Cedar Creek. Net shore-drift is 

also indicated by the 75 m northward deflection of the mouth of Cedar 

Creek. Just north of Cedar Creek, shore drift and fluvial sediment from 

Cedar Creek combine to form an asymmetrical cuspate spit as waves refract 

in the lee of Abbey Island. The beach has prograded on the south side of 

this cuspate spit producing the marked asymmetry, which is indicative of 

unidirectional net shore-drift that continues on past the island iHunter 

et al., 1979). For a distance of nearly 4 km northward, from Abbey Island 

to the Hoh River, 55 m cliffs composed of glacial outwash and till ^Figure 

11) are broken by landslides, which feed the shore-drift system. This

additional sediment aids in the formation of an 0.6-km-long northward­

prograding spit, which results in the diversion of the Hoh River in the 

northerly direction of net shore-drift. North of the Hoh River, in the 

direction of the drift cell terminus, sediment has accumulated to form a 

wide sand beach backed by a wel 1 developed berm consisting of abundant 

driftwood and gravel. Here the beach width and slope gradually increase 

to the north, further indicating a northerly net shore-drift direction. 

This drift cell terminates about 1.3 km north of the mouth of the Hoh 

River at a protruding headland, to the south of which the beach has 

prograded considerably.
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Figure 11. An example of thick, unconsolidated glacial bluffs 
located along the zone of sediment transport about 
1.8 km south of the Hoh River Rafter Rau, 1973).
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Drift Cell J-2

Originating about 0.8 km south of Jefferson Cove along 70 m-high 

cliffs of Hoh sandstone and conglomerate fronted by a wave-cut platform, 

this drift cell ends along the northern shore of Jefferson Cove. A 

northerly direction of net shore-drift is evidenced by an increase in 

beach width to the north (Figure 12) and by a decrease in sediment size 

from a lag deposit of cobbles in the south to pebbles and sand at the 

terminus. Northerly net shore-drift is also indicated by a change in 

bluff morphology from non-vegetated, vertical cliffs at the origin to a 

more gently sloped, well vegetated bluff at the drift cell terminus. 

Sediment transport terminates at a moderately wide low-tide sand beach 

backed by abundant driftwood and gravel.

Hoh Head and the adjacent coastline to the north and south are 

characterized by no apparent net shore-drift. The 75 m-high headland, 

composed of thickly-bedded Hoh sandstone, projects out into the ocean 

about 1 km from the rest of the coast. This projection results in deep 

water lying immediately offshore of the headland, which completely impedes 

shore drift. North of Hoh Head, between two minor headlands, sediment 

transport is restricted, creating pocket beaches which are also zones of 

no appreciable net shore-drift.

Drift Cell J-3

This drift cell originates at a 35 m-high headland north of Hoh Head 

and terminates at the first headland south of Mosquito Creek. Sediment is 

transported to the north by predominant southwesterly waves, as evidenced 

by a slight increase in beach width and a decrease in mean sediment size 

to the north. The low-tide beach near the drift cell terminus is mostly
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Figure 12. Looking southward at the beach within Jefferson Cove (Drift 
cell J-2). Note an increase in the beach width, a reduction 
in the bluff slope, and an increase in the berm development 
to the north (after Rau, 1980).
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sand with some pebbles, while the high-tide beach is predominantly cobbles 

and pebbles. This upper-beach sediment is primarily derived from the 

melange rocks of the Hoh assemblege, which make up the relatively weak, 

low-sloping bluffs in this area.

Drift Cell J-4

Drift cel 1 J-4 begins approximately 0.8 km south of Mosquito Creek 

along 30 m-high cliffs of Hoh melange rocks and ends at the mouth of 

Goodman Creek. Sediment supplied by Mosquito Creek and by cliff erosion 

is transported north by the predominant southwesterly waves to form a wide 

low-tide sand beach, extending about 3.6 km to the north. Net shore-drift 

to the north is indicated by a northerly decrease in mean sediment size 

and by numerous large pieces of driftwood fallen across the beach showing 

sediment accumulation on their south side. This drift direction is also 

indicated by the presence of an asymmetrical tombolo in the lee of a small 

nearshore island, located approximately 1.2 km south of Goodman Creek. 

Here the tombolo has developed higher and wider on its south side relative 

to the north side, which would indicate a northerly net shore-drift 

direction.

From Goodman Creek northward for about 1.7 km, large outcrops of Hoh 

sandstone and conglomerate form rugged sea cliffs some 70 m in height. 

These headlands and associated pocket beaches are characterized by no 

apparent net shore-drift, due to the presence of deep water directly 

offshore.

Drift Cell J-5

Drift cell J-5 originates immediately north of the 70 m-high headland
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of Hoh sandstone and conglomerate at Goodman Creek and terminates at a 

zone of drift convergence on the south side of Toleak Point. Under the 

influence of predominant southwesterly winds, this drift cell has a 

northerly net shore-drift. This drift direction is indicated by an 

increase in beach width and beach slope to the north, as well as a 

northerly decrease in bluff slope. Northerly net shore-drift is also 

indicated by a gradation in mean sediment size from cobbles and pebbles at 

the origin to a mixture of mostly sand with some pebbles at the drift cell 

terminus.

Drift Cell J-6

This drift cell originates in a zone of drift divergence along a low- 

sloping backshore located approximately 1 km north of Toleak Point and 

terminates on the north side of Toleak Point, which is a cuspate spit. A 

southerly net shore-drift is evidenced by the gradual increase in beach 

width and beach slope to the south. This short drift reversal is, in 

part, related to wave refraction around several islands directly offshore 

of Toleak Point. These islands form a wave shadow from the predominant 

southwesterly winds, resulting also in the prevailing northwesterly winds 

further controlling the net shore-drift direction.

The coastal orientation of this region is largely controlled by 

differential erosion of selected lithogies. Toleak Point is composed of 

relatively resistant sandstone from the Hoh assemblege, while the shallow 

bights to the north and south of Toleak Point are backed by melange rocks 

of the Hoh assemblege which tend to erode more easily.

Drift Cell J-7

Beginning in a zone of drift divergence along an actively eroding.
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low-sloping backshore located about 1 km north of Toleak Point, this drift 

cell ends along the south side of Strawberry Point. Increasing beach 

width to the north, and the accumulation of 0.2 - 0.4 m of sediment on 

the south side of several large drift logs and boulders, indicates that 

net shore-drift is to the north. At the terminus of the drift cell, a 

tombolo has prograded from Strawberry Point out to an offshore island. To 

the south of Strawberry Point, the shore is prograding, as evidenced by a 

wide beach and backshore; while, on the north side of Strawberry Point, 

the beach is narrow, indicating the origin of a new drift cell.

Drift Cel 1 J-8

The northward net shore-drift of drift cell J-8 originates along the 

northern side of Strawberry Point tombolo and terminates immediately south 

of Taylor Point. At the origin, the high-tide beach is narrow with a 

steep profile and is dominantly composed of cobbles and pebbles. 

Continuing northward, to a point due east of the stacks known as the 

Giants Graveyard, sediment size decreases to a beach consisting largely of 

sand; while the width of the high-tide beach also increases, indicating 

net shore-drift to the north. Net shore-drift is also evidenced by 

sediment accumulation on the south side of a small headland, located just 

north of Scott Creek, that partially protrudes across the foreshore. The 

northerly direction of sediment transport of this cell is controlled by 

the predominant southwesterly wind. Net shore-drift terminates at a sand 

and gravel low-tide beach backed by a well developed berm consisting of 

driftwood, cobbles, and pebbles.

Taylor Point and the adjacent shore to the north have no apparent net 

shore-drift. This major headland and its offshore stacks extend into deep
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water, which results in the blocking of sediment transport. The nearly 

vertical cliffs reach over 50 m in height and are composed largely of 

conglomerate and massive sandstone of the Hoh assemblege.

North of Taylor Point a coastal sector, local ly known as Third Beach, 

extends for approximately 1.3 km to the north. This coastal stretch is 

bounded on the north by a prominent headland, Teahwhit Head, and on the 

south by Taylor Point. From observations made over a one year period, it 

has been found that Third Beach is essentially a pocket beach and thus is 

characterized by no appreciable net shore-drift. That is, sediment is 

transported back and forth along this coastal sector in response to slight 

changes in the direction of wave approach. During the summer of 1984, a 

small stream, located in the center of Third Beach, was diverted about 40 

m to the south. A reexamination during the winter of 1985 showed that 

this stream was diverted approximately 50 m to the north (see Figures 13 

and 14). The reversal in the direction of stream mouth diversion, the 

presence of an equally wide foreshore at the northern and southern ends of 

Third Beach, and the lack of any other definitive net shore-drift 

indicators, support the conclusion that this is a pocket beach with no 

appreciable net shore-drift. This is the only site in the study area 

where a change of this nature was observed.

The observed stream mouth fluctuation across the foreshore may be, in 

part, related to seasonal variations in wind-wave approach. The 

orientation of this coastal sector is also partly responsible for the 

shifting sediment movement observed along this beach. This northwest- 

southeast trending coastal segment is nearly perpendicular to the 

direction of the predominant wave approach, which is from the southwest.
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Figure 13. A southward stream diversion along Third Beach during the 
summer of 1984.

Figure 14. The following winter the stream was diverted to the north.
This stream-mouth fluctuation may be related to seasonal 
variations in wind-wave approach.

47



This orientation results in the predominant waves striking normal to the 

shore, so that there is no dominant direction of long-term sediment 

transport.

Teahwhit Head is a jagged two-pronged headland nearly 35 m in height that 

projects out from the coast into deep water. The headland, stacks, and 

associated pocket beaches, are all areas of no apparent net shore-drift. 

This headland, situated between Second Beach and Third Beach, is composed 

of massive sandstone from the Hoh assemblege.

Just north of Teahwhit Head, a short coastal stretch located within 

Jefferson County, constitutes a small portion of a drift cell that 

terminates along the northern end of Second Beach in Clallam County. For 

convenience, this drift cell will be discussed in the Clallam County text 

^see Drift Cel 1 C-1).
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CLALLAM COUNTY

Drift Cell C-1

Beginning along 55 m-high cliffs of Hoh sandstone, located at the 

southern extent of Second Beach in northern Jefferson County, this drift 

cell has net shore-drift to the north. Sediment size,decreasing from 

cobbles and pebbles on the south to granules and sand on the north, and 

increasing beach width to the north, indicate a northerly net shore-drift 

direction. Bluff morphology also indicates the direction of net shore- 

drift in the following manner. At the origin, the cliff is at its 

steepest with little to no vegetation. Progressing northward, the beach 

widthincreases, providing an increasing degree of protection for the 

cliff, which becomes less steep and more heavily vegetated. This drift 

cell terminates along the northern reach of Second Beach where a broad 

berm has developed, which offers additional protection for the low-sloping 

bluff (Figure 15).

The headland located between First Beach and Second Beach is locally known 

as Quateata, and is characterized by no apparent net shore-drift. Like 

Teahwhit Head, this headland consists of massive sandstone from the Hoh 

assemblege. Quateata reaches up to 30 m in height and is capped by an 

excellent example of the eolian deposits idominantly silt and sand) that 

blanket much of this coastal region.

Drift Cell C-2

This drift cell originates north of the headland named Quateata and 

terminates at the northern extent of First Beach, just south of the mouth 

of the Qui 1layute River. Northward net shore-drift is indicated by an
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Figure 15. Along the northern end of Second Beach a wide berm has 
developed near the drift cell terminus.
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increase in beach width and berm development to the north, and by a small 

stream that is diverted to the north before it breaks through the berm to 

discharge across the foreshore. The predominant wind from the southwest 

controls the northerly net shore-drift direction on this northwest- 

southeast-trending drift cell.

Drift Cell C-3

This drift cell originates along a low-sloping backshore of alluvium 

at a zone of drift divergence centered approximately 1 km south of Ellen 

Creek and terminates at the distal end of a spit built across the mouth of 

the Quill ayute River. Net shore-drift to the south is indicated by the 

progradation of this spit, which results in the southward deflection of 

the Quillayute River, and by a decrease in sediment size from cobbles and 

pebbles on the north to mostly sand at the terminus. Wave refaction of 

southwesterly storm waves in the lee of these islands is mainly 

responsible for this short reversal in net shore-drift direction. This 

coastal sector is shadowed from the predominant southwesterly wind by 

several nearshore islands, one of which is James Island. Thus, the 

southerly net shore-drift direction of this drift cell is also affected by 

the prevailing northwesterly wind.

Drift Cell C-4

This drift cell originates at a zone of drift divergence along a 

backshore of alluvium located about 1 km south of Ellen Creek and 

terminates at the headland 2 km north of Ellen Creek. The 200 m northward 

diversion of Ellen Creek and numerous large drift logs with sediment 

accumulation on their south sides indicate net shore-drift to the north. 

A small headland, located approximately 0.9 km north of Ellen Creek, 

protrudes across the foreshore enough to act as a partial obstruction to
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shore drift. This results in a prograding beach on its south side, 

indicating a northward net shore drift direction. The coastal orientation 

and the predominant southwesterly wind control the northerly net shore- 

drift in this cel 1.

Drift Cell C-5

The northward net shore-drift of this drift cell begins along a 50 m- 

high partially-vegetated headland fronted by an actively eroding backshore 

composed of boulders and cobbles, located approximately 2 km north of 

Ellen Creek. This drift cell ends in a prograding beach at the first 

headland south of Cape Johnson. A general decrease in mean sediment size, 

an increase in beach width, and a reduction in bluff slope to the north 

are indicative of a northerly net shore-drift direction. The direction of 

sediment transport of drift cell C-5 is principally due to the predominant 

southwesterly wind.

Drift Cell C-6

This drift cell originates immediately south of Cape Johnson along a 

15 m-high cliff of sandstone and conglomerate of the Western Olympic 

lithic assemblege, fronted by a wave-cut platform, and terminates at the 

north end of the shallow bight south of Cape Johnson. At the origin, the 

high-tide beach is narrow with a steep profile and is largely composed of 

boulders and cobbles. Progressing northward, the mean sediment size 

decreases, while the width of the high-tide beach increases, indicating 

net shore-drift to the north. The drift direction is also indicated by a 

reduction in bluff slope from a steep, non-vegetated cliff on the south 

to a more gently sloped, vegetated bluff on the north. Sediment transport 

terminates at a prograded beach consisting of abundant granules and
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pebbles at the northern extent of the bight south of Cape Johnson.

Drift Cell C-7

This short drift cell, beginning at the north side of Cape Johnson 

along a 60 tn-high cliff of sandstone and conglomerate of the Western 

Olympic assemblege and ending at the headland 0.8 km to the north, has net 

shore-drift to the north. Sediment transport is directed to the north by 

predominant southwesterly winds, as is evidenced by an increase in the 

width of the high-tide beach, and by a decrease in sediment size from 

boulders and cobbles on the south to pebbles and granules on the north. 

Net shore-drift is also indicated by a gradual reduction in bluff slope to 

the north. Net shore-drift terminates at a pebble and granule high-tide 

beach backed by a wide berm consisting of numerous drift logs and gravel.

Drift Cell C-8

This drift cell originates along 55 m-high cliffs of Western Olympic 

assemblege sandstone and conglomerate at the headland 0.8 km north of Cape 

Johnson. Net shore-drift to the north is indicated by repeated patterns 

of decreasing sediment size, an increase in beach slope, and a decrease in 

bluff slope to the north. Further evidence indicating net shore-drift to 

the north is a northward increase in the width of the backshore. The 

southern region of drift cell C-8 is characterized by a small berm or none 

at al 1 and no backshore. Progressing northward, toward the drift cel 1 

terminus, sediment has accumulated to form a broad, wel 1-developed berm in 

front of a backshore area. Sediment transport terminates along a 

prograded sand and granule beach at a protruding headland directly 

southeast of Jagged Island.
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Drift Cell C-9

Originating at a broad zone of drift divergence along a 8 m-high 

bluff of glacial outwash and till located approximately east-southeast of 

Jagged Island, this drift cell has a short drift direction reversal to the 

generally northerly transport of sediment along Washington's Pacific 

coast. Net shore-drift to the south is evidenced by decreasing sediment 

size, from cobbles and pebbles on the north to mostly sand on the south, 

increasing beach width to the south, and a southerly reduction in bluff 

slope. Due to a slight change in the wind shadow effect, the predominant 

southwesterly wind is blocked by the headland from influencing this cell, 

so that sediment transport is controlled by the prevailing northwesterly 

wind. Drift cell C-9 terminates at a prograded beach on the north side of 

the headland located southeast of Jagged Island (Figure 16).

Drift Cell C-10

Beginning along a zone of drift divergence centered east-southeast of 

Jagged Island, this drift cell ends at the headland immediately north of 

Cedar Creek. A northerly direction of net shore-drift is indicated by 

repeated patterns of sediment fining to the north, a northerly increase in 

beach slope, and by the 200 m northward diversion of Cedar Creek. This 

net shore-drift direction is also evidenced by the buildup of 0.1 - 0.3 m 

of sediment on the south side of several drift logs. The terminus of this 

drift cell is a zone of sediment accumulation, as evidenced by the 

presence of a well developed berm consisting of abundant driftwood, 

pebbles, granules, and sand. Some of the sediment present at the terminus 

of the drift cell is supplied, along the zone of sediment transport by 

wave erosion of semi-conso1idated bluffs some 12 m-high composed of 

glacial outwash and till (Figure 17).
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Figure 16. Taken from a headland looking northward, this photograph shows 
increasing beach width and decreasing sediment size to the 
south. Drift cell C-9 is a short reversal to the dominantly 
northerly net shore-drift along the study area.



Figure 17. Along the zone of sediment transport in drift cell C-10, a 
semi-consolidated glacial bluff feeds the shore drift system.



Drift Cell C-11

This drift cell originates along a 20 m-high cliff of sandstone and 

conglomerate of the Western Olympic assemblege directly north of Cedar 

Creek, and terminates at the protruding headland 2 km north of Kayostla 

Beach. Net shore-drift is directed to the north by predominant 

southwesterly waves as evidenced by the accumulation of sediment against 

the south side of toppled trees and drift logs, a northward increase in 

the width of the berm, and a small stream diverted to the north. The 

various sizes of beach sediment found along drift cell C-11 are a direct 

product of the different types of glacial bluffs that back the shore 

within this coastal sector. Along Kayostla Beach, in the southern region 

of the drift cell, the low-sloping bluff consists of glacial outwash rich 

in sand, which results in this sediment size dominating the beach 

sediment. In the northern region of the drift cell, the 12 m-high bluff 

is composed dominantly of glacial till, which is reflected in the cobble, 

pebble, and granule beach deposits.

Drift Cell C-12

Drift cell C-12 begins along the north side of the 40 m-high headland 

2.7 km north of Kayostla Beach. This drift cell ends at the northern 

extent of a small cove known as Yellow Banks along a prograded sand beach. 

At the origin, a narrow, coarse-grained beach extends for approximately 3 

km north of the point of origin. This region is backed by rocks of the 

Western Olympic assemblege and is clearly undergoing active erosion as 

evidenced by extensive undercutting of the bluff and by large trees that 

have toppled across the foreshore. The northerly direction of net shore- 

drift direction in drift cell C-12 is indicated by a decrease in sediment 

size from boulders and cobbles on the south to granules and sand on the
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north, a northerly increase in beach width, and a reduction in bluff slope 

to the north. Additional evidence for northerly net shore-drift is an 

inter-tidal bar, located within the cove at Yellow Banks, diverging 

offshore in a northerly downdrift direction.

Drift Cell C-13

Originating along 35 m-high cliffs of sandstone and conglomerate of 

the Western Olympic assemblege immediately north of Yellow Banks, this 

drift cell terminates along the south side of Sand Point. Sediment 

transport is directed to the north by predominant southwesterly waves as 

evidenced by numerous geomorphic and sedimento1ogic indicators. 

Decreasing sediment size from cobbles and pebbles at the origin to sand 

with some granules at the terminus; increasing beach width to the north; a 

change in bluff morphology from a steep, partially-vegetated bluff on the 

south to a low-sloping, vegetated bluff on the north; all indicate a 

northerly net shore-drift direction. At the terminus, a symmetrical 

tombolo has developed as two drift cells converge to form a spit out to a 

small nearshore island. Net shore-drift terminates at a prograded beach 

backed by a wide berm on the south side of Sand Point.

Drift Cel 1 C-14

This drift cell, beginning along a low-sloping, actively eroding 

backshore at a zone of drift divergence located about 1 km north of Sand 

Point, has net shore-drift to the south. Decreasing sediment size and 

bluff slope and increasing beach width to the south are indicative of net 

shore-drift to the south. The sediment transport direction of drift cell 

C-14 is largely controlled by the prevailing northwesterly wind, due to a 

wind shadow. This coastal sector is oriented such that waves approaching
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the coast from the southwest will be refracted around Sand Point. 

Refraction of southwesterly waves and the prevailing northwesterly wind­

generated waves have resulted in this short drift reversal to the south. 

This drift cel 1 terminates at a prograded beach along the north side of 

the Sand Point tombolo.

Drift Cell C-15

Drift cell C-15 originates at a zone of drift divergence centered 

approximately 1 km north of Sand Point, and terminates at the headland 

east of the rock reef known as Wedding Rocks. Sediment is transported to 

the north by predominant southwesterly waves as evidenced by sediment 

accumulation on the south side of drift obstructions iboulders and drift 

logs) and by an increase in beach width and slope to the north. Net shore- 

drift terminates along a granule and pebble high-tide beach backed by a 

well developed berm.

Drift Cell C-16

This drift cell originates along 20 m-high cliffs of Western Olympic 

assemblege sandstone and conglomerate located due east of Wedding Rocks, 

and terminates on the south side of a tombolo in the lee of Tskawahyah 

Island. Net shore-drift to the north is indicated by a decrease in
»

sediment size, an increase in beach width, and a reduction in bluff slope 

to the north. At the origin, a narrow high-tide beach composed of cobbles 

and pebbles fronted by a wide wave-cut platform extends for about 1 km to 

the north. At the drift cell terminus, a beach consisting largely of 

granules with some sand has prograded out to Tskawahyah Island, forming 

the south side of a tombolo. The net shore-drift direction of this drift 

cell is once again controlled by the predominant southwesterly wind.
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Drift Cell C-17

This short drift cell begins approximately 0.5 km north of Tskawahyah 

Island along a low-sloping, eroding backshore at a broad zone of drift 

divergence and ends along the north side of a tombolo in the lee of 

Tskawahyah Island. The sediment transport direction of drift cell C-17 is 

a short reversal to the dominantly northerly direction of net shore-drift 

along the study area. A southerly net shore-drift direction is indicated 

by increasing beach width, decreasing bluff slope, and an overall decrease 

in sediment size to the south. Wave refraction around several offshore 

islands results in a northwesterly wave approach, causing this short drift 

reversal.

Drift Cell C-18

Beginning along a low-sloping, actively eroding backshore at a broad 

zone of drift divergence centered about 0.5 km north of Tskawahyah Island, 

this drift cell has net shore-drift to the north. This sediment transport 

direction is indicated by a decrease in sediment size and bluff slope and 

an increase in beach width to the north. Net shore-drift is also 

indicated by sediment accumulation on the south side of a small headland 

which partially protrudes across the foreshore. Drift Cell C-18 

terminates in a prograding beach along the south side of the headland 

immediately south of the Ozette River.

Drift Cell C-19

This drift cell, originating at the mouth of the Ozette River, has 

net shore-drift to the north. Sediment supplied by the Ozette River and 

by beach erosion is transported northward by predominant southwesterly 

wind-generated waves, as evidenced by several geomorphic and
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sedimentologic indicators. Sediment accumulation on the south side of 

numerous drift logs, the northward diversion of a smal 1 stream, and an 

increase in beach width to the north are indicative of net shore-drift to 

the north. A decrease in sediment size from the Ozette River to a 

location approximately 1.5 km to the north, also indicates a northerly net 

shore-drift direction. However, from this location northward, beach 

sediments coarsen due to a fresh influx of gravel from glacial till and 

outwash deposits, which back the shore throughout the northern region of 

drift cell C-19. This drift cell terminates along a prograded beach at 

the onset of a series of rocky headlands due east of the stacks named 

Father and Son.

The area from the rocky headlands east of the stacks named Father and Son 

to the Point of the Arches is characterized by no apparent net shore- 

drift. The nearly vertical cliffs along this coastal sector reach almost 

80 m in height and are composed of several relatively resistant rock 

units. These include a gabbro-diorite unit, which constitutes the oldest 

rocks exposed along the study area. Other rocks present are sandstone 

and basalt from an unnamed formation and also a breccia-conglomerate unit 

which has been correlated with the Lyre Formation. Directly offshore of 

these prominent headlands, deep water impedes shore drift.

Drift Cell C-20

Drift Cel 1 C-20 begins at a zone of drift divergence located about 

1.4 km north of the Point of the Arches. This divergent zone is backed by 

25 m-high partially vegetated bluffs of glacial outwash and till which 

show active signs of erosion. A southerly net shore-drift direction is
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evidenced by a reduction in bluff slope, an increase in beach width, and a 

gradation in mean sediment size to the south. This short drift reversal 

is caused, in part, by refraction of predominant southwesterly waves 

around several offshore stacks at the Point of the Arches. The 

orientation of the southern region of Shi Shi Beach is also a factor 

contributing to the southerly direction of sediment transport of drift 

cel 1 C-20. This region is shadowed from the predominant southwesterly 

wind by the Point of the Arches, resulting in the prevailing wind from the 

northwest controlling the direction of net shore-drift for the drift cell. 

Net shore-drift terminates at a prograded beach, consisting largely of 

sand, along the southern end of Shi Shi Beach.

Drift Cell C-21

Originating along 25 m-high bluffs of glacial outwash and till at a 

zone of drift divergence centered near the mouth of Petroleum Creek, this 

drift cel 1 terminates approximately 1.8 km to the north at the northern 

extent of Shi Shi Beach. A northerly increase in beach slope, a vertical 

accumulation of approximately 0.2 m of sediment on the south side of a 

large boulder situated across the foreshore, and a decrease in bluff slope 

to the north indicate a northerly net shore-drift direction. Drift cell 

C-21 is located far enough north to be unaffected by refraction of 

predominant southwesterly waves around the Point of the Arches. Thus, the 

coastal orientation and the predominant southwesterly waves control the 

northerly sediment transport direction of the drift cell. Sediment 

transport terminates at a sand and granule prograded beach at the northern 

end of Shi Shi Beach.
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From the headlands at the northern end of Shi Shi Beach to the headland 

immediately north of Anderson Point, there is no apparent net shore-drift. 

Portage Head is composed of basalt from the Crescent Formation and has a 

0.6 km-long seaward face of bold irregular cliffs over 70 m high. The sea 

cliffs at Anderson Point are some 75 m in height and also consist of 

basalt from the Crescent Formation.

Drift Cell C-22

This drift cell begins along 15 m-high basaltic cliffs of the 

Crescent Formation on the north side of the small headland located 0.3 km 

north of Anderson Point and ends at the east side of Waatch Point. 

Sediment is transported to the north by predominant southwesterly waves as 

evidenced by the significant northward deflection of the Sooes and Waatch 

Rivers and by repeated patterns of northerly sediment size fining. At the 

origin, the high-tide beach consists mostly of granules with some pebbles. 

To the north for approximately 1 km to a tombolo in the lee of a smal 1 

nearshore island, the width of the high-tide beach increases, whi le the 

mean sediment size is reduced largely to sand. North of the Sooes River, 

the northerly net shore-drift direction continues as indicated by an 

increase in beach width and by the development of multiple berms along the 

backshore of Hobuck Beach.

The coastal stretch from the west side of Waatch Point to the northwest 

corner of Cape Flattery is characterized by no apparent net shore-drift. 

Steeply dipping sandstones and siltstones compose the 70 m-high sea cliffs 

in the southern region of Cape Flattery along the Pacific coast. On the 

northwestern Pacific coast of the Cape, the cliffs consist of a breccia-
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conglomerate unit and reach up to 80 m in height.

|,
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SUMMARY

The crenulated north-northwest-trending Pacific coast of Clallam and 

Jefferson Counties, Washington, is characterized by rocky headlands 

separated by sand-gravel beaches with numerous offshore islands and sea- 

stacks. The effects of Quaternary glacial episodes are clearly evident, 

as thick coarse-grained glacial deposits reflect the imprint of 

glaciation.

The surface winds off the northwest Olympic Peninsula are dominated 

by two semi-permanent pressure centers over the Northeast Pacific Ocean 

^Figure 3). During the summer, the East Pacific high pressure system 

directs the surface winds toward the coast from the northwest. Throughout 

the remainder of the year, the Aleutian low pressure system generates 

storms, which produce surface winds that approach the coast from the 

southwest. This seasonal wind pattern results in both the predominant 

(most effective influence on wave generation) and prevailing imost 

frequent) winds over Jefferson and Clallam Counties coming from a 

generally southwesterly direction.

Wind-generated waves are the principal source of energy responsible 

for erosion and transportation of sediment along the shore. The potential 

energy of wind-generated waves is a function of three variables: wind 

velocity, wind duration, and the fetch or distance of open water over 

which the wind can blow unimpeded. Since changes in fetch are only 

important up to about 1500 km (Davies, 1980), wind velocity and duration 

are the primary controls governing the amount of energy available for wave 

generation in this region.

Washington's Pacific coastal region experiences a mixed tidal regime, 

which means that there are two highs and two lows during the tidal day.



with al 1 of the tides of different heights. The tidal range determines 

the vertical and horizontal extent to which waves may impart their energy 

to the coast. Along the study area, spring tidal range is typically 

between 3-4 m, which is classified as a mesotidal coastal environment. 

Mesotidal tides tend to dissipate wave energy across a wide beach profile, 

resulting in a widening of shore platforms and beach foreshores.

Shore drift occurs due to the oblique approach of wind-generated 

waves. The direction of shore drift can vary on a short-term basis in 

response to changes in wind-wave appproach. However, over a long period 

of time, one direction of sediment transport usually predominates; this is 

the direction of net shore drift.

Along crenulated coastlines, such as Washington's northern Pacific 

region, sediment transport occurs within discreet compartments along the 

coast, even under conditions of high wave energy. The idealized drift 

cell consists of three different zones: a zone of sediment supply, a zone 

of sediment transport, and a zone of sediment accumulation.

In this study I have delineated the compartmental ization of drift 

cells and the direction of net shore-drift along the Pacific coast of 

Clallam and Jefferson Counties, Washington. Drift determinations were 

based on a field oriented approach, which emphasizes long-term geomorphic 

and sedimentologic indicators of shore drift. These methods have proven 

to be more accurate and reliable in determining the direction of net 

sediment transport than methods using wave hindcasting and the 

construction of wave orthogonals. Drift studies, using such methods as 

sediment traps or artifical tracers, only record the drift direction for 

the period of study and not necessarily the net long-term direction of 

sediment transport.



Using the methods described in the Principles and Indicators of Net 

Shore-Drift sections of this report, thirty drift cells have been 

identified along the 110 km of the Pacific coast of Clallam and Jefferson 

Counties, Washington. The drift cells vary in length from 0.4 km to a 

drift cell 26 km-long in Jefferson County ithis drift cell originates in 

northern Grays Harbor County, see Schwartz and Bronson, 1984).

A relationship between the patterns of net shore-drift in the 

present study area and the direction of predominant wave approach can 

clearly be made. For coastal regions exposed to the open ocean, the 

direction of net shore-drift is dominantly to the north. However, wave 

direction may be modified at the shore behind an island, in the lee of a 

headland, or within an embayment causing drift reversals. Short reversals 

in net shore-drift direction also occur in areas that are affected by a 

wave shadow of the predominant southwesterly waves. In these regions, 

refraction of predominant waves from the southwest around nearshore 

islands and stacks contributes to the net shore-drift reversals.

Net shore-drift can be blocked by naturally occurring features, such 

as prominent headlands, resulting in drift cell termini or areas of no 

apparent net shore-drift INANSD). Numerous examples of this condition 

occur throughout the study area and are generally the product of resistant 

lithologic units which tend to withstand erosion relative to the 

surrounding units.

The importance of fully understanding the coastal processes that 

shape and continually modify the coastline cannot be understated in any 

rational coastal planning endeavor. Sediment transport along the coast is 

a system in a state of balance with the surrounding physical regime. Any 

changes in the intricacies of shore drift will cause the system to adjust
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until it attains an equilibrium with the new variables. Thus, without a 

thorough comprehension of the variable nature of shore drift, human 

modification of the Pacific coastline of Clallam and Jefferson Counties 

may yield undesireable results.
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