Scholars Week

May 18th, 12:00 AM - May 22nd, 12:00 AM

Microplastic Monitoring in Richardsonius balteatus from Ross Lake, WA

Sarah Vanlandingham
Western Washinton University

Anne Fuenzalida
Western Washinton University

Follow this and additional works at: https://cedar.wwu.edu/scholwk

Part of the Toxicology Commons

https://cedar.wwu.edu/scholwk/2020/2020/71

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Microplastic Monitoring in *Richardsonius balteatus* from Ross Lake, WA

Vanlandingham, S.M.; Fuenzalida, A.F.; Sofield, R.M.

Western Washington University, Bellingham, WA.

Abstract

Recent work has shown that microplastics are present in glaciers. This is a concern for water bodies such as Ross Lake (WA) where glacier runoff may transport the microplastics into the watershed and be available to aquatic organisms. Currently there is no evaluation of how organism storage methods may impact microplastic recovery. In this study we analyzed microplastics from tissue samples of the introduced redside shiner (*Richardsonius balteatus*). Fragments, films, and foams were found in 1% of the samples stored in ice, while all samples stored in ethanol had fibers; black fibers were the most prevalent at 39.11% of all fibers. In the ethanol samples, fragments, films, and foams were in 1% of the samples, and no pellets were observed. A total of 283 total microplastics were found in the samples stored on ice (5.3 per fish). Fibers were found in 97% of the fish; black fibers account for 29.93% of all fibers. Fragments and films were 3.2% of plastics in all samples stored on-ice, with no pellets or foams observed.

Introduction

Ross Lake is a large reservoir, 35.5 km long and 1.6 average km wide, in the Skagit River watershed. This reservoir is in the North Cascades National Park and is commonly used for fishing and boating activities. The Ross Lake Resort, a small resort accessible by boat, is located on the southern tip and campsites around the lake are only accessible by hiking trails and boat. The limited access means local activities. The Ross Lake Resort was accessible by boat, is located on the southern tip and some samples in ethanol had black fibers; black fibers were the most prevalent at 39.11% of all fibers. Fragments, films, and foams were in 1% of the samples, and no pellets were observed. A total of 283 total microplastics were found in the samples stored on ice (5.3 per fish). Fibers were found in 97% of the fish; black fibers account for 29.93% of all fibers. Fragments and films were 3.2% of plastics in all samples stored on-ice, with no pellets or foams observed.

Methods

Microplastics were found in all but one of our samples. Plastics found consisted of fibers, films and fragments. For the on-ice samples, fibers made up 96.82 percent of all plastics found, while fragments made up 1.76 percent, and films 1.41 percent. For the ethanol samples, fibers made up 99.16 percent of all plastics found, while fragments made up 0.63 percent, and films were 0 percent.

For both the samples stored on ice and in ethanol the three main fiber colors were black, transparent, and blue. In the ice samples these comprised 83.85 percent of all fibers. In the ethanol samples these comprised 87.31 percent of all fibers (Figures 3 and 4). The fish stored on ice have more fibers per kilogram dry weight fish than those stored in ethanol. The majority of ice stored fish have an average of 0.12 and a median of 0.11 fibers per milligram while those stored in ethanol have an average of 0.058 and a median of 0.030 fibers per milligram (Figure 4).

There was a non-significant trend between size (based on dry weight) and number of fibers per individual for both the ethanol stored and the on-ice fish. (Figures 5 and 6). The R² value for both the ethanol and on-ice fish is significantly lower than 1, showing there is not a correlation between fiber individual and dry weight.

The size distribution of fish was different between the two fish populations despite being collected from the same population of fish within about 10 minutes of each other. When the total number of fibers per individual were compared, there were more fibers in the ethanol stored fish as the on-ice fish. We are considering how comparable the two dry weights of fish are and whether there is evidence of regurgitation in the ethanol stored fish.

Microscope blanks (MB) were used in order to account for contamination during the counting process. For the on-ice samples, the maximum amount of fibers found on the MBs was 5, while the minimum was 0. The average amount of fibers found on the MBs on the on-ice samples was 0.5 per sample. For the ethanol samples, the maximum number of fibers found on the MBs was 4, while the minimum was 0. On average 0.30 fibers were found on the MBs for the ethanol samples.

Results & Discussion

Microplastics were found in all but one of our samples. Plastics found consisted of fibers, films and fragments. For the on-ice samples, fibers made up 96.82 percent of all plastics found, while fragments made up 1.76 percent, and films 1.41 percent. For the ethanol samples, fibers made up 99.16 percent of all plastics found, while fragments made up 0.63 percent, and films were 0 percent.

For both the samples stored on ice and in ethanol the three main fiber colors were black, transparent, and blue. In the ice samples these comprised 83.85 percent of all fibers. In the ethanol samples these comprised 87.31 percent of all fibers (Figures 3 and 4). The fish stored on ice have more fibers per kilogram dry weight fish than those stored in ethanol. The majority of ice stored fish have an average of 0.12 and a median of 0.11 fibers per milligram while those stored in ethanol have an average of 0.058 and a median of 0.030 fibers per milligram (Figure 4).

There was a non-significant trend between size (based on dry weight) and number of fibers per individual for both the ethanol stored and the on-ice fish. (Figures 5 and 6). The R² value for both the ethanol and on-ice fish is significantly lower than 1, showing there is not a correlation between fiber individual and dry weight.

The size distribution of fish was different between the two fish populations despite being collected from the same population of fish within about 10 minutes of each other. When the total number of fibers per individual were compared, there were more fibers in the ethanol stored fish as the on-ice fish. We are considering how comparable the two dry weights of fish are and whether there is evidence of regurgitation in the ethanol stored fish.

Microscope blanks (MB) were used in order to account for contamination during the counting process. For the on-ice samples, the maximum amount of fibers found on the MBs was 5, while the minimum was 0. The average amount of fibers found on the MBs on the on-ice samples was 0.5 per sample. For the ethanol samples, the maximum number of fibers found on the MBs was 4, while the minimum was 0. On average 0.30 fibers were found on the MBs for the ethanol samples.

References

https://core.wa.edu/wwuets/227