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1 Introduction

In this paper, we will cover three topics: the Lagrangian formulation of mechanics, rigid body
motion, and finally a specific, interesting case of rigid body motion. Lagrangian mechanics
differs from the traditional Newtonian mechanics in the sense that it is modeled around the
energy of a system, rather the forces applied on a system. Despite this, it is important to
note that the physical contents of Lagrange’s equations are the same as those of Newton’s
equations. In fact, Lagrange’s equations can be derived from Newton’s equation, which
will be done in this paper. There are, however, several advantages that the Lagrangian
formulation has over the Newtonian formulation, which will be discussed in that section.

For rigid body motion, we will mostly be looking at the kinetic energy of the body
and motion of the angular momentum vector as the body rotates and moves through space.
Through that lens, the Intermediate Axis Theorem, also called the Dzhanibekov effect, which
describes the motion of a rigid body rotating about its unstable intermediate axis, will be
investigated. The goal is to give some explanation for this seeming improbably motion.

Finally, we will apply what was covered in the rigid body section to a t-handle to see its
motion as it rotates about its three principal axes. This section includes computing certain
values for the t-handle, based on the geometry of the body, and looking at how changing its
geometry changes its motion.

2 Lagrangian Mechanics

As mentioned in the introduction, there are several important advantages to using the La-
grangian formulation of mechanics over the Newtonian one. Newtonian mechanics is most
easily applied to systems whose area of motion is all of 3-space, where Cartesian coordinates
are natural. However, there are other situations when the area of motion of the system
is restricted to a specific part of 3-space. This is referred to as a constrained system, and
the area in which it is free to move is known as the configuration manifold. It is possible to
represent these systems through the Newtonian formulation; however, Lagrangian mechanics
is formulated in a way such that the constraint equations are accounted for already. This
makes calculation much simpler, as the aforementioned constraint equations can essentially
be ignored, as they have already been applied.

Other advantages to the Lagrangian formulation include the fact that it highlights the
connection between conservation laws and symmetric properties of dynamical systems and
that Lagrange’s equations can be derived from a variational principle, which is common
in many branches of physics. In this section, we will begin by deriving Lagrange’s equa-
tions from Newton’s equations, then show that those same equations can be derived from a
variational principle, before finally looking at Noether’s theorem.
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2.1 Lagrange’s Equations

Beginning with the equations of motion for a particle constrained to a surface1, we have

mẍ = F+ λ(t)∇f, f(x, t) = 0. (2.1.1)

For the second of Equations (2.1.1), f is the equation for the surface to which the particle
is constrained. On the left side of the first of Equations (2.1.1), m is the mass and ẍ is the
second derivative of the position vector with respect to time. On the right side, F is the
external force applied and λ∇f resembles the constraint equations. The constraint equations
hold the particle to the surface, and are thus perpendicular to the surface, so they can be
represented as some scalar, λ(t) times the gradient vector ∇f .

First we eliminate λ, which is done by taking an arbitrary vector τ , which is tangent to
the surface. Since ∇f is orthogonal to the surface, we get

mẍ = F+ λ(t)∇f =⇒ mẍ− F = λ(t)∇f =⇒ (mẍ− F) · τ = 0. (2.1.2)

Tangent vectors can be put in the form

τl = εα
∂xl

∂qα
, (2.1.3)

where α runs from 1 to n, the εα are a set of arbitrary constants, the qα are the generalized
coordinates, and xl = xl(q

1, q2, . . . , qα) is the position vector written in terms of the gener-
alized coordinates. (Note that summation notation is used for the Greek indices, which run
from one to n.) Equation (2.1.3) can be inserted into equation (2.1.2), giving us

N∑
l=1

(mlẍl − Fl) ·
∂xl

∂qα
= 0, α = 1, . . . , n (2.1.4)

Now we look at F. We assume the forces are conservative, so Fl = −∇lV (x1, . . . ,xN) where
V is the potential energy of the system. Then

N∑
l=1

Fl ·
∂xl

∂qα
= −

N∑
l=1

∇lV · ∂xl

∂qα
= − ∂V

∂qα
. (2.1.5)

Then, when V is written in terms of the qα, this expression is written in terms of generalized
coordinates.

Lastly, we look at the ẍ.

ẍl ·
∂xl

∂qα
=

d

dt

[
ẋl ·

∂xl

∂qα

]
− ẋl ·

d

dt

∂xl

∂qα
(2.1.6)

But v, the velocity, is

vl = ẋl =
dxl

dt
=
∂xl

∂qα
q̇α +

∂xl

∂t
, (2.1.7)

1This derivation is adapted from [1] and [2].
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so
∂vl

∂q̇α
=
∂ẋl

∂q̇α
=
∂xl

∂qα
. (2.1.8)

In the last term of Equation (2.1.6),

d

dt

∂xl

∂qα
=

∂2xl

∂qα∂qβ
q̇β +

∂

∂t

(
∂xl

∂qα

)
=

∂

∂qα

(
∂xl

∂qβ
q̇β +

∂xl

∂t

)
=
∂vl

∂qα

Inserting the last two equations into (2.1.6), multiplying by ml, and summing over l,
gives us

N∑
l=1

mlẍl ·
∂xl

∂qα
=

N∑
l=1

[
d

dt

(
mlvl ·

∂vl

∂q̇α

)
−mlvl ·

∂vl

∂qα

]
=

d

dt

∂T

∂q̇α
− ∂T

∂qα
,

where T = 1
2

∑N
l=1mlvl is the total kinetic energy of the system of particles. Then Equations

(2.1.2) becomes
d

dt

∂T

∂q̇α
− ∂T

∂qα
+
∂V

∂qα
= 0 (2.1.9)

If T is written out in terms of the aα, then these equations are the equations of motions
in terms of the qα. Since ∂V

∂q̇α
= 0, as V depends only on the qα, not the q̇α, we can define a

new function
L = T − V, (2.1.10)

called the Lagrangian. Written in terms of the Lagrangian, these equations of motion become

d

dt

∂L

∂q̇α
− ∂L

∂qα
= 0, (2.1.11)

which are known as Lagrange’s equations.

2.2 Principle of Least Action

Lagrange’s equations resemble equations found from the solution a variational problem,
which means the system moves in such a way that maximizes or minimizes something. It
turns out that the system minimizes what is known as the action, defined as

S ≡
∫
L(q, q̇, t) dt,

where L is the Lagrangian. Of all the possible motions that fix the endpoints, the actual
physical motion is the one that minimizes this action.
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Now consider an initial time t0 and final time t1. Then the action associated with this
time interval is

S(q : t0, t1) ≡
∫ t1

t0

L(q, q̇, t) dt.

When the equation for q(t) is inserted into the expression for L(q, q̇, t), the above integrand
becomes a function of only t, and can then be integrated. Because each q(t) just has to have
the same q(t0) and q(t1), there are many different trajectories that will satisfy this. Each of
these different trajectories will yield a different value for S, and, as mentioned above, the
physical trajectory will be the one that minimizes S.

2.3 Euler-Lagrange Equations

We will now show that minimizing the action will lead to the Euler-Lagrange equations.2

Consider a family of trajectories q(t, ε), all starting at q(t0) and ending at q(t1), where ε is
an index that labels each particular trajectory of the family. Each q(t, ε) leads to it own
action, S(ε). The physical trajectory is the one that leads to the smallest S(ε), and, as per
Hamilton’s Variational Principle, that is independent of the way in which the ε-family of
trajectories is chosen. Therefore, we can require each ε to be a real number and that they
parameterize the family of trajectories continuously and differentiably. Thus, the partial
derivative ∂q(t;ε)

∂ε
exists for all values of t in the interval [t0, t1]. All calculations will depend

on ε only through derivatives, so ε can be changed without loss of generality by adding an
arbitrary constant, which we choose so ε = 0 is the trajectory that leads to the minimum
S(ε) in the family. The physical trajectory is the one that satisfies

dS

dε

∣∣∣∣
ε=0

≡
[
d

dε

∫ t1

t0

L(q, q̇, t) dt

]
ε=0

= 0 (2.3.1)

From now on, we will abbreviate d
dε

∣∣
ε=0

as δ, so Equation (2.3.1) becomes

δS ≡ δ

∫ t1

t0

L(q, q̇, t) dt = 0 (2.3.2)

Next, we take the derivative of the integral with respect to ε. The integral depends on ε
because of the fact that q and q̇ in the Lagrangian depend on ε. Thus,

δS =

∫ t1

t0

δL dt (2.3.3)

and

δL =
∂L

∂qα
δqα +

∂L

∂q̇α
δq̇α. (2.3.4)

q̇α ≡ dqα

dt
is a time derivative taken for a fixed ε and is thus a partial derivative, which

should be written as ∂qα

∂t
. However, for the sake of keeping with tradition of the final resolu-

tion of the problem, we will continue to write dqα

dt
. Because it is a partial derivative, there is

2This derivation is adapted from [2].
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Figure 2.1: Family of trajectories, q(t, ε), with fixed endpoints

no issue with changing the order of d
dt
and ∂

∂ε
(i.e. changing the order of d

dt
and δ). Therefore,

∂L

∂q̇α
δq̇α =

∂L

∂q̇α
d

dt
qα

=
d

dt

[
∂L

∂q̇α
δqα

]
−

[
d

dt

∂L

∂q̇α

]
δqα.

Inserting this into the expression for δL gives us

δL =

[
∂L

∂qα
− d

dt

∂L

∂q̇α

]
δqα +

d

dt

[
∂L

∂q̇α
δqα

]
(2.3.5)

Now, we insert Equation (2.3.5) into Equation (2.3.3). We get

0 = δS =

∫ t1

t0

[
∂L

∂qα
− d

dt

∂L

∂q̇α

]
δqα dt+

∫ t1

t0

d

dt

[
∂L

∂q̇α
δqα

]
dt. (2.3.6)

We can easily solve the second integral; it is

∂L

∂q̇α
δqα

∣∣∣∣t1
t0

= 0,

which equals 0 because all trajectories are equal at the endpoints, so δqα = 0. The first term
is then written as ∫ t1

t0

Λαδq
α dt = 0, (2.3.7)
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where Λα = ∂L
∂qα

− d
dt

∂L
∂q̇α

Now we will use the following theorem. Suppose that fa, a = 1, 2, . . . , n is a set of n
integrable functions of a real variable t on the interval I. Furthermore suppose that∫

I

faha dt = 0

for every arbitrary set of integrable functions ha on the same interval, all of which are equal
to 0 at the end points. Then fa = 0 for all a.

For us, every path qα, no matter the ε, is equal at the end points, so δqα = 0 at the
endpoints, no matter the α, just like ha in the theorem. Because our integral is also always
equal to 0, we can apply the theorem and see that Λα = 0. Remembering what Λα is, we get

∂L

∂qα
− d

dt

∂L

∂q̇α
= 0. (2.3.8)

These are, of course, Lagrange’s equations, and we see that they can be derived from mini-
mizing the action.

2.4 Noether’s Theorem

Noether’s theorem states that if a Lagrangian is invariant under a family of transformations,
then its dynamical system contains a constant of the motion, and that constant can be
found from the Lagrangian and the transformation. Now assume that our Lagrangian, L, is
invariant under the ε family of transformations. Then the derivative ∂L/∂ε = 0. Now we
use the fact that we obtained Equation (2.3.5) without any restrictions on ε, so we can use
it now. To emphasize that the derivative with respect to ε is being taken, we will go back
to writing δ as ∂

∂ε
. Then equation (2.3.5) becomes

∂Lε

∂ε
=

[
∂L

∂qα
− d

dt

∂L

∂q̇α

]
∂ψ(qα)

∂ε
+
d

dt

[
∂L

∂q̇α
∂ψ(qα)

∂ε

]
, (2.4.1)

where ψ(qα) is what was previously called qα(ε) (there is no need to have an ε subscript
because L is invariant under the ε family of transformations).

Define ψ0(q(t)) ≡ q(t) and assume that q(t) is a solution of the equations of motion.
Then the Euler-Lagrange equations imply that the first term on the right side of Equation
(2.4.1) is equal to 0, so that (the derivative at ε = 0 is written δ)

δLε =
d

dt

[
∂L

∂q̇α
δqα

]
. (2.4.2)

We now use the condition that L is invariant under the ε family of transformations (i.e.
∂Lε

∂ε
= 0). Then

d

dt

[
∂L

∂q̇α
qα
]
= 0

or

Γ ≡ ∂L

∂q̇α
qα (2.4.3)

is a constant of motion.
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3 Rigid Body Motion

Rigid bodies are extremely common in the real world, to the point that one can likely imagine
what they are without needing a definition. Despite this, we begin is section by giving a more
formal definition of rigid bodies. After doing so, we move onto discussing their kinetic energy
and angular momentum. Next, we define two different types of coordinate systems, before
finally moving onto the dynamics of a rigid body and the motion of its angular momentum
vector as it travels through space.

3.1 Definition

A rigid body is a collection of point particles constrained so that the distance between
any two points remains constant. If we consider a triangle, consisting of points, A,B,C,
if the distance between each of those points does not change, then neither does the angle.
Therefore, the triangle ABC moves rigidly through space. Because this holds true for any
triangle, the same idea can be applied to objects consisting of much more than three points.

The configuration manifold, Q, of a rigid body can be given by

1. The coordinates of an arbitrary point A in the rigid body (three coordinates)

2. The direction to another point B in the rigid body (two more coordinates)

3. The orientation of the plane containing A,B, and a third point in the rigid body, C.

Thus Q has six dimensions, three of which relate to the position of A, and another three
which relate to the orientation of the body.

3.2 Kinetic Energy and Angular Momentum

The kinetic energy of a rigid body with mass density µ(x), where x is the position vector, is
given by

T =
1

2

∫
ẋ2(x)µ(x)d3x ≡ 1

2

∫
ẋ2dm, (3.2.1)

where dm = µ(x)d3x. Continuing on, ẋ = ω × x, so we have

ẋ2 = (ω × x) · (ω × x)

= det(ω × x, ω,x)

= ωT
(
|x|2 − xxT

)
ω

Thus,

T =
1

2
ω · Iω, (3.2.2)

where I, the inertia tensor, is a 3 × 3 matrix and its elements, which depend only on the
geometry of the body and the mass distribution, are

Ijk =

∫ (
|x|2 − xxT

)
dm. (3.2.3)
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The inertia tensor is to rotational motion what mass is to translational motion, so the
equation T = 1

2
ω · Iω is the rotational version of T = 1

2
v ·mv.

It is important to note that I has in inverse. Because the body is rotating, the ωj are
not all zero, and the kinetic energy is nonzero and positive. Thus,

ωT Iω, ∀ω ̸= 0 (3.2.4)

where the ω are the column vectors of I whose components are the ωj. Therefore, the product
of I and any nonzero column vector is nonzero itself, so it has an inverse.

It can be seen that I is a symmetric matrix (as Ijk = Ikj), which means that it can
be diagonalized. Hence there is an orthogonal coordinate system whose basis vectors are
the eigenvectors of I. A coordinate system in which I is diagonal is called a principal-axis
system, and the eigenvalues of I are the principal values, or moments of inertia of the body,
labeled I1, I2, and I3. In the principal-axis system, Equation (3.2.2) becomes

T =
1

2
ωT Iω =

1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3), (3.2.5)

where the ωk are the components of the ω vector in the principal-axis system.
The angular momentum of a rigid body is given by

J ≡
∫

x× ẋ dm =

∫
x× (ω × x) dm =

[∫ (
|x|2 − xxT

)
dm

]
ω, (3.2.6)

so
J = Iω.

Just as 1
2
Iω2 was the analog of 1

2
mv2, Iω is the analog of mv. In the principal axis

system, I is diagonal, so the ith component of J is just Iiωi.

3.3 Space and Body Systems

The next section will require us to use a different kind of coordinate system to avoid com-
plicated calculations. To do so, we will need to define two coordinate systems, the space
system and body system.

First we define the body system, B. Its origin, A is at the center of mass of the object or
at one of its inertial points (for us, it will be the center of mass we calculated earlier), and
its orientation is chosen for convenience. The position vector, xB, has fixed coordinates in
B, and, since they are fixed, ẋB = 0. Thus, it is not possible to describe the motion of the
body in terms of the xB.

Now we define the space system, S. Similar to the body system, its origin is also at A
and its orientation is also chosen for convenience, but the orientation is generally chosen to
coincide with S at a specific time. The position vector in this system, xS does not always
have a rate of change equal to 0, so it can be used to describe motion.

However, it is not as convenient to calculate the Ijk in S, as they are constantly changing,
unlike in B. Because of this, we will show that the angular momentum vector, ω, is equivalent
in both B and S.

10



Equation (3.3.1), below, shows how the position vector varies in any system that’s origin
is at A. In particular, if the system is the S that coincides instantaneously with B, then
Equation (3.3.1) reads

ẋS = ωB × xB. (3.3.1)

The body components of ω and x can be used here because S and B coincide instantaneously,
so they are the same in both S and B. We can modify Equation (3.3.1) so that it applies to
any vector, s, in the body system, not just a fixed one by adding the term ṡB. This extra
term tells how s moves with respect to the body system, so Equation (3.3.1) becomes

ṡS = ωB × sB + ṡB. (3.3.2)

Equation (3.3.2) tells how to transform velocity vectors between the space system and
body system. So, specifically if s is the angular velocity, we get

ω̇S = ωB × ωB + ω̇B = ω̇B, (3.3.3)

thus showing that both ω and ω̇ are equal in S and B, provided that the space system is
chosen so that ωS = ωB at time t = 0. Because of this, the subscripts for ω and ω̇ are no
longer necessary and will be left off.

3.4 Dynamics

The dynamics of rigid body motion is specified by

N = J̇, (3.4.1)

which is the analog of F = ṗ = ma. We note that the torque must be calculated about the
center of mass or an inertial point. We also note that the Equation (3.4.1) requires finding
the time derivative of J = Iω about one such point, which, as indicated by the calculation
for the Ijk earlier, can end up quite complicated. To deal with this, we will use results proved
in the previous section.

If s in Equation (3.3.2) is the angular momentum, then it becomes

J̇S = ω × JB + J̇B = ω × (Iω) + Iω̇ (3.4.2)

This removes the need to calculate the inertia tensor in the space system, which greatly
simplifies the calculation. From Equation (3.4.1), we know that N = J̇, so Equation (3.4.2)
becomes

J̇ = N = ω × (Iω) + Iω̇, (3.4.3)

which means that ω ·N = ω · Iω̇. (Note that ω · (ω× Iω) = 0.) The change in kinetic energy
(in the principal axis system) is then given by Ṫ = 1

2
(ω̇ · Iω + ω · Iω̇) = ω̇ · Iω, using the

symmetry of I. Thus,
Ṫ = ω ·N, (3.4.4)

which is the analog of Ṫ = v · F.
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We can now write out Equation (3.4.2) in the principal axis system:

N1 = (I3 − I2)ω3ω2 + I1ω̇1

N2 = (I1 − I3)ω1ω3 + I2ω̇2

N3 = (I2 − I1)ω2ω1 + I3ω̇3

 . (3.4.5)

These equations are known as Euler’s equations for the motion of a rigid body. As can be
seen, everything in these equations is calculated from the body system.

Now we look at a special case, where the rigid body is experiencing torque-free rotation
(i.e. the body is free-falling in a gravitational field or it is in a gravity-free environment).
In this case, the left hand side of each equation is equal to 0. Additionally, if the body is
rotating about one of the principal axes, two of the angular velocities are equal to 0, so the
first term on the right side of each equation disappears. This leaves us with just Ikω̇k = 0, so
ω̇k = 0 for k = 1, 2, 3, meaning the angular velocity is unchanging. The physical description
of this that if the body starts rotating about one of its principal axes while in a torque-free
environment, its rotation will remain unchanged. However, if the rotation is not about one
of the principal axes, the first first term on the right side of the equations will not disappear,
and the body will wobble, flip, or move in some other more complicated manner as it spins.
This happens despite the fact that angular momentum is constant, as there is not torque on
the body.

If we consider ω-space, the vector in space in which ω moves as the motion occurs, we
now have three fixed points. We are eventually leading up to the stability of each of the
fixed rays, which will be discussed in a later section.

3.5 Motion of the Angular Momentum Vector

Consider a freely rotating rigid body (N = J̇ = 0). The angular momentum vector, J, then
remains constant in the space system, but this is not necessarily true in the body system.
In fact, by looking at Equation (3.4.2), we see that

J̇S = ω × JB + J̇B =⇒ 0 = ω × JB + J̇B =⇒ J̇B = −(ω × JB),

so the angular momentum vector is only constant in the body system when it is parallel to
the the angular velocity.

We know that J = Iω, so if ω is an eigenvector of I, the angular velocity is parallel to J.
Since that means J̇B is equal to 0, if the body is spinning around one of its principal axes,
J remains fixed in the body.

We can see this mathematically by looking two scalar quantities, J2 = J · J and the
kinetic energy T = 1

2
ω · Iω. Because they are scalars, they are equal in all systems. First,

we rewrite T in terms of J by using ω = I−1J :

T =
1

2
I−1JB · II−1JB =

1

2
I−1JB · JB = const., J2 = const. (3.5.1)

The angular momentum in the body system satisfies both of these equations simultaneously.
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Figure 3.1: Intersection line on S and E

The second equation in (3.5.1) implies that JB lives on a sphere, S. Working with the
first equation, and remembering we are working in the principal axis system, we see

T =
1

2
I−1JB · JB ⇐⇒ 2T = I−1JB · JB

⇐⇒ 2T =
J2
1

I1
+
J2
2

I2
+
J2
3

I3

⇐⇒ J2
1

2TI1
+

J2
2

2TI2
+

J2
3

2TI3
= 1.

Thus, the first equation is the equation of ellipsoid, E, which is the energy surface. In the
next section we consider the motion of JB (although we will not use the subscript B because
we will only be discussing angular momentum in the body system) on E, which will tell us
about the stability of the fixed points discussed above.

3.6 Fixed Points and Stability

Because J satisfies both equations in (3.5.1), it must lie on on the intersection of the sphere
and ellipsoid mentioned above. These surfaces only intersect if |J |, the radius of S, is larger
than the smallest semiaxis of E and smaller than its largest semiaxis. We assume that the
Ik are unequal and I1 > I2 > I3. Then the three semiaxes are

√
2TI1 >

√
2TI2 >

√
2TI3, so

we have √
2TI1 > |J | >

√
2TI3. (3.6.1)

Thus, for a fixed T , there is a an upper and lower bound on the magnitude of the angular
momentum.

In most cases, the sphere and ellipsoid will intersect at two curves; however, there are
two special cases: when |J | is at its minimum and when |J | is at its maximum. In those
two scenarios, the two surfaces intersect only at one point, the end of the smallest semiaxis
for the minimum case and the end of the largest semiaxis for the maximum case. Because J
moves only on the intersection curves, it is stuck at those two points. Thus, they are two of
the fixed points discussed above.

13



Figure 3.2: Motion of J on E

As can be seen in Figure 3.2, the three fixed points are Jmin ≡
√
2TI1, Jint ≡

√
2TI2,

and Jmax ≡
√
2TI3. By looking at the intersection curves, it is clear that Jmin and Jmax are

stable fixed points; when J starts close to them, it stay close to them. On the other hand,
Jint appears to be unstable, which is what will be shown next. To do so, we look back at
Euler’s equations (3.4.5).

This a torque-free case, so each Nj is zero. Because we are considering the fixed points,
let J be close to one of the principal axes. This means that ω = I−1J is also close to one of
them, which means that the body is rotating about an axis close to one of principal axes.
We will first look at the two stable axes, to see how they compare to the conclusions reached
from the intersection curves on the ellipse.

Assume the rigid body is rotating about an axis close to x1.
3 Then ω2 and ω3 are very

small and can be approximated as 0. Plugging those values into the first equation, we get
ω̇1 = 0, or, in other words, ω̇1 is constant. Then the second and third equations can be
rearranged to read ω̇2 = ω1ω3(I1 − I3)/I2 and ω̇3 = ω1ω2(I2 − I1)/I3, respectively. Since we
are considering ω1 a constant, these are a pair of coupled equations for ω2 and ω3.

We can take their time derivatives, yielding ω̈2 = ω1ω̇3(I1 − I3)/I2 and ω̈3 = ω1ω̇2(I2 −
I1)/I3 respectively. We can then substitute in the equations for ω̇1 and ω̇2 to decouple them,
giving us

ω̈k =
ω2
1(I1 − I3)(I2 − I1)

I2I3
ωk, for k = 2, 3. (3.6.2)

3This derivation is adapted from [2]
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The factor multiplying ωk on the right side of the equation is negative (remember I1 > I2 >
I3), so this is the equation for a harmonic oscillator. Them ω2 and ω3 oscillate harmonically
about 0 with frequency given by

ω1

√
(I1 − I3)(I2 − I1)

I2I3
,

remaining small.
We get a similar result when the body is rotating about an axis very similar to I3,

verifying that the fixed points at Jmin and Jmax are stable. However, the case when the body
is rotating about an axis similar to I2 is different.

The equation we get corresponding to Equation (3.7.2) is

ω̈k =
ω2
2(I2 − I3)(I1 − I2)

I1I3
, for k = 1, 3. (3.6.3)

The difference is that the multiplying factor on the right hand side of the equation is now
positive, making ω1 and ω3 to grow exponentially, which causes our approximation to break
down. Thus, ω2 does not remain constant, rather all three components of ω change sig-
nificantly. This means the angular velocity vector moves far away from I2 so the angular
momentum vector does as well, confirming what appears to be true in Figure 2.

4 Example: T-Handle

This section first deals with the calculation of the I vector for a t-handle as it spins about
itself in a torque-free environment. After making these calculations, we turn to analysing
how changing the geometry of the body will change which of the three principal axes are
stable and which one is unstable.

4.1 Moments of Inertia Calculation

In this section we will be looking at an example of a rigid body in motion: the spinning t-
handle. For the sake of simplicity, our t-handle will be two cylinders, one standing vertically
and the second laying horizontally along the top of the first cylinder. The two cylinders are
simply connected at the point that they touch. Cylinder 1, the vertical one, has radius R1

and height H1, while Cylinder 2 has radius R2 and height (length) H2. Our t-handle also
has constant density, µ(x) = 1.

We will eventually calculate the Ijk for this t-handle, but first we find the center of mass,
as that will be the pivot point when it is rotating about itself. The center of mass in the xi
direction of an object is given by

CMxi
=

∫∫∫
V
xiµ(x) dV∫∫∫

V
µ(x) dV

.4 (4.1.1)

4Integrating over V refers to integrating over the entire t-handle, while integrating over V1 and V2 refers
to integrating over Cylinder 1 and Cylinder 2, respectively.
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However, for us, µ(x) = 1, so Equation 4.1.1 becomes

CMxi
=

∫∫∫
V
xi dV∫∫∫

V
dV

, (4.1.2)

where the denominator is simply the volume, V , of the t-handle. Thus, the center of mass
integral for each xi can be written as

CMxi
=

1

V

∫∫∫
V

xi dV =
1

V

(∫∫∫
V1

xi dV1 +

∫∫∫
V2

xi dV2

)
. (4.1.3)

To simplify integration, we will convert to a separate cylindrical coordinate system for
Cylinder 1 and Cylinder 2. For Cylinder 1, we have

x1 = r cos (θ) , x2 = r sin (θ) , x3 = z, dV = r dr dθ dz,

and for Cylinder 2 we have

x1 = ρ cos (ϕ) , x2 = y, x3 = ρ sin (ϕ) +H1 +R2, dV = ρ dρ dϕ dy

Now we have everything we need to begin calculating. The final equations will be shown
in this section; however, the step-by-step calculation, beginning with Equation (4.1.3), will
appear in the Appendix, rather than here. Beginning with the volume, we get

V = πR2
1H1 + πR2

2H2. (4.1.4)

Now that we have the volume, we can move onto the centers of mass in the x1, x2, and x3
direction. Those equations yield

CMx1 = 0 (4.1.5)

CMx2 = 0 (4.1.6)

CMx3 =
1
2
πH2

1R
2
1 + πH2R

2
2(H1 +R2)

πR2
1H1 + πR2

2H2

(4.1.7)

Thus, the coordinates of the center of mass of our t-handle are(
0, 0,

1
2
πH2

1R
2
1 + πH2R

2
2(H1 +R2)

πR2
1H1 + πR2

2H2

)
. (4.1.8)

Now that we know our pivot point, we can begin the calculation for the Ijk for the t-
handle. We use almost the same cylindrical coordinate system as we did for the center of
mass calculation, but the origin is now located at the coordinates for the center of mass5.
For Cylinder 1 we still get the same coordinate system:

x1 = r cos (θ) , x2 = r sin (θ) , x3 = z, dV = r dr dθ dz.

5Due to the length of the center of mass coordinate in the x3 direction, we will denote it as C3.
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However, for Cylinder 2, we get something slightly different:

x1 = ρ cos (ϕ) , x2 = y, x3 = ρ sin (ϕ) +H1 +R2 − C3, dV = ρ dρ dϕ dy

After evaluating the integrals for I11, I22, and I33 and substituting in the true value of
C3, we get:

I11 =
π (H4

1R
4
1 + 4H3

1H2R
2
2R

2
1 +H1H2R

2
2R

2
1 (H

2
2 + 3 (R2

1 + 5R2
2)))

12 (H1R2
1 +H2R2

2)

+
π (H2

2R
4
2 (H

2
2 + 3R2

2) + 3H2
1 (4H2R

3
2R

2
1 +R6

1))

12 (H1R2
1 +H2R2

2)

(4.1.9)

I22 =
π (6H2

2R
6
2 + 4H3

1H2R
2
1R

2
2 + 3H1H2R

2
1 (R

2
1 + 6R2

2)R
2
2)

12 (H1R2
1 +H2R2

2)

+
π (H4

1R
4
1 + 3H2

1 (4H2R
3
2R

2
1 +R6

1))

12 (H1R2
1 +H2R2

2)

(4.1.10)

I33 =
1

12
π
(
6H1R

4
1 + 3H2R

4
2 +H3

2R
2
2

)
(4.1.11)

Next, we do the same for the Ijk with j ̸= k, yielding

I12 = I21 = I13 = I31 = I23 = I32 = 0. (4.1.12)

We can now put the Ijk into the I matrix. Notice above that each of the nondiagonal
entries are 0, so our coordinate system is already the principal-axis system. Thus,

I =

I11 0 0
0 I22 0
0 0 I33

 =

I1 0 0
0 I2 0
0 0 I3

 . (4.1.13)

4.2 Changing Fixed Point Stability Calculation

In the previous section, we calculated the Ijk for our t-handle. In this section, we are going
to look at how we can modify the dimensions of the t-handle to change which fixed points
are stable and which one is unstable. Remembering that the three semiaxes on the energy
ellipse, E, are

√
2TI1,

√
2TI2, and

√
2TI3, we see that the only variable in those equations

are the Ij. The unstable axis is the middle one, so if changing the dimensions (H1, R1, H2,
and R2) of the t-handle will change the Ijk, they could also change which semiaxis is the
middle one, hence changing which one is unstable.

First, we require that R1 and R2 be equal to each other to simplify the calculation. That
gives us

(0, 0, C3) (4.2.1)

for the center of mass.
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Now, substituting R for R1 and R2 into the equations for the Ijk, we can simplify them
to give:

I1 =
πR2 (H1 (18H2R

2 +H3
2 ) + 3H2

2R
2 + 3H2

1R (4H2 +R) +H4
1 + 4H2H

3
1 +H4

2 )

12 (H1 +H2)
(4.2.2)

I2 =
πR2 (21H2H1R

2 + 6H2
2R

2 + 3H2
1R (4H2 +R) +H4

1 + 4H2H
3
1 )

12 (H1 +H2)
(4.2.3)

I3 =
1

12
πR2

(
3H2R

2 + 6H1R
2 +H3

2

)
. (4.2.4)

Now we write H1 and H2 in terms of R, with H1 = aR and H2 = bR. This means that
when a is large, the height of Cylinder 1 is large compared to the radius, and, when a is
small, the height of cylinder 1 is small compared to the radius. Similarly, a large b implies a
long Cylinder 2, and a small b implies a short Cylinder 2. Substituting those into Equations
4.2.2, 4.2.3, and 4.2.4, we get

I1 =
πR5 (a4 + 4a3b+ 3a2(4b+ 1) + ab (b2 + 18) + b2 (b2 + 3))

12(a+ b)
(4.2.5)

I2 =
πR5 (a4 + 4a3b+ 3a2(4b+ 1) + 21ab+ 6b2)

12(a+ b)
(4.2.6)

I3 =
1

12
πR5

(
6a+ b3 + 3b

)
. (4.2.7)

We are curious when each of the principal axes are the intermediate axis, so we want to
look at when I2 < I1 < I3 or I3 < I1 < I2, when I1 < I2 < I3 or I3 < I2 < I1, and when
I1 < I3 < I2 or I2 < I3 < I1. Each of Equations 4.2.5, 4.2.6, and 4.2.7 have a πR5/12 term,
so it can be divided out of them, and we get

I1 =
a4 + 4a3b+ 3a2(4b+ 1) + ab (b2 + 18) + b2 (b2 + 3)

a+ b
(4.2.8)

I2 =
a4 + 4a3b+ 3a2(4b+ 1) + 21ab+ 6b2

a+ b
(4.2.9)

I3 = 6a+ b3 + 3b. (4.2.10)

It can be seen that these equations only depend on a and b, so we can plot the regions where
each axis is the intermediate axis.

Figure 4.1 shows us this in a small window where 0 < a, b < 10. The regions extend
out past a, b = 10 in the manner in which it appears they should, with the intersections
between each region remaining linear. As can be seen, it is possible for each of the axes to be
unstable, depending on the dimensions of the t-handle. Overlayed on each of the regions in
figure 4.1 is an image of how the t-handle might look when each axis is unstable, and which
axis is the unstable one.

One interesting feature of the plot is that there is a small region between a = 0 and a = 2
and near b = 0 where x2 is the intermediate axis, despite it appearing as though x1 should
be. While it seems as though this may be an error, Figure 4.2 shows that zooming in on
that region reveals that is in fact correct, and there is also a small region in that area where
x3 is the intermediate axis.
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Figure 4.1

5 Appendix

Here we will show the calculation performed to obtain the values and equations in Section
4.
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Figure 4.2

5.1 Calculation for Section 4.1

Equation (4.1.4):

V =

∫∫∫
V

dV

=

∫∫∫
V1

dV1 +

∫∫∫
V2

dV2

=

R1∫
0

2π∫
0

H1∫
0

dz dθ dr +

R2∫
0

2π∫
0

H2
2∫

−H2
2

dy dϕ dρ

= πR2
1H1 + πR2

2H2
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Equation (4.1.5):

CMx1 =
1

V

(∫∫∫
V1

x1 dV1 +

∫∫∫
V2

x1 dV2

)

=
1

V


2π∫
0

R1∫
0

H1∫
0

r2 cos(θ) dz dr dθ +

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ2 cos(ϕ) dy dρ dϕ


=

1

V
(0 + 0)

= 0

Equation (4.1.6):

CMx2 =
1

V

(∫∫∫
V1

x2 dV1 +

∫∫∫
V2

x2 dV2

)

=
1

V


2π∫
0

R1∫
0

H1∫
0

r2 sin (θ) dz dr dθ +

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρy dy dρ dϕ


=

1

V
(0 + 0)

= 0

Equation (4.1.7):

CMx3 =
1

V

(∫∫∫
V1

x3 dV1 +

∫∫∫
V2

x3 dV2

)

=
1

V


2π∫
0

R1∫
0

H1∫
0

rz dz dr dθ +

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ(ρ sin (ϕ) +H1 +R2) dy dρ dϕ


=

1

V

(
1

2
πH2

1R
2
1 + πH2R

2
2(H1 +R2)

)
=

1
2
πH2

1R
2
1 + πH2R

2
2(H1 +R2)

πR2
1H1 + πR2

2H2
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Equation (4.1.9):

I11 =

∫∫∫
V1

(
δ11x

2 − x1x1
)
dV1 +

∫∫∫
V2

(
δ11x

2 − x1x1
)
dV2

=

∫∫∫
V1

x22 + x23 dV1 +

∫∫∫
V2

x22 + x23 dV2

=

2π∫
0

R1∫
0

H1−C3∫
−C3

r
(
r2 sin2 (θ) + z2

)
dz dr dθ

+

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ
(
y2 + (ρ sin (ϕ) +H1 +H2 − C3)

2) dy dρ dϕ
=
π (H4

1R
4
1 + 4H3

1H2R
2
2R

2
1 +H1H2R

2
2R

2
1 (H

2
2 + 3 (R2

1 + 5R2
2)))

12 (H1R2
1 +H2R2

2)

+
π (H2

2R
4
2 (H

2
2 + 3R2

2) + 3H2
1 (4H2R

3
2R

2
1 +R6

1))

12 (H1R2
1 +H2R2

2)

Equation (4.1.10):

I22 =

∫∫∫
V1

(
δ22x

2 − x2x2
)
dV1 +

∫∫∫
V2

(
δ22x

2 − x2x2
)
dV2

=

∫∫∫
V1

x21 + x23 dV1 +

∫∫∫
V2

x21 + x23 dV2

=

2π∫
0

R1∫
0

H1−C3∫
−C3

r
(
r2 cos2 (θ) + z2

)
dz dr dθ

+

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ
(
ρ2 cos2 (ϕ) + (ρ sin (ϕ) +H1 +R2 − C3)

2) dy dρ dϕ
=
π (6H2

2R
6
2 + 4H3

1H2R
2
1R

2
2 + 3H1H2R

2
1 (R

2
1 + 6R2

2)R
2
2)

12 (H1R2
1 +H2R2

2)

+
π (H4

1R
4
1 + 3H2

1 (4H2R
3
2R

2
1 +R6

1))

12 (H1R2
1 +H2R2

2)
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Equation (4.1.11)

I33 =

∫∫∫
V1

(
δ33x

2 − x3x3
)
dV1 +

∫∫∫
V2

(
δ33x

2 − x3x3
)
dV2

=

∫∫∫
V1

x21 + x22 dV1 +

∫∫∫
V2

x21 + x22 dV2

=

2π∫
0

R1∫
0

H1−C3∫
−C3

r
(
r2 cos2 (θ) + r2 cos2 (θ)

)
dz dr dθ

+

2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ
(
ρ2 cos2 (ϕ) + y2

)
dy dρ dϕ

=
1

12
π
(
6H1R

4
1 + 3H2R

4
2 +H3

2R
2
2

)
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Equation (4.1.12):

I12 = I21 =

∫∫∫
V

(
δ12x

2 − x1x2
)
dV

=

∫∫∫
V1

−x1x2 dV1 +
∫∫∫

V2

−x1x2 dV2

= −
2π∫
0

R1∫
0

H1−C3∫
−C3

r3 cos (θ) sin (θ) dz dr dθ −
2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ2y cos (ϕ) dy dρ dϕ

= 0− 0 = 0

I13 = I31 =

∫∫∫
V

(
δ13x

2 − x1x3
)
dV

=

∫∫∫
V1

−x1x3 dV1 +
∫∫∫

V2

−x1x3 dV2

= −
2π∫
0

R1∫
0

H1−C3∫
−C3

r2z cos (θ) dz dr dθ

−
2π∫
0

R2∫
0

H2
2∫

−H2
2

ρ2 cos (ϕ) (H1 − C3 +R2 + ρ sin (ϕ)) dy dρ dϕ

= 0− 0 = 0

I23 = I32 =

∫∫∫
V

(δ23x
2 − x2x3) dV

=

∫∫∫
V1

−x2x3 dV1 +
∫∫∫

V2

−x2x3 dV2

= −
2π∫
0

R1∫
0

H1−C3∫
−C3

r2z sin (θ) dz dr dθ

−
2π∫
0

R2∫
0

H2
2∫

−H2
2

ρy(H1 − C3 +R2 + ρ sin (ϕ)) dy dρ dϕ

= 0− 0 = 0
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