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Abstract 

 

Many watersheds are subject to nonpoint-source inputs of nutrients from human activities, 

contributing to eutrophication of surface waters. The magnitude of these inputs is in turn 

dependent on the types of land use within a watershed, and on the specific land management 

strategies employed. Exact nutrient contributions resulting from particular management actions 

are difficult to identify, but field studies of nutrient fluxes through a waterway over time can 

shed light on the net impact of trends in land use and management. I investigated nutrient fluxes 

through upper Kamm Creek in northwest Washington State, to determine if historical changes in 

land management, responding to economic shifts and new legislation, had impacted nutrient 

export from the watershed. I measured streamflow and the concentrations of various forms of 

nitrogen and phosphorous between October 2015 and October 2016, and compared these 

measurements to data from a previous water quality study conducted from 1993-1998 on the 

same watershed. I found significantly higher nitrate fluxes, and significantly lower fluxes of 

mineral and total phosphorous, compared to the 1993-1998 sampling period. The increased 

annual nitrate flux resulted primarily from significantly increased summer flux relative to the 

historical data, while the phosphate and total phosphorous fluxes were significantly lower 

throughout the year in the current data. Mean nitrate concentration in the current data was high 

(8.8 +/- 0.17 mg N L-1) and increased relative to the historical mean of 6.96 mg N L-1. Current 

mean phosphate (0.009 +/- 0.0015 mg P L-1) and total phosphorous (0.033 +/- 0.007 mg P L-1) 

concentrations decreased relative to historical means by 0.03 and 0.04 mg P L-1, respectively. 

Concentrations of all nutrient species varied seasonally in both current and historic data, but the 

trends of increased nitrate and decreased phosphorous concentrations held for most months. The 

relationships of all nutrient concentrations to streamflow were similar between sampling periods: 

nitrate concentrations decreased with streamflow, and phosphate and total phosphorous 

concentrations increased. Annual streamflow did not change compared to the previous sampling 

period, however streamflow was significantly higher during current summer months than 

previous summer months. Similar patterns, particularly for nitrate, did not occur on the nearby 

Nooksack River, which receives water from the study stream. The reduced phosphorous fluxes 

through Kamm Creek are consistent with the expected impacts of legislation that reduced the 

application of manure fertilizer between the sampling periods; the increased nitrate flux might 

result from increased inputs of nitrate-enriched groundwater, potentially in concert with shifts in 

crop types. Further understanding the relationships between specific land management changes 

and nutrient fluxes will help land managers trying to both maintain local agricultural productivity 

and improve water quality.  



v 

Acknowledgements 

 

I sincerely thank the many people that have made this thesis possible by contributing 

their time, energy and resources. I would particularly like to thank my graduate adviser and chair 

of my thesis committee, Dr. David Hooper, for providing essential guidance on my project and 

thorough, insightful feedback on countless thesis drafts. Your expertise, generosity and patience 

are all deeply appreciated. I would also like to thank Dr. Benjamin Miner and Dr. Eric DeChaine, 

for their excellent advice and support while serving on my thesis committee. My research 

benefited greatly from Dr. David Schull and Ben Paulson in the Environmental Science 

Department, who provided much-needed advice and equipment for my stream water nutrient 

analyses. I am extremely grateful to Robin Matthews and Joan Vandersypen at the Institute for 

Watershed Studies, who conducted the initial research on which this study was based, and also 

provided quality control standards for my analyses. And, a tremendous thank you to the Biology 

Department Office and Stockroom staff, who were infallibly helpful and accommodating. 

My thesis would not have been possible without the gracious contributions of time and 

expertise I received from many wonderful people in the agricultural research and conservation 

communities. In particular, I would like to acknowledge Lisa Wasko DeVetter, Chuck Timblin, 

Nichole Embertson, Chris Benedict, Barbara Carey, Jaehak Jeong and Luca Dora. I am also 

deeply indebted to APEX trailblazer and fellow lab member Drew Monks for all of his guidance 

and support. Crucial funding for this project was generously provided by the Thon and Fraser 

families, and the WWU Biology Department and the WWU Graduate School – thank you! My 

friends and family have encouraged me constantly, and prodded me when necessary, throughout 

my graduate experience and I am forever thankful. Finally, I am continually grateful to all of my 

fellow graduate students for their advice, support and friendship on this long journey.  



vi 

Table of Contents 

 

Abstract…………………………………………………………………………………………...iv 

Acknowledgements……………………………………………….……………………………….v 

List of Tables and Figures……………………………………………………………………..….ix 

Introduction………………………………………………………………………...……………...1 

Methods…………….………………………………………………………….....………………..9 

Study site……………………………………………………………………………….….9 

Measurements ……………………………………………………………………...……..9 

_____Water chemistry…..………………………………………………………………...9 

_____Streamflow and fluxes………...……………….………………………………..…10 

Statistical analyses. …………………………………………...……...…………………..12 

Results………………………………………………………………………………..…..………13 

Nitrogen………………………………………………………………………………….13 

Phosphorous……………………………………………………………………………...18 

Streamflow……………………………………………………………………………….19 

Discussion…………………………………………………………………………..……………21 

Summary…………………………………………………..……………….…….………21 

Potential explanatory factors……………………………………………………..………23 

Data and Analysis Limitations…………………..…………………………...…………..26 



vii 

Conclusions and Ecological significance……………….…………..……………………28 

Literature Cited…………………………………………………………………………………..30 

Appendix A: Supplementary Tables and Figures…………………..….…………………………36 

Appendix B: Watershed Nutrient Modeling Using APEX………………………………………42 

APEX Introduction……………………………………………………………………………….42 

Overview of APEX Modeling and Data Requirements…………………….……………43 

 Delineation……………………………………………………………………….44 

 Parameterization………………………………………………………………....44 

 Calibration………………………………………………………………………..45 

APEX Mechanistic Overview and Description of Supporting tools….…………...…….45 

Methods and Results……………………………………………………………………………..47 

 Delineation……………………………………………………………………………….47 

Difficulties…………………………………………………………………….…54 

Parameterization………………………………………………………………………....56 

 Soils……………………………………………………………………………...56 

Weather..………………………………………………………………………....56 

Crop Growth..………… ………………………………………………………...58 

Land Management………………...………… ……………..…………………...58 

Difficulties……………………………………………………………….………60 



viii 

Crop Calibration…...……………………………………………………………………..61 

 Raspberry………………………………………………………………………...62 

Blueberry……………………………………………….………………………...62 

Forest……………………………………………………………….…………….63 

Corn Silage……………………………………………………………………….63 

Hay……………………………………………………………………………….64 

Pasture……………………………………………………………………...…….64 

Fallow……………………………………………………………………………65 

Developed…………………………………………………………………….….65 

Crop Calibration Results……………………………………………………..….66 

 Streamflow and Nutrient Flux Calibration……………………………………………....69 

  Streamflow………………………………………………….……………………69 

  Streamflow Calibration Results……………………………………………...…..72 

  Nutrient Fluxes……………………………………………………………..…….72 

  Nutrient Flux Calibration Results………………………..………………………76 

Difficulties……………………………………………………………….………78 

Discussion………………………………………………………………………………………..82 

Appendix B Literature Cited…………………………………..…………………………………87 

 



ix 

List of Tables and Figures 

 

Body 

 

Table 1: Land cover changes in the upper Kamm Creek watershed between 1998 and 2015..……..4 

Figure 1: Upper Kamm Creek study area map, with regional map insets…………………………7  

Figure 2: Annual and seasonal fluxes of nutrients and streamflow on upper Kamm Creek..…...…14 

Figure 3: Monthly distributions of nutrient concentrations on upper Kamm Creek ……….…..…15  

Figure 4: Regressions of nutrient concentrations against streamflow, with ANCOVA results...…16 

Figure 5: Annual and seasonal fluxes of nutrients and streamflow on the Nooksack River..…..…17 

Figure 6: Monthly rainfall and streamflow distributions in the upper Kamm Creek watershed….20 

 

Appendix A 

 

Table A1: Nutrient management guidelines for common crops in Whatcom County..…………...36 

Table A2: Methods for streamwater nutrient testing ……………………………………………..37 

Table A3: AIC (corrected for small sample sizes) evaluation of predictive models for nutrient 

flux……………………………………………………………………………………………….38 

Table A4: Equations and coefficients of determination for linear regression best fit lines……...39 

Table A5: Study site climatic data summary……………………………………………………..40 

Table A6: Nitrate deposition data summary……………………………………………………...41 

 

Appendix B 

 

Table B1: GIS data sources for watershed delineation……………………………………..……48 

Figure B1: ArcAPEX watershed and sub-basin delineation………………………………..……50 

Figure B2: ArcAPEX subarea delineation using soils and crop layers..………………………….51 

Table B2: Subarea variables used in the upper Kamm Creek watershed APEX delineation…..…55 

Table B3: Categories of, and sources for, data used to parameterize the APEX model………….57 



x 

Table B4: Specific sources for data used to parameterize and calibrate crops…………………….59 

Figure B3: APEX simulated and target annual crop yields………………………………………67 

Figure B4: APEX simulated and target forest biomass and N-content………………...…………68 

Table B5: APEX control files and PARMs modified during streamflow and nutrient flux 

calibration……………………………………………………………………………..…………70 

Figure B5: APEX simulation of Kamm Creek daily streamflow from Oct. 2015 – Nov. 2017…73 

Figure B6: Linear regression of measured vs. modeled daily streamflow…………………..……74 

Figure B7: APEX simulation of Kamm Creek monthly streamflow from Oct. 2015 – Nov. 

2017………………………………………………………………………………………………75 

Figure B8: APEX simulation of Kamm Creek daily nutrient fluxes from Oct. 2015 – Nov. 

2017……………………………………………………………………………………………....77 

Figure B9: Linear regressions of measured vs. modeled daily nutrient fluxes…..……………….79 

Figure B10: APEX simulation of Kamm Creek monthly nutrient fluxes from Oct. 2015 – Nov. 

2017……………………………………………………………………………………………....80 

 

 

  



1 

Introduction                               

Human activities have dramatically increased the supply of nutrients to aquatic ecosystems 

worldwide (Vitousek et al. 1997, Carpenter et al. 1998, Lewis et al. 2011). While all aquatic 

ecosystems require nutrients to maintain biological productivity, an overabundance of nutrients 

such as nitrogen (N) and phosphorus (P) can cause extensive ecological damage to lakes, rivers 

and near-shore marine ecosystems through eutrophication (Carpenter et al. 1998, Diaz and 

Rosenberg 2008, Dodds et al. 2008, Chislock et al. 2013). Nonpoint-source inputs of N and P 

(generated by activities distributed throughout a basin, rather than by discrete sources) to 

waterways include atmospheric deposition, nutrients stored and transported by groundwater, and 

surface runoff carrying dissolved or suspended nutrients (Carpenter et al. 1998, Withers et al. 

2014, Giri et al. 2016). The exact types and magnitudes of non-point source nutrient inputs 

depend on the specific nature of human activities in a watershed but given the spatially and 

temporally distributed nature of non-point nutrient sources, they can be difficult to quantify or 

attribute to specific practices (Braden and Segerson 1993, Cherry et al. 2012, Chen et al. 2018).  

In agricultural watersheds, organic and mineral fertilizers are essential to maintain crop 

yields, but can become pollutants when they are applied in excess of crop demand, or at times 

when they are easily leached or otherwise exported (Van Es et al. 2004, Van Es et al. 2006, 

Hopkins et al. 2008). Nutrient export from agricultural landscapes also represents an economic 

inefficiency that reduces grower profit (Hopkins et al. 2008). Particular agricultural management 

practices, including crop types, irrigation methods, and the specific types, rates and timings of 

fertilizer application, can substantially impact nutrient loading to streams (Beaulac and Reckhow 

1982, Sharpley et al. 1994, Ribaudo et al. 2001). These parameters may shift over time as the 

result of changes in agricultural input costs, crop values, grower guidelines, and environmental 
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legislation, all of which in turn influence the implementation of best management practices 

(BMPs) (Makarewicz et al. 2009, Kaushal et al. 2014, Schlegel and Domagalski 2015). In 

addition, because nitrogen cycling is tied to different physical and biological processes from 

phosphorous cycling, measures intended to reduce export of one nutrient can fail to reduce, or 

even inadvertently boost, export of the other (Sims et al. 1998, Heathwaite et al. 2000, Chapin et 

al. 2011). Connections among general land usage, specific management practices, and stream 

nutrient fluxes are highly site-specific, and depend on a region’s soils and use history (Sharpley 

et al. 1994, Withers et al. 2014). Due to these difficulties, many studies use models for source-

attribution (Schaffner et al. 2009, Cavero et al. 2012, Niraula et al. 2013). However, models have 

inherent limitations (Borah and Bera 2004, Mulla et al. 2008), and even the best watershed 

models require high-quality data from the field for calibration and to confirm predictions 

(Chaubey et al. 2010, Daggupati et al. 2015). Therefore, in situ studies to investigate 

management–water quality relationships in a particular watershed are essential to instituting 

effective practices to reduce eutrophication.  

Eutrophication from nonpoint-source nutrient pollution is a major conservation focus in 

the Pacific Northwest, including Water Resources Inventory Area 1 (WRIA1, Figure A1) in 

Whatcom County, northwest Washington State (Sharpley et al. 1994, Dowd et al. 2008, Carey 

2013, Beeler and Mitchell 2017). Lowland areas of WRIA1 have a history of heavy agricultural 

use (Burrows and Bretz 2011), and previous local studies (Matthews and Vandersypen 1998, 

Whatcom County Ag Watershed Project 2014) identified livestock manure and chemical 

fertilizers added to cropland as key nonpoint inputs of nutrients to waterways, in agreement with 

findings from other regions (Wang 2006, Dowd et al. 2008). Several pieces of legislation have 

influenced BMPs in WRIA 1 over the past two decades, with the intention of improving water 
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quality. These include The Washington State Dairy Nutrient Act (1998) and the Whatcom 

County Manure Nutrient Management Act (1998). These acts were passed to reduce manure 

fertilizer use in Whatcom County, and, in particular, the practice of applying liquid manure to 

bare ground after the harvest. This manure easily ran off into small waterways (Chuck Timblin, 

WCD, personal communication, 2017), and from there to the Nooksack River, the primary 

waterway in WRIA 1 (Butler et al. 2007). The lower Nooksack River Basin contains much more 

agricultural land than the heavily forested upper drainage and is therefore more influenced by 

changes in management practices. Manure runoff also contributed to nitrate contamination of the 

Sumas-Blaine Aquifer underlying much of the Nooksack Watershed (Carey 2013, Carey et al. 

2017), and to closures of downstream shellfish beds at Portage Bay due to fecal coliform 

contamination (Freimund et al. 2015). In 2005, the Whatcom County Critical Areas Ordinance 

(CAO) was passed to encourage BMP implementation on local farms to limit nutrient and fecal 

coliform inputs to streams. Specific BMP’s, such as cover crops or conservation tillage, may also 

lead to decreased erosion and associated fluxes of nutrients, particularly P (Wang et al. 2015, 

Cooper et al. 2017). However, despite some declines in nutrient fluxes through the lower 

Nooksack River, Portage Bay, after a period of improvement, continues to experience periodic 

contamination and closures from fecal coliform (Freimund et al. 2015).  

Changes in land use and crop types, often driven by economic forces, may also contribute 

to changes in nutrient loading. Berry crop cultivation has increased dramatically in the Nooksack 

Drainage, while hay and pastureland acreage has decreased (Table 1) (Burrows and Bretz 2011). 

Berry production is one potential, but unverified, source of nitrate contamination in local 

waterways (Erickson 1998, Matthews and Vandersypen 1998, Zebarth et al. 1998). Nutrient 

management guidelines for berry crops recommend different fertilizer application methods  
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TABLE 1. Area (Ha) and percentage (italics) of upper Kamm Creek’s watershed covered by 

development, native forest and four crop categories in 1998 and 2015, ordered by 

percentage change in watershed area between the observation dates. Due to 1998 

data constraints, the ‘Grass’ category includes pasture, hay fields and fallow 

grasslands. Data obtained from USDA National Agricultural Statistical Service. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1998 2015 % Change 

Blueberry 6.4 56.4   

  1.6% 14.6% 12.9% 

Developed 7.1 28.5   

  1.8% 7.4% 5.5% 

Caneberry 18.5 34.9   

  4.8% 9.0% 4.2% 

Forest 65.3 71.2   

  16.9% 18.4% 1.5% 

Corn 45.0 27.6   

  11.6% 7.1% -4.5% 

Grass 244.6 168.3   

  63.2% 43.5% -19.7% 
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compared to graminoid crops (mineral vs. manure, respectively), with lower rates of P 

application (Table A1); in practice, actual applications vary widely among individual growers, 

fields and years (Chuck Timblin, WCD, personal communication, 2016). Differences in nutrient 

uptake are important variables in determining nutrient exports as well, with certain crops and 

cultivars absorbing a larger percentage of applied fertilizer (Fageria et al. 2008). For example, 

blueberry plants selectively acquire ammonium-N rather than nitrate-N, potentially leading to 

runoff of excess nitrate (Hart et al. 2006, Bryla and Vargas 2012). Despite the potential for these 

changes in management and land cover to influence nutrient cycling and export, no previous 

studies have determined their net effect on nutrient fluxes through local waterways. 

A pertinent management shift in WRIA1 is that irrigation water is increasingly sourced 

from groundwater rather than surface streams. Due to high nitrate concentrations in the Sumas-

Blaine Aquifer underlying much of the Nooksack Basin (Morgan 1999, Mitchell et al. 2003, 

Carey 2013), increased groundwater use is likely to raise surface water nitrate levels (Chuck 

Timblin, WCD, personal communication, 2017). Additionally, upper Kamm Creek is partially 

spring-fed, allowing nutrients dissolved in the groundwater to flow directly to the stream. The 

Sumas-Blaine Aquifer acts as a long-term sink for leached nitrate, not only from past agricultural 

practices in Whatcom County, but, because the aquifer flows from north to south, also from 

sources in British Columbia, Canada (Mitchell et al. 2003). This complicates determining the 

effectiveness of local and current BMP’s in reducing surface water nitrate enrichment. 

A further challenge in identifying the effect of management shifts on nutrient fluxes is 

that fluxes depend not only on nutrient concentrations, but also the flowrate of the waterway in 

question (Vanni et al. 2001). Practices that increase streamflow, particularly peak streamflow 

(Banner et al. 2009), can potentially lead to increased nutrient fluxes, even if average nutrient 
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concentrations decrease (Blann et al. 2009, Hatfield et al. 2009). Increased streamflow can be 

beneficial to biota in an individual stream or river, but the overall flux of nutrients may also be of 

concern for downstream ecosystems such as estuaries (Pinckney et al. 2001). Conversely, 

reduced streamflow may lead to environmentally damaging levels of nutrients or other 

pollutants, even if the overall flux decreases. Determining the relative contributions of nutrient 

concentrations and streamflow to nutrient flux is necessary to assess their impact on specific 

waterways and downstream ecosystems, and to untangle the impacts of changing management. 

This study investigated the net effect of local changes in crop type, fertilization practices, 

and groundwater use on nutrient fluxes in upper Kamm Creek, a small tributary of the Nooksack 

River (Figure 1). This watershed encompasses agricultural lands representative of the broader 

Nooksack Basin, and the creek has been monitored periodically for water quality since at least 

1985, displaying persistently high nutrient levels and other signs of environmental degradation 

(Matthews and Vandersypen 1998). Most recently, the stream (Assessment Unit 

17110004000436) was on the 2012 Washington Department of Ecology 303D list of impaired 

water bodies for both pH and dissolved oxygen levels. The Institute for Watershed Studies (IWS; 

Huxley College of the Environment, Western Washington University) collected extensive data 

on streamflow and nutrient fluxes on this waterway from 1993 -1998 (hereafter referred to as 

‘historical data’ or ‘historical study period’), but monitoring was discontinued (Matthews and 

Vandersypen 1998). These data showed high levels (median 7.3 mg L-1, maximum 10.3 mg L-1) 

of nitrate in upper Kamm Creek, as well as elevated levels of phosphorous compared to pristine 

watersheds. Matthews and Vandersypen (1998) attributed these levels primarily to local 

agricultural practices, but numerous studies cite the Sumas-Blaine Aquifer as another potential 

source of surface water nitrate contamination (Matthews and Vandersypen 1998, Morgan 1999,  
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Figure 1.  Study watershed of upper Kamm Creek in the context of the full Kamm Creek  

                        watershed, the Nooksack River, and the Sumas-Blaine Aquifer. The urban area 

surrounding Lynden, WA is shown in gray for reference. Insets depict study 

watershed location relative to the Canadian border and Bellingham, WA, and 

WRIA 1 location relative to NW Washington State. ‘U’ and ‘L’ denote 

approximate locations of upper and lower Nooksack River reference data 

collection sites. 
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Carey 2013). However, data from wells within the watershed boundaries are scarce, do not cover 

the entire time period since the IWS study, and are restricted to the portion of the Kamm Basin 

underlain by the Sumas-Blaine Aquifer. It is therefore difficult to directly quantify changes in 

nutrient contributions from specific activities or sources. Kamm Creek nevertheless provides an 

opportunity to explore how overall nutrient fluxes respond to a complex combination of land 

management shifts. 

To determine the direction and magnitude of any shifts in nutrient flux, I measured 

streamflow and nutrient concentrations in upper Kamm Creek (Oct. 2015 - Oct. 2016; hereafter 

referred to as ‘current data’ or ‘current study period’), using comparable methods to the 

historical IWS survey. I then calculated the net annual flux for each nutrient in the historical 

(1993-98), and current (2015-16) data and analyzed changes in these fluxes, and their component 

concentrations and streamflow measurements, between the two sampling periods. Anticipating 

the impact of environmental legislation and reduced manure use in more recent cropping 

systems, I hypothesized decreased annual fluxes of all nutrients in the current data. I further 

hypothesized that annual streamflow in upper Kamm Creek would not differ significantly 

between the historical and current sampling periods, and that nutrient concentrations would 

follow the same general correlations with streamflow in both datasets. Therefore, any annual 

nutrient flux reductions would derive from lower concentrations of nutrients for a given level of 

streamflow.  
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Methods 

Study Site  

The location for this project was upper Kamm Creek, just east of Lynden, WA (Figure 1).  From 

Oct. 2015 - Oct. 2016, I sampled for nutrients and streamflow immediately upstream from 

Kamm Road, where the creek enters a culvert. A second, similar culvert, parallel to the original 

pipe, was discovered in March of 2016 and was included in testing after that point. However, the 

streamflow through the second culvert was never more than 4% of the total flow, and frequently 

had no detectable flow. As a result, pre-March 2016 streamflow values were retained without 

amendment. The watershed above my sampling site included dairy cattle pasture, hay, blueberry 

and caneberry (raspberry) fields and natural woodlots, with small areas of residential and light 

commercial development. The sampling point itself is surrounded by pasture, with a dense but 

narrow band of shrubs, Himalayan blackberry (Rubus armeniacus) and reed canarygrass 

(Phalaris arundinacea) bordering the creek. My sampling site was approximately 33 meters 

upstream from the sampling site used by the IWS for their historical data collection (Matthews 

and Vandersypen 1998) and captures a similar watershed area.  

Measurements 

Water Chemistry – I collected stream water for nutrient analyses as triplicate 1000 ml samples 

taken from Kamm Creek twice monthly for a full year, from October 2015 through October 

2016. Collections were at least five days apart, to limit the possibility of correlation between 

time points. In addition to the twice monthly samplings, I collected additional samples in April, 

May and October 2016 to provide more detail on spring and fall nutrient pulses, for a total of 27 

dates used for comparative analyses (‘current data’).  
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Using a SmartChem 200 autoanalyzer (Unity Scientific LLC, Milford, MA), I ran five 

nutrient chemistry tests per water sample: ammonia (NH3), nitrate (NO3
-), phosphate (PO4

-3), 

total nitrogen and total phosphorous. Nitrate measurements included any nitrite present; 

however, nitrite was an extremely minor (<1%) portion of the total in the historical data, and 

therefore I made no attempt to evaluate these components separately. Nutrient analyses followed 

standard, EPA-certified SmartChem protocols (Table A2) and used both internal and external lab 

standards for quality assurance and quality control; external standards were obtained from IWS, 

to facilitate direct comparison with historical Kamm Creek data (Matthews and Vandersypen 

1998). Samples were vacuum-filtered through acid-washed 0.45μm mixed cellulose ester 

membrane filters (HAWP04700 – MilliporeSigma, Darmstadt, Germany) prior to analyses for 

ammonia, nitrate, and phosphate. Unfiltered samples for total phosphorous and total nitrogen 

were digested with an alkaline potassium persulfate solution in an autoclave at 121° C and 117.2 

kPa (EPA methods 353.2/365.1). Analyses of filtered samples for NH3 took place immediately 

following collection, NO3
- within 24 hours and PO4

-3 within 48 hours. Digestion of unfiltered 

samples for total N and P took place within 48 hours, after which digested samples were stored at 

4° C prior to analysis. Concentrations below the limit of detection (five samples for PO4
-3, two 

for TP) were retained for analysis, but negative readings (five samples for PO4
-3, one for TP) 

were zeroed for calculating monthly averages of concentration and flux.   

Streamflow and Fluxes – I calculated streamflow as the product of the stream cross-sectional 

area and velocity on each sampling date, with measurements taken immediately inside the 

culvert entrance. Velocity was measured using a Flo-Mate Model 2000 electromagnetic 

flowmeter (Hach Company, Loveland, CO), resting at 60% of the water depth at the mouth of 

the culvert. Cross sectional area was calculated using the culvert radius, water depth and 
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sediment depth according to the equations described in (Beschta 1981). For post-March 2016 

data, I calculated streamflow using the sum of the primary and secondary culverts. 

Daily nutrient fluxes were calculated from streamflow and nutrient concentration data 

using the equation: 

                                            nutrient concentration (mg L-1) * streamflow (m
3 

s-1) *86400 s day-1 

nutrient flux (kg day-1)  =                                                                

          10000 

 

Post-March 2016, I calculated nutrient concentration data as a weighted average using 

streamflow and concentration data from both culverts. For water and nutrient flux calculations, I 

assumed streamflow and nutrient concentrations remained constant throughout the day. 

Annual fluxes of nutrients and water were calculated as the sum of monthly fluxes for 

each year, which were in turn derived from daily fluxes averaged for each month of a particular 

year and then multiplied by the number of days in that month (leap years considered, missing 

data points not considered). Streamflow and nutrient concentration data for the upper and lower 

stretches of the mainstem Nooksack River, used for reference, were obtained from the 

Washington Department of Ecology River and Stream Water Quality Monitoring Network 

(https://fortress.wa.gov/ecy/eap/riverwq/regions/state.asp) and the USGS National Water 

Information System (https://waterdata.usgs.gov/nwis/rt). Nutrient fluxes were calculated using 

the previously described methodology, with upper river nutrient concentrations measured at 

North Cedarville, WA (WA DoE site 01A120) and flow rates measured at Deming, WA (USGS 

site 12210500), approximately 7 km SE. Lower river nutrient concentrations were measured at 

Slater Road Bridge, WA (USGS site 12213140), with flow rates measured at Ferndale, WA 

(USGS site 12213100), approximately 3 km NW. Upper Nooksack historical data cover from 

11/1994 – 10/1997, lower Nooksack flux data cover the full historical time period.    
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Statistical Analyses 

All statistical analyses were performed using R software (R Core Team 2015), with a critical α 

value of 0.05. To determine whether there had been significant changes over time in Kamm 

Creek’s water and nutrient contributions to the Nooksack River, I generated standard parametric 

95% confidence intervals for the historical means of annual and seasonal fluxes of water and 

nutrients, then plotted the current fluxes against these. I also examined monthly distributions of 

nutrient concentrations, streamflow, and rainfall within and between sampling periods using 

notched box plots and described relationships between streamflow and nutrient concentrations 

using linear regression. Nitrate concentrations showed a negative exponential relationship to 

streamflow and were log10-transformed for linear regression analysis.  

Complete nutrient concentration data from the full year of the current dataset did not 

meet assumptions of normality and homoscedasticity, regardless of transformations. I therefore 

used the rank-based ‘nonparametric ANCOVA’ function in the ‘sm’ package of R (Bowman 

2014) to determine the probability that the slopes and intercepts of concentration vs. streamflow 

linear regressions for each nutrient were different between the two sampling periods. To check 

the nonparametric ANCOVA results against those from a parametric analysis, I also compared 

generalized linear models (GLMs) for each nutrient’s concentration, using Akaike Information 

Criterion corrected for small sample sizes (AICc, ‘MuMin’ package of R) to indicate relative 

parsimony (Barto 2017). Each GLM predicted nutrient concentration as a function of streamflow 

and/or sampling period with and without interactions. Results of AICc analysis did not conflict 

with nonparametric ANCOVA results and are included in Table A3.   
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Results 

Nitrogen 

The current annual flux of nitrate increased significantly compared to the historical flux (Figure 

2). Fluxes of nitrate were significantly higher in the winter than in the summer months for the 

historical nitrate, but roughly equal in the current data (Figure 2). The current winter flux of 

nitrate was higher than the historical mean but within the historical 95% confidence interval; the 

current summer flux was almost double the historical mean and far outside the historical 95% 

confidence interval (Figure 2). Concentrations of nitrate were significantly higher than the 

historical range in all months of the current study (Figure 3). Nitrate concentrations in Kamm 

Creek displayed a negative exponential correlation with streamflow in both current and historic 

sampling periods, but with higher levels for a given flowrate in the current data (Figure 4).  

Current annual nitrate fluxes on the upper and lower Nooksack River were significantly 

lower than the historical data, and current winter fluxes were also both lower, but just within the 

historical 95% confidence interval (Figure 5). Current summer nitrate fluxes were lower on both 

reaches of the Nooksack River, but only significantly so in the upper river. Annual nitrate fluxes 

on the lower Nooksack River were roughly 169% and 202% of upper river fluxes, for the 

historical and current sampling periods, respectively (Figure 5). 

Poor data quality from the current sampling period precluded extensive statistical 

comparisons for ammonia. In both datasets, NH3 represented <2% of the total nitrogen flux 

through upper Kamm Creek, so I do not address it further. No total or organic nitrogen data exist 

for the historical dataset, but organically-bound nitrogen made up ~9% of the total nitrogen flux 

in the current dataset. Organic nitrogen levels ranged from below the detection limit to 2.56  
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Figure 2. Annual (A), summer (S), and winter (W) total fluxes of nitrate-N (a), phosphate-P 

(b), and total P (c), and streamflow (d), on upper Kamm Creek. Annual fluxes are 

calculated from samplings every other week starting in May and extending 

through the following April. ‘Summer’ includes all observations from May-

October, ‘winter’ includes all observations from November through April. 

Unfilled circles indicate the mean from the historical sampling period with 95% 

confidence intervals displayed. CI’s generated from historical data, with N=4 

(N=5 for summer data). Solid triangle indicates current annual or seasonal flux. 
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Figure 3.     Distributions of (a) nitrate-N, (b) phosphate-P, and (c) total P concentrations on 

upper Kamm Creek during the historical study (2/1993 - 2/1998, N = 11-12/mo), 

grouped by month. Notched box plots of historical data show medians (line), and 

95% confidence intervals of the median between notches. Mean of current data 

(10/2015 - 10/2016, N = 2-3/mo) represented by solid triangles. Current mean 

displayed rather than median due to small sample size. 
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Figure 4.  Concentrations of nitrate-N (a), phosphate-P (b), and total P (c), plotted against 

streamflow. Historical data (N = 133) represented by unfilled circles, with dashed 

linear regression best fit-line; 95% prediction intervals displayed as dotted lines. 

Current data (N = 27) are represented by solid triangles with a solid linear 

regression best-fit line. P-values represent the results of a nonparametric ANCOVA 

test, which compared the regression lines for both sampling periods against a null 

model with parallel regression lines having identical intercepts. See Table A4 for 

regression equations and coefficients of determination.  
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Figure 5. Annual (A), summer (S), and winter (W) total fluxes of nitrate-N (a, e), 

phosphate-P (b, f) and total P (c, g), and streamflow (d, h), on the upper and lower 

Nooksack River. Annual fluxes are calculated from samplings every other week 

starting in May and extending through the following April. ‘Summer’ includes all 

observations from May-October, ‘winter’ includes all observations from 

November through April. Unfilled circles indicate the mean from the historical 

sampling period with 95% confidence intervals displayed. CI’s generated from 

historical data, with N=3. Solid triangle indicates current annual or seasonal flux. 
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mg L-1, but did not correlate with streamflow, sampling date, or nitrate levels, either as a 

concentration, or as a percentage of total nitrogen. 

Phosphorous 

The current annual fluxes of phosphate and total phosphorous were lower than in any year from 

the historical sampling period, and significantly lower than the historical mean (Figure 2). Both 

summer and winter phosphate and TP fluxes in the current data were significantly lower than 

historical fluxes, with the difference relatively greater in winter (Figure 2). Winter fluxes of both 

phosphorous forms accounted for the majority of their annual fluxes in both datasets, though 

with a relatively more balanced distribution in the current than the historical data (Figure 2). 

Phosphate-P contributed 57.5% of the mean annual TP flux during the historical sampling 

period, but only 25% during the current sampling period. Current mean concentrations of 

phosphate were significantly lower than historical medians in all months except April (Figure 3), 

with TP concentrations significantly lower in all months except February, March, and December. 

Concentrations of both mineral and total phosphorous showed similar positive linear correlations 

with streamflow in both sampling periods, but with significantly lower concentrations for a given 

flow rate in the current data (Figure 4).  

Current fluxes of phosphate on the upper Nooksack River were significantly lower than 

historical fluxes for all seasons, while TP fluxes were only lower in summer (Figure 5). On the 

lower Nooksack River, summer fluxes of both phosphate and TP were significantly decreased 

compared to the historical data, but current annual and winter fluxes of both nutrient species 

were within the historical 95% confidence interval (Figure 5). Annual fluxes of phosphate from 

the upper river constituted only a 26% of the lower river’s phosphate flux in the historic data, but 

47% in the current data. Total annual phosphorous flux through the upper Nooksack was higher 
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than through the lower Nooksack during both sampling periods, but the difference was minor in 

the historical data (+15%) compared to the current data (+282%) (Figure 5). However, the 

extremely high current TP flux on the upper Nooksack is largely due to the influence of an 

extreme flood event during sampling on 12/8/2015, which had 100x the average daily flux and 

20x the second highest daily flux in the dataset. With the flux for this sampling date replaced 

with the median December value (from 2010-2015), the current upper Nooksack River TP flux 

was only 22% higher than current lower river TP flux.    

Streamflow   

The total yearly streamflow passing through upper Kamm Creek was similar between the current 

and historical sampling periods (Figure 2), as was winter flow. However, summer flow rates 

were significantly higher in the current data, and current streamflow appeared more evenly 

distributed throughout the year (Figs. 2, 6). Differences in monthly precipitation totals between 

sampling periods did not closely match differences in streamflow for those months, particularly 

in summer, suggesting that differences in rainfall were not the primary driver of differences in 

streamflow in that season (Figure 6).  

Current annual, winter, and summer flows on the upper Nooksack River were all 

significantly lower than the historical mean (Figure 5). The current lower Nooksack summer 

flow was also significantly lower than the historical mean; current winter flows and annual flows 

were lower, but not significantly (Figure 5). Annual, winter and summer stream flows on the 

upper Nooksack were slightly higher than on the lower Nooksack in both sampling periods, 

except for summer streamflow in the current sampling period (Figure 5).  
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Figure 6. Distributions of monthly rainfall (a) and streamflow (b) in upper Kamm Creek’s 

watershed during the historical study (2/1993 - 2/1998, N=5/mo for rainfall,        

N = 11-12/mo for streamflow). Notched box plots of historical data show medians 

(line) and 95% confidence intervals of the median between notches. Mean 

monthly values for each month of the current study (10/2015 - 10/2016, N=1/mo 

for rainfall, N = 2-3/mo for streamflow) shown as solid triangles. Current mean 

displayed rather than median, due to small sample size. Rainfall data are PRISM 

projections for the geographic center of the upper Kamm Creek study area 

(48.97°, -122.39°); acquired from the Oregon State University NW Alliance for 

Computational Science & Engineering, Corvallis, OR 

(http://prism.oregonstate.edu/explorer/). Data accessed 11/2017. 
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Discussion 

Summary 

This study found strong changes in nutrient fluxes through upper Kamm Creek between 1998 

and 2015, likely resulting from the net impact of shifts in local land cover, agricultural 

management practices, and groundwater inputs. Annual phosphate and total phosphorous fluxes 

decreased significantly between the sampling periods, supporting my hypothesis for these 

nutrient species, and potentially validating the effects of improved nutrient management 

strategies. However, annual nitrate flux displayed a large and significant increase over this same 

time period, counter to the trends observed for phosphorous, and rejecting my initial hypothesis 

for nitrate. These disparate trends in nitrate and phosphorous fluxes are not inherently 

contradictory, as responses of the two nutrients to reduction attempts can be independent 

(Carpenter et al. 1998, Sims et al. 1998, Heathwaite et al. 2000). Compared to nitrate, 

phosphorous is more strongly retained by soils via adsorption to sediment or immobilized within 

organic molecules (Chapin et al. 2011), so inputs to agricultural streams such as upper Kamm 

Creek are determined largely by particulate inputs from sediment and manure runoff (Matthews 

and Vandersypen 1998, Haygarth et al. 1999, Roberts et al. 2012). Reducing manure inputs to 

streams was a key rationale for the introduction of The Washington State Dairy Nutrient Act 

(1998) and the Whatcom County Manure Nutrient Management Act (1998); to the extent that 

these acts are primarily responsible for the 3-5-fold reductions in soluble phosphate and total 

phosphorous fluxes seen between the historical and current sampling periods, they functioned as 

intended on upper Kamm Creek. In contrast, the increases in nitrate concentrations and fluxes 

suggest that this legislation was not effective in reducing nitrate inputs to upper Kamm Creek, or 

that their impact was overwhelmed by the effects of other changes within the watershed. 



22 
 

Shifts in nutrient fluxes, particularly of nitrate, through Kamm Creek were not reflected 

in the Nooksack River. Previous research (Inkpen and Embrey 1998, Freimund et al. 2015) and 

the data examined in this study suggest that nutrient inputs from sources in the lower watershed 

are important determinants of nutrient export from the Nooksack River to Portage Bay. 

However, nutrient fluxes in the mainstem Nooksack River remained stable or decreased between 

the sampling periods. Both the upper and lower reaches of the Nooksack River showed 

significant decreases in annual nitrate flux between the sampling periods, as opposed to the 

increase seen in Kamm Creek. This finding indicates that local mechanisms such as cropping 

practices or nitrate-enriched groundwater inputs likely exercise considerable control over nitrate 

fluxes in small waterways such as Kamm Creek. However, the lower basin’s contributions of 

nitrate to the Nooksack River did not increase substantially between the sampling periods, failing 

to support the assumption that other tributaries of the lower Nooksack River experienced similar 

changes in local nitrogen cycling mechanisms. Total phosphate and TP fluxes through both 

reaches of the Nooksack decreased in patterns similar to those through Kamm Creek, but the 

Nooksack’s decreases were not as extreme, nor always significant. Mean annual TP fluxes were 

higher through the upper Nooksack River than through the lower Nooksack River during both 

sampling periods, likely due to sediment-bound phosphorous settling out between the sampling 

locations (Stone 2000), but also reflecting a lack of substantial inputs from tributaries in the 

lower basin. Annual and summer streamflow on the Nooksack River decreased, rather than 

increased as on Kamm Creek. These data suggest that Kamm Creek is not fully representative of 

other tributaries of the lower Nooksack River, but may share similarly low phosphorous fluxes. 
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Potential Explanatory Factors 

Several major factors influence N and P fluxes in upper Kamm Creek, particularly land-

management practices and inputs of nitrate-enriched groundwater. The data presented here do 

not allow for attribution of increased or decreased nutrient fluxes to a particular source or 

sources; however, by assessing potential driving factors in the watershed, this study helps 

evaluate the extent to which they may or may not contribute to nutrient loading. 

Changes in crop type and management, whether due to economic or regulatory pressures, 

might have influenced nutrient fluxes through Kamm Creek between the study periods. Between 

1998 and 2015 large areas of Upper Kamm Creek’s watershed were converted from hay fields, 

corn silage and dairy cattle pasture to raspberry and blueberry crops (Table 1). These fruit crops 

require less manure, but larger additions of chemical fertilizer than do dairy cattle pastures 

(Table A1). Increasing raspberry acreage in the region was suspected as possible source of 

additional nitrate as early as 1998, with raspberries associated with high nitrate levels in well-

water (Erickson 1998, Matthews and Vandersypen 1998, Morgan 1999). Higher percentages of 

berry crops in upper Kamm Creek’s cropping regime increase estimated nitrogen application 

rates overall (+42.7%), while decreasing estimated total phosphorous applications rates (-12.3%), 

based on the nutrient management recommendations listed in Table A1. Additionally, improved 

fertilization and manure management strategies, such as injecting rather than broadcasting 

manure, can reduce nutrient inputs to waterways, even if the total volume of applied nutrients 

remains constant (Sharpley et al. 1994, Withers and Jarvis 1998, Hernandez and Schmitt 2012).  

Higher fertilization rates, particularly via fertigation (dissolved fertilizers applied via 

irrigation), can lead to buildup of nitrates in the soil and eventual leaching into surface or ground 

waters (Messiga et al. 2017). This might have contributed to the increased current nitrate flux 
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through Kamm Creek. Blueberries present a pertinent local example of this process. Blueberries 

are adapted to low-pH soils and ammonium-based sources of nitrogen, as they lack sufficient 

enzymes to process nitrate effectively (Claussen and Lenz 1999). In Whatcom County, they are 

typically fertilized with urea and ammonium sulfate through a combination of granular 

applications and fertigation (Hart et al. 2006, Wasko DeVetter 2017)). However, unabsorbed 

ammonium is readily nitrified during the growing season, even in the low-pH soils typical of 

blueberry cultivation (Ehret et al. 2014, Zebarth et al. 2015); application of nitrification 

inhibitors is uncommon in the region (Lisa DeVetter-Wasko, WSU NWREC, personal 

communication, 2017). Subsequent leaching during fall rain events can increase nitrate inputs to 

groundwater or neighboring streams. 

These same changes in agricultural management, in concert with legislation aimed at 

reducing manure use, can help explain the observed reductions in phosphorous fluxes. Nutrient 

management guidelines for hay and pasture crops recommend higher average rates of 

phosphorous fertilizer, whether in manure or mineral form, than berry crop guidelines (Table 

A1). As hayfields and pasture are converted to berry crops, their different fertilization regimes 

may reduce inputs to the waterway from both overland flow and subsurface leaching. An 

additional consideration is that the high rates of nitrogen fertilizers (or applications of elemental 

sulfur) used in berry crops may lead to decreases in soil pH, particularly in blueberries, where a 

low soil pH is desirable (Hart et al. 2006). Low soil pH encourages soluble phosphate to sorb to 

iron and aluminum oxides in soil particles, immobilizing it and preventing leaching (Chapin et 

al. 2011). This effect may partially explain the lower relative contribution of phosphate to TP 

flux through upper Kamm Creek in the current data, as well as the reductions seen in both. 
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Groundwater nitrate contributions are the second potential factor underlying the increased 

nitrate flux through upper Kamm Creek. The groundwater in the western half of the upper Kamm 

Creek Basin comes from the Sumas-Blaine Aquifer, which had nitrate concentrations greater 

than 10 mg L-1 in many portions during both the historical and current sampling periods (Carey 

2013, Carey et al. 2017). This groundwater feeds the stream directly via several springs above 

my sampling point. It is possible that these springs contributed a larger volume of water, or more 

heavily nitrate-laden water, during the current sampling period. Groundwater is also increasingly 

used for irrigation in Kamm Creek’s watershed (Chuck Timblin, WCD, personal communication, 

2017), providing another avenue for nitrate inputs. Irrigation strictly with groundwater could add 

up to 9.2 kg N hectare-1 year-1 to fields planted in blueberry (which cannot effectively absorb 

nitrate) at average irrigation rates (38 cm year-1), given the high levels of nitrate (mean 10.73 mg 

L-1) found at test wells in the study watershed (Carey 2013). But, nitrate deposited on berry fields 

may be immobilized or denitrified rather than flowing into surface waters, and maximum annual 

theoretical contributions (~520 kg N) from groundwater-irrigated blueberry fields cannot account 

for the observed increase in annual nitrate flux (~25,000 kg N). Models of two neighboring 

creeks predicted that a shift in irrigation sources from surface to groundwater could boost 

summer streamflow, and therefore summer nutrient fluxes (Pruneda et al. 2010), similar to what 

I observed for streamflow and nitrate on upper Kamm Creek. The shift towards groundwater 

irrigation and higher summer stream flows could have diluted phosphate and total phosphorous 

concentrations in upper Kamm Creek, as levels in the Sumas-Blaine Aquifer are generally 

extremely low (Cox and Khale 1999). However, these effects should not have impacted other 

inputs, and therefore fluxes. 
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Data and Analysis Limitations 

Neither conversion to berry fields nor increases in groundwater nitrate inputs offer a clear and 

complete explanation for the increased nitrate fluxes in upper Kamm Creek. Blueberry acreage in 

the lower Nooksack Basin increased roughly four-fold between the sampling periods, but the 

lower Nooksack River has not experienced a similar increase in nitrate flux. Local differences in 

crop nutrient management may help partially explain these distinct responses, as cropping 

practices varied widely among Nooksack tributary watersheds during both the current and 

historic sampling periods. Unfortunately, data on cropping practices at the scale of individual 

fields are incomplete in the historic period; for current crops, the details of total nutrient 

additions, the ratio of mineral to organic forms, timing, and application method are typically 

confidential ‘trade secrets’ not shared among individual growers, or between growers and 

researchers (Lisa DeVetter-Wasko, WSU Extension, personal communication, 2016). Nutrient 

losses from different crops are not thoroughly documented in our region; edge-of-field 

monitoring within upper Kamm Creek’s watershed is non-existent. Further complicating 

comparative evaluations, recommended nutrient management strategies for particular crops have 

evolved between the study periods. These changes have likely reduced average nutrient inputs to 

some crops such as hay and silage corn crops, and modestly increased average nutrient inputs to 

others such as berry crops, based on advances in knowledge leading to increased yields and 

improved crop management. Due to concurrent improvements in fertilization timing and method, 

higher total nutrient application rates for a crop may not lead to increased nutrient inputs to 

waterways (Nichole Embertson, WCD, personal communication, 2018). 

Understanding groundwater inputs to upper Kamm Creek is crucial because they have the 

potential to decouple nitrate fluxes through the creek in both space (Mitchell et al. 2003) and 
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time (Meals et al. 2010) from the impacts of local conservation measures. Unfortunately, 

groundwater inputs were not measured during either the current or historical study, so thorough 

analysis of their nitrate contributions is impossible. The total volume or proportion of irrigation 

water sourced from the Sumas-Blaine aquifer for the study watershed is also poorly documented. 

Integrated sampling of surface water, groundwater, and stable isotopes offers a plausible way to 

differentiate among potential sources and transformations of nitrogen in Kamm Creek (Xue et al. 

2009, Jankowski et al. 2012, Wells et al. 2016, Ji et al. 2017). However, such studies are 

complicated by Kamm Creek’s multiple nitrate sources and by local anomalies in flows and 

concentrations of nitrate in the Sumas-Blaine Aquifer (Mitchell et al. 2003, Xue et al. 2009). 

Comparative analyses between current and historical datasets, particularly those for 

streamflow, have inherent limitations. In this study, a lack of high streamflow events (above 0.4 

m3 s-1) in the current, single-year, dataset limited correlations of current nutrient levels to 

streamflow, compared to the historical dataset. Collections were made fairly regularly every two 

weeks in both datasets, but the historic dataset also includes one sampling date from each of 

three additional high-water sampling periods (Matthews and Vandersypen 1998). Current 

samplings were also intended to capture winter high-water events, but sampling dates were 

chosen based on weather forecasts and did not ultimately capture streamflow levels as high as 

those found in the historical dataset. 

With almost two decades between the current and historical sampling periods, the current 

sampling year could have occurred in a different climatic context from any of the historical 

years.  Global climate change and long-term cycles such as the Pacific Decadal Oscillation 

(PDO), can influence rainfall and temperature and therefore streamflow, crop growth, and 

nutrient utilization (Mantua et al. 1997, Fuhrer 2003, Mantua et al. 2010). However, current 
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minimum and maximum temperatures were within the range of historic data for most months. 

While current summer rainfall was often below the historic range, annual rainfall was extremely 

similar between the study periods (Table A5, Fig. 5). Current nitrate deposition levels in western 

Washington were below the range of historical data, the opposite of trends in upper Kamm 

Creek’s nitrate flux data (Table A6). Ammonia/ammonium deposition appears to be rising in 

both absolute and relative terms, which could impact nitrogen supply and cycling within the 

watershed in the future (Li et al. 2016). However, as of the current study period, increased 

ammonia/ammonium deposition would account for <1% of the observed increase in nitrate flux, 

even if all deposited ammonium-N was exported as nitrate-N. 

Conclusions and Ecological Significance 

My findings present evidence for higher concentrations and fluxes of nitrate and much lower 

concentrations and fluxes of phosphate and total phosphorous on upper Kamm Creek in 2015-16 

compared to 1993-1998. While these data suggest a potential victory for BMP’s in reducing P 

loading, the divergent responses of N and P in upper Kamm Creek suggest that separate factors 

are increasing nitrate export from, and likely therefore inputs to, the watershed. Mechanisms 

underlying these changes are difficult to determine with the data presently available. These 

connections are worth further investigation, because management changes in the watershed of 

Kamm Creek are comparable to those for other agricultural tributaries of the Nooksack River, 

which is an economically, socially and environmentally key resource for local communities. The 

study area provides spawning grounds for ESA-listed runs of Pacific salmon, and the WRIA1 

Salmonid Recovery Plan specifically mentions reducing agricultural nutrient inputs as a way to 

improve salmon habitat on Kamm Creek (Nooksack Indian Tribe 2004).  
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Fluxes of both phosphorous species through the upper and lower Nooksack River 

followed broadly similar trends to those on upper Kamm Creek, decreasing somewhat between 

the sampling periods, though not always significantly, or by the same percentage. Both sections 

of the Nooksack River also displayed significant decreases in annual nitrate flux, counter to what 

was observed on Kamm Creek. Ecological effects on the health of Portage Bay and other 

downstream ecosystems will depend on the complex relationships between nutrient enrichment 

and algal ecology (Biggs 2000, Anderson et al. 2002). Existing research suggests that increased 

overall nutrient fluxes could harm shellfish and salmon through the promotion of harmful algal 

blooms (Anderson et al. 2002, Rabalais 2002, Trainer et al. 2003, Rabotyagov et al. 2014). But, 

issues with fecal coliform levels in Portage Bay remain, despite reduced nutrient inputs from the 

Nooksack River. Aquatic ecosystems regionally and worldwide are of immense conservation and 

economic concern, while the potential for rapid future shifts in agriculture due to economic, 

technological or climatic changes is increasing (Schneider et al. 2011, Kurukulasuriya and 

Rosenthal 2013). Research into how specific agricultural practices and environmental factors 

affect water quality can help farmers feed a growing population while maintaining clean water 

and healthy stream ecosystems.  
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Appendix A: Supplementary Tables and Figures 

 

TABLE A1. Nutrient management guidelines for common crops grown Whatcom County 

(Hart et al. 2006, Kugler 2006, Barney et al. 2007, Hart et al. 2009). Application 

rates are annual averages over the course of the full crop rotation period, grown in 

soils with typical nutrient content. Actual nutrient applications typically occur in 

multiple additions over the course of the year, and the management of individual 

fields may differ substantially due to local conditions and grower preferences. 

 

  

N App. rate 

(kg ha-1) 

P2O5 App. rate 

(kg ha-1) Application methods 

        

Blueberry 106 * Urea (fertigation) 

Caneberry (Raspberry) 62 * Ammonium nitrate 

Hay (Orchardgrass) 336 106.4 Manure 

Pasture (Orchardgrass, etc.) 34 11.2 Manure (via grazing) 

Corn Silage 84     78.4** Manure, amm. nitrate 

 

*Typical soils in northern Whatcom County contain ample phosphorous for blueberry and 

raspberry production. Additional P2O5 (up to 80 kg ha-1) may be added if Bray-Kurtz P1 soil test 

indicate low extractable P (<40 mg L-1). 

** Silage corn fertilized with manure typically does not need applications of mineral phosphate. 

Bray-Kurtz P1 soil tests indicating low extractable P may require the addition of up to 100 kg   

ha-1 additional P2O5.  
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TABLE A2. Analytical methods for determining stream water nutrient concentrations using a 
Unity Scientific Instruments, Inc. SmartChem 200 Discrete Analyzer. The 
ammonia method was switched in May 2016 to limit hazardous waste generation.  

 

  

Nutrient Method Detection limit Upper bound 

Orthophosphate EPA 365.1 0.0041 mg L-1 1 mg L-1 

Total Phosphorous 

EPA 365.1 with alkaline  

persulfate digestion 0.0095 mg L-1 1 mg L-1 

Nitrate-Nitrite EPA 353.2 0.0531 mg L-1 20 mg L-1 

Total Nitrogen 

EPA 353.2 with alkaline  

persulfate digestion  0.0473 mg L-1 20 mg L-1 

Ammonia (Before 5/20/2016) EPA 350.1  0.0734 mg L-1 2 mg L-1 

Ammonia (After 5/21/2016) SmartChem AMM-003-A 0.0601 mg L-1 2 mg L-1 
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TABLE A3. Generalized linear models for Log10 nitrate-N, phosphate-P, and total P 

concentrations, and for streamflow based on combinations of sampling time period 

(current vs. historical; T) and streamflow (continuous; S), with and without 

interaction. Models are listed in order of decreasing relative parsimony, with 

increases in Akaike Information Criterion corrected for small sample sizes (AICc) 

scores denoted. P-values for individual predictive variables and intercept are listed, 

with statistical significance indicated as: * = [0.05, 0.01], ** = [ 0.001, 0.0001], 

*** = [0.0001, 0.0]. N = 159 for NO3
-, N = 160 for PO4, N = 157 for TP, and        

N = 161 for streamflow. 

∆ AICc Nitrate T S T x S Intercept 

  

[NO3] ~ Period + Streamflow  

(No interaction) *** ***   *** 

2.1 

[NO3] ~ Period * Streamflow 

(Interaction) 0.16 0.19 0.968 *** 

45.5 [NO3] ~ Streamflow   ***   *** 

71.2 [NO3] ~ Period ***     *** 

            

∆ AICc Phosphate T S T x S Intercept 

  

[PO4] ~ Period + Streamflow  

(No interaction) *** ***   *** 

2.0 

[PO4] ~ Period * Streamflow 

(Interaction) 0.627 0.317 0.732 0.415 

13.9 [PO4] ~ Streamflow   ***   *** 

25.5 [PO4] ~ Period **     0.078 

            

∆ AICc Total Phosphorous T S T x S Intercept 

  

[TP] ~ Period + Streamflow 

(No interaction) ** ***   ** 

2.0 

[TP] ~ Period * Streamflow 

(Interaction) 0.286 0.585 0.696 0.178 

8.6 [TP] ~ Streamflow   ***   0.122 

64.2 [TP] ~ Period **     *** 

           

∆ AICc Streamflow T       

  Streamflow ~ Period 0.884       
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TABLE A4. Equations and coefficients of determination for the linear regression best fit lines 

for nitrate-N, phosphate-P, and total P, as a function of streamflow (S) on upper 

Kamm Creek. Equations and R2 values shown for regressions in Fig. 4 of both 

historical (N = 133) and current (N=27) data.  

    Historic Current 

Nitrate-N Best fit line: Log10[N] = -0.65 x S + 0.93 Log10[N] = -0.62 x S + 1.05 

  R2 = 0.628 0.106 

        

Phosphate-P Best fit line: [P] = 0.19 x S + 0.009 [P] = 0.08 x S - 0.006 

  R2 = 0.357 0.017 

        

Total P Best fit line: [TP] = 0.477 x S - 0.0001 [TP] = 0.488 x S - 0.046 

  R2 = 0.5 0.11 
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TABLE A5 Ranges for 1993-1998 monthly average minimum and maximum temperature data 

(current monthly averages in parentheses) for the geographic center of the upper 

Kamm Creek study area (48.97°, -122.39°). Data are PRISM projections acquired 

from the Oregon State University NW Alliance for Computational Science & 

Engineering, Corvallis, OR (http://prism.oregonstate.edu/explorer/). Data 

accessed 11/2017. 

 

  Min. Temp. (°C) Max. Temp. (°C)  

January  -0.1 - 3.6          (0.8)    5.1 - 9.5           (7.4)  

February   0.0 - 3.9          (3.8)   6.8 - 10.8       (11.1)  

March   2.5 - 3.4          (4.7) 10.1 - 13.1       (12.9)  

April   4.8 - 6.8          (6.5) 14.7 - 15.6       (18.2)  

May   7.8 - 10.2        (8.4) 16.0 - 20.6       (20.0)  

June 10.1 - 11.8      (10.5) 20.0 - 22.1       (21.8)  

July 12.0 - 13.3      (12.4) 20.9 - 25.1       (23.7)  

August 11.3 - 13.1      (11.5) 22.2 - 26.0       (26.2)  

September   8.1 - 10.9        (9.0) 19.3 - 23.5       (20.7)  

October   5.9 - 6.8        (10.0) 14.2 - 16.5       (21.2)  

November  -0.3 - 4.3          (1.7)   7.7 - 12.2         (9.4)  

December  -1.5 - 1.3          (1.9)     4.1 - 7.9          (7.3)  
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TABLE A6  Nitrate deposition data acquired from the US EPA Clean Air Status and Trends 

Network (CASTNET) (https://java.epa.gov/castnet/clearsession.do). Data are for 

the North Cascade National Park, WA monitoring station. Data accessed 11/2017. 

Year NH4-N (kg ha-1) NO3-N (kg ha-1) 

1993 0.6 1.2 

1994 0.6 1.4 

1995 0.6 1.2 

1996 0.9 1.6 

1997 0.6 1.8 

1998 0.3 1.1 

   

2015 0.6 0.9 

2016 1.4 1.0 
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Appendix B: Watershed nutrient modeling using APEX 

APEX introduction 

This appendix documents the process of modeling the upper Kamm Creek watershed, using the 

Agricultural Policy/Environmental eXtender (APEX) model1 (Williams et al. 2006). The APEX 

model presents an opportunity to predict the water quality outcomes of both general land 

management changes in a basin, and specific restoration measures such as riparian buffers. The 

end goal is to develop a fully parameterized and well-calibrated version of the model for our 

region, which can accurately predict hydrologic and nutrient fluxes in small watersheds across 

WRIA 1. APEX could then help target riparian restoration efforts by simulating the relative 

effectiveness of potential sites for riparian buffers or other BMP’s.  

APEX is suited for prioritizing and targeting riparian restoration and other management 

actions, as it can simulate complete watersheds composed of multiple heterogeneous subareas, 

while remaining sensitive to field-scale actions such as buffer strip installation (Gassman et al. 

2010, Williams et al. 2010). APEX has been used in the Mediterranean region of Europe, as well 

as in the Eastern and Southern U.S., to determine the best management regimes for reducing 

nutrient pollution, to estimate the effect of buffer strip widths and soil types on nutrient losses, 

and to determine which locations will provide the largest reduction in nutrient flux for a given 

management action (Williams et al. 2006, Tuppad et al. 2010, Cavero et al. 2012, Plotkin et al. 

2012, Francesconi et al. 2014, Van Liew et al. 2017). APEX’s flexibility regarding spatial scale 

and management inputs make it ideal for predicting the impact of BMP implementation or other 

land management shifts on the farm-to-small-watershed scale.  

                                                           
1 Developed by the US Department of Agriculture – Agricultural Research Service (USDA-ARS) in Temple, Texas 



43 
 

While APEX is generally successful in predicting nutrient fluxes, sediment yield and 

streamflow for regions with established environmental and management parameters, these 

parameters must be updated before APEX can be applied in new regions, including northwest 

Washington (Moriasi et al. 2014). Suites of parameters relating to crop growth and agricultural 

management may require substantial new research before they can be accurately input into 

APEX, and existing data sources (e.g., soil properties) require careful evaluation to achieve 

optimal model results (Monks 2016). Additionally, the characteristics of each individual 

watershed modeled by APEX must be entered carefully in order for APEX to accurately 

represent streamflow and nutrient cycling dynamics within that system. The following guide is 

designed to help researchers successfully apply APEX and its supporting tools to more 

effectively delineate, parameterize, and calibrate new watersheds, using the example watershed 

of upper Kamm Creek. Its ultimate goal is to support APEX’s use in guiding local environmental 

policy and prioritizing riparian restoration projects throughout Whatcom County and northwest 

Washington. However, using the data currently available for upper Kamm Creek, streamflow 

and nutrient flux calibrations did not produced satisfactory fits to measured data, and neither 

model validation nor its use for prioritization were attempted in the study described below. This 

guide should therefore be treated as a living document, and updated to reflect improved 

parameterization or calibration techniques, new supporting tools, and updates to the model itself.  

Overview of APEX Modeling and Data Requirements 

Watersheds in APEX are represented by one to many subareas, each with its own associated data 

describing soil type, specific geography, vegetation and land management (Gassman et al. 2010, 

Wang et al. 2011). By definition, each subarea must be homogenous for these variables, but the 

watershed overall can have many different soils, crops, etc. Weather data is generally used for 
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the entire watershed but can be specified for individual subareas if necessary (e.g., for a very 

large watershed). Water accumulates in subareas via precipitation and irrigation, and water and 

associated nutrient fluxes move through the watershed based on user-defined routing 

information. Each watershed has an outlet, which represents movement of water and nutrients 

out of the watershed area. The model simulates biological and physical processes within each 

subarea, and eventually the watershed overall, based on a set of manually controlled settings 

(‘control files’), such as CO2 concentration and number of years under cultivation. The actual 

model processes relate component data to each other using a series of equations, most with 

adjustable coefficient or limit parameters (‘PARM files’). Accurate modeling in APEX therefore 

requires three general steps, each requiring separate data: 

Delineation – Establishes watershed boundaries and divides the whole watershed into subareas 

based on hydrology, soil type, vegetation, and management. This step also routes water and 

nutrient fluxes between subareas, through the watershed to the outlet. Delineation requires 

accurate, fine-scale data describing elevation, notable waterways, soil types, vegetation or crop 

type, and agricultural management within the watershed.   

Parameterization – Populates subarea and control file variables with meaningful data. For soils, 

each soil type requires data on the number of layers, and the depth, hydraulic conductivity and 

sand/silt/clay percentages, etc. for each. Crops and other vegetation types require both data on 

biological characteristics such as maximum height and rooting depth, radiation use efficiency, 

etc., but also management data describing irrigation, fertilization, harvest and plowing 

techniques, etc. Many of these processes may require their own parameterization step (e.g., 

percentage of certain nutrients in cattle manure). APEX also requires accurate weather, nitrate 

deposition, CO2 concentration, and other data describing the entire watershed.  
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Calibration – Model outputs, e.g., nitrate flux through the watershed outlet, are compared against 

equivalent field data, to determine the optimal PARM values for the modeled watershed (Wang 

et al. 2011, Moriasi et al. 2012, Wang et al. 2012)2. Calibration is an iterative process where one 

or more model parameters are repeatedly tweaked, and the fits of the resultant output data 

compared to deduce which values produce the most accurate predictions. Calibration is also 

iterative in the sense that different categories of model outputs are best calibrated sequentially, to 

reduce the possibility of getting good results for one output variable (e.g., nutrient flux) due to 

synergistic errors in other outputs (e.g., crop growth and streamflow). Each stage of calibration 

requires accurate field data for comparison with model outputs, including crop yields per unit 

area, and measurements or estimates of runoff, streamflow, transpiration, and N and P flux on a 

consistent timestep. A different subset of these field data should be used for a final validation to 

assess the predictive capabilities of the model, but validation is not discussed in this appendix.  

APEX Mechanistic Overview and Description of Supporting Tools  

The basic APEX model consists of a series of text-based files containing the previously 

described data, which are related to each other using an executable file coded in FORTRAN 

(Gassman et al. 2010, Williams et al. 2006). Depending on which outputs are desired, the model 

can be set to generate several other text files representing annual, monthly or daily outputs of 

water, nutrients, crop yields, etc. Different files have different extensions, but all files are located 

within the same folder, and are generally adjustable manually using a standard text editor such as 

Notepad. For a complete description see official APEX documentation and user guides.  

                                                           
2 APEX can, in theory, model a delineated watershed without extensive calibration, using best professional 

judgment to parameterize the model inputs and set PARM values. However, a thorough calibration for all output 

variables of interest is recommended for best results, as supported by a recent study (Van Liew et al. 2017).  
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Due to the difficulties involved in manually manipulating the hundreds of relevant 

variables in the APEX model using a text-based format, multiple supporting tools were 

developed to simplify the delineation, parameterization, and calibration processes for users. 

These include a windows-based graphic interface (WinAPEX - Magre et al. 2006), a tool for 

converting spreadsheet datasets to APEX subareas format (SUB_Builder), a program for 

converting weather data to APEX’s .DLY format (Weather Converter Tool), a GIS-based 

interface (ArcAPEX - Tuppad et al. 2009), an Excel spreadsheet-based data editor (APPX) and 

an automated sensitivity analysis and calibration/validation tool (APEX-CUTE - Wang et al. 

2014). These tools are used to modify the input data files used by APEX, and typically install to 

their own folder with their own input files and executables. While version compatibility can be 

an issue, the different interfaces used to modify parameter values ultimately do not change input 

data format, or the nature of the model itself; files generated or modified using any supporting 

tool can be transferred between all supporting tools and the base model. 
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Methods and Results 

The following section details a protocol for using APEX to model crop growth, streamflow and 

nutrient fluxes within the watershed of upper Kamm Creek, in Whatcom County, WA. The 

delineation, parameterization, and calibration steps listed in the previous section are explored in 

detail below, along with preliminary calibration results and a brief treatment of errors and 

difficulties encountered during each step. These methods are described in the context of Kamm 

Creek but are applicable to other small agricultural watersheds in western Washington State.  

Delineation 

To delineate the upper Kamm Creek watershed, I first compiled GIS data as outlined in Table 

B1. After enabling both Spatial Analyst and ArcAPEX in ArcGIS, I located the general area of 

my watershed using the imagery data and created a polygon shapefile that covered 

approximately twice the height and width of my anticipated basin (‘mask’ in ArcAPEX). I also 

used hydrology and imagery layers to create a basic polyline shapefile tracing the main path of 

the creek (‘burn-in’ in ArcAPEX). To establish a base digital elevation map (DEM) layer, I 

combined LiDAR data (high resolution, but incomplete coverage) with a traditional 3m DEM. 

First, I reduced the grid cell size of the 3m DEM to the LIDAR cell size (typically 2m x 2m) 

using bilinear interpolation. I then mosaiced the LIDAR and interpolated 3m DEM, with both  

layers as input rasters (using the ‘last’ rule and with LIDAR the second input), and the 

destination raster as a copy of the LIDAR data.  

I used my combined DEM, watershed area mask layer and upper Kamm Creek burn-in 

layer as inputs to the ArcAPEX interface. The process of creating an accurate steam network was 

iterative and required extensive edits, since ArcAPEX only delineates on the basis of topography 

and often ignored ditches and other forms of stream rerouting. I used my initial stream burn-in
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TABLE B1: Watershed delineation GIS data for APEX, with data type, source and download information. Specific data sources or 

links may be out of date or otherwise unsuitable for future delineations, however the general categories and data 

types will still apply. Point source and dairy data were acquired successfully, but not used in this particular watershed 

modeling project. Select UTM, instead of Lat./Long when downloading DEM’s and other data from NRCS or similar 

data clearinghouses.   

 

 

Data category Database type Specific source External Link (https://) 

Topography (3m DEM) Raster USDA/NRCS Geospatial Data Gateway gdg.sc.egov.usda.gov/GDGOrder.aspx 

Topography (LiDAR) Raster WA DNR Washington Lidar Portal http://lidarportal.dnr.wa.gov/ 

Aerial Photography NAIP mosaic raster USDA/NRCS Geospatial Data Gateway gdg.sc.egov.usda.gov/GDGOrder.aspx 

Soils SSURGO raster layer USDA/NRCS Web Soil Survey websoilsurvey.sc.egov.usda.gov/App/HomePage.htm 

Field Boundary/Crop Type Shapefile  WSDA Ag. Land Use web-page agr.wa.gov/PestFert/natresources/AgLandUse.aspx 

Cover Type Satellite imagery as 30m raster USDA/NRCS Geospatial Data Gateway gdg.sc.egov.usda.gov/GDGOrder.aspx 

Waterways Shapefile Obtained from Andrew Phay at WCD  

Drainage Districts Shapefile Obtained from Andrew Phay at WCD  

Point Sources Online data viewer EPA N & P Pollution Data Access Tool gispub2.epa.gov/npdat/ 

Dairies Pointfile w/ stocking numbers WA Geospatial Portal geography.wa.gov/data-products-services/data 
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shapefile to generate a watershed (Figure B1), deleting all the potential outlet points generated 

by ArcAPEX, and instead creating and selecting a custom outlet at the location of my sampling 

point. I then exported the generated reach network to a new shapefile, and edited it to reflect 

visual stream pathing, drainage district boundaries, and other hydrographic data. I repeated this 

process multiple times, using the most recent edited shapefile as the new burn-in stream path 

each time, and adjusting the drainage field size to produce the most accurate stream network 

(Figure B1). For the upper Kamm Creek watershed, a drainage field size of 3-10 hectares 

performed best. Eventually, I produced a stream reach network that resembled the real upper 

Kamm Creek watershed, with separate hydrologic sub-basins (Figure B1), and longest paths of 

water flow for each, automatically generated by ArcAPEX.   

The sub-basins generated using ArcAPEX were not homogenous for soil type and 

cropping system, requiring further manipulation outside of ArcAPEX’s scope. After exporting 

and saving my final reach, longest path, basin and sub-basin layers as separate shapefiles, I 

manually divided the original, hydrologically-based sub-basins into true subareas based on their 

intersection with soil and cropping layers (Figure B2). In the delineation process, I attempted to 

maximize subarea homogeneity while minimizing the number of final subareas. In some cases 

where adjacent soil types had extremely similar parameter values, I did not create separate 

subareas for each, but rather retained the original subarea boundary and defined its soil type as 

whichever was most dominant. As APEX subareas contain a variable for the fraction of 

impermeable urban area (URBF) 3, I also did not create separate subareas for small areas of 

development within larger homogenous areas of a single crop. Small inclusions of one crop or 

soil in a subarea dominated by another were generally ignored, particularly if there was a  

                                                           
3 Specific parameter names used in APEX are italicized. 
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Figure B1. Watershed setup using ArcGIS and ArcAPEX. Panel ‘a’ shows the initial ‘burn-

in’ stream path and the location of my sampling point. Panel ‘b’ shows the 

generated watershed boundary (in this case identical to the final boundary, which 

will not typically be the case) and the selected watershed outlet. Panel ‘c’ shows 

the updated stream network shapefile used to generate the final watershed.  Panel 

‘d’ shows the final watershed with generated sub-basins.
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Figure B2. Subarea setup using ArcGIS. Panel ‘a’ shows the generated watershed and sub-

basins, underlain by a soil-type layer. Panel ‘b’ shows the same but with an 

additional underlay of a crop-type layer. Panel ‘c’ shows sub-basins divided into 

true subareas which contain (to the extent possible) a single combination of soil 

and crop type. Panel ‘d’ shows the final watershed and subareas, with stream 

routing reaches and connecting reaches displayed.
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reciprocal pattern in an adjacent subarea. The final number of subareas (162) was much higher 

than for a previous delineation of a Kamm Creek watershed by Monks (2016), which resulted in 

36 subareas, albeit for a 41% smaller watershed than the current study area. Previous studies in 

other regions (Tuppad et al. 2009, Wang et al. 2009, Tuppad et al. 2010) have used similar or 

larger numbers of subareas to describe modeled watersheds, but with much larger subarea sizes 

(mean 12.3 – 2800 Ha) compared to those delineated in this study (mean 2.4 Ha).  

After establishing subareas, I split and edited the routing reaches and longest paths so that 

there was one, and only one, of each per subarea (Figure B2). Longest path and reach segments 

were added where necessary and adjusted to make sense for the new subareas. Each segment was 

constructed completely and exactly within its subarea, to comply with APEX routing 

requirements. In extreme subareas (those that generate stream reaches, but do not receive water 

from any, i.e., headwater subareas), the reach and longest path segments were identical. Reach 

and longest path routing was also somewhat subjective, as my DEM did not clearly display all 

possible channels. In these situations, I relied on imagery data and my best judgment to establish 

routing, generally trying to maintain an even distance from each neighboring stream reach. 

Additionally, some subareas contained two or more stream routing reach sections, an issue I 

skirted by creating a new layer, ‘connecting reaches,’ containing the shorter or less significant 

(those derived from fewer subareas) reaches.  

Once routing is established for the watershed in GIS, the attributes of each subarea’s 

reach and longest flow path must be described in terms of the relevant APEX parameters. I first 

calculated the length of all reach and longest path segments (RCHL and CHL, respectively), and 

the coordinates for their start and end points. I exported these start and end points as a new 

shapefile and used the ‘zonal statistics to table’ tool to find their elevations, after making sure 
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that they were in the proper positions. The elevations of some start and end points (e.g., those 

underneath an elevated road) required manual adjustment. I also assumed an artificial drop of 

0.01m to preserve routing in the case of drainage ditches and other unnatural features. I then 

divided the difference in elevation by the segment length to get routing reach slope and channel 

slope (RCHS and CHS) for each. For the other channel variables, reach top and bottom widths 

(RCTW and RCBW), and reach and longest path segment depths (RCHD and CHD), I used the 

ArcAPEX-generated subbasin values, copied for each subarea that was part of the original 

subbasin. Because subareas were small, I assumed equal top and bottom widths for each reach.   

I also transferred values for parameters describing the subareas themselves to APEX. 

Using the field calculator function of ArcGIS, I extracted the area of each subarea in hectares 

(WSA4), and also its centroid coordinates (YCT and XCT). After numbering (SUB or IE, 

depending on interface) and labeling the subareas according to their latitude5, I manually 

recorded whether each subarea was a source (received no water other from subareas) or 

downstream subarea, and the other subarea into which each flowed (IO)6. With routing 

established, I used ArcGIS’s ‘join data from another layer based on spatial location’ ability in 

‘joins and relates’ to match each routing reach and longest path with the proper subarea, after 

editing those shapefiles to ensure they were fully within subarea borders. To extract values for 

soil type (ISOL) and the combination of crop and management type (IOPS)7 within each subarea, 

                                                           
4 WSA in the subarea file is NOT the same as WSAha listed in the .RCH file output used for calibration and analysis. 

WSAha in the .RCH file is the sum area of all subareas feeding into a reach, plus the subarea containing the reach. 

For extreme subareas WSA and WSAha are the same, and the WSAha value for the outlet should equal the total 

watershed area. 
5 The primary axis of upper Kamm Creek is North-South, but another numbering system may make more sense in 

other watersheds where the primary axis is East-West, etc.   
6 The subarea that drains to the watershed outlet has an IO value of 0. 
7 Note that the values extracted are based on the attribute tables of these layers, and must be translated to the 

relevant APEX parameters prior to conversion to the .SUB file used in APEX.  
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I converted the crop type shapefile to raster format, and used the ‘zonal statistics as table’ 

extraction method to get the ‘majority’ soil cover and ‘median’ crop type.  

I extracted or estimated values for additional subarea variables (Table B2) and organized 

all variable values according to SUB in spreadsheet format for input to the APEX model. I also 

formatted spreadsheet cells to reflect the inability of the text based .DAT and .SUB files to allow 

more than four decimal places for any parameter value. The resulting ‘SUB BUILDER’ 

spreadsheet was organized in the same format as the example .DAT file provided with the 

‘SUB_Builder.exe’ program. After preliminary error checking, a copy of the ‘SUB BUILDER’ 

spreadsheet was saved as a Unicode text file (.txt) and copied into a blank copy of an existing 

.DAT file. I then used the resulting Kamm.DAT file to generate a new .SUB file for the upper 

Kamm Creek watershed, via the method described by the included ‘ReadMe.txt’ file.  

Difficulties – Delineation proceeded with relatively few issues after obtaining the necessary data 

and establishing a proper protocol. Most problems encountered related to flow routing through 

the watershed, which required manual inputs that were not always obvious due to the area’s 

limited topographic relief and the presence of a several constructed drainage channels. This 

delineation process also resulted in a large number of subareas, which contributed to model 

errors during calibration due to the large size of output files. But, the number of final subareas is 

more a function of the actual landscape, and user tolerance for soil and crop heterogeneity in 

subareas, than it is of this delineation protocol. Finally, a number of the component processes 

described above, particularly establishing subarea boundaries and modifying routing and longest 

reaches to reflect these, were highly tedious, and as such, prone to human error. Future users 

should investigate automating such processes. 
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TABLE B2: Subarea variables used in the upper Kamm Creek watershed APEX delineation. ‘Column’ references the organization 

of the ‘SUB BUILDER’ spreadsheet and .DAT file. Other subarea variables were left at default values during this 

delineation, but should be considered for future efforts. 

 

 

Column Abbreviation Definition Method 

1 SUB or IE Subarea/entering subarea Extracted from GIS 

2 IO Receiving subarea Manually input based on routing 

3 ISOL Soil # from the SOIL.DAT file Extracted from GIS 

4 IOPS OPSC # from OPSC.DAT Extracted from GIS 

10 WITH Daily weather station # Identical for all subareas, value from WPM.DAT 

17 YCT  Latitude Extracted from GIS 

18 XCT   Longitude Extracted from GIS 

19 AZM   Azimuth of land slope Extracted from GIS 

20 SAEL Elevation Extracted from GIS 

24 WSA  Subarea area in Ha Extracted from GIS 

25 CHL   Channel length (km)  Extracted from GIS 

26 CHD Channel depth (m) ArcAPEX generated 

27 CHS Channel slope (m/m)  Extracted from GIS 

28 CHN Manning's N for channel Estimated based on APEX guidelines 

29 STP Average upland slope Extracted from GIS 

30 SLPG Ave. upland slope length (m) Estimated from GIS 

31 UPN   Manning's N for upland Estimated based on APEX guidelines 

33 URBF   Urban fraction of subarea Extracted from GIS 

34 RCHL  Length of routing reach (km) Extracted from GIS 

35 RCHD   Routing reach depth (m)  ArcAPEX generated 

36 RCBW   Bottom width of routing reach (m)  Extracted from GIS 

37 RCTW   Top width of routing reach (m)  Extracted from GIS 

38 RCHS   Routing reach slope (m/m)  Extracted from GIS 

69 IRR  Irrigation code Manually input based on crop type 

84 EFI  Runoff Vol / Vol. of irrigation water applied Estimated based on APEX guidelines 



56 
 

Parameterization 

Unlike delineation, which ultimately created and adjusted only one .SUB file, parameterization 

involved modifying many different APEX input files, which are outlined in Table B3. I used the 

WinAPEX ‘APEXprog’ folder as the location for my APEX input files, using both the 

WinAPEX graphic interface and the APPX spreadsheet to modify parameter values. Working on 

the different categories of parameters in the order listed below, I tested whether each 

modification or addition would run successfully in APEX (using default settings, crops, etc. 

where necessary) before moving on. This streamlined my file organization and prevented 

avoidable errors.  

Soils – Settings for soils in the upper Kamm Creek watershed were based off of parameter values 

previously established for APEX (version .0806) by Monks (2016), using the SSURGO dataset. 

These values were translated to the proper format for the current APEX version .1501, 

and two soils, Tromp loam and Shalcar drained muck, were modified slightly (increased clay 

content and bulk density, respectively) based on suggestions from a model developer (Jaehak 

Jeong, Texas A&M University, personal communication, 2018); otherwise soil attributes were 

unchanged. See Table B3 for further information. 

Weather – APEX uses ‘weather stations’ to group data on wind speed, precipitation, and 

minimum and maximum temperatures for an area. Weather station and associated files were 

constructed using the APEX Weather Converter Tool. Daily precipitation and temperature data 

for the upper Kamm Creek watershed from 1981-2017 were obtained from PRISM projections 

(Oregon State University NW Alliance for Computational Science & Engineering, Corvallis, 

OR). I formatted these data as a comma-delimited spreadsheet file and combined it with similar  

data from 1970-1980, sourced from a previous model build by Monks (2016). I used the weather 
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TABLE B3: Categories of data used in the APEX model, and file types and general sources for each. File extensions preceded by    

“  ” indicate the file can be renamed as necessary, or there can be many separate files for each category. For example, each soil type is 

represented by its own .SOL file, which are listed and organized using the SOLC.LIST file. 

  

                                                           
8 Data acquired from the Oregon State University NW Alliance for Computational Science & Engineering, Corvallis, OR 

(http://prism.oregonstate.edu/explorer/). Data accessed 11/2017, for the center of the upper Kamm Creek study area (48.97°, -122.39°). 

Data Category Associated Files Comments 

Soils/Soil List " ".SOL/SOLC.LIST Based on SSURGO values, generally unmodified 

Weather/Wind 
WDLST.DAT & 

WPM1.LIST/WIND.LIST 

Weather data (.DLY) are from PRISM projections8, wind 

data (.WND) are from Anacortes, WA  

Crop Growth CROP.DAT Heavily modified based on literature and field studies 

Land 

Management/Rotations 
" ".OPC/OPSC.LIST 

Heavily modified based on literature and advice from 

various individuals 

Fertilizers FERT.DAT Unmodified 

Tillage & Harvest 

Operations 
TILL.DAT 

Generally unmodified, but two operations added for 

blueberry and raspberry pruning by Monks (2016). 

Pesticides PEST.DAT Unmodified, not used in watershed simulation 

Subareas " ".SUB See previous section on delineation 

General Watershed " ".SIT 
General watershed values derived via methods similar to 

those for individual subareas 

Control File APEXCONT.DAT Modified for increased atmospheric CO2 concentration 

(390ppm) and irrigation water nitrate concentration (8ppm) 

Dimensions File APEXDIM.DAT 
Increased maximum number of subareas (to 250) and 

maximum number of years in crop rotation to 80 years) 



58 
 

tool to convert this .CSV to APEX’s .DLY format, and then generated a new weather station 

with the ‘26.WND’ file (describing monthly average wind speed for Anacortes, WA9, the closest 

previously-formatted wind dataset available) selected as the wind station. 

Crop Growth – Crop growth is described by a large number of parameters in APEX, and 

accurate parameterization is critical for generating proper crop yields, water uptake, and nutrient 

uptake; APEX technical documentation describes these variables in detail. Initial crop parameter 

values were imported from the APEX database, but were replaced where possible by parameter 

values selected from academic publications, or extension agency guides (Table B4). Crop 

parameter values were entered, and later edited, via the APPX spreadsheet editor. 

Land Management – I input and modified management schedules for crops using the WinAPEX 

interface, which was more user-friendly than text- or spreadsheet-based editing methods, given 

the highly complicated management plans for most crops in the watershed. Planting, tillage, 

harvest, fertilization, irrigation, and other management actions were all considered, except the 

application of pesticides, which are not the focus of this project. Management plans for each crop 

were based on a combination of sources, including published scientific literature, presentations, 

extension agency nutrient management guidelines, and advice from local experts (Table B4). All 

aspects of crop management can and do vary among fields and years, so final settings were 

approximations of an ‘average’ management plan for a crop in the upper Kamm Creek  

watershed. I worked within the WinAPEX graphic user interface to establish basic management 

settings, as it provided an easy way to select specific operations. Later, modifying large numbers  

of operations (e.g., the volumes of irrigation applied on different days) was quicker using the 

WinAPEX Access database directly, or via APPX. I established all rotations using the  

                                                           
9 Future researchers should consider using wind data from a closer source (.e.g., Bellingham airport) to create a new 

.WND file, updating the ‘WND.DAT’ file accordingly to reflect the addition of a new wind station.   
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TABLE B4: Sources for crop and management data used to parameterize and calibrate the 

APEX model for Northwest Washington. All parameters were initially copied 

from either model defaults or values established by Monks (2016). Values for 

harvest index (HI) and Leaf Area Index (LAI) (DMLA, DLAI, DLAP1, and 

DLAP2) for blueberry and raspberry crops were based on unpublished data 

collected by Monks and Bridger Cohan (2015). Local estimated crop yields 

(YLDG and YLDF) and biomass (BIOM) used for calibration were based on data 

from the United States Department of Agriculture - National Agricultural 

Statistics Service (USDA-NASS), in addition to the other sources listed below. 

Raspberry: 

Carew et al. 2000, Rempel et al. 2004, Strik 2005, Hart et al. 2006a, Strik and Bryla 2015 

 
Blueberry: 

Strik and Buller 2005, Hart et al. 2006b, Bryla et al. 2011, Bryla et al. 2012,                          

Bryla and Vargas 2012, Chuck Timblin, WCD, personal communication, 2015,  

Lisa Wasko-DeVetter, WSU Extension, personal communication, 2016 

 
Pasture, Hay and Fallow (Orchardgrass): 

Hannaway et al. 1999, Chaney and Fransen 2002, Kugler 2006, Bush et al. 2012, 

Steven Fransen, WSA IAREC, personal communication, 2015, 

Chris Benedict, WSU Extension, personal communication, 2016, 

Chuck Timblin, WCD, personal communication, 2017 

 
Corn silage: 

Hart et al. 2009, Chris Benedict, WSU Extension, personal communication, 2016 

 
Forest: 

Grier et al. 1981, Ares et al. 2007, Hudiburg et al. 2009, Devine et al. 2013, Raymond 

and McKenzie 2013, Belart 2016 
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WinAPEX interface, with rotations for each species representing the most common cropping 

cycles found in the watershed, as determined using the sources in Table B4. As I did not have 

continuous cropping type data, I set up rotations to run for the full 48-year model length, so that 

the crop of interest was present (and, in the case of blueberry and raspberry, at full maturity) 

during the growing seasons of my calibration period, 2016-2017.  

Difficulties – The primary difficulty associated with parameterization was in locating suitable, 

regionally-specific resources on which to base parameter values. Translating information from 

available literature (e.g., a grower’s guide describing desired leaf N-content) into specific APEX 

parameters (e.g., BN2 – N content of a particular crop at 50% maturity) was frequently 

convoluted as well. Even complete, standardized datasets such as the SSURGO soils database 

required substantial effort to properly import to APEX (Monks 2016). Management practices for 

particular crops are not standardized among growers, and specific management practices are  

generally regarded as ‘trade secrets’ by individual growers, and as such are treated as 

confidential information. Entering complicated management schedules into APEX is also highly 

tedious, which increases the potential for human error. To simplify both parameterization and 

analysis of results, I set the APEX management files for a particular crop as an initial estimate 

for our region, which can be updated when and where more specific data is available. A more 

technical issue was that APEX program executable files within each supporting tool were not 

always identical, and it proved important to check version compatibility. Thorough review of all 

parameters, of which there are hundreds, is essential to avoiding model errors, as described in the 

‘Streamflow and Nutrient Flux Calibration’ section of this appendix.  
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Crop Calibration 

After establishing baseline values for all model input parameters, I proceeded with crop 

calibration by manually adjusting crop and management parameters to produce crop yield or 

biomass values that fell within the expected range for the watershed. Field-specific crop and 

management parameters were all uncertain to varying degrees and were therefore subject to 

modification during the calibration process. Stable and well-documented parameters were 

modified only slightly, if at all, from the values set during parameterization, while poorly-

researched or unparameterized variables were modified more extensively. I paid special attention 

to the output variables of grain or forage yield (YLDG or YLDF), crop biomass (BIOM) and 

water, nitrogen, phosphorus, and temperature stress days (WS, NS, PS, TS) in the annual subarea 

crop yield tab of the WinApexOut.MDB Access database (“ “.ACY file). The stress variables 

were particularly important for informing crop calibration, as heavily stressed crops would not 

produce adequate yields. Even a small number of phosphorous stress days would cause large 

decreases in biomass and yield, while most crops were much less sensitive to nitrogen stress 

days, and moderately sensitive to temperature and water stress days. Other difficulties were crop-

specific and are described below as part of individual calibration procedures for each crop type.  

I modeled each crop as part of a locally common rotation, using the different soil types 

on which it was grown in the upper Kamm Creek watershed. I calibrated crops using a two to 

seven subarea trial watershed, with each subarea differing in soil type but otherwise identical. 

These subareas were all one hectare in size, with good infiltration. To limit potential transfers of 

water or nutrients among subareas, I set routing so that the subareas containing the crop of 

interest all drained into one subarea set to fallow management, which then drained to the outlet. I 

then compared the mean and range of modeled yield or biomass values to values derived from 
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grower’s guides and estimates by local experts (Table B4). I averaged yields over multiple years 

during or close to the calibration period depending on the particular species, and the maturity of 

perennial crops. Successfully calibrated crops produced suitable yields for all soil types. Specific 

processes for the eight management categories in the Kamm Creek model are described below.  

Raspberry – Basic parameter settings for raspberry, specifically the ‘Meeker’ variety commonly 

grown in Whatcom County, were previously established by Monks (2016). Raspberry was grown 

as a perennial crop in APEX (IDC = 6), with a seven-year planting cycle. A tillage operation was 

also entered in November of year ‘0’. Yields for calibration were averaged from the final five 

years of the planting cycle, when the plants were fully mature. Parameters for raspberry required 

relatively minor adjustments, however rotations involving more than one cycle of raspberry were 

prone to errors, the cause of which was not determined. A locally common rotation that modeled 

successfully was one year of fallow, followed by seven years each of raspberry, pasture, and 

raspberry. Raspberry was extremely sensitive to phosphorous deficiencies and required small 

additions to grow and produce normally on some soils, which was in line with literature 

recommendations. As with several other crops, modeled yields for raspberry were typically low 

for the first several rotations, but stabilized several rotation cycles prior to the calibration period.  

Blueberry – The ‘Duke’ variety of highbush blueberry was selected for modeling, as it is the 

most popular variety grown in Whatcom County. Monks (2016) previously simulated blueberry 

as a deciduous tree cop (IDC = 8), however in the current version of APEX, blueberries grown as 

tree crops did not regenerate well after harvest, leading to continually decreasing biomass and 

yield during the 15-year planting cycle. I therefore chose to model blueberry as three different 

perennial (IDC = 6) crop types in APEX, with slightly modified parameters and management 

settings to represent newly-planted, establishing, and mature blueberry plants. I simulated these 
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in succession (two years of new, three years of immature, and 10 years of mature plants), 

following one year of fallow. Yields for calibration were averaged from the final seven years of 

the most current planting cycle, when plants were fully mature. Calibration produced a suitable 

growth curve, with minimal jumps in modeled yield and biomass among blueberry crop types.  

Forest – I simulated forested subareas in the model using a combination of three crops grown 

concurrently: An evergreen tree (IDC = 7, HMX = 60m), a deciduous shrub (IDC = 8, HMX = 

1.5m), and the ‘fallow’ variant of orchardgrass (described below). For all soil types modeled, the 

evergreen tree accounted for virtually all of the final biomass. For calibration, I used the total 

biomass from all species from only the last year of the model run, which represented the 

maximum modeled biomass. The forest ‘crop’ type was not subject to any management actions, 

and was allowed to grow indefinitely. No rotation was constructed, and ‘seed’ weight for the 

evergreen species was set at APEX maximum limit (SDW = 99999 kg ha-1) to ‘jump-start’ 

biomass to simulate older trees than the 48-year model run time allowed. Even with high SDW, 

the simulated evergreen tree crop had difficulty attaining target biomass values. To achieve these 

biomass values, I set N- and P-content parameters for mature plants (BN3, BP3) very low (0.001 

and 0.0002, respectively), and values for radiation use efficiency (WA) and maximum LAI 

(DMLA) extremely high (74 and 10, respectively).  

Corn Silage – I based corn silage crop parameters on APEX defaults, with only small 

modifications. Corn silage was fertilized modestly to reproduce local management conditions 

and produce the low yields typical of the upper Kamm Creek Watershed (Chuck Timblin, WCD, 

personal communication, 2015). Two sequential corn crops were rotated with one year of fallow 

and one cycle of pasture. I averaged corn yields from the six most current harvest years to 

compare to target values during the calibration process.  
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Hay – I simulated hay fields as highly managed perennial orchard grass (Dactylis glomerata), as 

it is a common agricultural grass species (perennial, IDC = 6) in the watershed, and was 

previously modeled in APEX by Monks (2016). However, hay mixes in the area can include 

other species of graminoids, and sometimes legumes. APEX can theoretically simulate hay or 

forage mixes with multiple species, but initial experimentation showed orchardgrass typically 

dominating other modeled species within three years. As a result, for simplicity of management 

setup and calibration, I modeled hay as just one species. I set field rotation length to seven years, 

following one year of fallow. Calibration yields were averaged from the final five years of hay 

growth in the most current rotation, to represent mature fields. Simulated yields varied 

substantially among different soil types. Hay crops in our region can be intensely managed (e.g., 

fertilized) to maximize productivity, or more minimally managed to lower input costs. APEX 

parameters for ‘hay’ were set to mimic the former strategy, with ‘pasture’ settings (below) meant 

to mimic the latter. Future calibration efforts should investigate the specific cropping practices 

used in their watershed and readjust crop rotations and management settings as necessary.   

Pasture – I used the pasture crop type to simulate grass fields with low levels of management. 

Pasture crop settings were identical to those of orchardgrass hay. Management settings were also 

generally similar, but with a 56% decrease in fertilizer application per advice from Chuck 

Timblin (WCD, personal communication, 2015). I decreased target pasture forage yields for 

calibration by the same percentage, compared to hay yields. In the actual watershed, land 

classified as pasture may be grazed or mechanically harvested. For APEX simulation, grazing 

harvest was not considered due to the difficulty of implementation. However, pasture was 

fertilized almost exclusively with dairy cattle manure to represent that aspect of cattle use, and 

was also harvested mechanically throughout the growing season to simulate the removal of 
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biomass and nutrients from the field that would occur during grazing and milking. Pasture was 

simulated as a seven-year cropping system, rotated with two years of silage corn.  

Fallow – As fertile soils in the northwest Washington typically support at least some vegetation, 

I simulated fallow land cover as another variant of orchardgrass with considerably lower values 

for radiation use efficiency (WA), maximum LAI (DMLA) and other parameters relating to 

growth. These changes, combined with a lack of any management actions, greatly decreased 

maximum potential biomass. Fallow orchardgrass was not calibrated in the same manner as other 

crops, since fields are left fallow as part of rotations with several other crops, each of which 

impacted fallow biomass differently. I simulated fields classified as fallow during the calibration 

year as three year-long cycles of fallow with one six-year cycle of pasture, if no other data on 

rotation crop types was available. Different rotation crops and soil types impacted fallow 

biomass, but it was always extremely low compared to other crop types. 

Developed – Only 12 of the 162 modeled subareas in the watershed were categorized as 

developed, as APEX includes a parameter to account for small percentages of developed 

(impervious) surfaces within majority-cropped subareas. APEX defaults include an ‘impervious’ 

crop option10 for entire subareas, but the 12 subareas categorized as developed in this study were 

not completely paved or otherwise impervious, but rather represented areas without notable plant 

growth, typically graveled or barren soil. I simulated them using a highly-modified version of the 

orchardgrass crop with extremely low values for radiation use efficiency (WA) and other 

parameters necessary for growth. I did not plant other crops in rotation for developed subareas, 

nor apply any management actions. I did not calibrate this crop type, but did ensure that 

developed subareas maintained extremely low biomass throughout the calibration period.  

                                                           
10 Every subareas must have a land cover type, which is simulated by APEX in the form of a ‘crop’. However, crop 

parameters can be modified extensively so that the resulting crop type functions as a bare or impervious surface. 
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Crop Calibration Results – Annual yield calibration was successful for crops in the upper Kamm 

Creek watershed, with modeled yields falling well inside the target range for all soil types (Fig 

B3). The only exception was corn silage, in which mean modeled yield exceeded the mean target 

yield by 25.6%. However, because of infertile soils and limited nutrient applications in the study 

watershed, target yields for this crop were set very low, approximately 35% of typical corn silage 

yields in Whatcom County (Chuck Timblin, WCD, personal communication, 2015). Therefore, 

modeled corn silage yields were actually closer than the target yields to USDA-NASS values for 

Whatcom County (~16 Mg ha-1 dry weight), though actual yields of silage corn within the 

specific study watershed are unknown. Soil type had a moderate impact on yields of silage corn, 

hay, and pasture, but a very limited impact on berry crop yields (see error bars in Fig. B3).  

I used biomass to calibrate forested, fallow, and developed subareas, as these lacked 

yields to calibrate against. I also compared modeled and estimated nitrogen content of forested 

subareas to investigate potential impacts on watershed nutrient cycling. But, I did not calibrate 

forest or any other crop type for nitrogen content. Forested subareas had an average biomass 

within the target range, though somewhat lower than the target mean (Fig. B4). Soil type had a 

relatively large impact on forest biomass, leading to higher variation in modeled values than 

other crops. Mean modeled forest N-content was 46% lower than the target mean, but both 

values had large, overlapping ranges of uncertainty. Fallow subarea biomass varied substantially 

based on soil type and other cropping systems in rotation but was almost always <1 Mg Ha-1. 

This was assumed to be an accurate representation of fallow areas in the watershed, which are 

typically sparsely covered with grasses and weedy annuals. Developed subareas had zero, or 

nearly zero biomass regardless of soil type; developed subareas did not rotate with any other 

crop or management schedule. 
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Figure B3. APEX simulated and target annual yields of crops grown in the upper Kamm _ _  

_                      Creek watershed. Error bars for APEX-generated calibration yields represent the 

_                      full range of yields from different soil types (N=2-6) on which the crop was ___   

_                      simulated. Error bars for target data represent the full historical yield range or   _ 

_                      the degree of uncertainty in yield estimates. 
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Figure B4. APEX simulated and target biomass (a) and nitrogen content (b) for mixed 

coniferous and broadleaf forest in the upper Kamm Creek watershed. Error bars 

for APEX-generated calibration data represent the full range of final biomasses 

and N-content from forest simulated on different soil types (N=2). Error bars for 

target biomass and N-content represent uncertainty due to the range of forest 

maturity and species composition in the watershed.
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Streamflow and Nutrient Flux Calibration 

I calibrated streamflow and nutrient fluxes through the watershed outlet using the APEX-CUTE 

autocalibration tool11 (Wang et al. 2014). APEX-CUTE is built around a dynamically 

dimensioned search algorithm, which simultaneously adjusts a large number of potentially 

influential parameters during the early stages of calibration, but converges towards adjustment of 

only a few key parameters as results improve. Calibration is an iterative process, with parameter 

values perturbed randomly, run results assessed, and those perturbations either increased or 

scaled back depending on the outcome. I selected the control file variables and PARMs subjected 

to calibration based on user-guides and previous studies, with different suites of parameters 

modified for the streamflow and nutrient flux calibration processes (Table B5). All initial control 

file parameter settings were set based on values from the previous study by Monks (2016) or left 

at default values. Parameter values and calibration statistics from the most successful iteration or 

iterations of each run were recorded in separate spreadsheets for comparison.  

Streamflow – I calibrated streamflow first, using 48 daily streamflow records (in m3 s-1) collected 

from 10/2015 to 11/2017 on upper Kamm Creek. These data constituted the entire available 

dataset at the time of the first successful calibration and were approximately evenly distributed 

among months. I modeled the upper Kamm Creek watershed in APEX from 1970-2017, setting 

2015-2017 as the calibration period in APEX-CUTE. I selected the ‘Channel Flow’ APEX 

output variable (corresponding with ‘Flow m3 s-1’ in the calibration ‘wq_daily.CSV’ file) as the 

calibration variable with a weight of 100% and set the output file set to ‘RCH’. I selected the 

watershed outlet (Subarea 162) as the ‘Reach ID’ for comparison with measured data, and used 

                                                           
11 APEX-CUTE can also automatically adjust crop parameters (but not management settings) to calibrate for 

biomass and yield, but this feature was not tested during this calibration effort.  
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TABLE B5: Parameters in the APEX control and PARM files modified during calibration for 

streamflow and nutrient fluxes. Parameters were selected based on 

recommendations from the following sources: a - Yen et al. 2016, b - Monks 

2016, c - Wang et al. 2014, d - Francesconi et al. 2014, e - Nelson et al. 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARM               

(control file variable) 
Explanation Sources 

Streamflow   

RFPK (RFPO) Return flow ratio a, b 

RFTT (RFTO) Groundwater residence day a, b 

QCF Watershed flow rate exponent a 

12 Soil evaporation coefficient a 

17 Evaporation plant cover factor a, b 

20 Runoff curve number initial abstraction a, b 

34 Equation exponent b, c, d 

40 Groundwater storage threshold a, b, c 

42 Curve Number index coefficient b, c, d 

90 Regulates lateral subsurface flow a 

Nutrient fluxes   

7 Nitrogen fixation a, d 

8 Soluble P runoff coefficient a, c, d 

14 Nitrate leaching ratio    a, d 

29 Biological mixing efficiency a, d 

36 Upper limit of daily denitrification rate a, d 

46 RUSLE C factor coefficient a, c 

59 Phosphorus upward movement by evaporation  d 

70 Microbial decay rate a, d, e 

72 Volatilization/nitrification partitioning coefficient a, d, e 

86 Nitrogen upward movement by evaporation  a, d 

92 Curve number retention parameter coefficient  a, c 



71 
 

the ‘F’ statistical metric, combining Nashe-Sutcliffe efficiency (NSE) and percent bias (PBIAS), 

to assess results during the calibration procedure (Wang et al. 2014). NSE (Nash and Sutcliffe 

1970) is used to describe the goodness of fit between observed and modeled data, with values 

ranging between one (perfect model fit) and negative infinity (no model fit). Model performance 

for all monthly outputs is generally considered satisfactory if NSE > 0.5 (Moriasi et al. 2007). 

Percent bias describes the tendency of the model to over- (negative PBIAS) or underestimate 

(positive PBIAS) measured values, with smaller PBIAS absolute values indicating closer fit 

between modeled and measured data (Aouissi et al. 2014, Wang et al. 2014). Satisfactory model 

performance guidelines for monthly nutrient fluxes (PBIAS < |70%| are considerably less strict 

than for monthly streamflow (PBIAS < |25%|, reflecting the greater difficulty of modeling 

nutrient cycling (Moriasi et al. 2007). I initially set the number of model iterations in each 

calibration run to 500, but APEX-CUTE completed only 388 before an unexplained ‘Memory 

Error’ stopped the process. However, as the output and performance analysis files from those 

388 iterations were not corrupted in any way, it was possible to extract the best-performing 

combination of parameter values and then update the model for another attempt. I set subsequent 

streamflow calibration runs for 380 iterations, followed by an additional 120 iterations, with the 

‘Continuing from previous run’ option selected. I completed several combined 500-iteration 

runs, with the starting parameter values for each set to the best-performing iteration from the all 

previous runs12. Parameter value high and low limits were initially left at APEX-CUTE defaults, 

but were adjusted to a narrower range of values, representing the range observed in the five most 

successful runs, as calibration progressed. Model performance did not always increase for every 

run, due to the randomized nature of the calibration process. Following daily calibration, I used 

                                                           
12 Starting values and limits for parameters to be modified during calibration must be entered manually in APEX-

CUTE, rather than relying on the values entered into ‘PARMS.DAT’ file. 
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estimates of monthly streamflow (derived from the mean of available daily values for each 

month of calibration data) to calibrate the model on a monthly timestep. Due to time constraints 

and lack of promising results, I conducted only one initial 500-iteration monthly calibration run. 

Streamflow Calibration Results – APEX did not model daily streamflow through upper Kamm 

Creek satisfactorily (Moriasi et al. 2007, Moriasi et al. 2014), underestimating streamflow 

volume and exhibiting a weak fit to measured data (Fig. B5). The median flow projected by the 

model during the calibration period was only 0.05 m3 s-1, while the measured median streamflow 

was 0.17 m3 s-1. Mean modeled streamflow was similarly lower than measured data, but modeled 

minimum streamflow (0.033 m3 s-1) and maximum streamflow (0.43 m3 s-1) were closer to the 

equivalent measured values (0.047 m3 s-1, 0.58 m3 s-1). In general, the model matched general 

high and low streamflow trends, but severely underestimated low flows, particularly in summer 

(Fig. B5). Linear regression analysis showed a modest but significant correlation between 

modeled and measured streamflow, but this analysis was heavily influenced by the presence of 

two high flow samples (Fig. B6). With outliers removed, measured streamflow was not a 

significant predictor of modeled streamflow, and the coefficient of determination was only 0.12. 

Monthly calibration did not improve model performance compared to daily calibration, based on 

model NSE and PBIAS (Fig. B7).  

Nutrient Fluxes – I calibrated daily fluxes of mineral and total N and P (in ‘kg ha-1’ – the total 

daily flux in kg, divided by the area of the upstream watershed in hectares13) following a similar 

process to that for streamflow, using the same calibration dataset. I set calibration runs to 250 

iterations to reduce the potential for software error and to quicken individual runs. APEX-CUTE 

settings were similar to those for streamflow, but I selected ‘TN’, ‘TP’, ‘Mineral N’ and ‘Mineral  

                                                           
13 I converted model outputs and calibration data to kg day-1 for analysis and graphing by multiplying values by the 

watershed area (386.8 ha). 
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Figure B5.  APEX simulation of daily average streamflow through the upper Kamm Creek 

watershed outlet from October 2015 – November 2017. Unfilled diamonds 

(N=48) represent APEX predictions, solid triangles (N=48) represent measured 

data. APEX-CUTE generated values for Nash-Sutcliffe efficiency coefficient and 

percent bias are displayed. 
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Figure B6. Linear regression of measured vs. modeled daily streamflow (N=48) for upper 

Kamm Creek, showing best-fit line (solid) and 1:1 line (dashed). Summer (May-

October) sampling dates are represented by solid diamonds, winter (November-

April) sampling dates are represented by stars. Coefficient of determination, the 

equation of the best-fit line, and P-value for measured streamflow are also 

displayed. 
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Figure B7.  APEX simulation of monthly average streamflow through the upper Kamm Creek 

watershed outlet from October 2015 – November 2017. Unfilled diamonds 

(N=25) represent APEX predictions, solid triangles (N=25) represent measured 

data. APEX-CUTE generated values for Nash-Sutcliffe efficiency coefficient and 

percent bias are displayed. 
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P’ as output variables, assigning each a 25% weighting factor. I commenced nutrient flux 

calibration after three consecutive streamflow calibration runs failed to improve statistical fit. I 

calibrated nutrient fluxes last because streamflow plays a large role in determining those fluxes. 

However, modeled streamflow fit to field data was improved by calibrating a second time (three 

250-iteration runs) after nutrient flux parameter values were stabilized through the calibration 

process. The updated PARM values relating to water cycling in turn slightly improved the model 

fit for nutrient fluxes. I did not repeat this process again during this study, but a more cyclic 

calibration process should be considered for future efforts. Following completion of daily 

nutrient flux calibration, I conducted one additional calibration run on a monthly timestep, using 

the same procedures described for streamflow.  

Nutrient Flux Calibration Results – Daily fluxes of mineral and total N and P were not 

satisfactorily simulated by APEX, despite the less stringent performance guidelines for nutrient 

fluxes compared to streamflow (Moriasi et al. 2007) (Fig. B8). Median daily fluxes of nitrate and 

total N projected by the model during the calibration period were 4732 and 4776 kg day-1 

respectively, a more than 35-fold increase compared to the respective measured median fluxes 

(both ~127 kg day-1). Mean and maximum values for modeled fluxes of those same nitrogen 

species exhibited similar increases compared to measured data. Conversely, the median modeled 

phosphate flux was 0 kg day-1, compared to a median measured flux of 0.14 kg day-1, while the 

median modeled TP flux (5x10-3 kg day-1) was less than 2% of the median measured flux (0.26 

kg day-1). However, mean modeled phosphate and total P fluxes were 72 and 319 times greater 

than mean measured fluxes of those same nutrients, due to the influence of several extremely 

high daily fluxes; maximum daily flux values for both were two orders of magnitude greater in 

the modeled data than in the measured data.  



77 
 

 

 

Figure B8. APEX simulation of daily nutrient fluxes through the upper Kamm Creek 

watershed outlet from October 2015 – November 2017. Unfilled diamonds 

(N=48) represent APEX predictions, solid triangles (N=48) represent measured 

data. APEX-CUTE generated values for Nash-Sutcliffe efficiency coefficient and 

percent bias are displayed. All daily flux values for phosphate were increased by 

0.001 kg day-1, so that zero values would display on the log axis. 
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Modeled nutrient fluxes did not closely track trends in measured fluxes, with extremely 

poor fit to measured data demonstrated by negative NSE scores for all nutrients (Moriasi et al. 

2014) (Fig. B8). Linear regression analysis showed statistically significant correlations between 

modeled and measured fluxes of nitrate-N, total nitrogen and total phosphorous, but not 

phosphate-P (Fig. B9). However, these correlations were driven by only one or two points for 

nitrate-N, total N and total P; with outliers removed, nitrate was the only nutrient species where 

measured flux values were a significant predictor of modeled values. Coefficients of 

determination for all nutrient regressions were extremely low (R2 < 0.05) with outliers removed. 

Calibration results from all best-performing iterations were better for fluxes of phosphate and 

total P than for nitrate or total N, though no iteration produced satisfactory fit for fluxes of any 

nutrient. Monthly calibration for all nutrient fluxes did not improve model fit (Fig. B10). 

Difficulties – APEX-CUTE experienced several errors during streamflow and nutrient calibration 

in this study, including the previously described memory error. Most were due to user errors 

during parameterization, when I input or retained incorrect or zero values for very specific 

parameters (e.g., a ‘0.0’ value for the bulk density (BDD) of one layer of a particular soil type). 

These produced ‘not-a-number’ (NAN) outputs in APEX, which caused the model run to abort 

(Jaehak Jeong, Texas A&M University, personal communication, 2018). Updating the relevant 

parameter values quickly and simply fixed these issues, though interestingly, these errors did not 

appear in single runs previously conducted using the WinAPEX interface. One notable software 

error occurred when the .RCH output file against which I calibrated was logged as ‘not found’. 

Shorter runs of the full 162-subarea watershed and longer runs of smaller watersheds both 

completed successfully. Therefore, I hypothesized that the error was related to an excessively 

large .RCH output file size, which resulted in APEX-CUTE being unable to read it. This was 
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Figure B9. Linear regressions of measured vs. modeled fluxes of nitrate-N, total N, 

phosphate-P, and total P (N=48 for all nutrients) for upper Kamm Creek, showing 

best-fit lines (solid) and 1:1 lines (dashed). Summer (May-October) sampling 

dates are represented by solid diamonds, winter (November-April) sampling dates 

are represented by stars. Coefficients of determination, the equations of the best-

fit lines, and P-values for measured nutrient fluxes are also displayed. 
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Figure B10. APEX simulation of monthly nutrient fluxes through the upper Kamm Creek 

watershed outlet from October 2015 – November 2017. Unfilled diamonds 

(N=25) represent APEX predictions, solid triangles (N=25) represent measured 

data. APEX-CUTE generated values for Nash-Sutcliffe efficiency coefficient and 

percent bias are displayed.  
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confirmed by a model developer (Jaehak Jeong, Texas A&M University, personal 

communication, 2018), who modified the ‘read’ command in APEX-CUTE’s code to handle the 

larger file size, completely resolving the issue. However, it is unclear whether this patch has been 

applied to the publicly downloadable version of APEX-CUTE, or only to the specific .EXE file 

used in this study. Future researchers should remain alert for the possibility of software errors, in 

addition to carefully formatting input files and calibration datasets, and verifying parameter 

values for new soils, crops and management settings. 

  



82 
 

Discussion 

My aim is that the protocol described in this appendix will drastically reduce the length of time 

required for novice users to model a watershed in APEX, and will produce good calibration 

results for crop yield and biomass. However, significant challenges remain before APEX is a 

viable tool for predicting streamflow and nutrient fluxes, and ultimately for prioritizing 

management actions in northwest Washington. These challenges include the necessity of large, 

high-quality datasets for calibration, the acquisition of field-specific management information 

(particularly if crop and management parameters for a watershed have not been previously 

modeled), and difficulties in accurately modeling local perennial crops and ecosystems 

(especially forests), possibly due to shortcomings of the model itself.  

 Previous studies using APEX have typically used long-term datasets collected prior to the 

modeling effort (Williams et al. 2006, Tuppad et al. 2010, Cavero et al. 2012, Plotkin et al. 2012, 

Senaviratne et al. 2013, Gautam et al. 2018,). Most also calibrated APEX for nutrient fluxes on a 

monthly or annual timestep, rather than daily. Longer timesteps moderate the highly stochastic 

nature of daily fluxes but may not capture the impacts of short-term events such as fertilizer 

application or storm-induced flooding. Monthly estimates of streamflow and nutrient fluxes, 

generated from the limited daily data available for this study, did not improve model 

performance when used to calibrate APEX on a monthly timestep. Accurately approximating 

monthly or annual nutrient fluxes likely requires a prolonged and intensive sampling effort, 

which may not be feasible for many potential APEX users. However, the extent of the calibration 

dataset in large part determines the ultimate success of the calibration effort (Moriasi et al. 

2014), and also the degree to which the validated model can predict nutrient fluxes within a large 

range of climatic variation (Wang et al. 2012).  
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 Another key to successfully modeling agricultural watersheds is detailed knowledge of 

local management practices (Wang et al. 2012, Bhandari et al. 2017). This level of detail is 

especially important for watersheds in northwest Washington, which typically grow specialty 

crops on small fields, as opposed to corn and other commodity crops on more extensive fields, as 

in the Midwest. While local agricultural experts offered advice on management characteristics 

for crops within the watershed, obtaining field-specific management details from the growers 

themselves was not a viable option. Studies comparing the efficacies of watersheds calibrated 

using field-specific vs. generic management would illuminate the extent to which additional 

specificity improves model performance, but no such studies have been conducted for APEX.   

 An additional uncertainty in the modeling process was that, due to limitations of the 

APEX interface and in available data, I was unable to fully account for groundwater 

contributions to streamflow and nitrate fluxes in upper Kamm Creek’s watershed. However, 

given the potential magnitude of these inputs, it is highly likely that successful integration of 

groundwater data would improve calibration results for all output variables for upper Kamm 

Creek and many other lowland streams in Whatcom County. In particular, the underestimation of 

summer stream flows by APEX likely resulted from a lack of simulated groundwater inputs. 

Monks (2016) found a similar pattern of underestimated summer streamflow in APEX outputs 

for Kamm Creek compared to TOPNET modeled streamflow, which that study used as a 

calibration dataset. But this pattern was not repeated in other APEX studies using measured 

calibration data (Francesconi et al. 2014, Wang et al. 2014). Future researchers should prioritize 

acquisition of suitable groundwater data, including measurements of both hydrologic and 

nitrogen flux, and exploration of suitable methods for integrating such data with APEX.  
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The poor fit of modeled streamflow, and in particular modeled nutrient fluxes, to 

measured data is not adequately explained by the factors previously discussed. Previous studies 

have used relatively limited daily calibration datasets to successfully predict nutrient fluxes 

(Francesconi et al. 2014), and modeled crop yields, while not field-specific, closely 

approximated target values for the watershed. The extremely poor model performance for 

nutrient fluxes compared to streamflow suggests that additional, unknown factors may be 

influencing simulation of nutrient cycling and export. Large numbers of model iterations did not 

seem to benefit nutrient flux calibration, as the best-performing set of parameter values for 

calibration runs was typically found in the first 25% of iterations. The most successful iteration 

overall was found in the second calibration run out of five completed, even though the starting 

parameter values for all additional runs were derived from that same successful iteration. This 

again suggests that a flaw in either my calibration procedure, the APEX-CUTE calibration 

interface, or APEX itself may be partially responsible for the poor model fit.      

Working with APEX developers and other researchers in the field may clarify the factors 

responsible for the poor fit of modeled nutrient fluxes to measured fluxes, which needs drastic 

improvement before APEX can be used for prioritization. If calibration technique is a primary 

factor, then pending review and adjustments, this study may be replicated quickly with the 

expectation of greater success. However, another possibility is that APEX in its current form 

lacks essential equations or inputs necessary to accurately simulate nutrient cycling in our 

specific region, which features substantially different soil types, crops, management 

characteristics, and hydrologic conditions than other APEX project areas. Some necessary 

additions to the model are a) the inclusion of a category for nitrogen-fixing tree species to 

effectively simulate alders (Alnus rubra, an important riparian tree species in our region), and    
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b) the modification of the shrub vegetation category so that woody vegetations sustains biomass 

when harvested, to allow APEX to more effectively simulate blueberries and other shrub crops.  

APEX’s ability to simulate high-biomass forests without a long run-up time also requires 

improvement, as nitrogen content parameters for the evergreen tree crop type14 must currently be 

set approximately 40% lower than measured values (Ares et al. 2007, Devine et al. 2013) to 

produce biomass in the target range. This discrepancy might be contributing to poor nitrogen 

flux calibration results, but the difference in forest nitrogen content likely adds < 2 kg N day-1 to 

the watershed, which is inconsequential compared with the ~4500 kg N day-1 model 

overestimates of N flux. The LAI (DMLA=10) and radiation use efficiency (WA=74) parameters 

for the evergreen tree crop are set two to three times higher than for other modeled species 

within the watershed, though a small number of APEX default crops have similar parameter 

values. The true value of these parameters for local forests is unknown, along with the specific 

impacts of high DMLA and WA values on nutrient cycling within forested subareas. Evergreen 

and mixed deciduous/evergreen forests are common in local woodlots and often planted during 

riparian restoration efforts, so their accurate representation in the model is critical for both 

simulating watershed nutrient dynamics and prioritizing management options. Other areas of 

potential improvement include increasing APEX’s efficiency in modeling large numbers of 

subareas for long timespans, and the inclusion of a subarea variable for the presence or width of 

shrubby or forested buffer strips (similar variables exist for grass buffer strips).  

The upper Kamm Creek watershed contains several subareas that are grazed as seasonal 

pastures; however, while dairy cattle grazing is an available feature in APEX, I did not 

                                                           
14 Deciduous trees were not incorporated into modeled forests for this particular watershed, though some local 

forests commonly contain several deciduous species. Preliminary modeling of deciduous trees in the watershed 

faced similar problems with low biomass. 
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implement it for this project beyond the addition of realistic amounts of manure to pasture crops 

and the periodic harvest of biomass and associated nutrients. Incorporating accurate simulation 

of grazing in the upper Kamm Creek watershed model seems feasible in the future and may 

improve calibrations results. This process will require substantial research on cattle stocking 

rates and management practices, and also modifications to the ‘pasture’ crop type.  

 APEX’s ability to predict hydrologic and nutrient fluxes in the Pacific Northwest remains 

unproven. This study agrees with initial work by Monks (2016), demonstrating that APEX can 

simulate common crops grown in western Washington, though perennial shrub crops such as 

blueberry are not well-modeled by APEX and currently require work-arounds to achieve target 

biomass and yield. To improve APEX’s ability to model hydrologic fluxes, and in particular 

nutrient fluxes, in our region, I first recommend an expert review of the streamflow and nutrient 

flux calibration procedures described previously in this appendix. I also recommend collecting 

additional, detailed streamflow and nutrient flux data from upper Kamm Creek, and other 

watersheds, to expand the overall calibration dataset and to provide more accurate monthly 

estimates. My experience during the modeling process demonstrated that user manuals and basic 

logic are not sufficient resources to ensure a smooth modeling process; all modeling steps are 

subject to errors caused by user misinterpretation or by flaws in the code of APEX itself, which 

is in ongoing development. Supporting tools such as APEX-CUTE are also in relatively early 

stages of development, and both APEX and supporting tools may require specific changes for 

successful use in our region. The methods described in this appendix should allow for relatively 

rapid and accurate delineation and parameterization of new watersheds in our region. But, 

substantial future work is needed to produce good model fit for hydrologic and nutrient fluxes, so 

that APEX can be used to prioritize management actions in northwest Washington.  
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