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A Change-Point Analysis of Air Pollution Levels

in Silao, Mexico and Fresno, California

Rachael Goodwin

June 2023

1 Introduction

In this project, we analyzed PM10 levels from 2010 to 2019 in the city of Silao,

Guanajuato, Mexico as well as PM2.5 and PM10 levels in the San Joaquin

Valley. PM10 refers to matter less than 10 micrometers in diameter, including

smoke and soot particles, and is used as a measure of air quality. It can be

generated by natural causes as well as emissions from factories and other in-

dustries. High PM10 levels are linked to conditions such as asthma, bronchitis,

and strokes. Thus, determining whether the mean level of PM10 has changed

over time is important to evaluate potential environmental health risks. These

pollutants are known to adversely affect agriculture and the tourism industry,

as people may be less likely to travel to places known for poor air quality. In

places with a large emphasis on the tourism industry, this could be disastrous

to the economy and create further negative effects for the region.

The primary purpose of this analysis is to determine if either location experi-

enced an adverse shift in pollution due to the negative effects associated with

high levels of air pollution. Because of the numerous health and economic risks

correlated with increases in air pollution levels, understanding what factors con-

tributed to the rise in pollution is helpful for mitigating future increases. The
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methods used within this paper can be generalized to other locations with sig-

nificant air pollution, and will provide useful information as to when shifts in

pollution levels could have occurred, which can then be cross referenced with

urban and agricultural developments, and weather data dating to the time of

the identified change point to identify potential causes associated with the rise

in pollution.

To model the air pollution levels, we assumed that there was a seasonal compo-

nent to the data and that a stationary autoregressive moving average process of

orders (1, 1), commonly known as ARMA(1,1), would be suitable for modeling

the data. These assumptions were supported by examining the autocorrelation

and partial autocorrelation function (ACF and PACF) plots. Normality of the

residuals was also assumed, and confirmed based on the results of a Shapiro-

Wilk test.

In this paper, we first focus on the data gathering and the methods used to

analyze it before discussing the results and analyzing them, as well as potential

further avenues of research or significance of the results. Section 2 will focus on

the significance of the data and the locations chosen while Section 3 is dedicated

to the methods employed in this analysis. Section 4 reports on the results of

the research and Section 5 discusses potential reasons for any changes observed

in the time series analysis.

2 Background

We analyzed PM10 data from two cities: Fresno, CA and Silao, Guanajuato,

Mexico. The San Joaquin data were obtained from the Fresno Supersite, main-

tained by the National Aeronautics and Space Administration (NASA), while
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the Silao data was obtained from the Instituto Nacional de Ecoloǵıa y Cambio

Climático (Secretaŕıa de Medio Ambiente y Ordenamiento Territorial, 2021),

which measures levels of various air pollutants in Mexico. The data sets were

chosen due to their location in regions with high levels of air pollution. The

San Joaquin Valley specifically is known for its poor air quality; in particular,

it continues to have extremely high ozone levels despite successful efforts to

improve the air quality. Ozone is a pollutant known to reduce lung function,

and thus its high levels within the San Joaquin Valley represent a danger to the

local population’s health (EPA, 2000). The air quality within the region failed

to meet federal standards in 2001, causing the U.S. Environmental Protection

Agency (EPA) to downgrade its rating to severe, given the high level of the

ozone within the area (EPA, 2001). The city of Fresno, California, is associated

with particularly poor air quality, due to its location in the San Joaquin Valley

as well as human activity such as wood burning and vehicular emissions. This

region has a particularly high rate of asthma related emergency room visits and

hospitalizations, and there was a correlation between higher rates of such events

and high ozone and particulate pollution levels (Meng et al., 2010).

Potential causes for the high PM2.5 levels may be related to emissions: particu-

late nitrate, associated with soil emissions contributes heavily to such pollution

in winter months (Ying et al., 2008). As soil emissions increase, predicted PM2.5

levels were seen to increase as well (Kleeman et al., 2019). Reducing oxides of

nitrogen was found to be effective in controlling PM2.5 levels. However efforts

to reduce sulfur oxides have minimal effect (Chen et al., 2014). Additionally

while reducing oxides of nitrogen can provide some decreases in PM2.5 levels,

such gains are often offset by summer forest fires and residential wood burning

in the winter, meaning that cooler temperatures may provide an increase in
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PM2.5 that cannot be reduced by focusing on soil emissions. Moreover, fog is

associated with the production of ammonium nitrate as well, which also con-

tributes to PM2.5 emissions (de Foy et al., 2019).

With regards to the PM10 levels within the San Joaquin Valley, agricultural

activities were found to have a significant impact. For instance, fungal spores,

plant detritus, and pollen grain were around 11-15% of PM10 mass in the fall

of 2000 (Chow et al., 2015). As with the PM2.5 index, PM10 is also highly

correlated with soil emissions, specifically the sand or clay content of the soil

(Carvacho et al., 2001).

In comparison, the poor air quality within Silao may be due to human activity

rather than primarily resulting from natural phenomena and disasters. Specif-

ically, there may be a correlation with the construction of automobile factories

near the city; at least several hundred have been built within the region of Gua-

najuato within the past 10 years. The higher levels of pollution may be a result

of increased emissions from these factories. Other potential causes include the

expansion of Silao’s brickwork industry, whose factories burn oil and plastic,

possibly contributing to regional air pollution.

3 Exploratory Data Analysis

Our initial goal in examining the data was to determine an adequate model,

and to determine if there may be correlation or seasonality within the residuals,

as well as a potential mean shift in the data. In the analysis of the Silao data,

which our model was initially developed for, we gathered observations measuring

PM10 levels every hour in Silao from 2010 to 2021. The 2020 data set had a large
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Figure 1: These graphs represent the ACF and PACF of the differenced monthly
air pollution measurements for the Silao data.

amount of missing observations and the data for 2021 was not fully collected

at the time this analysis was begun; as such, only observations from 2010 to

2019 were included. The PM10 data for each month were averaged to obtain

a total of 120 observations. Upon initial examination of the time series data,

it seemed there was a fairly significant change around t = 80 in the pollution

levels that could be a potential mean shift, as well as potential seasonality

within the data with both annual and semiannual components. Thus, when

analyzing the residuals, we first attempted to difference the data at lag 1 and

lag 12, i.e., subtracting the t − 1 observation from the t-th observation and

then subtracting the (t−12)-th observation from the t-th observation to remove

seasonality. While observing the autocorrelation function (ACF) plot of these

residuals in Figure 1, several lags were significant, indicating that the residuals

were not independent.

Given its ineffectiveness for this data set, instead of relying on differencing to
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obtain satisfactory residuals, we next modeled the seasonality and subtracted it

from the raw data to create independent and identically distributed (iid) resid-

uals. To visualize the changes in PM10 over time, we first focused on modeling

the seasonal component of a logarithmic transformation of the data. When ex-

amining the ACF plot of the transformed Silao data in 4, it appeared to have

high correlation at lags 6 and 12, indicating that the data likely did contain a

seasonal component, and that the residuals were likely correlated. Upon exam-

ination of the ACF plots of these residuals, the ARMA(1,1) process was found

to be a satisfactory model for the data.

Based on this initial analysis, the data process consists of a seasonal compo-

nent, a potential mean shift, and stationary residuals. The seasonal component

can be modeled using sine and cosine functions with annual and semiannual

periods:

β1 sin(
πt
6 ) + β2 cos(

πt
6 ) + β3 sin(

πt
3 ) + β4 cos(

πt
3 ).

The model created resulted in approximately normal residuals (6) when using

the p-value obtained by using the Shapiro-Wilk test for normality, 0.6063, and

based on the Q-Q plot for normality, they appear fairly normal.

4 Methodology

Our primary goal was to identify if a mean shift had occurred, which was com-

plicated by the potential lack of iid residuals. Typically, change point analysis

assumes that the data has iid residuals and does not have a seasonal trend.

Thus, the first step was determining if the residuals were stationary. A step

function was modeled based on the data and change-point analysis was utilized

to determine whether this change was a statistically significant result. The to-
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Figure 2: These graphs are time series plots of the log transformed monthly
PM10 and PM2.5 levels in Fresno.
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Figure 3: These graphs are time series plots of the monthly PM10 levels in Silao.
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Figure 4: These graphs are the ACF and PACF of the log-transformed Silao
data.
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Figure 5: These graphs present the ACF and PACF of the log transformed Silao
data with seasonality removed.
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uals and it is approximately normal, further supporting the normality of the
data.
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tal sum of squares (SST) of step functions that stopped before and after each

observation, as well as the overall data, were collected. Then, the SST of the

step functions before and after each t value were subtracted from the overall

SST, and the results were stored in a vector to be used as test statistics. The

minimum value of the SST was then determined to have occurred at t = 76 for

this data set.

To determine if this result was statistically significant, the next step was to

simulate 1000 ARMA(1,1) models as estimates of the residuals. To determine

the statistical significance of i0, the change at t = 76, B = 1000 bootstrap

samples were created. To create such samples, we added each of the simulated

1000 ARMA(1,1) processes with normal innovations to the estimated seasonal

component. The seasonality equation determined from the residuals was added

to each model separately, and the SST was evaluated for step functions that

started and ended at each value of t within every model and then the calculated

values were subtracted from the overall SST of each model and stored in a vector

of test statistics. The change point test statistic was obtained by computing

Ti0 = min
i∈S

Ti,

where

Ti = (SST1,i + SST2,i)/SST0.

Here,

SSTj,i =

nj∑
i=1

(yj,i − ȳj)
2,
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where yj,i is the i-th observation in the j-th part, j = 1, 2, and

ȳj =

∑nj

i=1 yj,i
nj

,

where nj is the number of observations in the j-th part. Thus ȳj refers to the

mean of all observations in the j-th part.

We omitted the first and last 10 observations so that S = {11, 12, . . . , 110}.

Similarly,

SST0 =

2∑
j=1

nj∑
i=1

(yj,i − ȳ)2,

where

ȳ =

∑2
j=1

∑nj

i=1 yj,i

n
,

where n is the total amount of observations in the data set. The index i0 is the

estimated change point, corresponding to the value that minimizes Ti, i ∈ S.

The graph of Tj , where j = i− 10, is present in 9.

The location of the minimum value was subsequently determined using the

which.min command and each minimum location was stored within a separate

vector. Each statistic greater than the value of the minimum change point was

then averaged to find the p-value, which resulted in a value of 0, a highly sig-

nificant p-value. Based on this value, we rejected the null hypothesis that such

a change could have occurred by random chance.

The same model was utilized for the Fresno PM2.5 and PM10 data due to the

similarities between it and the Silao data. The results were similar, although

the residuals appear to be uncorrelated in the ACF and PACF, provided below,
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instead of following the ARMA(1,1) process. Several months had completely

missing data so the ACF and PACF are presented in two parts in 7 and 8.

Within these data, no such change point was detected, but the low sample size

may have contributed to the lack of the algorithm detecting such a change.

5 Results

This section discusses the results of the analysis for both the Silao and Fresno

data, as well as how the test statistics were computed. It begins with a dis-

cussion of the methods in the Silao data, and then analyzes the Fresno data

in comparison to the Silao data, comparing the characteristics they have in

common that make the analysis possible.

5.1 Silao

9 indicates that i0 = 66 + 10 = 76 is the estimated change point. ?? represents

the calculated monthly PM10 levels, with lines added representing the average

PM10 measurement before and after the identified potential change point.

For each of the bootstrap samples, we computed the change point test statis-

tic. Let Tib , b = 1, . . . , B, denote the test statistic for the b-th bootstrap sample.

Then, the p-value of Ti0 is computed by #{Tib < Ti0}/B. The resulting p-value

was < 0.01, indicating that the potential change point identified is statis-

tically significant.

To further our analysis, we split the data before and after this change point to

determine if there were other potential change points, but none were statistically

significant.
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Figure 7: These graphs present the ACF and PACF of the log transformed
Fresno PM2.5 data, divided into sections before and after the missing observa-
tions.
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Figure 8: These graphs present the ACF and PACF of the log transformed
Fresno PM10 data, divided into sections before and after the missing observa-
tions.
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Figure 9: This graph presents the test statistic values of all potential change
points within the Silao data.
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Figure 10: This graph presents the average PM10 levels before and after the
estimated change point for the Silao PM10 data.

5.2 Fresno

A similar method was utilized to analyze the data in Fresno given the similarities

in the two datasets, such as the presence of a seasonal trend and the use of

an ARMA(1,1) process to model the data. Despite the lack of statistically

significant evidence, the graphs do demonstrate a downward trend in pollution

levels, so there may have been a change that occurred.
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Figure 11: This graph displays the minimum location detected for all iterations
of the algorithm for the Fresno PM2.5 data.
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Figure 12: This graph displays the minimum location detected for all iterations
of the algorithm for the Fresno PM10 data.
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Figure 13: This graph displays the minimum SSE detected for all iterations of
the algorithm for the Fresno PM10 data.
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the algorithm for the Fresno PM2.5 data.
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Figure 15: This graph overlays the average PM10 levels before and after the
estimated change point on the log transformed monthly pollution data from
Fresno.

6 Discussion

In the Silao data, we identified a statistically significant mean shift in the PM10

levels in the 2010–2019 data at the 76th month, corresponding to mid-2016. The

increase in the PM10 levels may be linked to the expansion of the automobile

industry. In the state of Guanajuato, at least several hundred new factories were

built over the past ten years, which could be linked to the increased PM10 levels

in Silao (Manufacturing in Guanajuato). Another possible link to the increase

in PM10 levels in Silao could be the expansion of the brickwork industry. These

factories burn materials such as oil and plastic, generating high amounts of air

pollutants (Silao es la sexta ciudad con más contaminación en México).

The Fresno data appeared to have a mean shift in PM10 and PM2.5 levels, but

neither was statistically significant. One possible reason for the decrease, even
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Figure 16: This graph overlays the average PM2.5 levels before and after the
estimated change point on the log transformed monthly pollution data from
Fresno.
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if it was not significant, is the pollution regulation such as Rule 4901, imple-

mented in 1993 and aimed at decreasing wood burning, that caused a decrease

in PM10 emissions during the winter. Since the regulations were followed by

a decrease in PM2.5 and PM10 levels, they are associated with an increase in

air quality as less pollutants are emitted by human factors (Yap et al., 2015).

One possibility for the lack of a statistically significant change may be the small

sample size.

However, although Rule 4901 was implemented in 1993, it was not enforced un-

til 2003 (Yap et al., 2015). Although decreases in air pollution were observed in

2000 and 2001, the lack of enforcement implies that another source of pollution

may be the reason behind the decrease. In the San Joaquin Valley, levels of

polycyclic aromatic hydrocarbons or PAH, a compound associated with agri-

cultural burning, were found to have declined as well during this time period

(Noth et al., 2021). This signifies that during 2000 and 2001, there were high

levels of agricultural burning, and the subsequent reduction in later years may

have been the reason behind lowered pollution rather than any effect caused

by Rule 4901. 54% of annual agricultural burning occurred during the winter

from January 2000-May 2019, strengthening the hypothesis that there may be

a relation between these events.

The graphs below present information about the bootstrapped test statistics

evaluated at each observation within the data set with the mean shift removed.

These graphs were generated removing any potential mean shift utilizing the

bootstrap method, meaning that the histograms should approximately follow

the uniform distribution as stated by the null hypothesis. The graph for Fresno

is presented first, followed by that for Silao. The probability of observing any
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specific value should be roughly equal to the others, as in the uniform distribu-

tion, under the null hypothesis. However the graphs indicate that this model

has a higher probability of detecting change points at the beginning and end

of the dataset, creating another potential problem when attempting to detect

change points as the algorithm may lack the ability to correctly detect changes

occurring in the middle or may falsely detect a nonexistent change at the be-

ginning or end of the dataset. Thus, the type 1 error rate is inflated and there

is a discrepancy between the nominal and actual rates of type 1 error.

7 Conclusion

In this project we developed a new method to analyze air particulate levels

and successfully applied it to PM10 and PM2.5 data to determine if a mean

shift in air pollution had occurred, basing the test statistic on the SST eval-

uated before and after each potential change point to determine significance.

The bootstrap method was used to resample the residuals, which were modeled

with ARMA(1,1), and add the estimated seasonality to approximate the model.

This was necessary to estimate the residuals and to determine if the change seen

could have been by chance as opposed to something unlikely to randomly occur.

The test statistic was based on the SST evaluated at each step, The statistics

greater than the value of the minimum change point were averaged, returning

a p-value of 0 indicating that the shift is unlikely to have occurred by chance.

We found that there was not a statistically significant mean shift in Fresno for

either metric, while in Silao there was a statistically significant shift in PM10

levels around 2015. These changes may be due to construction of factories

and the expansion of the brickwork and automobile industries in Silao emitting

fumes containing PM10 particulate matter, while in Fresno they may be linked
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to an uptick in agricultural burning during 2000 and 2001, which was reduced

in later years; other potential causes for the high PM2.5 levels may be related to

emissions (de Foy et al., 2019). With regards to the PM10 levels within the San

Joaquin Valley, agricultural activities were found to have a significant impact,

such as fungal spores, plant detritus, and pollen grain, which were around 11-

15% of PM10 mass in the fall of 2000 (Chow et al., 2015). As with the PM2.5

index, PM10 is also highly correlated with soil emissions, specifically the sand or

clay content of the soil (Carvacho et al., 2001). Particulate nitrate, associated

with soil emissions contributes heavily to such pollution in winter months (Ying

et al., 2008). As soil emissions increase, predicted PM2.5 levels were seen to

increase as well (Kleeman et al., 2019), and reducing oxides of nitrogen was

found to be effective in controlling PM2.5 levels. Controlling oxides of sulfur

is similarly effective but the lack of such compounds within the San Joaquin

Valley signifies that efforts to reduce them have minimal effect (Chen et al.,

2014). However, while reducing oxides of nitrogen can provide some decreases

in PM2.5 levels, such gains are often offset by summer forest fires and residential

wood burning in the winter, meaning that the cooler temperatures may provide

an increase in PM2.5 that cannot be reduced by focusing on soil emissions.

Fog is associated with the production of ammonium nitrate as well, which also

contributes to PM2.5 emissions.

We hope to apply a similar methodology to other air pollution data to determine

what other locations have experienced a mean shift in air pollution. Determin-

ing when such a shift may have occurred will be useful for identifying factors

that would have contributed to the change and potentially preventing levels of

pollutants from climbing higher or mitigating future differences in air pollution.
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