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Abstract 

An ongoing study attempting to date boulders from Neoglacial moraines across the Sierra Nevada 

mountain range, CA using high precision cosmogenic radionuclide (CRN) exposure dating has yielded 

ages that contradict historical records and prior research in the range. The adjacent Lyell and Maclure 

glaciers in Yosemite National Park show remarkably different CRN age records, with the Lyell Glacier 

exhibiting ages consistent with late-Little Ice Age (LIA) formation and the Maclure Glacier displaying no 

late-LIA ages and several apparent clusters of ages at ~3.0, 2.3, and 1.0 ka. The Price moraines farther 

north show an even greater range of ages spanning the entire Holocene, with a distinct cluster at 2.7 ka 

and a marked absence of young ages. I collected glacial lake sediment cores from below each of these 

glacial systems to compare these CRN ages with an independent rock flour record constrained by 

radiocarbon, tephra, and 210Pb dating. Using both these records I attempt to determine whether these 

clusters of CRN ages have glacial significance or are merely a function of geomorphic processes that 

promote inheritance. Apparent onset of Neoglaciation interpreted from rock flour deposition records from 

below the Lyell Glacier indicate glacial advances from ~1830-1230 cal yr BP with a peak at ~1790 cal yr 

BP and followed by another advance from ~610-80 cal yr BP with a peak at ~460 cal yr BP. The sediment 

core from Maclure Lake indicates rock flour deposition from ~1650-1280 cal yr BP and ~1020-370 cal yr 

BP with the apparent Holocene maximum ~970 cal yr BP. No rock flour record is apparent from the cores 

collected from Lake Aloha, below the Price cirque. 

 Based on historical accounts, prior research, and glaciolacustrine records from Lower Lyell Lake, 

I interpret CRN dating for the Lyell moraines represents true age of boulder emplacement on the moraine. 

The other two moraine sequences are more complex. I propose that the disparate CRN ages from the 

Maclure glacier are the result of an ice-cored moraine; ice-cored moraines can preserve exposure histories 

of numerous glacial advances by moraine reincorporation rather than obliteration. This hypothesis 

explains why CRN ages cluster within the Neoglacial period proposed by prior glaciolacustrine studies, as 

opposed to the Price moraines, and is consistent with moraine morphology. The Price CRN ages likely do 
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not represent glacial maxima because these older ages not only contradict historical records and prior 

glacial studies in the area, but also the striking youthful appearance of these moraine deposits. The Price 

CRN ages appear to be the result of inheritance, likely due to episodic rockfall events and reworked rocky 

debris versus subglacial plucking, evidenced by a lack of striations and/or polish on boulders and 

proximity to the steep cirque headwall. The Price glaciers were extremely small and likely lacked the 

erosive force to strip boulders of prior accumulated CRNs, making these deposits prone to inheritance 

issues even if a boulder had undergone several glacial advances. From these records, I suggest that larger 

glaciers with an ice-free core are better suited for this new, highly precise CRN exposure dating than 

smaller glaciers, or those with extensive ice-cored moraines. 
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1.0 Introduction 

 Alpine glaciers are sensitive indicators of climate and associated climate changes (Meier, 1962); 

glaciers advance or retreat predominantly in response to changes in winter precipitation and summer 

ablation (Leonard, 1989). These glacial fluctuations effect local ecosystems, geology, and people. 

Temperate glaciers, like those in the Western Cordillera of the contiguous U.S., are often a dominant 

source of late-season cold water for local drainages (Fountain and Tangborn, 1985). Rapidly retreating 

glaciers can also produce geomorphic hazards including debris flows, mass failures of over-steepened 

valley walls, outburst floods from proglacial moraine lakes (Moore et al., 2009), and may even contribute 

to sea level rise (Meier et al., 2007).  As such, it is crucial to understand how glaciers have fluctuated in 

the past in order to understand how they might respond in the future. Few studies provide records of 

glacier changes over the entire Holocene and, consequently, spatial and temporal Holocene variability in 

glaciers within the contiguous United States is not well-documented.  

 Two primary means of constraining glacial fluctuations that predate historical records are direct 

dating of moraines and indirect dating of glaciolacustrine sediment records down-valley of glacial 

deposits; each method has benefits and limitations. Moraines directly record periods of maximum 

advance and, therefore, cooling and/or increased winter precipitation.  The vast majority of Holocene 

moraines within the contiguous Unites States terminate above treeline and cannot be dated by radiocarbon 

isotopes (e.g., Mood and Smith, 2015; Wiles et al., 2011). The advent of cosmogenic radionuclide (CRN) 

exposure dating enables direct dating of these Holocene moraines. This method offers a means of 

constraining patterns of such glacial advances across broad regions but is subject to significant 

uncertainties related to inheritance and/or post-depositional processes. Conversely, glaciolacustrine 

deposits provide continuous records of glacier activity in individual valleys, from initiation and growth to 

maxima and then retreat. However, glacial lake sediment records are indirect measures of glacial extent 

and activity and, therefore, are more difficult to interpret than moraines. They are also difficult to collect 
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and are typically viable only in exceptional locations, hindering testing of regional patterns of glacier 

activity. 

 In this study I compare CRN and glaciolacustrine geochronology data related to Holocene glacial 

activity of the Lyell and Maclure glaciers in Yosemite National Park, CA as well as for a set of small 

moraines on the slopes of Mt Price in the Desolation Wilderness (Figure 1). A primary motive for this 

study was to test the widely disparate 10Be CRN exposure ages of boulders from geomorphically young 

moraines (interpreted as late-Little Ice Age – LIA) during an initial dating effort in the Sierra Nevada 

(Clark et al., 2015). In particular, boulder ages from moraines below the adjacent Lyell and Maclure 

glaciers displayed widely contrasting clustered ages despite their close proximity. To test the validity of 

these incongruous results, I collected three sets of glaciolacustrine cores from lakes directly below these 

moraines and below geomorphically similar moraines at Mt. Price to compare with the respective CRN 

dating records. The results suggest that CRN dating of moraines from such small cirque glaciers have 

significant uncertainties beyond those typically acknowledged (e.g., inheritance, moraine diffusion). 

Additionally, I propose several geomorphic processes that help resolve the asynchronous glacial 

fluctuations apparent from CRN dating, particularly that relate to the adjacent Lyell and Maclure glaciers.  

 

2.0 Background 

2.1 Geologic Setting 

 This study focuses on Holocene cirque glaciers in the Sierra Nevada of California, part of the 

Western North American Cordillera. Specific field locations include the moraines and lakes below the 

Lyell and Maclure glaciers in Yosemite National Park and below Mt Price near Lake Tahoe in the 

Desolation Wilderness. At each site, the cirques have steep north to northeast-facing headwalls that act as 

wind-traps for winter snow accumulation and provide sun shielding during the summer, reducing ice 

ablation. Bedrock of the Maclure and Lyell field sites consists of granodiorite, metavolcanic rock, diorite, 
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and gabbro (Huber et al., 2003). Bedrock of the Price field site comprises granodiorite, diorite, gabbro, 

and granite (Saucedo et al., 2005). These high-alpine regions in the Sierra Nevada have been extensively 

scoured by multiple generations of glaciation throughout the Pleistocene (known in the Sierra Nevada as 

the Tahoe, Tenaya, Tioga, Recess Peak glacial advances) (Sharp and Birman, 1963; Clark and Gillespie, 

1997; Phillips et al., 2009; Rood et al., 2011), such that the field sites near the Holocene moraines are 

predominantly stripped, relatively fresh, and often polished bedrock. The Holocene moraines at each field 

site are characterized by steep, unstable slopes, a lack of vegetation (even lichen in many cases), and 

sharp, well-defined contacts with surrounding bedrock; these features indicate a very young age of 

deposition (Figure 2).   

 The target lakes associated with these glaciers are well suited for lake sediment core analysis 

because they are all bedrock dammed, directly fed by outwash from the cirque glaciers, and are 

immediately down-slope of the mapped Neoglacial maxima at each site (Figures 3 & 4).  Furthermore, 

because the basins are dominated by stripped granitic bedrock, there are few non-glacial sources for fine 

clastic sedimentation that is a primary proxy for glacial activity upstream. Consequently, these lakes 

should have captured continuous sedimentation (glacial rock flour) from glacial advances and retreats 

throughout the entire Holocene (e.g., Bowerman and Clark, 2011).  

 

2.2 Post-LGM Climate and Glacial fluctuations of the western North American Cordilleran  

 Mountain glaciers throughout most of the American Cordillera reached their late-Pleistocene 

maxima during Oxygen Isotope Stage 2 (~25-18 ka), after which most experienced rapid retreat and 

largely disappeared in most regions by ~15-16 ka (Margold et al., 2014; Riedel et al., 2010; Brugger, 

2007; Guido et al., 2007; Licciardi et al., 2004; Briner et al., 2005; Rood et al., 2011). Following a short 

interval of warmer and drier conditions, portions of the highest mountains experienced a brief period of 

glacier advance during or immediately before the European Younger Dryas period (Clark and Gillespie, 

1997; Davis et al., 2009; Menounos et al., 2009; Osborn et al., 2012). In the Sierra Nevada, this event is 
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termed the Recess Peak advance and ended before ∼13,100±85 cal. years BP (Clark and Gillespie, 1997), 

shortly before the beginning of the Holocene at 11.7 ka. In most regions, including the Sierra Nevada, 

these latest Pleistocene advances extended beyond any subsequent Holocene advances (Clark and 

Gillespie, 1997; Davis et al., 2009) and, thus, provide a distinct limit on extent of any Neoglacial activity. 

 Globally, the early Holocene (~11.0-5.0 ka) was characterized by relatively warm conditions 

followed by overall cooling of ~0.7°C through the middle to late Holocene, which culminated in the LIA 

of the last Millennium (Marcott et al., 2013). Glaciers in the North American Cordillera appear to have 

responded to these shifts in temperatures through a series of advances and retreats. Alaskan glaciers 

advanced at about 4.5-4.0, 3.3-2.9, 2.2-2.0, 1.4-1.2 ka and then with progressively larger advances during 

the last millennium at 1180-1320, 1540-1710 and 1810-1880 CE (broadly encompassing the extent of the 

LIA); these advances were dated using radiocarbon and tree-ring dating of wood collected in glacier 

forfields and moraines, glaciolacustrine records, lichenometry and CRN dating of moraines (Calkin et al., 

2001; Wiles et al., 2002; Barclay et al., 2009; Wiles et al., 2011; Solomina et al., 2015). Glaciers in 

western Canada were the least extensive in the early Holocene from ~11-7 ka with advances, documented 

by radiocarbon ages from wood collected from glacier forfields, occurring at ~8.6-8.2, ~7.4-6.5, ~4.4-4.0, 

~3.5-2.8, ~1.7-1.3 ka and the past millennium (Menounos et al., 2009). Mood and Smith (2015) document 

similar timings of glacial fluctuations in the British Columbia Coast Mountains, with the addition of one 

advance from 5.4-5.3 ka, based on overridden wood samples in glacier forfields, sediment cores, and 

lichenometry. Neoglacial advances on Mt Baker in the North Cascades, documented by tephra and 

radiocarbon dating of stacked tills along the right lateral moraine of the Deming Glacier, occurred at ~6.0 

ka, ~2.2 ka, ~1.6 ka, ~0.9 ka, ~0.4 ka, reaching maxima late in the LIA in the mid-1800s (Osborn et al., 

2012). In most accounts these Holocene advances are characterized by successively larger glacial extents, 

peaking during the height of the LIA (~18th & 19th centuries). Since the end of the LIA (~200 yrs BP), 

global temperatures have increased and are now warmer than during ~75% of the Holocene (Marcott et 

al., 2013).  
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 Most moraine evidence of early Neoglacial activity in the U.S. Cordillera prior to the late-LIA 

has been over-ridden and obliterated, obscuring the terrestrial Neoglacial record in many ranges. 

Additionally, because these glaciers predominantly terminated above the treeline (in contrast to those in 

Alaska, Canada, and the larger Cascade volcanoes), these deposits contain little or no datable organic 

material associated with their timing of formation. Accordingly, alternative methods must be employed to 

date moraines and discern longer-term histories (pre-LIA maximum), primarily CRN dating and 

glaciolacustrine proxy records. 

 

2.2.1 Sierra Nevada Glacial Record 

 Early studies documented the activity and extent of glaciers in the Sierra Nevada. John Muir 

(1875) first documented “living glaciers” in the range in 1871 by recording flow rates using a series of 

surveyed stakes on the Maclure Glacier in 1872. The first glacier map in the Sierra Nevada, of the Lyell 

and Maclure glaciers (Figure 5; Russell, 1889), indicates that both glaciers were at or near their Holocene 

maximum positions in 1883. Of note on this map is that the Maclure Glacier extent is depicted to be much 

farther down than the moraines indicate, terminating with a calving front in Maclure Lake. For this 

reason, it is questionable if this map accurately portrays true glacier extent or, rather, residual snowfall. 

More recent studies (Basagic, 2008; Basagic and Fountain, 2011) compare these early studies with 

subsequent historical observations to document a consistent overall decrease in glacial extent from the 

first observations to the present.  

 Stock et al. (2013) recently measured flow rates over four years (2009-2012) of both the Lyell 

and Maclure glaciers in Yosemite National Park. Their measurements showed no detectable movement at 

the Lyell Glacier, indicating that the glacier had stagnated by 2012. Despite a significant decrease in size, 

the Maclure Glacier is still flowing at about 7.2 meters per year, the same rate John Muir measured in 

1872. The dominant mode of movement for the Maclure Glacier may have shifted from internal 

deformation to basal sliding because the glacier is melting more rapidly and has less volume and, thus, 
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less mass to cause deformation (Stock and Anderson, 2012). The small moraine deposits near Mt Price all 

lie below cirques that are now ice-free, but have been correlated geomorphically to be of similar age to 

the LIA deposits in Yosemite (Clark and Gillespie, 1997).  In addition, historical accounts of small 

glaciers occupying the cirques have been reported (Whiting, 1985). 

 Glacial fluctuations during the Holocene in the Sierra Nevada appear to follow a similar, although 

abbreviated, pattern to glaciers in the mountain ranges farther north. Following the retreat of the late-

glacial Recess Peak glaciers (~12,000 cal yr BP), the Sierra Nevada appears to have remained essentially 

unglaciated until the late Holocene (Clark and Gillespie, 1997; Phillips et al., 2009). Based on the rock 

flour record below the Palisade Glacier (Bowerman and Clark, 2011) and the Conness Glacier (Konrad 

and Clark, 1998), glacial maxima of progressively larger extents were interpreted at ~3200, ~2200, 

~1600, ~700, and ~250-170 cal yr BP. The most recent advance (Matthes in the Sierra Nevada, 

traditionally regarded as late-LIA) has been considered the most extensive Neoglacial advance and, by 

inference, obliterated geomorphic evidence of previous Neoglacial advances. Wood (1977) also support 

the LIA designation for the Matthes advance in the Ritter Range, just south of the Lyell and Maclure 

glaciers, documenting a distinct absence of a Mono tephra (“Tephra 1”) that mantles all other moraines in 

the range. Accordingly, Wood (1977) concluded that these moraines could not be older than 720±60 B.P.   

Still, this interpretation is based on local records of a few glaciers and geomorphic correlation of mapped 

moraine extents. Inferring regional significance and glacial fluctuations for the entire Sierra Nevada from 

these two dated sites and moraine correlations may be problematic, especially considering these new 

CRN ages.  
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2.3 Glaciolacustrine Records 

As glaciers grow the net glacial abrasion of bedrock increases due to larger affected surface area 

and generally higher flow rates. This abrasion in turn increases the flux of glacial rock flour, fine-grained 

suspended rock powder, into downstream proglacial lakes where it gradually settles onto the lake bottom 

(Karlén, 1981; Dahl et al., 2003). Conversely, as glaciers shrink, rock flour production and deposition will 

decrease. These changes in rock flour production are recorded in pro-glacial lake sediment stratigraphy 

(Karlén, 1981; Leonard, 1985). Such sediment records can thus yield continuous records of glaciation 

upstream in a basin. Rock flour sedimentation rates may remain relatively high with respect to ice extent 

for up to the first century after ice decline due to unstable glaciogenic deposits being exposed to runoff 

and fluvial processes during ice recession; this process may create a lag of peak rock flour deposition in 

the glaciolacustrine record with respect to the glacier mass-balance (Leonard, 1986). In the Sierra 

Nevada, however, Bowerman and Clark (2011) concluded that the small, boulder-dominated moraines 

typical of Holocene deposits in the range do not appear to exhibit the same lag effect. 

 Proglacial lakes in the Sierra Nevada provide excellent sites for recording changes in glacial rock 

flour production. The glacially stripped granitic cirque basins typical of the range have only a few 

primary sources of clastic sediment: rock flour (if a glacier is present), slope-wash, stream bedload, 

aeolian dust, and volcanic tephra. In contrast to the fine silt size of rock flour, slope wash and bedload in 

Sierra Nevada basins are generally dominated by sand-sized gruss and larger sediments (Bowerman and 

Clark, 2011). Additionally, aeolian dust, although similar in size to rock flour, is generally more 

weathered, brown in color due to higher organic content and oxidized clastics, and less magnetic, thus 

having a weaker magnetic susceptibility (MS) signal (Snowball, 1993; Matthews et al., 2000; Rosenbaum 

et al., 2012). Rock flour is typically blue-grey in color, which is reflected in the visual stratigraphy of 

glaciolacustrine sediments (Dahl et al., 2003). During times of increased glacial activity, the rock flour 

signal inundates the organic signal, which is reflected by a coincident decrease in Loss on Ignition (LOI) 

(Karlén, 1981; Matthews et al., 2000; Dahl et al., 2003; Bakke et al., 2005). Volcanic tephra is readily 
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distinguished from rock flour in the Sierra Nevada by their light grey color and presence of glass shards in 

petrographic analysis. 

Several different methods provide age control to core records. Terrestrial macrofossils and/or 

organic rich sediment are often present, having been deposited and incorporated into the lake sediments, 

providing a means to date interpreted glacial maxima using radiocarbon dating (e.g., Clark and Gillespie, 

1997; Konrad and Clark, 1998; Bowerman and Clark, 2011). Caution should be used with bulk 

radiocarbon dates of organic sediment, though, which have been shown to lag the true age by up to 2000 

years in some settings (Grimm et al., 2009; Bertrand et al., 2012). This reservoir effect, however, may not 

be significant in high alpine Sierra Nevada environments. There are no sources of inorganic carbon from 

bedrock in the study drainages. Furthermore, Clark and Gillespie (1997) tested the reservoir potential in 

Sierran alpine lakes with paired radiocarbon dates of bulk organic gyttja and adjoining terrestrial 

macrofossils. Of four paired dates, only one date showed any significant reservoir effect in the bulk 

sample. Additionally, 210Pb dating of the uppermost sediments and volcanic tephra fingerprinting can add 

further age constraints (e.g., Bowerman and Clark, 2011; Wershow, 2016). With these ages, 

sedimentation rates are determined to constrain the timing of glacial activity.  

 

2.4 Cosmogenic Radionuclide Exposure Dating 

Earth is continually bombarded by cosmic radiation, some of which reaches the Earth’s surface 

where it is progressively absorbed within the upper few meters of rock or regolith and interacts with 

specific elements in rocks to produce several rare cosmogenic radionuclide isotopes, or CRNs (Cockburn 

and Summerfield, 2004). By analyzing the concentrations of CRNs in rocks, and the rates at which they 

are produced, timing and rates of various geomorphic processes or events can be quantified (Gosse and 

Phillips, 2001). In terms of dating, CRN concentrations are used to estimate the time elapsed since a rock 

was exposed at the surface. Although CRN dating can be a useful method to determine moraine boulder 

emplacement, reliable exposure ages require several key assumptions. (1) The sampled surface must have 



9 

 

originated several meters below the original surface (below the cosmic ray penetration depth) and been 

exhumed rapidly (Ivy-Ochs et al., 2007). (2) The surface should have been exposed to cosmic rays 

continuously since exhumation without significant snow cover, burial, or erosion (Hallet and Putkonen, 

1994; Putkonen and Swanson, 2003; Kirkbride and Winkler, 2012). (3) The surface should have remained 

stable since exposure without post-depositional disturbance (Hallet and Putkonen, 1994; Briner et al., 

2005). Any deviations from these assumptions will contribute scatter to the model exposure ages of the 

deposit of interest, where exposure ages appear either older than the actual deposition age due to 

inheritance or younger due to post-depositional modification of the surface or shielding of the surface 

from burial (e.g., snow, sediment, or vegetation cover). 

10Be CRN analysis of boulders is now a well-established method for dating Pleistocene moraines 

(e.g., Licciardi et al., 2004; Brugger, 2007; Schaefer et al., 2009; Putnam et al., 2013; Doughty et al., 

2015; Schaefer et al., 2015). Until recently, however, the analytical uncertainties were too large to reliably 

date boulder emplacement in Holocene deposits. Recent advances in analytic methods at a few labs have 

enabled precise 10Be exposure dating of boulders as young as late-LIA (Zimmerman, 2014). An ongoing 

study led by Susan Zimmerman and Alan Hidy from the Center for Accelerator Mass Spectrometry 

(CAMS) at Lawrence Livermore National Laboratory (LLNL) is using CRN dating on boulders emplaced 

on small Holocene cirque moraines in the Sierra Nevada, CA. The preliminary results from this study 

have yielded some unexpected findings; whereas some moraines have boulder ages that are largely 

consistent with late-LIA formation (~200-350 yr B.P.), other moraines have clusters of ages that are all 

thousands of years older (Figures 6 & 7) (Clark et al., 2015). The CRN ages from boulders along the 

Lyell moraines nearly all fit within the late-LIA (Figure 8) while the CRN ages from Maclure moraine 

boulders exhibit clusters at ~3.0, 2.3, and 1.0 ka with the youngest age at ~0.6 ka (Figure 9). The boulders 

from the Price deposits are even more varied, with clusters at ~10.5, 7.7, 5.6, and 2.7 ka (Figure 10). No 

LIA ages are present in the Price CRN ages.  

 This wide spread of moraine exposure ages conflicts with previous studies of Holocene glaciation 

in the range based on historical records, geomorphic mapping, and lake sediment coring, which all 
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indicate that maximum Holocene glacial extents occurred during the late-LIA (Wood, 1977; Konrad and 

Clark, 1998; Bowerman and Clark, 2011). Although inheritance (prior exposure of rocks in the cirque 

headwalls) may account for some of the pre-LIA boulder ages, this explanation is inconsistent with both 

the groupings of older ages, and with the absence of any LIA ages in several of these deposits. Alternative 

explanations are that the ages are accurate and Holocene glaciation in the Sierra Nevada was far more 

complex than previously thought, or that other largely unrecognized processes affect moraine formation 

on these cirque glaciers (e.g., periglacial activity, episodic rockfall events, debris cover, and/or ice-cored 

moraine development).  

 

3.0 Methods 

3.1 Site Selection 

 In this study, I selected three glaciated cirques in two field areas located in the Sierra Nevada to 

test the contrasting explanations described above for the disparities in CRN exposure ages relative to 

previous interpretations of Holocene moraine formation (Figure 1). The sites have several characteristics 

that make them well suited for this study: the Holocene moraines are distinct and geomorphically well 

defined. There are no prior glaciolacustrine records at the sites and the proglacial lakes are well-situated 

down-valley of the maximum Neoglacial extent as to record complete sediment records from each cirque. 

The granitic basins have been extensively stripped by Pleistocene glaciation, reducing possible non-

glacial sources for fine clastic sediments. The Yosemite field sites (Lyell and Maclure) exhibit two 

distinct moraine records according to preliminary 10Be ages despite being directly adjacent glaciers, so the 

potential local variability of glacier activity can be directly tested. Additionally, the Desolation field site 

is the northernmost location of mapped Neoglacial moraines in the Sierra Nevada (Clark, 1995), so I can 

test the regional variability of glacier responses. All sites are accessible by trail and pack mules were 

available in Yosemite to aid with equipment transport. 
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3.2 Remote Mapping  

 To establish the Holocene glacial context of each site, I mapped both modern and maximum 

Neoglacial extents. Mapping of both these glacier extents at each target site was completed using lidar 

imagery (2007-Yosemite NP) and georeferenced Google Earth imagery (2013-Yosemite NP, 2012-

Desolation) in ArcGIS 10.3.1. For this study, I consider “modern” to be 2013 in Yosemite and 2012 in the 

Desolation Wilderness because these are the dates of the most recent low-snow imagery available. This 

ensures that the imagery depicts actual glacial extents versus residual winter snow. Surface areas of the 

glaciers were calculated for each extent of each respective glacier. Additionally, I mapped local 

watersheds for the target lakes below the Lyell and Maclure glaciers using a pour-point method in ArcGIS 

10.3.1 based on the 2007 lidar data. 

 

3.3 Lake Sediment Coring  

3.3.1 Bathymetry 

 The deepest portions of lake basins usually provide the highest resolution and most complete 

sediment records (Larsen et al., 1998). I collected detailed bathymetric data of all potential lake coring 

sites below the Lyell, Maclure, and Price glaciers (Figures 3-4). For each lake, I recorded depth data 

along a systematic grid in portable inflatable rafts, taking GPS points every ~10-25 meters, using the 

Trimble GeoXH 6000, and recording the water depth using a handheld bathymetry meter. In the lab, the 

GPS data were differentially corrected (most uncertainties were < 1m). In Surfer 8, the GPS data were 

compiled and used to create detailed bathymetry maps. 

 



12 

 

3.3.2 Lake Sediment Coring 

 Specific coring locations at each field site were selected based on lake bathymetry, distance from 

actively forming deltas at lake inlets, distance from steep slopes that may disrupt sediment stratigraphy by 

mass movements (e.g., rockfall, slumps, etc.), and anchoring limitations while in the field. Because of 

anchoring difficulties in Maclure Lake, coring was completed in the shallowest portion of the bottom 

shelf farthest from the inlet. Coring in Lake Aloha was moved ~30 m NW of the deepest portion of target 

basin to avoid possible coarse sediment from the adjacent steep talus to the west.  

 To recover the poorly consolidated uppermost sediments, I used a Glew corer (Glew, 1991). This 

system is a single-push gravity and percussion system. Each Glew core was analyzed for MS in the field; 

all but one core from Lake Aloha were then sub-sampled in the field into plastic sample bags in 1 cm 

increments corresponding to the MS measurements. The remaining Glew core from Lake Aloha was 

drained of excessive water and treated with Zorbitrol, a sodium polyacrylate absorbent powder, to solidify 

the remaining water and stabilize the uppermost, poorly consolidated sediments for transport out of the 

field. For deeper sediments from Lower Lyell Lake and Maclure Lake, I collected cores using a 2 in (50.8 

mm) diameter modified Livingston piston corer (Wright Jr., 1967). After collection, the cores were 

extruded in the field into split PVC pipes, measured for MS at 2-cm increments using a Bartington MS2-

C logger, and transported to the lab. 

 

3.4 Core Analysis  

3.4.1 Sediment Analyses 

Detailed and high-resolution analysis of core stratigraphy is critical to establish the timing and 

magnitude of the glacial rock flour signal and to differentiate it from other non-glacial components such 

as organic matter, slope-wash, and tephra. I completed the Initial Core Description (ICD) process at the 

LacCore facility at the University of Minnesota following their standard protocols (Myrbo, 2005). Whole 

core multisensory logging using a GeoTek Multi-Sensor Core Logger (MSCL) provided MS, P-wave 

velocity, gamma density, and electrical resistivity data. Cores were then split, and the surfaces prepared 
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with a rounded glass slide. High-resolution imagery of each prepared core was captured with a Geotek 

Geoscan-III. Higher resolution MS data were collected using a Bartington MS2E point sensor for split 

cores (0.5 cm intervals) and bagged Glew core sediments. I logged visual stratigraphy based on color, 

clast size, lithology, and organic content as well as noting the nature of boundaries between stratigraphic 

layers. I also made smear slides for each distinct stratigraphic layer to assess the sediment for tephra, 

diatoms, organic content, and clastic content.  

 Further core analyses were conducted in the Sediment Coring Lab at WWU, including LOI and 

laser particle size analysis. Samples for each analysis were extracted at uniform depths using a 1 cm3 

syringe at 2 cm intervals; occasionally the sampling interval was adjusted to capture different 

stratigraphic layers throughout the core. LOI samples were desiccated at 100 °C overnight, weighed, 

burned for 4 hours at 550 °C to remove organic matter, and weighed again. LOI was calculated as a 

percentage using the following formula:                          

     

                (1) 

  

where Wdry = desiccated weight and Wburn = weight after burn. Grain size distribution samples were 

pretreated with a 30% hydrogen peroxide solution in a heated, sonicated bath to remove organic matter 

that is not representative of clastic sedimentation. Diatoms, observed in smear slides, were subsequently 

removed using a 1M NaOH solution. NaOH reactions were neutralized with a 0.5 N HCL solution to 

mitigate clastic silica digestion. Laser particle size samples were analyzed using a Malvern Mastersizer 

2000 with autostage and exported into the following grain size ranges: clay = <3.9 μm, fine silt = from 

3.9 - 15.6 μm, coarse silt = from 15.6-62.5 μm, fine sand = from 62.5 – 250 μm, coarse sand from 250 – 

2000 μm. 

 

 

LOI(%) =
(Wdry −Wburn)

Wdry

100
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3.4.3 Sediment Dating and Age-Depth Modeling 

 Sediment core chronologies were developed using 210Pb dating, tephrochronology, and 

Accelerator Mass Spectrometry (AMS) radiocarbon dating. The uppermost sediments of sampled Glew 

cores were dried, ground to a uniform size, weighed, and sent to the Department of Oceanography and 

Coastal Sciences at Louisiana State University for 210Pb analysis. Tephra deposits were fingerprinted 

using electron microprobe analysis of nine major and minor oxides (SiO2, Al2O3, FeO, MgO, MnO, CaO, 

TiO2, Na2O, K2O) by the USGS Tephrochronology Project Laboratory in Menlo Park, CA. For 

radiocarbon dating, a lack of identifiable terrestrial macrofossils in the cores required us to rely on bulk 

organic sediments. The samples were analyzed at the CAMS facility at Lawrence Livermore National 

Laboratory. Radiocarbon ages were calibrated using the IntCal13.14c curve and CALIB version 7.10 

(Stuiver and Reimer, 1993).   

 I performed age-depth modeling using Bacon (Bayesian Accumulation), an R-based statistical 

model that provides uncertainty based on input ages (Blaauw and Christen, 2011). The model divides 

cores into vertical intervals and runs millions of Markov Chain Monte Carlo iterations to estimate the 

sedimentation rate and generate an associated date for each cm depth. I set the section thickness to 3 cm 

for the Lyell core and 2 cm for the Maclure core to increase resolution and smooth the output. Age 

constraints were entered as both uncalibrated for radiocarbon ages and calibrated for 210Pb and tephra 

ages. Radiocarbon ages were automatically calibrated in Bacon using the IntCal13.14c curve. 

Additionally, I changed the default memory setting from 0.7 to 0.3, the lowest memory setting, to reflect 

more variability within the core and calculate sedimentation rates for each interval with little influence 

from surrounding intervals. All other parameters operated under default settings. 

 Tephra intervals were not removed from core stratigraphy for determining sedimentation rates 

due to negligible impact on this study. If tephra is removed from the Lyell stratigraphy to account for 

instantaneous deposition, there would be a ~1.4% decrease from 22-44 cm depth and ~4.5% decrease 

from 44-132 cm in sedimentation rate. Maclure has only one tephra layer and removal of this 0.5 cm thick 
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tephra results in a ~1.3% decrease in sedimentation rate between 25-65 cm depth. All other sedimentation 

rates remain constant. 

 

3.4 CRN Exposure Dating Analysis 

I used the reduced chi-squared (𝜒𝑅
2 ) statistic as described in Balco (2011) to determine the degree 

of geologic scatter for groups of CRN ages: 

 

     (2) 

 

Where 𝑛 is the number of ages, 𝑡𝑖 are each individual CRN age, 𝑡𝑖̅ is their mean, and 𝜎𝑡𝑖 are the 

respective uncertainties. This statistical test is a method of determining whether a certain set of ages 

contains variance due to geologic processes (i.e., inheritance or post-depositional processes) or analytic 

uncertainty. If the 𝜒𝑅
2 value is ~1, scatter is explained entirely by measurement uncertainty. Moraine data 

sets with 𝜒𝑅
2 = ~1 can thus be averaged to determine an accurate age for moraine formation. 
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4.0 Results 

4.1 Mapping Glacial Lake Watersheds 

 The watershed for the cored Lower Lyell Lake in Yosemite is ~1.14 km2 and the Maclure Lake 

watershed is ~1.39 km2. The Neoglacial terminal moraine for the western lobe of the Lyell glacier 

encompasses two drainages that flow to both the cored lake as well as the basin associated with the 

eastern lobe of Lyell glacier (Figure 11). Accordingly, the Lyell glaciolacustrine core only records 

sedimentation for the western portion of the western lobe of Lyell Glacier during the Neoglacial 

maximum. So, the lake core does not record glacial activity for the remainder of the glacier, which 

encompasses all CRN ages except LyellWB samples. The Maclure Lake watershed is relatively simple in 

comparison, encompassing the entire Maclure Glacier. 

4.2 Core Recovery 

 I collected sediment cores from each target lake below the Lyell and Maclure glaciers, as well as 

the Price cirque moraines in August of 2016 (Figures 12, 13, & 14). At Lower Lyell Lake, I recovered 

one 1.54 m long Livingston core, comprising four separate pushes, from the depocenter at 5.0 m water 

depth. I also recovered 32 cm of the uppermost sediments using the Glew corer from Lower Lyell Lake. 

From the Maclure Lake, I recovered 2 adjacent Livingston cores from water depths of 8.8 m: a single-

push 95-cm long core and a two-push 96-cm long core. The single push core is continuous and was better 

preserved following extrusion, so I focus my interpretations on this core. Additionally, I retrieved a 35 cm 

Glew core of the uppermost sediments in Maclure Lake. Two Glew cores were recovered from Lake 

Aloha in the Desolation Wilderness. The first core collected was 51 cm long and the second was 47 cm 

long at water depths of 12.4 m and 11.9 m respectively. The second core bottomed into a tephra deposit 

that was greater than 8 cm thick. 
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4.3 Sediment Stratigraphy 

4.3.2 Lyell Cores 

 Sediment cores from Lower Lyell Lake are composed of distinct intervals of dark brown-higher 

organic sediments, light tan siliciclastic sediments, tephra intervals, and coarse sandy intervals (Figure 

15). The lower 110 cm of the Lyell core exhibit low MS values between ~0-30 𝑚3/𝑘𝑔 ⋅ 10−8. In this 

interval, sediment is a dark brown color and LOI is relatively high (~8-13%) except for four tephra 

intervals and a coarse sandy interval centered at 68 cm depth where LOI is <5%. At 42 cm depth the MS 

values rise sharply to ~85 𝑚3/𝑘𝑔 ⋅ 10−8 and LOI drops below 5%, coinciding with a thin tephra layer 

and a thicker siliciclastic layer from 42-20 cm depth. As the siliciclastic interval grades up into darker 

brown sediment, the MS drops to ~25 𝑚3/𝑘𝑔 ⋅ 10−8. Average LOI remains below 5% through the top 42 

cm of the core. At ~10 cm depth there is another small increase in MS to 35 𝑚3/𝑘𝑔 ⋅ 10−8 before 

dropping to 0 at the top of the core.  

 Grain size distribution remains stable from the bottom 110 cm of the core; exceptions are related 

to tephra intervals and a single coarse sandy interval at 68 cm depth (Figure 16). From ~42 cm depth to 

the top of the core, clay, fine silt, coarse silt, and fine sand percentages are more variable. Clay, fine silt, 

and coarse silt all trend into lower overall percentages of the grain size distribution in the top 42 cm. 

During the most prominent portion of the siliciclastic interval from 42-20 cm depth, however, there is a 

distinct peak in fine-grained silt that exceeds all other measured values throughout the core. Fine sand 

increases through the top 42 cm and coarse sand makes up a very small component of grain size 

distribution other than a thick coarse sandy interval centered around 16 cm depth.  
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4.3.3 Maclure Cores 

 Sediments from Maclure Lake contrast markedly with those in the adjacent Lower Lyell Lake.  

The cores contain predominantly coarse sandy gruss separated by substantial fine-grained intervals 

(Figure 17). The fine-grained intervals dominate between ~95-62 cm and 28-8 cm depth. Coarse sandy 

layers correspond to extremely low LOI values (≤2%) and to relatively low percentages of clay, fine silt, 

coarse silt, and fine sand (Figure 18). Conversely, silt percentages increase during finer grained intervals. 

LOI also increases during fine-grained intervals but remain below 5%. There are two main intervals of 

high MS values (>~100 𝑚3/𝑘𝑔 ⋅ 10−8) located from 82-60 cm and 26-4 cm depth. These two peaks in 

MS generally correlate to the two intervals dominated by fine-grained sediment. The fine-grained 

intervals from the core bottom to ~60 cm depth contain a higher proportion of diatoms than the fine-

grained intervals near the top of the core. One distinct tephra layer, ~0.3 cm thick, is located at 43 cm 

depth. In the top 41 cm of the Maclure core, there are several intervals of unusual red/green staining that 

affect mainly coarse-grained sediment except for at ~28-23 cm depth where some finer grains are also 

stained. 

 

4.3.1 Lake Aloha Cores  

 Sediment cores from Lake Aloha below the Price glaciers are composed primarily of dark brown 

gyttja. LOI averaged ~ 20% indicating relatively high levels of organic material except for the thick basal 

tephra layer that was <10% organic content (Figure 19). Unfortunately, the basal tephra layer liquefied 

partially during transport to the lab and shifted upward ~10 cm. Therefore, I disregard the sediments 

below this level (~25-cm sediment depth).  Sediments above this level, however, do not show signs of 

disturbance and so appear to remain intact. MS values are low, <5 𝑚3/𝑘𝑔 ⋅ 10−8,  throughout the core 

above the disturbed tephra layer, below which MS rises to ~13 𝑚3/𝑘𝑔 ⋅ 10−8. Grain size distribution is 

relatively consistent throughout the undisturbed portion of the core with a slight decrease in clay, fine silt, 

and coarse silt and a corresponding increase in fine and coarse sand centered around 4 cm depth (Figure 
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20). There are mica grains throughout the core, but this shift in grain size distribution coincides with a 

significant increase in concentration of mica grains as seen in the visual stratigraphy. 

 

4.4 Lake Sediment Chronology 

4.4.1 Age Constraints  

 I analyzed five bulk radiocarbon samples, two samples from the Lyell core and three from the 

Maclure core (Table 1). Sample LM16-C-03, at 92 cm depth near the base of the Maclure core, records an 

age of 5830-5755 cal yr BP, indicating the Maclure record extends to mid-Holocene. The four other 

radiocarbon dates were positioned to constrain the interpreted glacial rock flour intervals. 210Pb analysis 

shows unsupported 210Pb for the top 4.5 cm in LL16-G01 and the uppermost 2 cm in LM16-G01. 

Sediment ages were calculated assuming a constant supply of unsupported 210Pb to the sediment (Appleby 

and Oldfield, 1978). 210Pb is an isotope produced through the 238U decay sequence. In sediments and soils, 

there is a constant production and decay of 210Pb that reaches equilibrium, resulting in a low-level, 

supported concentration throughout sediment or soil cores. Unsupported 210Pb is produced in the 

atmosphere, subsequently raining out and incorporated only into the uppermost sediments, resulting in a 

decrease in concentration down the core (Appleby and Oldfield, 1978). From 210Pb, the calculated 

sediment accumulation rate for LL16-G01 is 0.27±0.003 mm/yr, or 2.7±0.3 cm for the past 100 years. For 

LM16-G01, the sediment accumulation rate was 0.077±0.003 mm/yr, or 0.77±0.3 cm over the past 100 

years.  

 Three tephra samples, LL16-T-01, LL16-T-02, and LM16-T-01, were fingerprinted to add age 

constraints to the Lower Lyell Lake core and the Maclure Lake core (Table 2). LL16-T-01 and LL16-T-

02 identified as early Holocene Mono tephras with an age range of ~2.0-0.8 ka. These ages align with 

bulk radiocarbon dates for the Lyell core, but not completely with the Maclure core where the younger 

age range would not align with bulk radiocarbon ages. Regardless, the range is too large to be 

incorporated into the sedimentation model because I do not know the specific eruptions from which these 
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tephras were generated. Thus, neither were used for the respective age-depth models. It is important to 

note, however, that if LM16-T-01 is from a younger eruption, it would shift the age model and indicate a 

reservoir effect for the bulk radiocarbon samples. The analysis of LL16-T-02, from 136 cm sediment 

depth in the lower Lyell core, was polymodal with three geochemical populations. The major population, 

23 shards, was identified as the Tsoyowata ash, which erupted from Mt Mazama ~7.74-7.95 cal kyr BP 

(Bacon, 1983). The intermediate subpopulation, 9 shards, was another cascade type tephra that originated 

from Crater Lake but does not have an age of eruption. The minor population, 4 shards, was identified as 

reworked late and early Holocene Mono Craters tephra. It is common for tephra samples to be polymodal 

due to reworking in the depositional environment or coring / extrusion disruption of the perimeter in cores 

with multiple tephras present. In this case, the relatively large major population indicate this tephra is 

highly likely to be the Tsoyowata ash and the intermediate population being from the same origin further 

supports this interpretation. It is possible that the intermediate population originated from the surrounding 

volcanic rock during the eruption that produced the Tsoyowata ash. Given the common and widespread 

occurrence of tephras from the nearby Mono Craters and that a different tephra interval directly overlies 

the sampled tephra (LL16-T-02), it is unsurprising that there is a third minor population of Mono Craters 

tephra. This minor population was probably derived from depositional reworking or sampling error (i.e. 

sampling too close to the perimeter that may have been disturbed during coring or extrusion).  

 

4.4.2 Age-Depth Modeling 

Radiocarbon, tephrochronology, and 210Pb dates were all input to Bacon (Blaauw and Christen, 

2011) for both Lyell and Maclure cores to produce age-depth models with a probability distribution and 

95% confidence envelope. In the Lyell core age-depth model, the mean 95% confidence range is 1054 

years, the best constrained 95% confidence range is 11.3 years at 1 cm, and the least constrained 95% 

confidence range is 1781.1 years at 93 cm (Figure 21). Lyell core sedimentation rates average ~0.2 mm/yr 

with a marked increase to ~0.4 mm/yr from 22-45 cm (~1300-2000 cal yr BP). Sedimentation rates also 

increased above average to ~0.27 mm/yr in the uppermost 6 cm, or last ~200 years. In the Maclure core 
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age-depth model, the mean 95% confidence range is 673 yr, the best constrained 95% confidence range is 

125 yr at 1 cm, and the least constrained 95% confidence range is 1205 yr at 80 cm (Figure 22). Maclure 

core sedimentation rates are ~0.10 mm/yr before 3200 cal yr BP, rising to peak rates near 0.30 mm/yr 

between ~1700-3200 cal yr BP, then lowering again to ~0.17 mm/yr after 1700 cal yr BP. 

 

4.5 CRN Exposure Dating Analysis 

 I assessed the CRN exposure ages from the LLNL study using the reduced chi-squared statistic to 

evaluate different moraines, ridges and groupings of CRN ages from the LLNL study for geologic scatter 

versus measurement uncertainty. Twenty-one exposure ages from the Lyell moraines vary from ~0.1-1.2 

ka but the majority cluster around ~0.3 ka (Figure 8). There does not appear to be a significant difference 

in ages between inner and outer ridges of the Lyell moraines. When lumped together, the ages from these 

moraines results in a  𝜒𝑅
2 equal to ~30. If the five exposure ages older or younger than the late-LIA (<150 

and >350 yr) are considered outliers and removed, the resulting chi-squared value is ~1.4. Upon removal 

of anomalous ages, individual Lyell moraines/ridges all display mean ages ranging from 263-289 yr and 

have 𝜒𝑅
2  1.35 or under, with the exception of LyelWB where 𝜒𝑅

2 = ~4.   

 Ten exposure ages from the Maclure moraines vary from ~0.6-4.5 ka. Most CRN ages from the 

inner two moraine ridges are younger (~0.6-1.6 ka) than those from the outer two moraine ridges (~2.2-

4.5 ka). The 𝜒𝑅
2 values cannot be calculated for MACC and MACBY because each has only one CRN 

age. The CRN ages from MACA produce a 𝜒𝑅
2 equal to ~100 and the CRN ages from MACB give a 𝜒𝑅

2 of 

~19. When the ages are considered by each individual cluster shown in the summary curve (see “Sum” 

data in Figure 9), however, all 𝜒𝑅
2 values are below one. These clustered ages are centered on 3.0, 2.3, and 

1.0 ka. 

 Thirteen exposure ages from the Mt Price moraines vary from 2.5-10.8 ka. Three ages from 

PRCW1 have yet to be analyzed. The 𝜒𝑅
2 equals ~2 for moraine PRCE with an average age of ~8.1 ka.  

The 𝜒𝑅
2 equals ~19 for moraine PRCC with an average age of ~4.2 ka. Based off the two existing CRN 
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ages, 𝜒𝑅
2 equals ~0.3 for moraine PRCW1 with an average age of ~10.5 ka. If the oldest age is removed 

from the PRCE data set, the 𝜒𝑅
2 is ~0.5. When the two clusters of ages for moraine PRCC are analyzed 

individually, the oldest cluster (~5.6 ka) has a 𝜒𝑅
2  of ~0.2 and the youngest cluster (~2.7 ka) has a 𝜒𝑅

2 of 

~0.5. 

 

5.0 Discussion 

5.1 Glaciolacustrine record of Neoglaciation 

5.1.1 Lyell Glacier 

 Rock flour is commonly characterized by high MS values, low LOI, and increased fine 

sediments, generally fine silt but can range from clay to coarse silt (Karlén, 1976; Dahl et al., 2003). 

These key attributes are exemplified by the most prominent clastic interval (42-20 cm depth) and, to a 

lesser degree, from ~13-4 cm depth of the Lower Lyell Lake core. The peak in fine silt during the 

prominent clastic interval from 42-20 cm depth, where MS is high and LOI is low, indicates fine silt is 

likely the best proxy for rock flour in the Lower Lyell Lake core. Of note is that fine silt percentage is 

consistently high during the highly organic intervals lower in the core. These older fine silt intervals 

likely represent aeolian sediment (indicated by low MS, high LOI), or may also be due, in part, to diatoms 

that persisted through lab pretreatment. Interestingly, fine sand percentages increase in the top 42 cm 

compared to the bottom of the core. Although during the most pronounced intervals of rock flour fine 

sand percentage drops, overall it does seem to increase during intervals of interpreted glacier presence in 

the cirque. 

Apparent onset of Neoglaciation in the west Lyell cirque is recorded by rock flour deposition in 

Lower Lyell Lake beginning at ~1830 cal yr BP. This rock flour interval peaks around ~1790 cal yr BP 

then steadily decreases until it largely disappears ~1230 cal yr BP. This fading rock flour sequence likely 

indicates glacier recession because smaller glaciers (smaller extent and volume) cause less abrasion and, 
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thus, produces less rock flour that is subsequently deposited downstream. A subsequent glacial interval 

lasts from ~610-80 cal yr BP with the glacial maxima centered around ~460 cal yr BP. This sequence 

broadly agrees with glacial intervals documented at the Palisade and Conness glaciers by Bowerman and 

Clark (2011) and Konrad and Clark (1998), respectively, although it does represent a later onset of 

Neoglaciation by nearly 1500 years than at either of those two sites. The record at lower Lyell Lake does 

not preclude earlier advances, however, but rather may represent differing sensitivities of rock flour 

deposition in the various sites. The smaller lakes upstream of Lower Lyell Lake capture some of the rock 

flour flux from the west Lyell Glacier lobe, possibly preventing rock flour from smaller, earlier advances 

from reaching Lower Lyell Lake.   

 Although the timing of glacial maxima in the Lyell core is generally consistent with other 

glaciolacustrine records in the region, the timing with respect to apparent magnitude is at odds with those 

records which indicate the largest glacial advances occurred during late-LIA. Historical records also 

support a late-LIA Holocene glacial maximum, as indicated by the ice extent in Russell’s map and photos 

(Figure 5; Russell, 1889). This discrepancy between the glaciolacustrine records and historical records 

may be explained by the boundaries of the local drainage basins of the respective western lobe and 

eastern lobe of the Lyell Glacier. The western lobe moraine, which I targeted in this study, straddles a 

drainage divide between outwash feeding Lower Lyell Lake and the drainage to the east. This divide 

indicates that a significant amount of the rock flour produced during the most extensive glacier advance 

was transported farther down Lyell Canyon, effectively bypassing Lower Lyell Lake. Conversely, smaller 

glacial advances (e.g., to the current extent) may have drained entirely into Lower Lyell Lake (Figure 11). 

If this were the case, smaller early glacial advances would deposit larger proportions of rock flour in the 

cored lake compared to subsequent larger glacial advances. An alternative hypothesis to explain the late 

Neoglacial onset in the Lyell core is that meltwater from earlier glacial advances drained entirely into the 

eastern drainage. This idea is not supported by current topography, however, and although glaciers do 

commonly erode and thus change subglacial topography, the bedrock acting as the drainage divide would 

be in the ablation zone regardless of the glacier size, where the glacier is depositing rather than eroding. 
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This makes it unlikely that these Neoglacial advances significantly eroded the bedrock topography to alter 

the drainage divide. For these reasons, I favor the former hypothesis to explain the discrepancy between 

the Lyell glaciolacustrine record and prior records. Both ideas could be tested by coring two of the lakes 

farther downstream that capture outwash from the eastern portions of the Lyell Glacier. These lakes were 

not cored for this study, however, because they are shallow and, thus, more susceptible to drying out and 

sedimentological changes related to fluvial processes (e.g., channel migration, sub-glacial stream flow, 

delta progradation) that would tend to obscure a purely glaciologic rock flour record. 

 

5.1.2 Maclure Glacier 

As with the Lower Lyell Lake record, I interpret rock flour intervals in the Maclure Lake record 

based on the characteristic high MS values, fine-grained intervals (relative increases in clay, fine silt, and 

coarse silt), and low LOI values.  However, the rock flour signal is less clear in the core from Maclure 

Lake (LM16-01-01).  Coarse sandy intervals, prevalent throughout much of the core, have extremely low 

LOI percentages. So, although rock flour intervals exhibit low absolute LOI values, they sometimes 

represent an increase from the surrounding stratigraphy. Visual stratigraphy and relative amounts of 

diatoms were also considered when interpreting the rock flour signal. Rock flour is usually grey-blue in 

color versus tones of brown for non-glacial (e.g., aeolian) fine grained sediments (Dahl et al., 2003) and 

should not contain large proportions of diatoms, which would represent increased biologic productivity 

rather than increased clastic deposition.    

Apparent onset of Neoglaciation in the Maclure cirque is recorded by initial rock flour deposition 

at ~1650 cal yr BP. This early rock flour interval persisted until ~1280 cal yr BP. A more substantial 

interval of rock flour deposition occurs from ~1020-370 cal yr BP with the apparent Holocene rock flour 

maximum at ~970 cal yr BP. The timing of these glacial advances generally aligns with glacial intervals 

recorded by Bowerman and Clark (2011) and Konrad and Clark (1998), although as for the Lower Lyell 

Lake record, it represents an onset of Neoglaciation that is later than those earlier studies by ~1650 years. 
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As with the Lower Lyell Lake record, this difference may not mean those earlier advances did not occur 

at Maclure cirque; two lakes above Maclure lake may have trapped most or all the rock flour related to 

such earlier events. Furthermore, the glacial intervals recorded in Maclure Lake do not directly parallel 

those in Lower Lyell Lake, with the Maclure Glacier apparently advancing later and retreating earlier.  

This asynchrony in the glaciolacustrine records from Maclure Lake and Lower Lyell Lake may be 

due to several factors. As mentioned above, each of the paternoster lakes in this cirque has a different 

sensitivity of rock flour deposition. Lakes farther upstream, closer to the glacier, usually provide more 

sensitive records of smaller glacial fluctuations while lakes farther downstream (e.g., Maclure Lake) are 

likely more sensitive to larger scale glacial fluctuations (Dahl et al., 2003). These differing sensitivities 

could result in slight offsets to the timing of rock flour deposition. Compounding this is the larger 

potential for gruss deposition in the Maclure Lake that may obscure rock flour deposition. Another 

possible explanation for the difference is that the Lyell and Maclure glaciers have different glacial 

dynamics. For instance, currently the Maclure glacier is still flowing while the larger Lyell Glacier has 

stagnated. This, in large part, reflects the larger and steeper cirque headwall that provides the Maclure 

Glacier orographic shielding and, thus, cooling (Graf, 1976; Clark et al., 1994). Additionally, rockfall 

events and increased surficial debris flux can reduce ablation rates and alter how larger scale climatic 

forcings affect each glacier (Clark et al., 1994).  Lastly, the age models may not be accurate for smaller 

scale sedimentation rates that are probably more variable than the model indicates. Coarse sandy 

sediments, present in both the Lyell and Maclure cores, should represent briefer, higher energy deposition 

than finer-grained intervals. Thus, these coarse-grained intervals may represent shorter periods than the 

age model indicates and vice versa for finer-grained intervals.   

 The fine-grained intervals near the bottom of the core from 94-80 cm (~5920-4590 cal yr BP) and 

77-62 cm (~4290-3020 cal yr BP) were not interpreted as rock flour for several reasons. Although LOI 

values are still relatively low, they are consistently higher than the fine-grained intervals in the upper third 

of the core. This observation is supported by smear slide analysis, which showed much higher proportions 

of diatoms versus clastic grains in the lower intervals compared to the rock flour intervals higher up in the 
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core. Low LOI values in the earlier fine-grained intervals are also influenced locally by thin sandy layers 

nestled in between, which have very low LOI values. The resolution of sampling could not isolate solely 

fine-grained from coarse-grained intervals, so higher LOI values such as those at 70.5 cm and 91 cm 

depth may be more representative of these fine sediments (Figure 17). It is interesting to note that, 

although these intervals do not appear to be glacial in origin, they do overlap with the later portion of the 

Garibaldi Phase that lasted from ~7350-5770 cal yr BP as well as several other glacial advances in the 

North Cascades mountain range and western Canada (Menounos et al., 2009; Ryder and Thomson, 1986). 

Although no Neoglacial advances have been recognized earlier than ~3400 cal yr BP in the Sierra 

Nevada, Bowerman and Clark (2011) also noted a minor increase of fine-grained, higher MS/lower 

organic clastic sediments in First and Second lakes below the Palisade Glacier between ~5400-4800 cal yr 

BP. If these intervals from both the Maclure and Palisade glaciolacustrine records are indeed glacial rock 

flour, it would indicate a much earlier onset of Neoglaciation in the Sierra Nevada than currently 

documented. 

 Coarse sandy intervals in the Maclure Lake cores are most likely weathered gruss sourced from 

the surrounding bedrock-dominated slopes, rather than from glacial meltwater. Outwash from the glacier 

must pass through two lakes before entering Maclure Lake, and then cross the deepest portion of Maclure 

Lake before deposition at the shallower bench I cored near the outlet of the lake. It is highly unlikely that 

such coarse sediments could remain in suspension through that sequence. A non-glacial origin to the 

sediments is further supported by very low associated MS values, indicating greater weathering than is 

typical for glacial rock flour. Gruss is abundant in joint fractures and small flats on the bedrock adjoining 

the lake. These sediments are unlikely to be mobilized and transported to the lake by gradual snowmelt or 

under a snowpack; instead, I conclude these intervals of enhanced gruss deposition to the lake likely 

represent mobilization during periods of more intense summer rainstorms. 
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5.1.3 Mt Price glaciers 

 The majority of the Lake Aloha core record comprises high organic gyttja with no evidence of 

significant glacial rock flour in the proxies or visual stratigraphy. The only peak in MS from LA16-G02 is 

coincident with the thick basal tephra deposit, assumed to be the Tsoyowata ash based on other records in 

the area (e.g., Clark and Gillespie, 1997; Noble et al., 2016). The tephra deposit contains little to no 

clastic grains but does contain diatoms, likely related in part to liquefaction and mixing with higher 

organic gyttja during transport. It is possible that the boulder-rich ridges previously mapped as Neoglacial 

moraines are actually remnants of paraglacial processes such as pronival (protalus) ramparts. This 

alternative origin for these landforms would explain why there is no significant rock flour preserved in the 

Lake Aloha core. Clark and Gillespie (1997) also cored a small tarn upslope of Lake Aloha within the 

Price drainage and found no evidence of glacier advances post-Recess Peak. Pronival ramparts are 

distinct ridges of rock debris, usually angular and boulder dominated, formed at the lower margin of a 

perennial snowbed / firn field. The snowbed facilitates sliding of rockfall debris from the respective 

headwall to the toe of the snowbed where the rocky debris is accumulated (Shakesby, 1997; Hedding, 

2011; Hedding and Sumner, 2013). These features often resemble glacial moraines and have been 

misinterpreted as such in previous studies (Brook and Williams, 2013). This landform interpretation is 

inconsistent, however, with the extremely clean, stripped nature of the bedrock between the steep cirque 

headwalls and the presumed moraines as well as the overall size of the landforms in question when 

compared to defined pronival rampart criteria which are generally smaller in extent (Hedding and 

Sumner, 2013). Thus, I suggest that these landforms may indeed be true moraines, albeit formed from 

small “glacierettes” with minor flow and subglacial abrasion.  It is unsurprising that these small glaciers 

may not have produced enough rock flour to be detected in the lake sediment record. 
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5.2 10Be CRN dating  

CRN dating of these glacial deposits presents an exceptional data set for Holocene moraines in 

the Sierra Nevada, but they also indicate a complex geomorphic record. Taken at face value, they suggest 

a very complex glacial history. Conversely, they may suggest that such small, young moraines 

incorporate non-glacial processes that complicate the exposure histories. In this section, the CRN ages are 

assessed at each field site with respect to each respective glaciolacustrine record as well as prior research 

and historical records. 

5.2.1 Lyell Glacier 

 Overall the Lyell 10Be CRN ages match well with both historical records and the glaciolacustrine 

record (Figure 23). All Lyell CRN ages are young, most falling within the late-LIA. The ages clustered in 

the late-LIA have a 𝜒𝑅
2 close to 1, which indicates very little geologic scatter. The timing of this glacial 

advance is consistent with prior research in the area (e.g., Russell, 1889; Konrad and Clark, 1998; 

Bowerman and Clark, 2011). The only inconsistency is the magnitude of glacial advances as indicated by 

the Lyell rock flour record. The watershed divide for the western lobe of the Lyell Glacier at peak glacial 

extent may explain this apparent discrepancy (see section 5.1.1). This would result in a diminished rock 

flour record during peak Neoglacial extent because it indicates that outwash from the eastern portion of 

the glacier would effectively bypass Lower Lyell Lake. Overall though, 10Be CRN dating below the Lyell 

Glacier appears to provide viable age constraints for boulder emplacement along these moraines. 

 

5.2.2 Maclure Glacier 

 CRN ages for the Maclure Glacier span a much greater range than those of the adjoining Lyell 

Glacier. It is particularly noteworthy that there is a complete absence of late-LIA ages present, directly 

conflicting with historical mapping and observations (Russell, 1889) as well as the extremely youthful 

appearance of the moraines (e.g., angular, unweathered clasts, absence of vegetation or lichen, steep, 

unstable slopes). Furthermore, the two older age clusters predate the earliest rock flour intervals 
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documented in the Maclure Lake sedimentary record. However, there is also a notable lack of early 

Holocene exposure ages such as those of the Price cirque moraines. If the Maclure CRN ages are older 

than late-LIA strictly because of inheritance from prior exposure, I would expect them to have a more 

stochastic distribution spanning the entire Holocene. Instead, all but one age (4.5 ka) fall within the 

Neoglacial period documented by Bowerman and Clark (2011) and Konrad and Clark (1998), and the 

ages appear to fall into several clusters rather than being completely random. For these reasons, I suspect 

the CRN age distribution at Maclure Glacier is not simply a function of inheritance due to boulder 

positioning and/or inadequate erosion, but also not necessarily a direct record of glacier advance and 

deposition as moraine records are traditionally regarded. Recent studies on CRN dating of debris-covered 

glaciers and ice-cored moraines may yield insight into this predicament. 

Although not directly observed, I infer that the Maclure moraines are likely ice-cored moraines. 

They comprise numerous steep, morphologically fresh lobate ridges and furrows, with abundant unstable 

boulders and the steep cirque headwall provides a ready source of coarse supraglacial debris. These are 

common characteristics of debris-covered glaciers, which are abundant in the Sierra Nevada (Clark et al., 

1994).  In such ice-cored moraines, continuous supraglacial debris of only a few centimeters can 

dramatically reduce ablation rates in the ice core, particularly in cold, high alpine sites (Östrem, 1959; 

Clark et al., 1994; Nicholson and Benn, 2006). As a result, the ice core can persist well after the adjoining 

clean-ice portion of a glacier has thinned and retreated, effectively stranding the debris-covered toe of the 

glacier (Clark et al., 1994; Rowan et al., 2015; Anderson and Anderson, 2016; Crump et al., 2017).  

Crump et al. (2017) used CRN exposure dating for Neoglacial ice-cored moraines from Baffin 

Island, Artic Canada. They suggest that the oldest ages, after removing samples with presumed 

inheritance, are indicative of initial moraine formation. Using the numerical model developed by 

Anderson and Anderson (2016), Crump et al. (2017) showed that glaciers can reconnect with an ice-cored 

moraine after prior retreat, effectively reactivating the ice core as part of the glacier rather than 

obliterating it. As a result, ice-cored moraines can represent several different advances, amalgamated 

together through the various retreats and subsequent advances. Through these retreats and advances, some 
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boulders may maintain their original positions and record constant exposure from initial moraine 

formation while others may slide, rotate, fall, or become buried, resulting in younger ages. Although 

Crump et al. (2017) did not observe any obvious zoning of exposure ages in their study, results from the 

Maclure moraines suggest a general fit to this model, with younger ages dominating on inner moraines 

and older ages on outer moraines: ages on the two outermost moraines are all greater than 2.2 ka and 

cluster between 2.2 and 3.2 ka (broadly consistent with onset of Neoglaciation in the range as determined 

in previous studies) and all but one age on the inner two moraines are 1.6 ka or younger. Given that it is 

likely that at least some of these boulders have some prior exposure (thus providing a possible 

explanation for the oldest ages on each moraine set), the clustered ages may record early (pre-LIA) 

advances of the Maclure Glacier not recorded in the adjacent, cleaner Lyell Glacier. Because of the small 

sample size, however, this interpretation remains speculative. 

Fieldwork to provide direct evidence of an ice core in the Maclure moraines would validate my 

interpretations of the geomorphic processes influencing the exposure history of boulders along the 

moraines. To do this, I would need to search the Maclure moraines for ice exposures created from melt-

out and erosion, which would reveal the inner contents of the moraine. Other work to provide clarity to 

these CRN ages could include more sophisticated inheritance versus moraine degradation models to 

determine true age (e.g., Applegate et al., 2010, 2012) and/or determine if geologic scatter or 

measurement uncertainty is responsible for variations in exposure ages using the independent 10Be and 

26Al CRN ages (e.g., Balco, 2011). 

 

5.2.3 Mt Price glaciers 

 Although the different moraines and clusters within the Price moraine CRN ages appear to have 

robust reduced chi-squared values, given the regional context, it seems unlikely that 10Be CRN ages 

accurately record glacial events in this area. The Lake Aloha sediment cores (LA16-G01 & LA16-G02) 

do not record any late-Holocene rock flour intervals, and no other glacier advances have been recorded in 
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the Sierra Nevada (or most other ranges in the American Cordillera) during the majority of the CRN age 

intervals (~5.5-11 ka). It is possible that the youngest grouping (~2.7 ka) does have a glacial influence 

because it does overlap with documented glacial advances in the range (Figure 23). It is apparent, 

however, that other non-glacial geomorphic processes influence the CRN exposure ages at this site.   

 The most obvious process, inheritance, could influence these boulders through several means. 

Prior exposure on valley walls and subglacial bedrock before glacial transport is a commonly 

acknowledged problem (Putkonen and Swanson, 2003; Ivy-Ochs et al., 2007). In this case, if the side of 

the boulder that experienced prior exposure is sampled, it will contain multiple exposure histories and 

appear older than the true age of the landform (Balco, 2011). Another complication could result from 

reworking boulders from older moraines rather than obliterating them completely (Ivy-Ochs et al., 2007; 

Balco, 2011; Li et al., 2016). In this process, exposure histories from prior moraines can persist through 

subsequent advances. In particular, smaller glaciers, such as those in the Price cirque, may lack the 

erosive power to strip prior CRN accumulations on rocky debris from headwalls and plucked bedrock. Li 

et al. (2016) also proposed this for their study using 10Be CRN exposure dating on boulders emplaced in 

presumed LIA moraines in the eastern Tian Shan mountain range in China. Like the Lyell, Maclure, and 

Price glaciers, larger and thicker glaciers in the Tian Shan produced young, well clustered exposure ages 

within the LIA. Conversely, small and thin glaciers produced widely scattered exposure ages, up to tens 

of thousands of years older than expected. The small glacier sizes that produced inheritance prone CRN 

data (≤0.4 km2) in the Tian Shan is consistent with the Lyell, Maclure, and Price glaciers, with a 

maximum extent of 0.037 km2 in the Price cirque (Table 3). 

 It seems likely that the widely contrasting Price CRN ages likely reflect all the inheritance issues 

listed above. The extremely steep cirque headwalls in the Price cirque would supply a surplus of boulder 

debris prone to inheritance. Episodic rockfall events (possibly triggered by earthquakes) as the dominant 

source of debris could explain the clustering of ages. A lack of glacial polish and/or striations on the 

sampled boulders strengthen the argument for a headwall origin versus plucked bedrock for these 

moraines. Likewise, glaciers of this size should not be expected to abrade these boulders to sufficiently 
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remove all prior CRN accumulation and the lack of evidence for boulder abrasion furthers this argument. 

The complete absence, however, of any young CRN ages, despite the youthful appearance of these 

moraines, remains difficult to explain. Reworking prior deposits and or rockfall debris, without 

significant erosion of said deposits, may offer an explanation. If the sampled boulders have undergone 

several disturbances that resulted in reorientation, then each exposed side would exhibit a different 

exposure history, all older than the most recent emplacement along the modern moraines. These results 

suggest that smaller glaciers, particularly those near the transition zone from ice field to glacier, are not 

well suited for CRN exposure dating, at least not in the Sierra Nevada mountain range.  

 

6.0 Conclusions 

I collected glaciolacustrine cores in the Sierra Nevada from below three different moraine 

complexes with widely varied CRN ages that are markedly older than historical records and research in 

the area suggest for moraine formation. I used these two independent records of glacial fluctuations to 

determine if CRN dating was accurately recording glacier fluctuations or if other geomorphic processes 

were influencing CRN ages for each site. Apparent onset of Neoglaciation for the Lyell Glacier, indicated 

by rock flour deposition in the glaciolacustrine record, begins at ~1830 cal yr BP and lasts through ~1230 

cal yr BP with peak rock flour deposition at ~1790 cal yr BP. Another advance occurred from ~610-80 cal 

yr BP peaking at ~460 cal yr BP. In the Maclure lacustrine record, glacial fluctuations occurred from 

~1650-1280 cal yr BP and ~1020-370 cal yr BP with the apparent Holocene maximum ~970 cal yr BP. 

No rock flour record is apparent from the Lake Aloha sediment core, from below the Price cirque. 

The well clustered late-LIA CRN ages for the Lyell moraines match well with the published 

record of Neoglacial activity in the Holocene. Discrepancies between these ages and the constraints from 

the glaciolacustrine record collected at Lower Lyell Lake appear to largely reflect limitations with the 

lake core record rather than problems related to CRN dating. The contrasting CRN moraine ages from the 
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adjoining Maclure Glacier, including absence of late-LIA ages and clusters of older ages at ~3.0, 2.3, and 

1.0 ka, may reflect the influence of glacier dynamics of ice-cored moraines. This hypothesis is consistent 

with the Maclure moraine morphology and would account for the apparent clustering of CRN ages within 

the Neoglacial period defined by prior studies (~3200 cal yr BP to late-LIA; Konrad and Clark, 1998; 

Bowerman and Clark, 2011). Ice cored moraines can be reincorporated into subsequent glacial advances 

rather than obliterated and present several moraines incorporated together, effectively yielding CRN ages 

from multiple Neoglacial events. If the older clusters of Maclure CRN ages do in fact record Neoglacial 

advances, the apparent lack of concomitant rock flour deposition in Maclure Lake would suggest the 

advances were too small to cause measurable rock flour deposition in the lake. Thus, the timing and 

extent of the Maclure record is broadly consistent with other records, with the last glacial advance being 

the largest. In contrast to the records from Lyell and Maclure glaciers, the wide range of CRN ages from 

the Price moraines seem to indicate systematic problems with inheritance rather than true glacial events. 

These older ages are probably caused by a combination of prior exposure on the headwall before glacier 

transport, reworking prior deposits that accumulated additional CRNs, and insufficient abrasion to strip 

boulders of these prior CRN concentrations before emplacement on the current moraine. Based on these 

glacial systems, I suggest the use of CRN exposure dating on moraines from such small glaciers are 

highly susceptible to inheritance whereas larger glaciers (e.g., Lyell Glacier) seem to produce cleaner 

records that more accurately record moraine formation. Additionally, ice-cored moraines yield complex 

CRN chronologies that may not be well-suited for use in applications of climatic significance.  
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8.0 Tables 
 

Table 1. Radiocarbon ages from lake sediment cores below the Lyell and Maclure glaciers in Yosemite National Park. 

 

Sample ID Lab Code 1 Depth (cm) 2 Material 14C Age (yr BP) Median Age (cal yr BP) 2σ age range (cal yr BP) 

LL16-C-01 176286 22 Bulk 1475 ± 40 1362 1416-1297 

LL16-C-02 176287 44 Bulk 1895 ± 30 1844 1897-1735 

LM16-C-01 176288 25 Bulk 1730 ± 45 1643 1738-1537 

LM16-C-02 176289 65 Bulk 2875 ± 40 3002 3081-2879 

LM16-C-03 176290 92 Bulk 5075 ± 35 5818 5828-5754 

1 Radiocarbon samples analyzed at the LLNL CAMS facility, Livermore, CA 
2 Depth below the sediment surface 

 

 

 

 

 

 

Table 2. Tephrochronology from lake sediment cores below the Lyell and Maclure glaciers using electron microprobe analysis (EMA). 

 

Sample ID Tephra Depth (cm) Identification method Age (yr BP) ± yr Calibrated age (cal yr BP) 1 

LL16-T-01 Mono 42 EMA ~1,950 - 795 - - 

LL16-T-02 Tsoyowata 136 EMA 7014 80 7,740 - 7950 

LM16-T-01 Mono 43 EMA ~1,950 - 795 - - 

1 Calibrated age from Bacon (1983) 
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Table 3. Maximum Neoglacial and modern glacier surface area extent as well as the respective decrease 

in extent from Neoglacial to Modern. 

 

Glacier Area of glacial extent (km2) Decrease in glacial extent (%) 

Maclure (Neoglacial) 0.329 - 

Maclure (modern) 0.140 57.4 

West Lyell (Neoglacial) 0.456 - 

West Lyell (modern) 0.244 46.5 

East Lyell (Neoglacial) 0.653 - 

East Lyell (modern) 0.048 92.6 

Price E (Neoglacial) 0.037 - 

Price E (modern) 0.000 100 

Price C (Neoglacial) 0.023 - 

Price C (modern) 0.000 100 

Price W1 (Neoglacial) 0.117 - 

Price W1 (modern) 0.000 100 

Price W2 (Neoglacial) 0.024 - 

Price W2 (modern) 0.000 100 
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9.0 Figures 

 
 

 
Figure 1. Location map of Sierra Nevada field sites. Lake coring sites for this study are indicated by 

yellow circles. White circles indicate the other 10Be CRN sampling sites of Clark et al. (2015). 



44 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Photographs of the (a) Lyell terminal Neoglacial moraine and upper lake, (b) Desolation 

terminal Neoglacial moraine, and (c) Maclure terminal Neoglacial moraine. All are fresh, sharp crested 

with steep sides, boulder covered, and lacking vegetation. 
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Figure 3. Aerial imagery of the Yosemite field sites indicating primary targets for lake coring (all in glacial melt-water streams). Red fill highlights 

Neoglacial moraines and yellow dots indicate 10Be CRN sample sites on terminal moraines of Maclure Glacier and both lobes of the Lyell Glacier. 

Imagery taken from 9/14/2013 (Google Earth).  
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Figure 4. Aerial imagery of the Desolation field site indicating primary target for lake coring in downstream of the Price Glaciers. Red fill 

highlights Neoglacial moraines and yellow dots indicate 10Be CRN sample sites. Blue arrows indicate general flow direction from each moraine. 

Imagery taken from 8/28/2012 (Google Earth).  
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Figure 5. Map of the Lyell and Maclure glaciers in Yosemite National Park as they appeared in 1883. 

This map was created by W.D. Johnson and published in Russell (1889). 
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Figure 6. CRN exposure ages displayed for the associated boulders along each moraine sequence of the Lyell Glacier and Maclure Glacier in 

Yosemite National Park. Red text indicates 10Be ages and blue text represents 26Al CRN ages. Moraine crests are shown by yellow lines and 

sampled boulder locations are shown by red dots. Figure by Alan Hidy. 
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Figure 7. CRN ages are displayed along each moraine sequence of the Price glaciers in the Desolation Wilderness. Red text indicates 10Be ages 

and blue text represents 26Al CRN ages. Moraine crests are shown by yellow lines and sampled boulder locations are shown by red dots. Figure by 

Alan Hidy.
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Figure 8. Camel diagram of 10Be CRN ages and 1-sigma uncertainty from the Lyell Glacier in Yosemite National Park. Each moraine 

and/or distinct ridge is shown in a different color (refer to Figure 6 for reference). 
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Figure 9. Camel diagram of 10Be CRN ages and 1-sigma uncertainty from the Maclure Glacier in Yosemite National Park. Each moraine and/or 

distinct ridge is shown in a different color (refer to Figure 6 for reference). 
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Figure 10. Camel diagram of 10Be CRN ages and 1-sigma uncertainty from the extinct glaciers beneath Mt Price in the Desolation Wilderness. 

Each moraine is shown in a different color (refer to Figure 7 for reference). 
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Figure 11. Lyell and Maclure study lake watersheds are filled in with light blue over a hillshade created from the 2007 lidar DEM data. 

The Neoglacial moraine of the western lobe of the Lyell glacier is divided into two separate watersheds.  
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 Figure 12. Aerial imagery of the Lyell Glacier and respective drainage. Red lines indicate the maximum Neoglacial extents and orange 

dots indicate 10Be CRN sample sites on terminal moraines. Inset map illustrates Lower Lyell Lake bathymetry based off depth 

measurements (shown by blue triangles). Contour lines display 0.5 m intervals. Imagery taken from 9/14/2013 (Google Earth).  
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 Figure 13. Aerial imagery of the Maclure glacier and respective drainage. Red lines indicate the maximum Neoglacial 

extents and orange dots indicate 10Be CRN sample sites on terminal moraines. Inset map illustrates Maclure Lake 

bathymetry based off depth measurements (shown by blue triangles). Contour lines display 1 m intervals. Imagery 

taken from 9/14/2013 (Google Earth).  
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Figure 14. Imagery of the Price glaciers and respective drainage. Red fill highlights Neoglacial moraines and orange dots indicate 
10Be CRN sample sites on terminal moraines. Inset map illustrates Lake Aloha bathymetry based off depth measurements (shown 

by blue triangles). Contour lines display 1m intervals. Imagery taken from 8/2012 (Google Earth). 
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Figure 15. Sediment core LL16-01-01/02/03/04 (composite core record) from Lower Lyell Lake with 

rock flour proxies MS, LOI, and fine silt %. MS data is displayed in 0.5 cm measurements (light, thin 

purple line) and a five-point running average (dark, thick purple line). Grey ‘T’s indicate tephra deposits. 

Median cal yr BP ages are shown for bulk radiocarbon (green) and tephra (grey). 
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Figure 16. Sediment core LL16-01-01/02/03/04 (composite core record) from Lower Lyell Lake with 

grain size distribution of clastic sediments. Grey ‘T’s indicate tephra deposits. Median cal yr BP ages are 

shown for bulk radiocarbon (green) and tephra (grey). 
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Figure 17. Sediment core LM16-01-01 from Maclure Lake with rock flour proxies MS, LOI, and fine silt 

%. MS data is displayed in 0.5 cm measurements (light, thin purple line) and a five-point running average 

(dark, thick purple line). Grey ‘T’s indicate tephra deposits. Median cal yr BP ages are shown for bulk 

radiocarbon (green) and tephra (grey). 
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Figure 18. Sediment core LM16-01-01 from Maclure Lake with grain size distribution of clastic 

sediments. Grey ‘T’s indicate tephra deposits. Median cal yr BP ages are shown for bulk radiocarbon 

(green) and tephra (grey). 
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Figure 19. Sediment core LA16-G02 from Lake Aloha below the presumed Price glaciers with rock flour 

proxies MS, LOI, and fine silt %. Light tan interval is interpreted to be the Tsoyowata ash and was 

reworked during transport, shifting up in the core stratigraphy. 
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Figure 20. Sediment core LA16-G02 from Lake Aloha below the Price glaciers with grain size 

distribution of clastic sediments. Light tan interval is interpreted to be the Tsoyowata ash and was 

reworked during transport, shifting up in the core stratigraphy. 
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Figure 21. (a) Age-depth model for the Lyell composite core (pushes LL16-01-01, LL16-01-02, LL16-01-03, and 

LL16-01-04) produced using Bacon in r (Blaauw and Christen, 2011). Darker gray colors indicate more probable 

ages and are bound by the gray dashed lines that represent 95% confidence limits. Red dashed line displays the 

weighted mean age for each depth. Transparent blue symbols represent calibrated 14C dates and green symbols 

indicate 210Pb dates (first several cm depth) and tephra ages lower in the stratigraphy. (b) Sedimentation rate for 

each cm interval (blue line) and the overall average sedimentation rate (gray dashed line) plotted through time up 

to the oldest age constraint. 
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Figure 22. (a) Age-depth model for the Maclure core (LM16-01-01) produced using Bacon in r (Blaauw and Christen, 

2011). Darker gray colors indicate more probable ages and are bound by the gray dashed lines that represent 95% 

confidence limits. Red dashed line displays the weighted mean age for each depth. Transparent blue symbols represent 

calibrated 14C dates and green symbols indicate 210Pb dates. (b) Sedimentation rate for each cm interval (blue line) and the 

overall average sedimentation rate (gray dashed line) plotted through time up to the oldest age constraint. 
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Figure 23. Plot of glacier fluctuations interpreted from glaciolucustrine records in the Sierra Nevada and CRN ages from each respective glacier 

displayed by the sum gaussian distributions with relative probability on the vertical axis (refer to Figures 3-5). Questions marks (?) indicate a possible, 

but uncertain glacial interval comprised of fine-grained sediment, but has not been interpreted as having a glacial origin. Blank space denotes there is 

no record available. Darker blue portions of glacial periods represent glacier maxima. 
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