2015 Olympia oyster, Ostrea lurida, brooding results from northern Puget Sound

Jackie E. Dexter
Swinomish Indian Tribal Community, jedexter@gmail.com

Sarah K. Grossman
Swinomish Indian Tribal Community, sgrossman@swinomish.nsn.us

Courtney M. Greiner
Swinomish Indian Tribal Community, cgreiner@skagitcoop.org

Julie S. Barber
Swinomish Indian Tribal Community, jbarber@skagitcoop.org

James T. McArdle
Swinomish Indian Tribal Community, jmcardle@skagitcoop.org

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), and the [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec)

https://cedar.wwu.edu/ssec/2016ssec/species_foodwebs/2

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Introduction

Olympia oyster, Ostrea lurida, restoration efforts have increased recently in an attempt to re-establish this ecosystem engineer to its native habitat along the eastern Pacific coast. In 2012, the Swinomish Indian Tribal Community began a small-scale Olympia oyster enhancement effort in two tidal lagoons with the intention of eventually establishing self-sustaining populations. Understanding reproductive activity within specific O. lurida populations is particularly important to restoration efforts because spawning conditions appear to vary geographically (Pritchard et al. 2015). Water temperature is thought to be a primary metric in the initiation of spawning activity. Once a critical temperature threshold is reached, O. lurida spawn and brood their larvae for a period of 10 to 12 days as they progress from unshelled early-stage larvae (i.e. “white sic”) to shelled late-stage larvae (i.e. “black sic”)(Hopkins 1937). While it is relatively straightforward to quantify the onset of brooding and larval development in conjunction with the collection of environmental data, only a few published records exist (Hopkins 1937, Carson 2010) and results are likely to vary by site.

The goals of our research were to:
1. Quantify the onset of reproductive activity in northern Puget Sound and relate these data to water temperature and previous reproductive studies.
2. Determine if there was a difference in brooding by site and time.
3. Describe temporal change in larval development.

Methods

The Lone Tree (LT) and Kiket (KI) lagoons are located in Skagit and Similk Bays, respectively, in northern Puget Sound on the Swinomish Reservation (Fig. 1). The Olympia oyster plots are located in lagoon channels that are inundated with water even at extreme low tides. Olympia oysters were outplanted to both sites in 2012, 2013, and 2015.

Sampling methods:

- Water temperature was logged at 15 min. intervals at each site from April to October 2015 using HOBO UA-002-64 and daily minimum water temperature (DMWT) was determined.
- Oysters were collected from three to five 1/16th m² quadrats per site, totaling roughly 500 individuals per lagoon per week from 6 May through 25 August 2015 (n=17 sampling dates) (Fig. 2A).
- Individuals were decapsulated for a minimum of 45 minutes and transferred into a treatment of 75g/L L-epoxy salt mixed with a 50:50 seawater/freshwater solution for 45 minutes (Fig. 2B) [Heare et al. in prep].
- Oysters were removed from the solution and open individuals were inspected for brooding (Fig. 2C & 2D) using a black zip tie to visually check for brooded larval (Fig. 2E).
- Length of brooding oyster and the stage of larval development were recorded (Fig. 2F).

Figure 1. Map of restoration sites within the Swinomish Reservation.

Results

Early-stage larvae were recorded at LT on 6 May when the DMWT was 10.6°C. Late-stage larvae were first documented at LT on 21 May with a DMWT of 10.8°C (Figs. 3 & 4). Brooding activity was detected at LT for almost a full month before the previously reported critical DMWT threshold of 12.5°C for southern Puget Sound (Hopkins 1937) was recorded.

Brooding, including the presence of late-stage larvae, in KI oysters was first recorded on 11 May 2015 at a DMWT of 12.6°C (Fig. 4).

We found no significant difference in mean percent brooding by site (two-way ANOVA on arcsin transformed data, F_{site} = 0.005, p = 0.944) and no significant interaction between site and date (F_{site date} = 1.129, p = 0.339).

The number of oysters brooding changed temporarily (F_{site date} = 14.13, p < 0.000). Follow-up Tukey tests showed significantly more oysters brooding in late May to mid-June (Fig. 3).

No obvious temporal pattern was noted in the proportion of early-stage larvae versus late-stage larvae by site and time (Fig. 4).

Discussion

O. lurida are capable of brooding at temperatures colder than what has been previously reported in the literature [12.5 °C in Puget Sound, 14.5 to 16.0 °C in Oregon, 16.0 °C in California (Hopkins 1937 & Pritchard et al. 2015)].

The presence of late-stage larvae in the brooding oysters indicates that larva has successfully reached viable development several weeks before 12.5 °C was recorded at LT or KI.

O. lurida populations located subtidally or in tidal lagoons may be capable of brooding at colder temperatures because of increased feeding opportunities or lower physiological stressors.

Because KI minimum water temperatures were higher than LT, one would expect to record brooding first in KI oysters. Yet, no significant difference in mean percent brooding by site was found; this most likely means that water temperature represents just one factor of many that initiates brooding.

Results from this study indicate that northern Puget Sound brooding peaks in late May and early June (Fig. 3). Thus, peak recruitment could be expected to occur in northern Puget Sound by mid to late June.

An unseasonably warm winter may have been partially responsible for the surprisingly early start to brooding. Studies in a similar northern latitude species show it is possible to initiate incomplete reproduction in the fall. These gonads can then overwinter until more favorable conditions are attained in spring (Joyce et al. 2013).

This study demonstrates the importance of collecting site-specific data due to the possibility of inter-annual and/or site variation.

Suggestions

Future high latitude brooding studies should start quantifying reproductive activity in mid-April and consider sampling twice a week to ensure documentation of early brooders. Furthermore, we suggest monitoring water temperature and other environmental conditions (e.g. salinity, pH, chlorophyll-a) in order to examine which environmental metrics are influencing reproductive timing at study sites. These results may improve the ability of restoration managers to capitalize on spawner recruitment and settlement and promote restoration success.

References

Acknowledgements

We thank all of our partners and collaborators in Olympia oyster restoration: Lorraine Loomis, Lindy Hunter, and all other staff and tribal members at the Swinomish Indian Tribal Community, Brady Blake, Joth Davis, Paul Ondell, Jim Gibson, Jake Heare, Brent Vadas, and the Puget Sound Restoration Fund. This research was funded by a US Fish and Wildlife Tribal Wildlife Grant #14A104945 and by Conservation, Research, and Education Opportunities International.