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Abstract

In 2014, dam removal from the Elwha River, Washington state, exposed large areas

of previously submerged sediment. The Olympic National Park placed 100 large logs

on 2 ha of exposed sediment to promote plant establishment. I quantified patterns of

three microclimate variables near logs: wind speed at 10-cm height (u10), sediment

temperature (TS), and evaporation rate (E); and their relationships to broader envi-

ronmental factors. The northern-most log, exposed to northerly winds, was measured

along 3-m perpendicular transects 14 times during August and September 2015. I

determined nonlinear and multilevel regressions to investigate patterns and create

models of microclimate as functions of environmental factors and distance from the

log. Maximum u10 decreased to the lee. Decreases near the log occurred for u10 to

the north and south, and for TS and E to the shaded north. Windward and leeward

u10 models include local wind speed and distance from log. Northern TS is related

to solar radiation, air temperature and distance from log. Southern TS is related

to air temperature. Northern E is related to solar radiation, vapor pressure deficit

and distance from log. Southern E is related to solar radiation and vapor pressure

deficit. Models of southern u10 and northern TS and E were validated with data

from 8 wind-protected logs, but lack of validation of the other microclimate models

indicate the northern-most log has unique microclimate. Species-specific physiolog-

ical information is required to predict plant reactions to near-log microclimate. All

models require more data to broaden their scope.
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Chapter 1

Introduction

1.1 Background

Dam removal is becoming a prevalent strategy for restoring river ecosystems and

aging-dam management (Stanley and Doyle, 2003; American Rivers, 2014). As this

trend continues, knowledge on how to recover from dam removal will be essential.

However, dam removal strategies and post dam removal recovery strategies are vari-

able and not well researched (Stanford et al., 1996; Tullos et al., 2016; Bellmore et al.,

2017). Two hydroelectric dams were recently removed on the Elwha River, Washing-

ton: The 87 year old Glines Canyon Dam, which impounded Lake Mills reservoir and

the 99 year old Elwha Dam, which impounded Lake Aldwell reservoir (Winter and

Crain, 2008; Chenoweth et al., 2011). As a result of the removal of the two dams,

approximately 3.2 square kilometers of sediment were exposed. Revegetation of these

reservoir sediments is a critical aspect of the Elwha River restoration for promoting

adequate salmon habitats and maintaining ecosystem function.

The Pacific Northwest has characteristically wet winters and warm, dry sum-

mers that bring drought stress to vegetation during the growing season (Waring and

Franklin, 1979; Gray and Spies, 1997). Less than 10% of annual precipitation falls

during the summer months (Waring and Franklin, 1979). Additionally, water avail-

ability in the sediments is expected to be low due to the small pore spaces of the



sediments (Niinemets, 2010; Chenoweth et al., 2011). Therefore, microclimate of the

exposed reservoir sediments may not be adequate for natural seed germination and

growth on the Elwha River without some manipulation (Michel et al., 2011).

Olympic National Park has a management and monitoring plan in place to pro-

mote revegetation (Chenoweth et al., 2011). One aspect of this plan is the placement

of large woody debris (LWD) on exposed sediment surfaces to provide refuge from her-

bivory, provide shade and reduce moisture stress to establishing vegetation (McHenry

and Chenoweth, 2015). In 2012 and 2014, large logs were placed on the exposed sedi-

ments of former Lake Mills by helicopter to assist vegetation, but it remains unknown

how these logs may be affecting their surrounding microclimate, which ultimately in-

fluences the vegetation (Chen et al., 1995; Gray and Spies, 1997; Chenoweth et al.,

2011; Jones, 2013; McHenry and Chenoweth, 2015).

The purpose of this study is to determine the spatial and temporal patterns of

microclimate near placed LWD and to determine how external weather phenomena

influence the effect that logs have on the surrounding microclimate.

1.2 Microclimate Conceptual Models

1.2.1 Microclimate Definition and Scope

Microclimate is officially defined in climatology and meteorology as the climatic re-

gion in the air space near the ground surface, up to 1.5 or 2 meters high (Ahrens,

2005; Geiger et al., 2009). However, the term microclimate is also frequently used

to describe the below ground environment in soils and sediments (Harte et al., 1995;

Raich and Tufekciogul, 2000; Jo et al., 2017). Microclimate often describes the lo-

calized area of climate experienced by an organism or community in question and

may differ from the surrounding climate, allowing the organism or community to sur-

vive (Middleton, 1999; Middleton, B., 2000; Blood and Titus, 2010). It is a result

of many environmental factors in an ecosystem, including the biological, hydrologi-

cal, biophysical and topographical. Microclimate has both a direct and an indirect

2



effect on all ecosystem processes and these ecosystem processes also strongly affect

the microclimate. Topography and vegetation are important drivers of microclimate

because they cause heterogeneity of energy and water balance in a landscape and

therefore microclimate is often distinct in different landscape patches (Chen et al.,

1999; Xu et al., 2004).

Climatic conditions vary greatly based on distance above the ground and can also

vary greatly based on horizontal distance (Rosenberg et al., 1983; Ahrens, 2005; Likso

and Pandžić, 2006; Geiger et al., 2009). Likso and Pandžić (2006) observed diurnal

temperature variation at 5 cm height to be between 2 oC and 5 oC greater than the

diurnal temperature variation at 2 m height, depending on the season. Davies-Colley

et al. (2000) observed differences in microclimate across a forest-pasture edge. They

reported an abrupt 5 oC drop in soil temperature over a horizontal distance of 10

meters, and drops in wind speed (1.25 m/s difference), air temperature (6 oC differ-

ence) and vapor pressure deficit (4.5 mB difference) over a 40 meter distance. Other

studies show similar changes in climatic variables over similar distances (Gehlhausen

et al., 2000; Newmark, 2001).

The terms and concepts of microclimatology are based on physics and physical re-

lationships (Geiger et al., 2009). Microclimate can be described by physically derived

variables related to localized energy and water budgets, such as temperature, heat,

radiation, evaporation and wind speed, among others (Rosenberg et al., 1983; Geiger

et al., 2009; Jones, 2013). All variables are intrinsically related and relationships can

be defined by mathematical models (Rosenberg et al., 1983; Jones, 2013).

1.2.2 Wind Speed (u)

The microclimate-relevant layers of the atmosphere are the laminar sublayer and the

turbulent surface layer (Rosenberg et al., 1983). The laminar sublayer extends only

a few millimeters above the ground surface and mass and energy transfers here are

due mainly to molecular diffusion. The turbulent surface layer then extends above

the laminar sublayer up to 50 – 100 meters. This layer is characterized by strong

3



Figure 1.1: Separate wind profiles A and B are described by differences in the patterns
of wind speed at varying vertical distance or height above the ground surface. Wind
profile A has a roughness distance (z0) value of z0A and wind profile B has a roughness
distance of z0B. Roughness distance describes the height at which wind speed becomes
negligible and is used to compare different ground surface types and how they affect
wind profiles. At greater vertical distances, the wind follows a logarithmic curve as
described in log wind profile models, offset by their z0 intercepts. Roughness distance
is explained further in Appendix B.

eddying and mixing due to surface friction (mechanical turbulence), and temperature

gradients and convection (thermal turbulence) (Rosenberg et al., 1983).

Wind speed (u) decreases with proximity to the ground, due to friction caused

by surface roughness (Rosenberg et al., 1983; Geiger et al., 2009). There are several

mathematical models that use the differences in u at different heights to characterize

a surface’s influence on wind (Swinbank, 1964; Tennekes, 1973; Rosenberg et al., 1983;

Geiger et al., 2009; Jones, 2013). Several models show u proportional to the natural

log of the height above the ground (Swinbank, 1964; Tennekes, 1973; Rosenberg et al.,

1983; Jones, 2013). Figure 1.1 outlines the basic profile described in one of these

models. These wind-profile models are typically applied on a meter to kilometer

scale, but can mathematically be applied to a centimeter spatial scale to describe

microclimatatological and micrometeorological patterns.

4



1.2.3 Sediment Temperature (TS)

Sediment temperature (TS) is the sensible heat in and below the sediment surface

caused by solar radiation and thermal conductivity (Rosenberg et al., 1983). Incident

solar radiation (RS) is the primary controller of energy input into soil, microclimate

systems and to the global energy budget (Rosenberg et al., 1983; Geiger et al., 2009).

Incident solar radiation includes both direct solar radiation (RSD) from outside of the

atmosphere and diffuse solar radiation (RSdiff ) (Figure 1.2). Direct solar radiation

is the direct beam of light from the sun that is not scattered by atmospheric parti-

cles (Jones, 2013). The amount of direct solar radiation that reaches earth surfaces

depends heavily on water vapor or particulate matter content in the atmosphere, lat-

itude, season and diurnal sun position. Diffuse radiation is the solar radiation that

is transmitted to the ground surface due to scatter from atmospheric particles. In

mid-latitudes, diffuse solar radiation can input 30-40% of the incident total solar ra-

diation to the surface and is a greater portion of the total solar radiation when there

is increased cloud cover or during winter months (Rosenberg et al., 1983). Some heat

absorbed from radiation in the atmosphere is also emitted towards the earth surface

(Rat).

Once at the ground surface, the radiation not absorbed as Qs is either reflected as

shortwave radiation (Rrsw) or emitted as thermal (longwave) radiation (Rgt) (Rosen-

berg et al., 1983). The Rrsw is incident solar radiation reflected from surfaces in the

0.3-0.7 µm wavelengths, which includes both shortwave and visible wavelengths of

the spectrum. The Rrsw is sometimes also termed ’albedo’. Rocky, sandy and bare

soil surfaces reflect 10-30% of incident shortwave solar radiation, while water reflects

very little and absorbs a majority of solar energy. The Rgt is the net upward longwave

radiation given off by on an object and is dependent on its temperature (Jones, 2013).

Both the atmosphere and land surface emit longwave radiation and the net difference

between downward and upward longwave radiation emitted from the land surface is

noted as the net upward longwave radiation.

While some incoming radiation is reflected in short and longwave radiation, soil
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Figure 1.2: Radiation balance at the ground surface is depicted showing radiation
and heat fluxes within a simple ground surface. The incoming radiation variables are
emitted thermal radiation from the atmosphere (Rat), direct solar radiation (RSD)
and diffuse solar radiation (RSdiff ). Direct and diffuse solar radiation are both com-
ponents of the total incoming solar radiation (RS). The incoming energy is then
transferred to the soil as sensible heat (Qs) and is reflected as shortwave radiation
(Rrsw). Additionally, the temperature of the soil causes it to emit thermal energy
back to the atmosphere (Rgt).
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and sediment surfaces also absorb the light energy. These surface types are highly

important in heat storage on virtually all spatial and time scales (Rosenberg et al.,

1983). Generally, soil temperature changes with depth. This profile changes as in-

coming radiation is absorbed, heat is conducted through the soil or sediment and

longwave radiation is emitted from the ground surface (Rosenberg et al., 1983). Soil

and sediment temperature decreases with depth during the day and the temperature

gradient causes heat to go into the soil or sediment. Heat that is transferred due to

temperature difference is termed sensible heat (Qs). Sandy soils experience greater

extremes of temperatures diurnally due to lower heat capacity and greater thermal

conductivity due to smaller pore space - assuming equal water content. Additionally,

differences in temperature can cause differences in water distribution within the soil,

both liquid and vapor. This is a consequence of the upward and downward conduc-

tivity of thermal energy diurnally within the soil causing differences in water vapor

pressure (Rosenberg et al., 1983).

Heat from the ground surface is also conducted upward to atmospheric gases and

particles near the ground surface (Rosenberg et al., 1983; Shuttleworth, 1993). The

magnitude of this vertical flux of sensible heat from the ground to the atmosphere

(Rgt) is primarily dependent on the difference in temperature for the first 2-3 meters

above the ground and the direction of the flux is dependent on the time of day

(Rosenberg et al., 1983; Shuttleworth, 1993). When the surface is warmer than the

air, during the day, the flux is upward. When the surface is cooler, which may

occur at night, sensible heat is transferred from the atmosphere to the ground surface

(Rosenberg et al., 1983).

1.2.4 Evaporation Rate (E)

Evaporation is the change of state from liquid water to water vapor. Its rate (E) is

dependent on energy availability at the surface, the ease of diffusion of water from

the surface to the air, and how much water is available at the surface for evapora-

tion (Penman, 1948; Rosenberg et al., 1983; Shuttleworth, 1993). To quantify the

7



energy available for evaporation from a sediment surface, a radiation balance must be

estimated as described in Section 1.2.3, including sensible heat loss to the sediment

and nearby air and energy loss via evaporation due to heat of vaporization of water

(Penman, 1948; Rosenberg et al., 1983; Shuttleworth, 1993).

The ease of diffusion between the sediment surface and the air is dependent on

molecular diffusion and turbulent diffusion (Figure 1.3) (Penman, 1948; Shuttleworth,

1993). Molecular diffusion is a result of a gradient in water vapor partial pressure

(called the vapor pressure deficit (ρ)) between the sediment surface and the nearby

air (1 to 3 mm thick laminar sublayer) and of constant random motion of air particles

(Penman, 1948; Rosenberg et al., 1983; Shuttleworth, 1993). If the relative humidity

of the nearby air is fully saturated, evaporation will not occur. Advection aids in

molecular diffusion by raising the air close to the sediment surface and replacing it

with drier air from above, thereby creating a constant upward movement of water va-

por. Turbulent diffusion is advection created by wind-caused turbulence exchanging

air close to the sediment surface with air from higher in the atmosphere. The rate at

which water vapor is moved from the air close to the sediment surface is proportional

to the wind speed and is affected by crops and other objects on the sediment surface

that affect wind speeds (Rosenberg et al., 1983; Shuttleworth, 1993). In his founda-

tional equation for evaporation, Penman (1948) described E as directly proportional

to wind speed, vapor pressure deficit, and solar radiation. Limiting sediment mois-

ture acts as a resistance to the evaporation rate from bare sediment (Rosenberg et al.,

1983; Shuttleworth, 1993).

Plants require ground moisture for transpiration, the water evaporation from

stomata in vascular plant leaves. The movement of water through plant tissue from

the ground substrate is critical for transport of nutrients and other chemicals through

the plant (Jones, 2013). Transpiration is not discernible from evaporation over large

areas and thus, these are frequently combined and described as evapotranspiration

(Rosenberg et al., 1983; Jones, 2013). Similar factors affect transpiration, but it is

also controlled by plant physiology (Jones, 2013).
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Figure 1.3: Evaporation from the ground to the atmosphere is determined by differ-
ence in partial pressure of water vapor (Pw) between the surface and the nearby air.
The diffusion of water vapor from the surface to the laminar sublayer is caused by
molecular diffusion. From the laminar sublayer to the atmosphere above, the water
pressure gradient is influenced by wind turbulence replacing the moist air (greater
Pw) near the laminar sublayer with dry air (lesser Pw) from greater heights in the
atmosphere.

1.3 Microclimate Influence on Vegetation

The near-ground microclimate layer of the atmosphere is where plants grow and

therefore microclimate strongly influences plant life (Rosenberg et al., 1983; Geiger

et al., 2009; Jones, 2013). When climatic conditions outside the optimal range of a

plant are sustained for long periods of time, plant productivity can be hindered and

the climatic conditions are considered a ’stress’ (Niinemets, 2010). These climatic

conditions can include light availability, moisture availability, temperature and wind

speeds (Wadsworth, 1959; Kalma and Kuiper, 1966; Niinemets, 2010). In a study of

806 Northern Hemisphere temperate tree and shrub species, Niinemets and Valladares

(2006) found that species are rarely tolerant of two or more environmental stresses.

Stress tolerance refers to physiological and/or morphological changes in plants in

response to stress to counteract potential decreases in plant productivity and growth

(Jones, 2013). This definition is based on the organism level, though some studies

have investigated stress tolerance at the community level (Bertness and Callaway,
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1994; Lortie and Callaway, 2006; Maestre et al., 2006, 2009; Holmgren and Scheffer,

2010; Butterfield et al., 2016). Specific conditions of microclimate also must exist for

seeds to germinate (Middleton, 1999).

Models of microclimate have successfully been used at large scales to predict

species survival and growth, where the input variables into the models were climatic

variables influential on survival (Kearney and Porter, 2009; Questad et al., 2014).

These models are often called species distribution models (SDMs) (Kearney and

Porter, 2009). In a review of published SDMs, Kearney and Porter (2009), listed

direct and diffuse solar radiation, infrared radiation, air temperature, surface tem-

perature and relative humidity as the important microclimate variables included in

SDMs. Questad et al. (2014) created a suitability map using elevation information

and compared it to microclimate variables of mean wind speed, soil moisture, relative

humidity and air temperature to determine if the suitability map would be accu-

rate in predicting survivorship of at-risk species. Most recently, Kearney and Porter

(2017) introduced a microclimate model within the biophysical modelling package

NicheMapR, which describes the heat, water and nutritional budgets of organisms

partially by inputs of microclimate. The NicheMapR microclimate inputs include

mean air temperature, soil moisture, relative humidity, wind speed and cloud cover.

1.3.1 Wind Influences

Plants are subject to damage from winds due to desiccation, chill and mechanical

injuries (Grace, 1977; Rosenberg et al., 1983; Grier, 1988). Wind also affects plant

morphology and development by reducing leaf area index (LAI) and decreasing total

water usage, subsequently reducing growth rate. This is based on experiments done

by Wadsworth (1959), Morse and Evans (1962), and Kalma and Kuiper (1966). Grier

(1988) found single wind events reduced leaf biomass by 36.3% in conifer forests in

the western United States. Kalma and Kuiper (1966) also measured decreases in

root and leaf fresh biomass and dry leaf mass with increasing wind speeds between

0 and 1.6 m/s under controlled conditions. Decreased water mass in leaves may
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make plants more susceptible to heat stress and evaporative stress (Machado and

Paulsen, 2001; Wahid et al., 2007). Wadsworth (1959) found that some wind is

beneficial for plant growth and the optimum wind speed is about 0.7 m/s for resulting

in the maximum possible growth rate (increase in plant weight per unit weight) of

Brassica napus (rapeseed) in a controlled laboratory experiment controlling other

plant stresses, but this may not apply to other plant species. Increased wind can cause

increased evapotranspiration, even when water is limited in the ground (Penman,

1948; Grace, 1977). This causes increased leaf water stress to plants, and in turn,

causes drought stress (Grace, 1977). Wind can also stress plants by increasing soil

erosion, especially where soils are loose, dry and bare, as is expected with Lake Mills

sediments (Fryrear and Skidmore, 1985; Chenoweth et al., 2011).

1.3.2 Sediment Temperature and Energy Influences

Sediment temperature and air temperature are related as described in Section 1.2.3.

Where sediment temperatures are elevated, air temperature nearby may also be ele-

vated and vice versa. Elevated temperatures, permanent or transitory can have large

negative effects on plant physiology and biochemistry, which affects growth, devel-

opment and survival at all life stages (Wahid et al., 2007). The temperatures at

which these physiological and biochemical changes occur permanently is referred to

as ’heat stress’. Heat stress thresholds depend on the intensity of the temperature,

how quickly the temperature changes and the duration of exposure of the plant to

the increased temperature and is species specific. High temperature can inhibit or

slow germination (Covell et al., 1986). Increased temperature can cause leaf senes-

cence, decreased or stopped growth, and plant death (Machado and Paulsen, 2001).

Elevated soil temperatures can negatively affect root metabolism and growth, and

soil temperature is as important as soil moisture and soil aeration for root health

(McMichael and Burke, 1996). In a study of red alder in Pacific Northwest forests,

heat and drought injuries were found to be the primary causes of seedling mortality

in clearcut areas, where surface organic matter had been removed, exposing mineral
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soil (Haeussler et al., 1995). Growth rates in these areas were also slowed. Though

this study observed the combined effects of heat and drought stress on red alder, they

suggested that temperature variability and daily maximum temperature may have an

effect on distribution of red alder, separate from an effect from soil moisture.

1.3.3 Evaporation Influences

Transpiration is critical for transport of nutrients and other chemicals in plants and

is therefore essential to plant survival (Jones, 2013). When moisture is limited in

the ground substrate, as is likely in Lake Mills (Chenoweth et al., 2011), plants may

experience drought stress because transpiration is hindered (Jones, 1999). Low water

content in soils can also hinder seed germination (Jajarmi, 2009).

High temperature and drought stress can interact to affect the soil water content,

leaf water content and leaf osmotic potential (Machado and Paulsen, 2001). These

stresses are derived from decreased soil water, but do not affect physiological changes

in the plant such as osmotic adjustment. Water availability and drought stress are

often dictators of plant phenology as well (Idso et al., 1978; Aronson et al., 1992).

Haeussler et al. (1995) found that increased soil moisture increased red alder

(Alnus rubra) emergence in a field experiment in the central Coast Range of Oregon,

independent of soil type. ONP conducted a similar study in a greenhouse, but found

that fine sediments were fatal to red alder seedlings (Chenoweth et al., 2011). This

suggests that sediment or soil moisture is critical for red alder seedling survival.

Therefore, an understanding of moisture and evaporation in the system is critical to

predicting a possible response of an important native Elwha species such as red alder.

1.4 Barrier Influences on Microclimate and

Vegetation

Biotic and abiotic objects that create structure in an environment, such as plants,

rocks, buildings and woody debris affect their nearby microclimate (Gray and Spies,
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1997; Peters et al., 2008; Bang et al., 2010; Armas et al., 2011). In many instances,

and especially where evaporation demand is high, manipulation of microclimate, by

causing windbreaks and shade, may be desired to make conditions more favorable for

plants (Skidmore and Hagen, 1973; Gray and Spies, 1997). Increasing heterogeneity

of microclimate and including more favorable microclimate sites within an area allows

plants to establish themselves in disturbed areas (Kupferschmid and Bugmann, 2005;

Blood and Titus, 2010; Pastur et al., 2014).

Mayaud et al. (2016) studied the varying effect on leeward wind turbulence of three

morphotypes of plants. They found that grass clumps reduced mean wind velocity by

70% and shrubs reduced mean wind velocity by 40%, both in the immediate lee. Both

the grass clumps and the shrubs reduced wind velocity for a distance of about nine

times their height downwind. The trees measured in this study increased wind speed

below their crown to about three tree-heights leeward, but slowed wind speed at the

ground surface from three to eight tree-heights downwind. Previously, more general

studies on windbreaks have found that wind breaks reduce wind velocity downwind

for a distance of two to five times the object’s height (Brandle et al., 2006).

Established, living plants can reduce environmental stress for other plants nearby,

which is particularly relevant in areas of high environmental stress (Fryrear and Skid-

more, 1985; Armas et al., 2011; Supuka and Uhrin, 2016). This effect is particularly

important for the success of early plant life stages such as germination and establish-

ment (Peters et al., 2008). However, there are some negative interactions between the

plant and its affected partner plant. Live plants deplete soil moisture and nutrients in

a localized area (Gray and Spies, 1997). Armas et al. (2011) found that in the most

arid environments, plant species could only exist in the proximity of an assisting shrub

species, Retama sphaerocarpa L. (Boiss). Butterfield et al. (2016) and Maestre et al.

(2006) observed variable community response to drought in desert shrub communi-

ties, suggesting that some positive plant-plant responses to drought exist between

individuals of different species(Armas et al., 2011). Other studies have suggested

that positive plant-plant interactions during environmental stress can be observed at
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the community level in addition to the individual level (Bertness and Callaway, 1994;

Lortie and Callaway, 2006; Maestre et al., 2009; Holmgren and Scheffer, 2010).

Rocks influence microclimate similar to plants in respect to both water availability,

and reduced temperature and incident solar radiation (Peters et al., 2008). Peters

et al. (2008) determined that water availability is extended 19 days after a rain event

when close to rocks, surface temperature can drop as much as 7 oC between 50 cm

and 0.5 cm from a rock, and, dependent on the rock shape and size, rocks can create

dense shade. Xeric plant species preferentially develop root systems near rocks and

some preferentially grow near rocks (Peters et al., 2008).

Where evaporation is high, windbreaks reduce evaporative stress to plants and

reduce mechanical damage to plant tissues (Skidmore and Hagen, 1973). The ex-

tent of this effect depends on how much the leeward airflow changes and how that

change influences overall microclimate. Windbreaks reduce the leeward horizontal

wind speed, alter the leeward vertical air flow and stimulate turbulence. This reduc-

tion of horizontal wind is dependent on the speed and incident angle of wind, and also

dependent on the permeability and height of the wind barrier (Woodruff et al., 1963;

Skidmore and Hagen, 1973; Grace, 1977; Fryrear and Skidmore, 1985; Heisler and

Dewalle, 1988; Brandle et al., 2006; Mayaud et al., 2016). The leeward wind break

region can extend to a distance 30 times the height of the object breaking the wind

(Grace, 1977). Bang et al. (2010) discovered that windbreaks caused by buildings in

desert cities increase plant productivity, which in turn has an effect on the abundance

and diversity of higher trophic levels in these areas.

1.5 Woody Debris in Plant Establishment

Woody debris creates microsites and alleviates environmental stresses associated with

hot, dry summers in the Pacific Northwest (Gray and Spies, 1997). In clear-cuts,

stumps have been found to provide better microsites than living vegetation. Because

LWD placed on the ground surface creates a barrier to wind, slowing horizontal
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Figure 1.4: Logs may manipulate microclimate by creating an area of shade and
regions where horizontal wind speeds are slowed. A larger region of slowed wind
speeds exist to the leeward region than to the windward. The slowed horizontal
wind speeds in these regions suggest increased turbulence. Shade exists where the log
blocks the direct sunlight from reaching the ground surface.

wind at short distances to the windward sides and also to larger distances to the lee

(Rosenberg et al., 1983) (Figure 1.4). As wind approaches the windward side of the

log, it puts pressure on the log surface and the wind is redirected, causing a small

region of slowed wind. To the lee, horizontal wind speeds near the ground are also

slowed due to the redirected air flow. The amount of turbulence in these regions may

be increased due to the log having low porosity of air flow.

Fine woody debris has been shown to increase natural recruitment and regenera-

tion of Nothofagus pumilio in a harvested forest patch, by increasing the proportion

of favorable microclimate in logged areas in southern Patagonia (Pastur et al., 2014).

Fine woody debris reduced air temperatures and increased soil water content which

could be important for establishing vegetation in former Lake Mills. This region

in Patagonia is climatically different from the Elwha watershed with different limit-

ing factors. While this Patagonia study site is primarily light-limited for the target

species, drained Lake Mills is expected to be moisture-limited (Gray and Spies, 1997;

Chenoweth et al., 2011). However, this discovery that woody debris increases the

variability of microclimate and increases natural recruitment could also apply to the
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Elwha watershed system and others.

LWD is convenient to use as a barrier in a dam-removal scenario because logs have

often accumulated around shorelines of previous reservoirs and are readily available

(Chenoweth et al., 2011). In Lake Mills, LWD is expected to assist vegetation by

not only providing improved microclimates, but also aiding in accumulating organic

matter and reducing herbivory (Chenoweth et al., 2011).

1.6 Dewatered Sediments as a Novel Environment

Dam removal science is relatively new and large gaps in literature on the effects of

dam removals exist (Bellmore et al., 2017). Only 9% of dam removals in the U.S.

have published scientific literature associated with them. Out of these, vegetation

studies are relatively rare and primarily focus on riparian vegetation near the river

channel and succession near the former shoreline of the reservoir (Auble et al., 2007;

Bellmore et al., 2017).

Exposed reservoir sediments create a unique landscape pattern compared to the

surrounding areas and therefore can create a unique set of processes, or microclimate,

in the environment as compared to the surrounding forest landscape (Turner, 1989).

These sediments contain little to no organic matter and do not contain biological

legacies. Therefore primary succession is expected to occur similar to succession after

glacial retreat or volcanic eruption (Walker and Del Moral, 2003; Chenoweth et al.,

2011).

Sediment terraces within Lake Mills and Lake Aldwell are expected to form novel

vegetation communities because some plant species may be more tolerant to the

unique environmental stresses present in reservoir sediments than others or may

be more likely to germinate under the unique environmental conditions (Chenoweth

et al., 2011; Schuster, 2015).

Based on previous research in environments other than dewatered sediments, I

can predict some aspects of microclimate of dewatered Lake Mills sediments and
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limiting factors to plant life there. In desert regions, shortwave and emitted thermal

radiation from the ground are relatively high due to light coloring of ground surfaces

and high surface temperatures, respectively (Rosenberg et al., 1983). Because of the

low moisture and minimal vegetation on Lake Mills sediments, the outgoing radiation

properties here may be similar to desert regions, with higher ground temperatures

compared to other surface types in the Elwha watershed. As described in Section

1.3.3, Haeussler et al. (1995) observed the combined effects of heat and drought

stress on red alder, they suggested that temperature variability and daily maximum

temperature may have an effect on distribution of red alder, separate from an effect

from soil moisture. Mineral soil exposure, as in this study, presents a similar scenario

to Lake Mills sediments and red alder is an important Elwha species (Chenoweth

et al., 2011).

Placement of large woody debris is important for the Elwha restoration if the ma-

nipulated microclimate around logs allows plants to establish and survive in patches

where they would not otherwise survive (Kupferschmid and Bugmann, 2005). Es-

tablished plants nearby to logs can also manipulate microclimate to recruit even

more vegetation (Fryrear and Skidmore, 1985; Armas et al., 2011; Supuka and Uhrin,

2016). As more vegetation establishes, these once bare and inhospitable sediments

on the Lake Mills valley-bottom can begin to become more similar to the forests that

surround them.

1.7 Study Objectives and Questions

The main objective of this study is to determine how LWD affects microclimate in

dewatered Lake Mills, WA during the most moisture-limited season. To achieve this

objective, three main questions were assessed:

1) What is the spatial pattern of microclimate in the vicinity of a log?

Hypothesis 1a: Microclimate varies with distance and direction from a
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log.

Hypothesis 1b: On the shaded, windward (north) side of a log, wind

speed, sediment temperature and evaporation rate will decrease near the

shaded, windward (north) side of a log.

Hypothesis 1c: On the sun-exposed, leeward side (south) of a log, sed-

iment temperature increases or remain the same, and wind speed and

evaporation rate decrease with proximity to the log.

2) What is the temporal pattern of microclimate in the vicinity of a log?

Hypothesis 2: The spatial pattern of microclimate remains the same

within a day and among days, but the ranges of the values of microclimate

vary within a day and among days.

3) How are the spatial and temporal patterns of microclimate quanti-

tatively related to broader environmental factors?

Hypothesis 3a: Wind speed at 10 cm height is a function of wind speed

at greater heights and recent solar radiation.

Hypothesis 3b: Sediment temperature is a function of recent solar radia-

tion and air temperature.

Hypothesis 3c: Evaporation rate is a function of recent solar radiation,

air temperature, vapor pressure deficit and wind speed at 1 m height.
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Chapter 2

Methods

2.1 Site Description

The Elwha River watershed encompasses approximately 860 km2 and is located on

the Olympic Peninsula, WA (Chenoweth et al., 2011). The Elwha flows from the

Olympic Mountains north to the Strait of Juan de Fuca. A majority of the Elwha

watershed (83 %) is inside the Olympic National Park Boundary (Chenoweth et al.,

2011; Randle et al., 2015). The 99-year old Elwha Dam which once impounded Lake

Aldwell at river km 4.9 was removed in 2011 and the Glines Canyon Dam, which once

impounded Lake Mills for 87 years at river km 21.6 was fully removed as of September

2014. The Lake Mills site now contains approximately 1.77 km2 of newly exposed

land surface (Chenoweth et al., 2011) (Figure 2.1). An estimated 16.1 million cubic

meters of sediment were left behind on the Lake Mills valley bottom (Randle et al.,

2015). Approximately half of the sediments are fine (silt and clay) and half are course

(sand, gravel and cobbles) (Chenoweth et al., 2011).

Revegetation of these sediments is a goal of the Elwha restoration plan with the ob-

jectives to minimize invasive species, restore ecosystem processes and establish native

forests within the dam removal areas (Chenoweth et al., 2011). Harsh, unsuitable

environments and greater distances from established vegetation around the former

shoreline are expected to be challenges to revegetation of Lake Mills sediments.
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Figure 2.1: Elwha River watershed on the Olympic Peninsula in Washington, USA.
Former Lake Mills is located at river km 21.6, within the boundary of Olympic Na-
tional Park. Image courtesy of the National Park Service.

On October 2, 2014, Olympic National Park placed 395 pieces of LWD on the

exposed Lake Mills lake-bottom sediments over a 2.6 km2 area by helicopter to aid

in revegetation efforts by providing areas of more suitable microclimate (Chenoweth

et al., 2011; McHenry and Chenoweth, 2015). The site of this log relocation is on a

raised terrace on the west side of the current, post-dam river channel and is approxi-

mately 1 km south of the former Glines Canyon Dam site.

The Elwha River watershed has the steepest precipitation gradient on the Olympic

Peninsula, with the upper watershed receiving 550 cm of precipitation annually and

the lower watershed receiving 100 cm (Phillips and Donaldson, 1972). During field

measurements, from August 20, 2015 through September 7, 2015, weather was vari-

able. Between August 20 and August 27, the local weather was warm, with an average

daily temperature between 14.6 oC and 18.6 oC, and dry with an average relative hu-

midity of between 33.7 % and 42.2 % (Baccus, Personal Communication). There was

no rainfall during this period (Baccus, Personal Communication). Between August 28

and September 3, sampling was suspended due to rain (Figure 2.2) (Baccus, Personal
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Figure 2.2: Rainfall accumulation was recorded at the Elwha Ranger station to the
north of Lake Mills. Data for this study were not collected on days when rain was
falling, except 9/5, but it was not raining in former Lake Mills while measurements
were taken. Rainfall accumulation data were collected by Olympic National Park
(Baccus, Personal Communication).

Communication). During this time, the average daily temperature was between 10.4

oC and 16.1 oC. A total of 4.83 cm of rain fell during this period, averaging 0.69 cm

per day. Relative humidity was not recorded for this time period. Between September

3 and September 7, the average temperature was between 10.3 oC and 13.0 oC and

the relative humidity was between 53.3 % and 83.6 %. A total of 1.1 cm of rain fell

during this period, but rain was not falling during transect measurements (Baccus,

Personal Communication).

2.2 Sampling Design

The log on the north end of the LWD relocation site, called “repeated”, was selected

for repeated measurement on 10 days and measurements were taken multiple times on

an additional day (Figure 2.3). Eight more logs, called “other logs”, were randomly

selected for microclimate measurement within the October 2014 log drop site. For

the random selection, a grid containing 18.7 by 18.7 meter squares was overlaid on an

aerial image of the study site. Points on this grid were randomly selected using a ran-
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Figure 2.3: October 2014 LWD relocation area within Lake Mills. A) shows the
October 2014 LWD relocation area within former Lake Mills, highlighted with a red
rectangle. B) is an enlarged image of the LWD relocation site highlighted in A). Logs
highlighted in magenta and blue are logs sampled for this study. Blue is the repeated
log, magenta are others logs. Aerial imagery courtesy of Andy Ritchie (USGS).
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Figure 2.4: Logs sampled for this investigation had a range of diameters between 40
cm and 100 cm, and varied orientation deviation from east-west (90o) between 2o and
45o. Deviation from east-west is the absolute value of the log’s orientation - 90o.

dom number generator (Random Number Generator application for iOS, Alexander

Rutkowskij). The nearest log to this coordinate point that fit the log criteria (Section

2.3) was selected for measurement. Other logs were transected only once each, on the

same days that the repeated log transect measurements were taken.

2.3 Log Criteria

Logs selected for this study met criteria of location, size, orientation and decay class

to be comparable to one another, while the sample was still random enough to ad-

equately provide information about the population of logs within the October 2014

LWD relocation site. Criteria for selected ’other’ logs included: location greater than

5 m from the eastern or western terrace edge, diameter between 30 cm and 100 cm,

log touches the sediment surface for over one third of their length, greater than 3

m from another log, and oriented within 45 degrees of East-West. An additional

criterion was that selected logs must also be in the decay class 3 (no bark present,

but remains intact when kicked) on a five point decay classification system adapted

from Palace et al. (2007) and Larjavaara and Muller-Landau (2010). Selected logs
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represented a diversity of diameters and orientations of LWD found in the October

2014 LWD relocation site (Figure 2.4). I was unable to identify the species of the logs,

but the criteria for chosen logs helps ensure that all selected logs may act similarly

on microclimate.

The average diameter of the log was calculated from three diameter measurements:

one at one third the total length of the log, one at two thirds the total length and one

at the transected point of the log. The transected point of the log is the point on the

log which was transected for microclimate variables (See Section 2.4) Diameters were

measured horizontally using a rod with two plumb bobs attached. The orientation of

the log was measured with a compass aligned along the length of the log.

The two nearest logs within 10 meters of the transected point on the measured log

were recorded. If no logs existed within 10 meters, only one nearest log was measured.

Distance and orientation to nearest logs were measured from the transected point on

the measured log to the nearest point of the nearest log using a meter tape and

compass, respectively.

2.4 Transect Design

Microclimate measurements were taken along a north and a south transect extending

perpendicularly from each selected log. Each transect began at the point at which the

log touches the sediment (0 cm) and extended 300 cm away from the log (Figure 2.5).

Transects of logs were located within the middle third of the log length and were

located where the log was touching the sediment surface and there were the least

amount of obstacles (vegetation and large rocks) that would hinder microclimate

measurement 300 cm in either direction from the log.

Sediment temperature and evaporation rate were measured at 5, 10, 15, 30, 45,

60, 75, 90, 120, 180, and 240 cm to the North of the log, and 5, 10, 15, 30, 45, 60, 75,

90, 105, 120, 135, 150, 180, 210, 240 and 270 cm to the south of the log on August

20, 2015 only. On all other sampling days, sediment temperature and evaporation
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Figure 2.5: Microclimate measurement locations along log transect. Side view (from
the East, looking West) of a transected log, with locations of sediment temperature
and evaporation measurements (yellow dots) and wind speed measurements at 10
and 100 cm (blue dots). During all transect measurements, the wind direction was
approximately North

rate were measured at the same distances, but also included measurements at 105,

135, 150, 210 and 270 cm to both the north and south of each log. Wind speed was

measured at 10 cm and 100 cm above the sediment surface at distances of 10, 20, 30,

60, 120, 200 and 300 cm on both the north and south sides of each log on August 20,

2015 only. For all other sampling days, wind speed at 10 and 100 cm were measured

at 10, 15, 30, 60, 120, 210 and 270 cm to the north and south of each log (Figure

2.5). Due to the shape of some logs measured, it was not possible to place equipment

at transect points closest to the log. In these instances, measurement at these points

were not taken.

2.5 Microclimate Measurements

Microclimate measurements of sediment temperature, wind speed and evaporation

rate were measured on a transect of the repeated log five times on August 21, 2015

and 10 times between August 20 and September 7, 2015 to assess spatial patterns of

microclimate near a log and how they vary temporally (Table 2.1). Selected other

logs were measured during the same period, but at different times as the repeat log

among-day measurements except August 21, 2015.
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Table 2.1: Times of transect measurement of the repeated log. The repeated log was
transected 14 times in 10 days between August 20, 2015 and September 7, 2015. All
times are in standard time.

Study Day Date Time
1 8/20 14:45
2 8/21 9:28
2 8/21 11:30
2 8/21 13:33
2 8/21 15:20
2 8/21 17:06
4 8/23 14:09
5 8/24 12:09
6 8/25 14:28
7 8/26 12:40
8 8/27 12:30
16 9/4 8:35
17 9/5 14:36
19 9/7 12:24

2.5.1 Wind Measurement

Average wind speed (u) perpendicular to the log was measured using anemometers

(Kestrel 3000, Forestry Suppliers, Inc., Jackson, MS) over a 30 second period. Two

anemometers were attached to a meter stick at 10 cm and 100 cm heights from the

sediment surface and averages at both heights were recorded simultaneously. Tran-

sects were repeated twice and the two 10-cm height wind speeds (u10) recorded at

each transect distance and height were then averaged to create the u10 data used for

analysis. All 100-cm height wind speed (ū100) measurements were averaged to create

a single value for the entire transect. Averages were used to reduce the noise in u

data caused by momentary gusts.

2.5.2 Sediment Temperature Measurement

Sediment temperature (TS) was measured using shaded digital thermometers (Trace-

able R© Lollipop TM Waterproof/Shockproof Thermometer, Control Company, Friendswood,

TX) at 3 cm depth along the transect. Measurements were taken as close to the tran-
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sect line as possible, but if the sediment inhibited the insertion of the thermometer

due to the presence of a rock, it was moved to the nearest possible location at the

same distance perpendicular to the log. Thermometers were allowed to equilibrate

for approximately one minute before temperatures were recorded.

2.5.3 Evaporation Measurement

Evaporation rate (E) (mg of water loss per minute) (mg/min) was measured gravi-

metrically using moistened tennis balls (Wilson R© EXTRA DUTY, Wilson Sporting

Goods Co., Chicago, IL). In containers containing three tennis balls each, balls were

submerged in tap water for at least one minute, then dried to a mass of 71±1 grams

using hand towels. The water was discarded and the tennis balls were then allowed

to equilibrate in the same container for at least 30 minutes. Each tennis ball was

weighed just prior to deployment, then was placed on a 1-inch high plastic ring at

the desired transect point. After 40±1 minutes or 30±1 minutes each ball was re-

weighed. The evaporation rate in mg/min was calculated from the difference between

the initial mass and mass after elapsed time, divided by the total elapsed time. All

weights were ± 0.1 g accuracy and quality control measurements were taken with a

200.0 g weight periodically during measurement. An ancillary study indicated that

the 10 minute difference in exposure time does not influence E (Appendix A).

2.5.4 Weather Data

Before each transect was measured for the aforementioned microclimate variables,

the air temperature at 1 m height (Ta) was recorded from two digital thermometers

at the log where the transect bisects the log (Traceable R© Lollipop TM Water-

proof/Shockproof Thermometer) and the relative humidity (%) of the air was recorded

from two combined anemometer/hygrometers (Kestrel 3000) and averaged. Relative

humidity was precise to ±2%. The vapor pressure deficit (ρ) was calculated from

average Ta and relative humidity for each transect measurement using the equation

ρ = SV P 100−RH
100

(Monteith and Unsworth, 1990). In this equation, SV P is the satu-
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rated vapor pressure of water in the air at the measured air temperature. The SV P

is calculated from an adapted version of the Tetens equation found in Monteith and

Unsworth (2007): SV P = 0.6108e
17.27Ta
Ta+237.3 . The wind direction was estimated by not-

ing the direction for which the maximum u was recorded on the combined anemome-

ter/hygrometer (Kestrel 3000). Presence of shade on the sediment was recorded for

each transect point measured.

A pyranometer (LiCOR 200S, LI-COR R©, Lincoln, NE) at Lake Crescent Lab-

oratory on the north shore of Lake Crescent collected solar radiation data every 5

minutes and provided hourly averages of RS in Wm−2 (Baccus, Personal Commu-

nication). Two-hour (RS,2h) and four-hour cumulative solar radiation inputs (RS,4h)

(Whm−2) were calculated from these data for the time periods leading up to the

transect measurement start time.

2.6 Statistical Methods

2.6.1 Curvilinear Transect Model Selection

Curvilinear regression models of microclimate variable versus distance from log were

used to make qualitative observations of spatial and temporal microclimate patterns

around logs.

Curvilinear regression analysis was completed using SPSS for each microclimate

variable, to the north and south (IBM SPSS Statistics version 24.0, IBM, Armonk,

NY) for each transect of the repeat log. Transects were fit with linear, logarithmic,

quadratic, compound, power, S, growth, exponential and logistic curves. SPSS gen-

erated the optimal equation for each curve type, an ANOVA analysis of the curve,

and another ANOVA of the significance (P value) for each of the coefficients. Out of

the acceptable curves for each transect (α = 0.050 for all described ANOVA results),

the curve that created all physically possible results and with an R2 within 0.100

of the maximum generated R2 was chosen to represent that transect. The limits on

physically possible results between 0 and 300 cm distances were 0 to 4.2 m/s for u10,
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0 to 40 oC for TS and 0 to 150 mg/min for E. These curves only describe the transect

between 0 and 300 cm, because data were not taken outside of this range. If there

were no acceptable curves for a transect, the average value was used to represent all

distances (y = average of all values). The assumptions of curvilinear regression were

not evaluated in this analysis.

2.6.2 Multilevel General Model Selection

A multilevel modeling technique (Heck et al., 2013) was used to determine quantita-

tive relationships of microclimate variables to distance from log and weather variables.

This approach was required because points within a transect are not independent from

one another.

Instead, individual transects were considered clusters of measured transect points,

where:

For each transect j, microclimate variable value at point i = f(distancei)

This represents the first level of regression in this analysis and was created by regress-

ing each transect measured with a common function (see Section 2.6.2.1).

These regression equations resulted in model function parameters (maxV , max-

effect, dhalfmax or average value (Section 2.6.2.2)) that represent each transect j,

which were then regressed with environmental factors including local weather vari-

ables. This is the second level of the multilevel model.

model parameter = f(environmental factorsj)

When the regressions from the second level are substituted back into the first level,

the result is a model that includes explanatory variables from both levels to predict

the value of a specified microclimate variable at any point of a given log transect with

known distance from the log and environmental factor information:

microclimate variable value at point i within transect j = f(distancei,

environmental factorsj)

29



2.6.2.1 Common Functions

For north and south u10, north TS, and north E versus distance from log, I fit a two-

line segment model to represent the data. This model is represented by the general

equation:

value = minimum(a+ bd,maxV )

Where a and b are the intercept and slope of a line segment, d is the distance

from the edge of the log and maxV is a line with a slope of 0 representing another

line segment. The minimum of these two line segment values creates a model where

there is a sloped line at distances closer to the log, but then reaches a maximum

value (maxV ) for distances farther from the log (Figure 2.6). Model parameters a, b

and maxV were estimated using SPSS nonlinear regression analysis and adjusted R2

values are reported.

Each two-line segment model was reformulated into the following form:

value = minimum((maxV −maxeffect) + maxeffect(d)
2(dhalfmax)

,maxV )

with three common model parameters: maximum value (maxV), maximum effect

(maxeffect) and the distance to half maximum effect (dhalfmax). The maxV is derived

from the nonlinear regression output and is the maximum value of the parameter,

experienced at greater distances from the log. The maxeffect is the maximum increase

or decrease in the microclimate variable’s value experienced closer to the edge of the

log. This parameter is calculated by

maxeffect = maxV−a.

The dhalfmax is the distance from the log at which half of the maximum effect of the

log is experienced. dhalfmax is calculated by

dhalfmax = 0.5(maxeffect)
b

.

South TS and south E transects did not visually fit this pattern and were both

represented by the average value at all distances.
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Figure 2.6: The two line segment model used as the common model for north and
south u10, north TS and north E, with coefficient-derived variables of maxV, max-
effect and dhalfmax shown graphically. This model is mathematically presented
as: value = minimum((maxV − maxeffect) + maxeffect(d)

2(dhalfmax)
,maxV ). This model

(f(distance)) represents the first level of the multilevel regression.

31



2.6.2.2 General Models

Common model parameters maxV , maxeffect and dhalfmax were then individually

regressed against relevant weather variables in SPSS using curvilinear analysis, and

linear analysis (with one or more independent environmental factors). The indepen-

dent environmental factors attempted in these regressions were chosen based on known

conceptual relationships described in Section 1.2. For transects of u10, independent

variables chosen were ū100, RS,2h and RS,4h. For transect of TS, independent vari-

ables chosen were average Ta, RS,2h, RS,4h, and RS. For transects of E, independent

variables chosen were ρ, ū100, and RS.

For the south TS and south E transects, the average value itself was regressed

against relevant weather variables in SPSS and these regression equations were used

to predict the value of TS and E to the south of the log.

The best combinations of parameter regressions were chosen by how well they fit

the repeated log data. Models that maximized adjusted R2 values between measured

and modeled values of u10, TS, and E, and whose linear regressions’ slope and intercept

were closer to 1 and 0, respectively were most ideal. If two or more models fit similarly,

the simplest model with fewer input variables was preferred.

2.6.2.3 General Model Validation

The general model was used to predict values of microclimate variables for the eight

randomly-selected other logs to assess how well the models may apply to other logs

with varying location, size and orientation within the October 2014 log drop area.

Slopes of linear regression fits of modeled versus measured data points for model-

informing, repeated log transects were compared to the slopes of linear regression fits

of modeled versus measured data for the other-log, validation transects using t tests.

Significant differences in slopes of other-log (validation data) fit and repeated-log

(model-informing) fit support differences in the factors creating microclimate patterns

nearby the repeated-log and other logs.
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2.6.2.4 Influence of Units of Distance

To test if log diameters are a more appropriate unit of distance than centimeters in

these models, all distances were converted to units in log diameters, specific to the

log measured, using the average log diameter measurement.

distance(diameters) = distance (cm)
average log diameter (cm)

Logs were assumed to be approximately round and diameters measured horizon-

tally are assumed to equal the height of the log from the sediment surface. I predicted

that expressing distance units in diameter would improve model fits because effects

of windbreaks are directly related to the height of the windbreaking object, and these

units are typically used in windbreak studies (Grace, 1977; Fryrear and Skidmore,

1985; David et al., 2016; Mayaud et al., 2016). The height of the log also affects the

distance that shade extends from the log, which may influence sediment temperature

and evaporation rate.
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Chapter 3

Results and Discussion

3.1 Weather Patterns

Weather variables recorded for each repeated log transect show some visible similar

trends, reinforcing concepts in the conceptual models of microclimate (Rosenberg

et al., 1983; Geiger et al., 2009) (Figures 3.1 and 3.2). Greater air temperature (Ta),

average wind speed at 1 m height (ū100) and vapor pressure deficit (ρ) all often occur

together and with decreased relative humidity.
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Figure 3.1: Local weather from on-ground measurements and nearby weather stations
on August 21, 2015 with times in PST. Variables include air temperature (Ta,

oC) (A),
average wind speed at 1 m height(ū100, m/s) (B), relative humidity (%) (C), vapor
pressure deficit (ρ, kPa) (D), solar radiation (RS, W m−2) (E) and two-hour and four-
hour cumulative solar radiation (RS,2h and RS,4h, Whm−2) (F). Ta, relative humidity
and ū100 were all recorded at the repeated log at the time of measurement. The RS was
collected by Olympic National Park at the Lake Crescent weather station. There was
no rainfall accumulation recorded during this period. Solar radiation measurements
in E) were recorded every 5 minutes, and average hourly values of these are reported
in W m−2. The RS,2h and RS,4h in F) was derived from RS data presented in (E) for
2 and 4 hour periods prior to transect measurement.
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Figure 3.2: Local weather from on-ground measurements and nearby weather stations
over the entire study period. Measurements were taken at different times on each
study day and are not standardized to a specific time. Each data point corresponds
to the time at which the repeated log transect was measured on that day. Weather
variables include Ta (oC) (A),ū100 (B), relative humidity (%) (C), ρ (D), RS (W
m−2) (E) and RS,2h and RS,4h (Wh m−2) (F). Ta, relative humidity and ū100 were
all recorded at the repeated log at the time of measurement. RS was collected by
Olympic National Park at the Lake Crescent weather station. There was no rainfall
accumulation recorded during this period. Solar radiation measurements in E) were
recorded every 5 minutes, and average hourly values of these are reported in W m−2.
The RS,2h and RS,4h in F) was derived from RS data presented in E) for 2 and 4
hour periods prior to transect measurement. Measurements were taken at different
times on each study day and are not standardized to a specific time. See table 2.1
for relation of study day to date.
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3.2 Microclimate Near a Log - Qualitative Evalu-

ation

3.2.1 Curvilinear Models

The curvilinear models outlined in this discussion describe the spatial patterns in

microclimate variables at varying distances to the north and south of a repeatedly

measured log (objective 1) and are used to qualitatively investigate how these pat-

terns change temporally within a day and among days in the study period (objective

2). Curvilinear regressions to transect data may provide more qualitative detail on

these microclimate patterns than a common model, but are not as easily compared

quantitatively.

3.2.1.1 Wind Speed at 10 cm Height

Overall, the log influenced u10 in two ways. First, u10 was slower near the log than

farther away on both sides. Between 100 cm and 5 cm from the log, u10 decreased

70.7% to the north and 55.8% to the south. Second, u10 was, on average, 51.7%

slower on the south side than the north side based on maximum values modeled to

each side for each transect (study day 16 excluded).

Within-day variability To the northern, windward side of the log, u10 sometimes

showed evidence of a log-effect, with decreased speeds near the log, for all times

measured except 9:28, which showed no pattern (Figure 3.3 A, C). All other times

modeled a decrease to under 0.5 m/s within 15 cm of the log. Times differ in the

distance north that u10 reaches maximum speed. Therefore the estimated distance of

the log’s effect on u10 to the north is variable.

There does not appear to be a consistent effect of the log on u10 to the south within

300 cm (Figure 3.3 B, D). However, the decrease in u10 from the north to the south,

is likely because the log is protecting the leeward side. The u10 was more variable

to the north than the south of the log. At all times, u10 likely causes little stress
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Figure 3.3: Selected curves to represent u10 transects for 5 measured times of day
on August 21, 2015. Graphs A and C show transects measured to the north of the
repeated log and graphs B and D show transects measured to the south of the repeated
log. Both graphs A and B both contain a single line generated for that transect at
9:28, 11:30, 13:33, 15:20 and 17:06 measured times. Graphs C and D show modeled
u10 at four distances of 15 cm, 50 cm, 100 cm and 250 cm from the log repeated five
times on August 21, 2015.
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to vegetation south of the log, while u10 greater than approximately 50 cm north

at 11:30 and 13:33 are potentially high enough to affect plant growth (Wadsworth,

1959; Grace, 1977). The slowest u10 occurred at 17:06, when the ū100 was also slowest

(Figure 3.1).

Variability among days To the north of the log, the u10 was lower near the log

than farther away except for day 16 when u10 was minimal at all distances (Figure

3.4 A). The u10 was also slowed to the immediate south of logs for all but one day

(Figure 3.4 B). To this direction, however, the difference in u10 for the last three days

measured was less obvious because u10 values appeared to be constrained to less than

the range of u10 observed to the north.

For all but one day, the u10 was lower to the south of the log compared to the

north (Figure 3.4). This pattern is consistent with the patterns on August 21, 2015

and is additional evidence that the log slows the horizontal u10 on the leeward side.
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Figure 3.4: The u10 (m/s) measured along transects of the repeated log each study
day. Graphs A and C show transects measured to the north of the repeated log and
graphs B and D show transects measured to the south of the repeated log. Graphs C
and D show u10 measured at four distances of 15 cm, 50 cm, 100 cm and 250 cm from
the log repeated for each study day measured. See table 2.1 for relation of study day
to date.
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3.2.1.2 Sediment Temperature

Overall, TS was less near the log than farther away on the north side, but equal or

slightly greater on the south side. The TS far from the log was similar on the north

and south sides.

Within-day variability Within 20 cm of the north (shaded) side of the log, TS

was less than that at greater distances (Figure 3.5). This decrease was between 5

and 15 oC for all times of day except 17:06 which was between 2.5 oC and 9.3 oC

less. This was probably because the transect was completely shaded during the 17:06

measurements and the sediment was beginning to cool without the solar radiation

input. In a desert study site, Peters et al. (2008) reported that surface temperature

can drop as much as 7 oC from 0.5 cm to 50 cm from a rock, which is similar to the

pattern observed in Lake Mills. These drops in TS to the north are likely due to shade

cast by the log at that time.

The north transect at 9:28 does not show this drop, but shows a linear relationship

with increasing TS as distance from the log increases. This was the earliest transect

measured and therefore did not accumulate as much solar radiation by the measure-

ment time as the other transect times. This pattern in temperature is likely due to

a lag in increase of sensible heat within the sediment. Because measurements were

taken at a 3 cm depth, the heat must be conducted through the sediment from the

surface in order to measure the sensible heat (temperature) at this depth.

Increased TS occasionally occurred within 20 cm south from the log at 13:33, 15:20

and 17:06, where within 20 cm north, TS was always decreased (Figure 3.5). Between

20 cm and 300 cm, TS trends to the south and north had a similar pattern and similar

values. Southern TS remained between 27.3 oC and 39.0 oC for all distances and all

times (Figure 3.5 B and D).
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Figure 3.5: Selected curves to represent TS transects for 5 measured times of day on
August 21, 2015. Graphs A and C represent transects measured to the north of the
repeated log and graphs B and D represent transects measured to the south of the
repeated log. Graphs A and B both contain a single line generated for that transect
at 19:28, 11:30, 13:33, 15:20 and 17:06 measured times. Graphs C and D show TS
measured at four distances of 15 cm, 50 cm, 100 cm and 250 cm from the log repeated
five times on August 21, 2015.

42



Variability among days Within 50 cm from the north edge of the log, TS de-

creased for all days measured, suggesting that the log creates a consistent effect on

TS to the north (Figure 3.6). However, the magnitude of this effect is variable.

There is some variability in TS within 25 cm south from the log. A possible log

effect to the south of the log on TS would be relatively small (less than 5 oC) and

could be either an increase or a decrease. On study days 4 and 19, curvilinear models

show a slight increase in TS within 25 cm of the south edge of the log, but study day

7 and 16 models describe a slight decrease in TS within 25 cm from the south edge

of the log.

To both the north and south, TS values were lowest on study days 16, 17 and 19,

which were measured after a rain event. The TS does not vary much by distance or

among days.

The TS values to the south were between 30 oC and 40 oC for all dates and

distances, except the days after the rain event: 16, 17 and 19, which were between 10

oC and 30 oC.
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Figure 3.6: The TS measured along transects of the repeated log each study day.
Graphs A and C show transects measured to the north of the repeated log and graphs
B and D show transects measured to the south of the repeated log. Graphs C and D
show TS measured at four distances of 15 cm, 50 cm, 100 cm and 250 cm from the
log repeated for each study day measured. See table 2.1 for relation of study day to
date.
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3.2.1.3 Evaporation Rate

Overall, E was smaller near the log for most north transects and increased with

greater distance. Near the southern edge of the log, E decreased for a majority of

transects. The E far from the log was similar on the north and south sides, but E to

greater distances north continues to increase at a larger rate with increased distance

compared to the south.

Within-day variability The E to the north is lower near the log during all times

except 17:06, which is consistently low for all distances (Figure 3.7). Decreases in E

appear to be directly related to reduced incoming direct solar radiation from shade.

This shade did not extend past the 30 cm north measurement for any time of day

except 17:06, which was in full shade because the sun set behind the valley wall. This

is likely why this transect was consistently low for all distances.

To the south, E remains consistent over all distances for each time, except for a

slight increase at 15:20 near the south edge of the log (Figure 3.7 B, D). It is not

apparent why E decreased near the log at this time or why this decrease did not

occur at other times, but suggests that there is possibly an effect of the log on E to

the south. However, it is also possible that this could be due to an anomalous data

point. Far from the log, southern transects in the morning and early afternoon have

values roughly equal to or less than the E modeled to the north, suggesting a possible

log effect on E on the leeward side of the log at some times that acts similarly over

all distances to the south. This effect is seen at 9:28, 12:30 and 13:33, which are the

three earliest times measured within August 21, 2015.
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Figure 3.7: Selected curves to represent transects for 5 measured times of day on
August 21, 2015 of E. Graphs A and C represent transects measured to the north
of the repeated log and graphs B and D represent transects measured to the south
of the repeated log. Both graphs A and B contain a single line generated for that
transect at 9:28, 11:30, 13:33, 15:20 and 17:06 measured times. Graphs C and D show
E modeled by the regressions at four distances of 15 cm, 50 cm, 100 cm and 250 cm
from the log repeated five times on August 21, 2015.
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Among-day Variability The patterns observed to the north of the log among days

were similar in shape to patterns observed within August 21, 2015 (Figures 3.7 A and

3.8 A). The log has a possible effect on E near the log shown by a slight decrease in

E within 25 cm.

The ranges of E to the south are similar to the north of the log (Figure 3.7 A

and B). Also similar to north transects, E did not vary much within each transect

for distances greater than 50 cm from the log. Some south models describe decreased

(up to approximately 50%) E within 25 cm of the south edge of the log (Figures 3.7

B, and 3.8 B).

Among days, ranges of E to both the north and south of the repeated log are

greater at all distances compared to within a day on August 21, 2015. Similar to TS,

the additional variable of day during the study period is added to the varying times

of day and causes an increased range of results modeled for E. This suggests that

the E is affected by both time of day and day during this study.
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Figure 3.8: The E (mg water loss per minute) (mg/min) measured along transects
of the repeated log each study day. Graphs A and C show transects modeled to the
north of the repeated log and graphs B and D show transects modeled to the south
of the repeated log. Graphs C and D show E modeled values at four distances of 15
cm, 50 cm, 100 cm and 250 cm from the log repeated for each study day measured.
See table 2.1 for relation of study day to date.
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3.3 Microclimate Near a Log - Quantitative Eval-

uation

The multilevel regression analysis of log transects aimed to determine the quantita-

tive relation of microclimate to broader environmental factors within dewatered Lake

Mills (objective 3). The analysis had four steps. (i) Level 1 regression models fit

microclimate as a function of distance and direction from a log, with equation coef-

ficients developed for each of multiple transects. Typical equation coefficients were

maximum value of the microclimate variable in the transect (maxV), maximum mag-

nitude of the log’s effect (maxeffect), and the distance of the log effect, with distance

to half maximum effect as the analyzed variable (dhalfmax). (ii) Level 2 regression

models fit level-1 equation coefficients as a function of environmental variables. (iii)

Model-informing data were compared with predictions from the combined Level 1

and 2 model. Data were from a log repeatedly measured 14 times. (iv) Independent

validation were compared with predictions from the combined Level 1 and 2 model.

Validation data were from eight other logs, each measured once.

3.3.1 Common Model Regressions

I fit a common model (either two-line segment or average value) to each of the tran-

sects to determine the relation of microclimate to broader environmental factors (ob-

jective 3) using multilevel modeling. Both curvilinear and common models fit the

repeated log data adequately (Tables 3.1, 3.2 and 3.3). Common models for south

TS or E transects were average values across all distances and no adjusted R2 were

calculated. For nine of 30 transects where a two-line common model was fit, the

common model fit the data better than the curvilinear model chosen, reflected by

greater adjusted r2 values. Common models fit worse to other transects, but these

models were necessary to compare the transects quantitatively.
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Table 3.1: A comparison of curvilinear model fit versus selected common model fit
used for multiple regression analyses for each repeated log transect measured on
August 21, 2015. Common models represented by average value across all distances
have no reported adjusted R2 and show N/A.

Transect Time Curvilinear
Adj. R2

Common Model
Adj. R2

N u10 928 N/A 0.753
1130 0.929 0.858
1333 0.743 0.682
1520 0.934 0.900
1706 0.706 0.357

N TS 928 0.868 0.847
1130 0.815 0.633
1333 0.784 0.915
1520 0.956 0.841
1706 0.883 0.952

N E 928 0.784 0.733
1130 0.899 0.714
1333 0.736 0.850
1520 0.369 0.397
1706 0.373 0.172

S u10 928 N/A 0.412
1130 0.548 0.364
1333 N/A 0.040
1520 0.680 0.601
1706 N/A 0.331

S TS 928 N/A N/A
1130 0.552 N/A
1333 0.709 N/A
1520 0.848 N/A
1706 0.849 N/A

S E 928 0.454 N/A
1130 N/A N/A
1333 N/A N/A
1520 0.369 N/A
1706 0.361 N/A

N/A - Average value model; adjusted R2 were not calculated
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Table 3.2: A comparison of curvilinear model fit versus selected common model fit
used for multiple regression analyses for each northern repeated log transect other
than those measured on August 21, 2015. Common models represented by average
value across all distances have no reported adjusted R2 and show N/A. The transect
measured on day 16 was excluded from analysis with common models because no
model could be fit.

North
Study Curvilinear Common

Variable Day Adj. R2 Adj. R2

u10 1 0.835 0.708
4 0.938 0.829
5 0.969 0.978
6 0.811 0.744
7 0.966 0.910
8 0.845 0.946
16 N/A **
17 0.635 0.864
19 0.937 0.966

TS 1 0.963 0.916
4 0.800 0.804
5 0.902 0.763
6 0.833 0.952
7 0.809 0.948
8 0.897 0.856
16 0.796 **
17 0.944 0.871
19 0.946 0.850

E 1 0.865 0.778
4 0.481 0.358
5 0.484 0.732
6 0.868 0.702
7 0.853 0.826
8 0.881 0.790
16 0.725 **
17 0.781 0.265
19 0.705 0.615

N/A - Average value model; adjusted R2 were not calculated
** - transect was excluded from analysis
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Table 3.3: A comparison of curvilinear model fit versus selected common model fit
used for multiple regression analyses for each southern repeated log transect other
than those measured on August 21, 2015. Common models represented by average
value across all distances have no reported adjusted R2 and show N/A. The transect
measured on day 16 was excluded from analysis with common models because no
model could be fit.

South
Study Curvilinear Common

Variable Day Adj. R2 Adj. R2

u10 1 0.874 0.204
4 0.930 0.298
5 0.585 0.504
6 0.677 0.777
7 0.693 0.597
8 0.680 0.595
16 0.664 **
17 N/A 0.499
19 0.525 0.528

TS 1 N/A N/A
4 0.884 N/A
5 N/A N/A
6 N/A N/A
7 0.272 N/A
8 N/A N/A
16 N/A **
17 0.746 N/A
19 0.331 N/A

E 1 N/A N/A
4 0.483 N/A
5 0.348 N/A
6 0.272 N/A
7 0.197 N/A
8 N/A N/A
16 N/A **
17 0.811 N/A
19 0.813 N/A

N/A - Average value model; adjusted R2 were not calculated
** - transect was excluded from analysis
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3.3.2 Multilevel Regression Modeling

3.3.3 North Wind Speed

3.3.3.1 Repeated Log-Derived Model

The wind speed at 10 cm height (u10) to the north of the repeated log is a function

of ū100 and distance north of the log in cm (Table 3.4). I expected this result because

u at different heights are known to be related by empirical formulas and because

barriers, such as logs affect wind speeds locally, but the effect declines as distance

from the barrier increases (Grace, 1977; Rosenberg et al., 1983; Jones, 2013).

Table 3.4: Wind speed at 10 cm height (u10, m/s) as a function of distance from log
and local weather variables measured at or near Lake Mills, WA. Input data were
transects of the repeated log over the entire study period (n=13).

Wind speed at 10 cm height (u10), north side

u10,North = min((maxV −maxeffect) + d( maxeffect
2(dhalfmax)

),maxV )

where: adjusted r2 n (transects)
maxV = 0.088 + 0.599ū100 0.818 13
maxeffect = 0.197 + 0.489ū100 0.49 13
dhalfmax = 52 - 13

d = distance (cm) from log, (5-300 cm)
ū100 = average wind speed (m/s) at 1 meter height, (1.3 - 9.8 m/s)

Wind speed at 10 cm height (u10), south side

u10,South = min((maxV −maxeffect) + d(maxeffect)
2(dhalfmax)

,maxV )

where: adjusted r2 n (transects)

maxV = e
0.585−1.840 1

ū100 0.808 13

maxeffect = e
0.441−1.518 1

ū100 0.369 13
dhalfmax = 36 - 13

d = distance (cm) from log, (5-300 cm)
ū100 = average wind speed (m/s) at 1 meter height, (0.58 - 4.4 m/s)
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Both maxV and maxeffect of north u10 increase linearly with ū100, but dhalfmax

is a constant in this model, suggesting that the distance of the log effect is always

the same. The dhalfmax in this model is 52 cm, implying that the distance of the log

effect is approximately 104 cm, which is roughly 1.4 times the repeated log’s diameter

(measured by log height). This is somewhat less than the 2 to 5 times the height of

the barrier object reported by Brandle et al. (2006).

A compound regression and a power regression of maxV with ū100 were usable

regressions, but decreased the fit of the overall model of north u10 for the transect.

To validate, this model was used to predict the u10 along transects of other (non-

repeated) logs measured in the former Lake Mills area during this study, then modeled

values were plotted against measured values for the model-informing repeated log

data (Figure 3.9 A) and model-validating other log data (Figure 3.9 G). Under ideal

conditions, the slope of the actual versus predicted line would be 1. For the model-

informing data, the slope was close to 1, but for the validation data the slope was much

less than 1 indicated by a t test. Therefore one or more factors, or the magnitude of

their effects differ between the repeated log and the other logs. Consequently, this

model is not useful for use to predict u10 to the north of other logs. The greatest

difference between the properties of the repeated log and of the other logs in the

study is location. The repeated log is on the northernmost edge of the study site

and therefore the most windward log of all logs in the October 2014 log drop site

(Figure 2.3). The wind to the north side of the repeated log is likely more laminar

than the other logs sampled because there were no barriers to wind within 10 meters

and therefore there was little friction alter air flow (Grace, 1977).

This model describes a maximum decrease of 2.3 m/s near the north of the log,

which, at maximum ū100 would result in an 85% reduction in u10 from a maxV of

2.7 m/s. This likely would reduce vegetation stress, but the impact of this reduction

would depend on plant species (Wadsworth, 1959; Grace, 1977).
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Figure 3.9: Model regression fits to model-informing (repeated log) data and validation (other log) data are shown here for each
transect. Modeled values from chosen multiple regression equations are plotted on the x axis and measured data are plotted on
the y axis for each graph. Graphs A-F are regression fits with the repeated log data (model-informing data) and graphs G-L are
regression fits with data from other logs in the October 2014 log drop area (validation data). The bold black line in each graph
represents the ideal regression with a slope of 1 and an intersect of 0. Dashed lines represent the actual linear regressions of modeled
data to measured data in each graph. P values from t tests compare the slopes of the regression lines for model-informing and
validation data for each transect variable (the two fits above each P value). * indicates a significant t test result (P < 0.050)
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3.3.3.2 North Wind Speed Other Log-Derived Model

To determine the possible factors that affect the u10 to the north of the other logs

sampled, the other logs’ data were used as input to create another multilevel regression

model with maxV, maxeffect and dhalfmax. In this analysis, I included distance

to nearest log to the north and number of logs within 25 meters north, as well as

the weather variables ū100, and radiation variables RS, RS,2h and RS,4h as possible

regressors of u10 to the north of the logs. The sample size of logs measured was too

low to both create and validate the model. This model requires validation before use

to predict u10 to the north of logs, but is presented here as a possible model that

is more reliable than the one generated from repeated log data for logs that are not

the most windward log. This model also explores the possible differences in factors

affecting the repeated log u10 and the other logs’ u10 to the north.

Table 3.5: Wind speed at 10 cm height (u10, m/s) as a function of distance from log
and local environmental factors derived from other log data.

Wind speed at 10 cm height (u10), north side

u10,North = min((maxV −maxeffect) + d( maxeffect
2(dhalfmax)

),maxV )

where: adjusted R2 n (transects)
maxV = 0.538ū100 − 0.456 0.681 8
maxeffect = 0.871 - 8
dhalfmax = 55.8 - 8

d = distance (cm) from log, (5-300 cm)
ū100 = average wind speed (m/s) at 1 meter height, (2.2 - 4.5 m/s)
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Figure 3.10: Modeled values calculated from the other-log generated model versus
measured values for north wind speed at 10 cm height (A), south sediment tempera-
ture (B) and south evaporation (C). There were not enough data to create and also
validate these models. The equation for the trend line is presented with the adjusted
R2 and the bold diagonal line represents an ideal one to one fit between modeled and
measured values. Trend lines for (B) and (C) are present, but not visible because
they are hidden by the bold ideal fit line.

The best model fit to the other logs was also a function of distance north from

the log and ū100, but with a few key differences (Table 3.5). The greatest difference

between this model and the repeated log-generated model is the relationship of maxV

with ū100. In both models, u10 increases linearly with ū100, but in this model, the

intercept of this regression is lower (-0.456 compared to the repeated model maxV

intercept 0.088) (Tables 3.4 and 3.5). This suggests that u10 to the north of these

other logs is always slower than to the north of the repeated log, because the other

logs are shielded by upwind logs. The range of ū100 measured around the other other

logs is similar to the range measured at the repeated log. This suggests that the

upwind logs are not affecting wind at 1 m height.

This model describes a maximum decrease of 0.87 m/s near the north of the log,

which may reduce vegetation stress, but the impact of this reduction would depend on

plant species and the value of ū100 (Wadsworth, 1959; Grace, 1977). The maximum

modeled maxV is 2.0 m/s, so this effect would reduce u10 by 44%.

The dhalfmax for the other log-derived model (55.8 cm) was similar to that of the

repeated log-derived model (52 cm). Because the logs used to create this model varied

in height (diameter), a constant value for dhalfmax is unexpected. The distance of

wind shelter is known to be a function of the height of the barrier object (Skidmore

57



and Hagen, 1973; Grace, 1977; Brandle et al., 2006; Mayaud et al., 2016). Based on

conceptual knowledge of u, the log’s effect on the u10 is highly dependent on the ū100

(Rosenberg et al., 1983). However, RS,2h and RS,4h were also included as possible

regressors for maximum u10, maxeffect and dhalfmax. This energy input into the

system may affect u10 by causing convective air flow near the surface of the sediment

(Rosenberg et al., 1983). These regressions were insignificant for the maximum u10

and maxeffect values, but resulted in a significant regression equation including both

RS,2h and RS,4h data with dhalfmax. This regression was not included in the overall

model for predicting u10 to the north, but it is worth mentioning that this radiation

energy input into the system may affect the distance to the north where a log may

have an effect on u10, but likely does not affect the magnitude of speeds or effects the

log has on u10.

3.3.4 South Wind Speed

Similar to u10 to the north, u10 to the southern, leeward side of a log is also a function

of distance from the log in cm and of ū100 (Table 3.4). Again, this is consistent with

known empirical relationships between u at various heights from the ground surface

and influences of barriers on wind speed (Skidmore and Hagen, 1973; Grace, 1977;

Rosenberg et al., 1983; Brandle et al., 2006; Jones, 2013; Mayaud et al., 2016).

MaxV in this model is related to ū100 with an S curve. As in the linear models of

maxV to the north, increases in ū100 lead to increases in u10. The maximum maxV

that can be modeled with this equation is 2.7 m/s

The maxeffect in this model is also related to ū100 with an S curve, whereas ū100

increases, the windbreak effect of the log also increases. This relationship is not as

strong as the maxV relationship (max effect adjusted R2 0.369 versus maxV adjusted

R2 0.808), but it suggests that the log can continue to provide shelter, even as u above

may be increasing. Based on maximum ū100 values, the maximum effect to the south

is 1.1 m/s. This would reduce the maximum modeled maxV by 41%.

The dhalfmax in this model is represented by a constant value of 36 cm. This
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projects to an approximate distance of log shelter effect of 72 cm, which is approxi-

mately one log diameter and about equal to the height of the log as a barrier. Though

this is the measured windbreak distance in this study, more information is needed to

predict the effect this would have on individual plants and plant species nearby to

logs. This windbreak distance is surprisingly low compared to literature that suggests

that the wind-break distance of barriers is between two and nine times the height of

the barrier (Woodruff et al., 1963; Grace, 1977; Fryrear and Skidmore, 1985; Brandle

et al., 2006; David et al., 2016; Mayaud et al., 2016). This range in distances of effect

is created by the range in porosity of barriers in these studies. Barriers with low

porosity, like the logs in this study, have less effect on the wind and do not reduce

wind speeds at greater distances as well as some more porous barriers because the

lack of porosity causes increased turbulence in the lee (Rosenberg et al., 1983). I

was unable to measure data points to nine times the height of the log, but only to

approximately 3.5 times. Logs in the October 2014 log drop area were too closely

spaced and I would not have been able to discern between a potential windbreak effect

to the south of a log and to the north of another log. Perhaps I am only measuring

the wind-break affected region to the south of the log and am not observing the u10

increase back to the true maximum. Curvilinear models of u10 show that u10 is always

slowed to the south compared to the north at all distances observed and u10 never

reaches the maximum observed on the windward side (Figures 3.3 and 3.4). This also

suggests that all distances measured to the south of logs are experiencing the log’s

effect of slowed u10.

The slope of the model fit regression shows that this model is biased towards

underestimating u10,South (i.e. - slopes were less than 1) (Figure 3.9 B, H). The u10

appears highly variable, because the range of u10 measured to the south is much

smaller compared to the north side of logs. A t test of model fit regression slopes

determined that this model applies similarly for u10 for all logs sampled in the former

Lake Mills October 2014 log drop area (P > 0.05, P = 0.231).

In addition to ū100, maxV, maxeffect and dhalfmax for south u10 were also re-
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gressed with RS,2h, but regressions were insignificant. Therefore, if RS,2h is an indi-

cator of convective air movement, then this air movement is likely not affecting u10

values to the south, similar to the north repeated log u10 model.

3.3.5 North Sediment Temperature

The TS modeled to the north of the log is a function of Ta during the time transected

(oC) and two and four-hour cumulative radiation input (Whm−2) (Table 3.6). The

maxV is a linear function of Ta, while maxeffect is a function of RS,2h and dhalfmax

is a function of RS,4h.

The the maxV linear regression with Ta is slightly misleading, because change Ta

likely is not causing changes in TS, but is a good indicator of TS values (Adeniyi and

Nymphas, 2011; Mutiibwa et al., 2015). Data for Ta is often readily available and

predictable for restoration and study sites. Therefore, though Ta may not have any

conceptual basis for causation of changes in TS, using Ta as input for TS models may be

useful still. Adeniyi and Nymphas (2011) found that Ta and soil surface temperatures

in a tropical region in Nigeria were related linearly with R2 values ranging from 0.97

to 0.99. That is to say, if Ta is increased, the value of TS is likely increased, but both

increases are likely caused by similar, additional physical factors, such as radiation

variables: RS, RS,2h and RS,4h, though no significant regressions of TS were found

with these variables.
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Table 3.6: Sediment temperature (TS, oC, at 3 cm depth) as a function of distance
from log and local weather variables measured at or near Lake Mills, WA. Input data
were transects of the repeated log over the entire study period (n=13).

Sediment temperature (TS, oC, at 3 cm depth), north side

TS,North = min((maxV −maxeffect) + d( maxeffect
2(dhalfmax)

),maxV )

where: adjusted R2 n (transects)
maxV = 1.27Ta + 2.67 0.736 13
maxeffect = e0.744101ln(RS,2h)−2.87 0.291 13
dhalfmax = e5.65−0.000945(RS,4h) 0.372 13

d = distance (cm) from log, (5-300 cm)
Ta = average air temperature (oC) at 1 meter height, (14.2-28.4 oC)
RS,2h = 2 hour cumulative solar radiation (Whm−2), (788.-1640 Whm−2)
RS,4h = 4 hour cumulative solar radiation (Whm−2), (1190- 3110 Whm−2)

Sediment temperature (TS, oC, at 3 cm depth), south side
adjusted R2 n (transects)

TS,south = 68.16− 811.15 1
Ta

0.715 13

where:
Ta = average air temperature (oC) at 1 meter height, (14.2-28.4 oC)
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The maxeffect is a power function of RS,2h, indicating that when there is more

radiation in the previous two hours, the effect that the log has on decreasing TS is

greater. This likely means that greater recent radiation results in a greater difference

between the shaded distances closer to the log and sunnier distances further from

the log. Increased radiation input increases sediment temperature (Rosenberg et al.,

1983; Geiger et al., 2009; Jones, 2013). Greater RS,2h amplifies the differences between

sun and shade differences and therefore a greater maxeffect is observed. An adjusted

R2 of 0.291 indicates that this relationship between RS,2h and maxeffect is somewhat

weak, but including this relationship in the overall model of north TS improves the

model fit to measured data.

The dhalfmax is a function of RS,4h, where an increase in RS,4h results in an

increase in dhalfmax. This is also probably shade-related like maxeffect. Greater

RS,4h occur later in the day when there has been more radiation in the previous four

hours (Figure 3.1). These times of day also create longer shadows from the log to the

north. The RS,4h may be a weak (adjusted R2 0.372) proxy for shadow distance from

logs in this site.

Insignificant t test results for model-fit slopes suggest that there is no difference

in model fit between the repeated log and other logs (P = 0.211) (Figure 3.9 C, I).

This, along with adjusted R2 values of 0.810 and 0.862, and slopes of 1.00 and 1.04 for

repeated log and validation data, respectively, suggest that this model works well for

this log population. Therefore the factors that affect TS to the north of the repeated

log are the same as the factors that affect it north of the other logs in the October

2014 log drop area.

Maxeffect also had other significant regressions of RS,2h and RS,4h, but these re-

sulted in worse fits for the overall model. MaxV was only a function of Ta and

dhalfmax was only a function of RS,4h, though several significant regression types

were found for each of these. These also resulted in worse model fit.
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3.3.6 South Sediment Temperature

3.3.6.1 Repeated Log-Derived Model

The TS to the south of the log was not a function of distance, and the average value

of TS south of the log at all distances is the best model (Table 3.6). The average

value of TS to the south of logs is a function of Ta.

As discussed with the north TS maxV regression, Ta is not necessarily a cause

of TS, but is a variable that often changes with and is used as an indicator for

TS (Adeniyi and Nymphas, 2011; Mutiibwa et al., 2015). The RS,4h is more likely a

variable that directly causes changes in TS based on conceptual models of the radiation

balance (Rosenberg et al., 1983; Geiger et al., 2009; Jones, 2013). I determined

other significant regression functions for south TS including RS,4h, RS,2h and other

regressions of Ta, but these did not improve the overall fit of the model.

3.3.6.2 South Sediment Temperature Other Log-Derived Model

The t test result between slopes of repeated log data fit and other-log validation data

fit support the conclusion that there is a difference between the model fit to validation

data (P = 0.00604) (Figure 3.9 D, J). Therefore the factors that affect the TS to the

south of the repeated log are different from the factors that affect it south of the other

logs measured.

To determine the possible factors that affect the TS to the south of the other logs

sampled, the other logs’ data were used as input to create another regression model.

The sample size of logs measured was too low to create a reliable model of T and also

be able to validate the model with additional data. This model requires validation

before use to predict TS to the south of logs, but is presented here as a possible model.

The best model fit to the other logs was also a function of Ta, but with a few

differences (Table 3.7). This model is a linear function, instead of the inverse function

created using the repeated log data. The slope of sampled versus modeled values is

1 (Figure 3.10 B). This model may be slightly different than the repeated log model
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due to the increased diversity of size, location and orientation of the other logs.

Table 3.7: Sediment temperature at 3 cm depth (oC) to the south of a log as a function
of local weather variables measured at or near Lake Mills, WA derived from other-log
data.

Sediment temperature (TS, oC, at 3 cm depth), south side
adjusted R2 n (transects)

TS,south = 1.507Ta − 5.581 0.814 8

where:
Ta = average air temperature (oC) at 1 meter height, (16.1-28.6 oC)

3.3.7 North Evaporation Rate

The E (mg water loss per minute) (mg/min) to the north of a log is a function of ρ,

RS, and distance from the north log edge (Table 3.8). The maxV in this model is a

multiple regression function of ρ and RS. Maxeffect is represented by an S function of

RS. The dhalfmax in this analysis did not regress with any environmental variables

and are represented by the average value.

Based on conceptual models of evaporation, wind may also affect evaporation in

addition to ρ and RS, but ū100 did not result in any significant regressions for any of

these parameters (Penman, 1948; Rosenberg et al., 1983; Shuttleworth, 1993). It is

possible that wind may be affecting this system, but with these data, the ρ and RS

are the strongest influence on these patterns of E to the north of logs.
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Table 3.8: Evaporation Rate (E, mg/min) as a function of distance from log and local
weather variables measured at or near Lake Mills, WA. Input data were transects of
the repeated log over the entire study period.

Evaporation Rate (E, mg water loss per min, mg/min), north side

ENorth = min((maxV −maxeffect) + d( maxeffect
2(dhalfmax)

),maxV )

where: adjusted R2 n (transects)
maxV = 31.024ρ+ 0.08164RS − 17.746 0.797 11

maxeffect = e
4.757−729.167 1

RS 0.446 11
dhalfmax = 26.25 - 11

d = distance (cm) from log, (5-300 cm)
ρ = vapor pressure deficit (kPa)*
RS = solar radiation (Wm−2)*

Evaporation Rate (E, mg/min), south side
adjusted R2 n (transects)

ESouth = 29.740ρ+ 0.08354RS − 17.654 0.890 12

where:
ρ = vapor pressure deficit (kPa)*
RS = solar radiation (Wm−2)*
* see Figure 3.11 for range of acceptable values

Other models have used regression modeling based approaches to determine which

variables have greater influence on E. Tabari et al. (2010) found that wind speed and

Ta were the most important environmental variables to predict evaporation in a semi

arid region in western Iran, using a different modeling technique. Kim et al. (2013)

used various modeling techniques and combined varying environmental factors for

predicting daily pan evaporation at two weather stations in semi-arid South Korea and

found that the environmental variables that were best predictors for pan evaporation

varied for the two weather stations. Pan evaporation at both sites were best predicted

by temperature-based models than sunshine duration or radiation-based models but
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Figure 3.11: The acceptable values of ρ to be used with radiation values (RS) in
models of E. This universe of data is used instead of acceptable ranges due the
models containing multiple regressions. Where ρ and RS fall within the respective
cloud, the models should be applicable.

models that combined temperature, radiation, sunshine duration and wind speed

predicted best for both sites overall. In the same climatic region as the Elwha, Jassal

et al. (2009) found monthly evapotranspiration from Pacific Northwest Douglas Fir

stands to be strongly correlated to montly net radiation, Ta and daytime ρ, but did not

determine the relative importance of those three or compare wind speeds. However,

it is difficult to determine the relative influence of physical and environmental factors

from biological factors within plants on evapotranspiration (Tan and Black, 1976).

The relative influence of weather predictor variables in evaporation modeling is site-

dependent and the Elwha Oct 2014 log drop site is most heavily influenced by ρ and

RS.

This model fit well to both the model-informing repeated log and other validation

logs’ data with adjusted R2 values of 0.796 and 0.838, respectively (Figure 3.9 E, K).

These suggest that this is a good model for north E in the Elwha October 2014 log

drop site. A t-test analysis of the model fit slopes between modeled and measured E

values show that there is no difference in the way the model fits either data set (P

= 0.0721). Therefore the factors that affect E to the north of the repeated log are

likely the same as other logs in the validation data. This model is acceptable to use

to predict northern E for logs of variable size, orientation and location within the

October 2014 log drop area.
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3.3.8 South Evaporation Rate

3.3.8.1 Repeated Log-Derived Model

The E to the south was not a function distance south of the log, and the average

value of E over all distances south is the best model of south E (Table 3.8.) The E

to the south is a function of ρ and RS, similar to the regression of maxV for north E.

Similar coefficients in both regressions suggest that maxV behaves similarly to E at

all distances measured to the south and therefore there is no log effect to the south.

The E at all distances to the south are similar to those at greater than approximately

55 cm north.

Similar to the model of northern E, the lack of ū100 in significant regressions with

ESouth is suggests that ρ and RS are the greatest driving factors of E. The relative

influence of environmental factors is site dependent (Jassal et al., 2009; Tabari et al.,

2010; Kim et al., 2013).

3.3.8.2 South Evaporation Rate Other Log-Derived Model

A significant t test result (P = 0.00370) between the slopes of the model-fit regressions

on repeated log data and validation data supports the conclusion that there is a

difference in how the model fits the two data sets and therefore the factors that affect

the E to the south of the repeated log are different from the factors that affect it

south of the other logs in the validation data (Figure 3.9 F, L).

To determine the possible factors that affect the E to the south of the other logs

sampled, the other logs’ data was used as input to create another regression model.

The sample size of logs measured was too low to create a reliable model of E and also

be able to validate the model with additional data. This model fits well to other log

measured values, but requires validation before use to predict E to the south of logs,

but is presented here as a possible model (Figure 3.10 C).

The best model fit to the other logs was also a function of ρ and RS, but with

coefficients less than those determined for the repeated-log derived model (Table 3.9).
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Figure 3.12: The acceptable values of ρ to be used with radiation values (RS) in the
other log-derived south E model. This universe of data is used instead of acceptable
ranges due the model being a multiple regression model. Where ρ and RS fall within
the respective cloud, the model should be applicable for use.

These decreased coefficients suggest that the E to the south of the other logs in the

validation data is just lower than the repeated log. This mimics the pattern of u10,

where u10 was slowed to the south at all distances (Figures 3.3 and 3.4). Though no

significant regressions of ū100 were found for south E, it is possible that the slowed

u10 to the south of logs may lead to decreased E at this height.

Table 3.9: Evaporation rate (E, mg/mL) to the south of a log as a function of local
weather variables measured at or near Lake Mills, WA derived from other-log data.

Evaporation Rate (E, mg/min), south side
adjusted R2 n (transects)

ESouth = 26.488ρ+ 0.066180RS − 5.172 0.883 8

where:
ρ = vapor pressure deficit (kPa)*
RS = solar radiation (Wm−2)*
* see Figure 3.12 for range of acceptable values
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3.3.9 Summary of Influence of Logs on Microclimate

The greatest log effect on u10 occurs in the immediate lee (less than 72 cm from the

log, on average). The leeward u10 remains reduced for all distances from northern,

windward u10 suggesting that the effect of the northern-most windward log may act

over distances greater than 300 cm. The greatest reduction u10 occurs near the

northern, windward edge of the log (approximately 104 - 112 cm on average). This

region of slowed wind speed occurs near a barrier when wind is redirected upward

and over the barrier object on the windward side (Rosenberg et al., 1983).

From the windward north to the leeward south, the log slows u10 by 50% on

average for the repeated log model and 11% for other log model (Figure 3.13). The

maximum u10 on the windward side of the other logs is similar to the maximum u10

modeled to the lee of both the repeated log and other logs (using the same model).

This suggests that the windward-most log, the repeated log has the most effect on

slowing u10 for the entire LWD area.

As wind approaches the north edge of a log, it slows starting at about 112 to 104

cm from a log on average. The maximum decrease to the north of the repeated log is

83% on average and 72% to the north of the other logs. Both the north repeated and

other log models show a similar minimum u10 of 0.33 to 0.34 m/s near the log. The

minimum u10 near the south, leeward edge of the log is less than the minimum u10

on the windward side near the log edge. On average, the decrease from in u10 to the

immediate south of the log (within an average of 72 cm) is 89% from the maximum

values measured at greater distances.

The greatest effect of the log on TS occurs immediately to the north of the log, on

the shaded side (Figure 3.14). Within about 55 cm north on average, TS decreases

33% from the maximum value modeled at greater distances.

There is a slight decrease in TS from the north to the south of the other logs

(average 14% decrease). However, the maximum value of TS to the sunny, south

side of the repeated log is within 3% the values modeled to the north, suggesting no

difference. There is no effect of southern distance from the log on TS for either the
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Figure 3.13: Plots of two-line segment models of wind speed at 10 cm height (u10)
for repeated and other logs. Lines are based on the average ū100 measurements. The
north is the windward side of the log and the south is the lee. Equations for these
models can be found in tables 3.4 and 3.5.

repeated or other log models.

The greatest log effect on E occurs to the immediate north of both repeated and

other logs, similar to TS (Figure 3.15). On average, this decrease in E occurs within

52.5 cm and is up to 41% less than E modeled at greater distances. There is no effect

of southern distance from the log on E.

The maximum value of E to the north of the repeated log is 1% greater than to

the south, indicating little to no log effect between north and south. The maximum

value of E to the north of other logs is 15% greater than to the south, suggesting that

there may be an effect of the log on E from the north to the south of other logs.
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Figure 3.14: Plots of the two-line segment models of north sediment temperature (TS)
and average value models of south TS based on the average values of air temperature
(Ta), and two and four-hour cumulative radiation (RS,2h and RS,4h). The north is the
shaded side of the log. Equations for these models can be found in Tables 3.6 and
3.7.

Figure 3.15: Plots of the two-line segment models of north evaporation rate (E) and
average value models of south E based on the average values of vapor pressure deficit
(ρ) and solar radiation (RS). The north is the shaded, windward side of the log.
Equations for these models can be found in Tables 3.8 and 3.9.
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3.4 Log Diversity

Half of the models, south u10, north TS and north E, did not show a significant

difference between the fit to the input data from the repeated log transects and

the validation data of the other logs sampled during this study. This suggests that

differences in log diameter and orientation are not as important to the effect that

logs have on their surrounding microclimate as the overall patterns in the weather for

these variables and transects. However, north u10, and south TS and E results suggest

that the factors that drive the microclimate in these transects for the repeated log

are different than those that drive the microclimate around the other logs. Other

models were created for north u10, and south TS and E using the other log’s data

and are described above in Sections 3.3.3.2, 3.3.6.2, and 3.3.8.2. These models aim to

describe the external environmental factors that may influence microclimate around

these other logs uniquely from the repeated log, but don’t investigate the differences

in log diameter and orientation.

Barrier height is known to affect the distance of slowed u and also would affect the

distance of shadows on sediment surface, possibly affecting TS and E (Grace, 1977;

Fryrear and Skidmore, 1985; Brandle et al., 2006; David et al., 2016; Mayaud et al.,

2016). To determine if microclimate models could be improved by accounting for the

differing heights of the logs, the regression analysis was repeated for the transects

and variables where the two-segment model was used (i.e. - the variable value was a

function of distance from the log: North and south u10, north E and north TS). In this

reanalysis, all distances were divided by the diameter of the log and thus transformed

into units of ’log heights’. In this study, the logs are assumed to be approximately

round and therefore the diameter measured horizontally is assumed to be the height

of the log.

When distances were standardized to log diameter units, the changes in model

fits compared to models with distances in centimeters were variable (Table 3.10).

The distance unit change improved the north TS model only slightly (by improving

intercept closer to 0, and both adjusted R2 and slope remained approximately the
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same), but resulted in a worse fit for north u10, north E and south u10. For north u10

and E, adjusted R2 were reduced, resulting slopes were further from 1 and intercepts

were much further from 0. For u10 the model remained relatively the same except for

a noticeable decrease in R2. Such variable, and often detrimental effect suggests that

the effect of log height is not measurable in the microclimate patterns nearby.

From this analysis, the diversity of logs’ orientations and heights in the study

area were found to have negligible, non-measurable effect on the patterns of microcli-

mate around the logs. This finding is contradictory to literature about barrier effects

(Grace, 1977; Fryrear and Skidmore, 1985; Brandle et al., 2006; David et al., 2016;

Mayaud et al., 2016). The input data for the models with distances in log diame-

ters were all collected from the repeated log to mimic the methods for distances in

centimeters. However, this means that the input data did not have a diversity of log

diameters and any model created from these data would likely miss some of the effect

of measuring distances in log diameters. This is likely why using distances diameters

has no change on the model fits. Additionally, the range of diameters were controlled

to be approximately east-west and therefore there was not much diversity in orienta-

tions of the log sample. An increased range of orientations may allow for detection

of a log orientation effect on microclimate patterns, if there is an effect.

This study does not address some other aspects of log diversity, including the

presence and size of attached root wads and more detail about location such as dis-

tance from terrace edge, sediment sizes nearby to the logs and aspect and slope of

the location where the log was placed. Further information about the logs could be

investigated in further studies of how log diversity affects the log effect on microcli-

mate.
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Table 3.10: Model fit change when distances were converted from cm to log diameters.
Values are differences between model fit equations and R2 values for other logs where
distances were measured in log diameters and where distances were measured in cm.
Green text shows an improvement in model fit parameter, red text shows decrease in
regression parameter fit and black text shows neutral change (i.e. - very little change
from modeled distances in cm). Net change in model fits (Net ∆) is estimated from
changes in the model fit parameters.

∆adj.R2 ∆ Slope ∆ |Intercept| Net ∆
North

u10 -0.486 -0.108 2.27 worsens
TS 0.0455 0.0554 0.625 improves
E -0.340 -0.478 36.6 worsens

South
u10 -0.0958 -0.0685 0.0657 worsens

3.5 Potential Effect on Vegetation

For models where a log effect was measured, there may be an impact on vegetation

near the log. The potential maximum effects of these logs on microclimate variables

is best estimated from the maxeffect in each of the models. This maximum effect only

exists at the nearest point to the log edge and the effect decreases as distance from

the log decreases, until the maximum value of the microclimate variable is reached

(maxV) (Figure 2.6). Models where distance from the log was not a factor do not

incorporate a maxeffect parameter and imply that there is no log effect detected

in that model. The u10 to the north and south, northern TS and northern E all

show a log effect by this measure. Here are the predicted maximum effects that the

microclimate manipulation may have on vegetation growth near logs.

To the south of the log, the maximum possible reductions in u10 modeled are

between 0.5 and 1.3 m/s. Depending on the net u10 after the log has slowed u, the

reduction in u10 could reduce dessication and mechanical damage resulting in loss of

biomass (Wadsworth, 1959; Grace, 1977; Grier, 1988). Wadsworth (1959) reported an
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optimum wind speed of 0.3 m/s for herbaceous Brassica napus (rapeseed), which is

lower than the modeled range of reduced u10 in this study. Values of reduced u10 could

range between 0.160 m/s and 0 m/s (Table 3.4). Compare these to the windward

maximum u10 of 5.95 m/s to 0.867 m/s. The minimum southern u10 modeled would be

less than optimum for Brassica napus, but the optimum u10 for native Elwha species,

including tree seedlings, are unknown. It is possible that these u are more ideal for

native Elwha species, but more information is needed on the relative tolerances of

wind (Wadsworth, 1959). However, the maximum u10 experienced at greater distances

to the north could cause stress and therefore I expect these reductions would be

beneficial.

To the north, TS can be reduced between 2.1 and 2.6 oC dependent on the RS,2h

value (Table 3.6). The maximum possible modeled TS (based on maxV equation and

a maximum Ta of 28.4 oC) would be 38.7 oC, which is close to the lower limit of

the range of Ta that cause heat damage to temperate plant species (Jones, 2013).

This temperature is likely great enough to reduce metabolic rates, though this is

dependent on species (Jones, 2013). The extremes of modeled reduced TS to the

north are between 36.6 and 18.1 oC.

Also to the north, E can be reduced between 19.0 and 47.5 mg/min dependent

on values of ρ and RS (Table 3.8). This would result in a final reduced E of between

96.3 and 23.6 mg/min. This reduction in evaporation stress is also likely significant

for plant survival. Reducing evaporative stress in a moisture-limited environment is

advantageous for plant growth and survival in Pacific Northwest forests during dry

summer months (Waring and Franklin, 1979), but species-specific reactions to this

stress reduction are currently unknown, to my knowledge. Reducing Es also likely

increases the retention of moisture in the sediment near the log, which would provide

less limitation to transpiration and provide a better environment for soil respiration

(Cook and Orchard, 2008).
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3.6 Model Applications and Limitations

Models of south u10, north TS and north E are effective for predicting microclimate

patterns around LWD in the October 2014 log drop area. However, these models

are very limited to the population they may be applied to. If these models were

developed with other restoration sites using LWD, and with a greater diversity of

log size, orientation, decay class and height off of the ground, the model could be

applied to a greater population of LWD and could be used more widely. These models

provide the framework for creating more general models of LWD and microclimate.

Similar methods could be applied in other regions to create a more comprehensive

model. These models are also limited temporally and to the range of environmental

conditions in the Elwha watershed during the sampling months in late summer 2015.

With more data for other seasons and years, these models could be applied more

widely.

The models of north u10, south TS and south E require validation with more data

from other logs before they can even be applied within the October 2014 log drap

area. Beyond this validation, these models could also be developed further with more

diverse log microclimate data to be applied with a broader scope.

With further development to apply to a broader range of areas and environmen-

tal conditions, all of the models developed in this study could be used to quantify

potential patterns in microclimate around LWD could inform land managers if plac-

ing LWD may be a useful strategy for restoration. It could also inform them where

planting and seeding efforts should be focused to maximize the benefit of improved

microclimate around already-existing LWD or artificially-placed LWD.

Additionally, all logs sampled in this study were oriented approximately the same

direction and were of the same decay class. Wood in a different decay class may

have a different effect on the local environment (Gray et al., 2002), separate from

the barrier-effect that is described in this study, and any effect of decaying matter

on microclimate is not captured by the mathematical models described here. Log

orientation and presence of root wads may have large effects on the length of shadows
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cast and patterns in wind turbulence and could have larger effects on microclimate

than what was observed during this study.

3.7 Future Research

Within the October 2014 log drop area within Lake Mills, the models created in this

analysis which describe a distance of log effect could be used to calculate an overall

area of log effect surrounding each log to determine the overall area with manipulated

microclimate. This may be a more appropriate metric of measuring log effect in some

regions and would describe the overall area where plants may have an additional

advantage for survival and growth. This would be an approximate area of influence

and the degree of influence would depend heavily on daily weather conditions and

would not be a consistent amount of effect throughout this defined area of influence.

This area of effect would describe the region where a gradient is occurring for each

variable influenced by logs.

Measurements on moisture retention in sediments nearby logs would also be useful

information in describing more of the soil microclimate that plants may experience.

Peters et al. (2008) found increased soil moisture retention 19 days after a rain event

near rocks. Increased moisture availability would be extremely beneficial for Lake

Mills revegetation (Chenoweth et al., 2011).

In addition to reducing the limitations of these models as described above, I sug-

gest future research in testing and modeling vegetation’s reaction to the manipulated

microclimate and measuring long-term effects of manipulated microclimate on overall

restoration success. Much is known about plant responses to varying microclimate

(Kalma and Kuiper, 1966; Haeussler et al., 1995; Machado and Paulsen, 2001; Ni-

inemets and Valladares, 2006; Peters et al., 2008; Jajarmi, 2009; Niinemets, 2010;

Jones, 2013; Pastur et al., 2014). However, it would be most helpful to estimate or

predict vegetation success based on these changes in microclimate around LWD. This

information would provide a more concrete understanding of the benefits of LWD for
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plant restoration uses. There are many studies investigating species-specific micro-

climate preferences. Many of these studies are about domesticated species important

for agricultural use (Kalma and Kuiper, 1966; Machado and Paulsen, 2001; Jajarmi,

2009), and many others concern wild species (Haeussler et al., 1995; Niinemets and

Valladares, 2006; Peters et al., 2008; Niinemets, 2010; Pastur et al., 2014). How-

ever, microclimate preferences are not known for all life stages of all Elwha watershed

species. Species-specific microclimate preference information, especially for seedling

stages of those species, would help better predict species-specific success with altered

microclimate.

With microclimate models that are broader in scope and with more information

about potential native species’ reactions to manipulated microclimate, these models,

or LWD microclimate manipulation models created with a similar strategy could

be used to predict the impact of using LWD in a wider range of restoration sites.

These models could also potentially be used to quantify and compare modification of

microclimate near other barrier objects, such as walls, hedge-fences, individual plants

or topographic features by using this modeling strategy.

3.8 Conclusions

This study compared the microclimates on the south, leeward, unshaded and the

north, windward, shaded sides of logs on newly exposed lake sediments during late

summer. The spatial pattern of microclimate in the vicinity of a log differs with

direction and varies among the microclimate variables. Maximum wind speed at 10

cm height (u10) was 50% less on the south side than the north side of a log exposed

to wind. There was a 83% decrease in wind speed within 50 cm of the log on both

the south and north sides. Maximum sediment temperature was similar on the south

and north sides. Sediment temperature decreased by 10.7 oC within 72 cm of the log

on its north side on average, but it was not influenced by the log on its south side.

Maximum evaporation was similar on the south and north sides. Evaporation rate
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decreased by 41% within 52.5 cm of the log on the north side, but was not influenced

by the log on the south side.

The spatial patterns of each microclimate variable remain approximately the same

with time of day and with the added variable of different days, but the ranges of the

values of those variables vary.

Within a single day and over nine other days measured at varying times, maximum

u10 ranged from 0.49 to 3.2 m/s, maximum sediment temperature from 15.5 to 43.4

oC and maximum evaporation from 26.7 to 130 mg/min. The magnitude and spatial

extent of the influence of the log on microclimate also varied.

Weather and other environmental factors influenced each microclimate variable.

For a repeatedly measured log that was exposed to north winds, the u10 to both the

north and south of the log was a function of average wind speed at 1 m height (ū100)

and distance from the log, but not recent solar radiation, as initially hypothesized

(Table 3.11). The TS to the north and south were functions of air temperature and

solar radiation; TS to the north was also affected by distance from the log. The E to

the north and south are functions of vapor pressure deficit and solar radiation, but

not local wind speed or air temperature as originally hypothesized. The E to the

north was also affected by distance from the log.

Irrespective of whether a log was exposed to north wind or protected from it,

southern u10, and northern TS and E behave similarly around all logs measured. In

contrast, northern u10, and southern TS and E models differed between exposed and

protected logs. The models for exposed and protected logs had the same environmen-

tal factors but differed in the magnitudes of their effects, as indicated by different

model coefficients (Table 3.11). This suggests that the northernmost, exposed log has

a unique role in manipulating microclimate in the log-drop area.

79



Table 3.11: Environmental factors within each microclimate model of exposed (repeated log) and protected (other log) models. Exposed
and protected log models contained the same environmental factors, but north 10 cm wind speed, south sediment temperature and south
evaporation rate differed in the coefficients of those factors within their models. Surface wind speed was measured as wind speed at 10
cm height. Solar radiation includes all recent solar radiation variables. An X indicates the environmental factor is in the model.

Environmental Factors in Model
Microclimate Solar Local wind Vapor Air Distance Model coefficients of
Variable Direction radiation speed pressure deficit temperature from log exposed vs protected logs
Surface
Wind Speed North X X different

South X X same
Sediment
Temperature North X X X same

South X different
Evaporation
Rate North X X X same

South X X different
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To the immediate north (windward) and south (leeward) of a log, u10 is slowed

and may reduce wind stress on plants from dessication and mechanical damage. To

the immediate north a log, TS is decreased and may reduce the risk of heat damage

to plant tissues and allow for more ideal metabolic rates (Jones, 2013). The E is also

most reduced immediately to the north of logs. This 41% decrease in evaporative

demand would likely reduce evaporation stress on plants and allow for better sediment

or soil moisture retention in this area.

Placement of large woody debris is important for the Elwha restoration if the ma-

nipulated microclimate around logs allows plants to establish and survive in patches

where they would not otherwise survive. Established plants nearby to logs can also

manipulate microclimate and provide seeds to recruit even more vegetation. As more

vegetation establishes, these once bare and inhospitable sediments on the Lake Mills

valley-bottom can begin to become more similar to the forests that surround them.

The most important next step in this research is to improve the reliability of these

models with other data and especially to validate the other log-derived models created

in this study. Additional data from other seasons and weather conditions within the

October 2014 log drop area within Lake Mills would greatly improve the applicability

of this model inside this restoration area by broadening the temporal scope.
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Appendix A

Exposure time and evaporation

rate

Figure A.1: Evaporation rate versus exposure time. Trials 1, 2 and 3 were measured
on July 19, 2015. Clear sky, sunny, approximately 30 oC, slight breeze. Trial 4 was
measured on July 24, 2015, weather was partially cloudy, approximately 15oC with a
slight breeze. Trials 1 and 2 were measured in full sun. Trials 3 and 4 were exposed
in shade. Evaporation rate was measured gravimetrically from tennis balls.
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Appendix B

Roughness distance (z0)

Concept and Calculation

The z0 describes the height at which wind speed becomes negligble. In this study,

z0 is used to describe the affect LWD has on wind speed and turbulence nearby. Higher

z0 values indicate wind is slowed relative to the overall wind pattern at higher vertical

distances at a single point, likely caused by increased surface roughness. Lower z0

values indicate that the wind speed is more similar to the wind speed at a greater

vertical distance and is less affected by ground surface friction.

u = u∗

k
ln z

z0

where u is the wind speed in cm/sec, u∗ is the friction velocity (cm/sec), k is

the von Karman’s constant, z is the height above the ground level in cm, and z0 is

’roughness distance’ (Rosenberg et al., 1983; Jones, 2013) (Figure 1.1).

I used the wind profile equation described above to solve for z0

z0 = e
ln(z1)− ln(z2)−ln(z1)

u2−u1
u1

where z1 and z2 are two different heights in meters and u1 and u2 are wind speeds

(in meters per second (m/s)) at heights z1 and z2, respectively.

The u at 10 cm and 100 cm heights at each distance from the log were used to

calculate z0 from the equation above (See section 2.5.1 for u measurement methods).
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Known height (10 cm and 100cm) and u measurements can be used to calculate m

and b with m = lnz2−lnz1

u2−u1
and b = lnz1 −mu1. The roughness parameter z0 can then

be calculated by z0 = eb. The u1 and u2 are the u (m/s) at the two heights z1 and z2

(m), respectively.

The u1 predicted in these models are constrained by the minimum possible u of

0 m/s and u2. Therefore, a lower u2 increases the probability that u1 is more similar

to u2 . In these instances, z0 would be lower and wind effects of logs would not be

detected as easily.

Results and Discussion

Within-day variability When distance appeared to have an effect on z0, the great-

est z0 values occurred nearest to the log at all times to both the north (windward)

and south (leeward) (Figure B.1). At 9:28 to both the north and south, 17:06 north

and 11:30 south, distance from the log was not related to z0. To the north, the wind

is redirected upwards and over the log, creating a region with lowered u, indicated by

greater z0 values. This region extends approximately 50 cm to 75 cm to the north on

August 21, 2015.

To the south (lee), the roughness distance remains greater than 0.01 cm at greater

distances, unlike to the north where z0 approaches 0.01 to 0 at distances greater than

Figure B.1: Selected curves to represent transects for 5 measured times of day on
August 21, 2015. A represents transects measured to the north of the repeated log
and B represents transects measured to the south of the repeated log. Both A and B
both contain a single line generated for that transect at 9:28, 11:30, 13:33, 15:20 and
17:06 measured times.
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150 cm. This means that the log decreases horizontal wind velocity on the leeward

side for greater than 300 cm, which is approximately four times the height of the log.

Mayaud et al. (2016) describes decreased wind velocity for a distance up to nine times

the height of the barrier object, so this result may be reasonable. This elevated z0

may reduce mechanical wind stress on plants, and might lessen the evaporative stress

on plants to the south of logs (Grace, 1977).

The lack of a pattern between z0 modeled to the north and the south indicates

that the log’s effect on z0 is variable. At 9:28, the z0 to the north and the south

behave approximately the same and distance has no effect. However, at 17:06, the

distance from the log to the north has no effect on z0, but there is a relationship

between distance and z0 to the south. This pattern is opposite for 11:30.

Among-day Variability The z0 patterns on different days were similar to the z0

regression in the within-day analysis. Adding the varying days during the study as a

variable to the different times of day, increases the range of results seen in roughness

distance. This suggests that the values of z0 are affected by both time of day and day

during this study.

To the south among days, z0 patterns appear similar to the single-day z0. These

show increased z0 values within 50 cm of the log and show a minimum z0 value of 0.020

cm (Figures B.1 B and B.2 B). Similar to the within-day regressions, the among-day

regressions to the south do not drop to the minimum value modeled to the north (less

Figure B.2: The z0 measured along transects of the repeat log each study day. Graph
A represents transects measured to the north of the repeated log and B represents
transects measured to the south of the repeated log.
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than 0.010 cm), but show z0 greater than 0.020 cm to the south,extending greater

than 300 cm, reducing mechanical and evaporative wind stress on plants (Grace,

1977) (Figure B.2).
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