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Abstract 

The Category Adjustment (CA) model of spatial memory (Huttenlocher, Hedges, & Duncan, 

1991) explains how bias towards the centers of spatial categories occurs when recalling locations 

for target objects. According to the model, this error is the product of Bayesian combination 

between the rapidly-deteriorating metric information of an object and its longer-lasting 

categorical information, a process which reduces error variance over time. This adjustment is 

robust, but previous testing has mainly relied upon remembering simple targets (e.g., dots) in 

geometric figures. Few studies have addressed whether objects’ real-world expectations are 

incorporated into this paradigm and, if so, how this information is used. In the present study, 

participants from a major public university completed a dot-localization task in an ecologically-

valid “table” setting. Targets were pictures of everyday objects one might expect in one of two 

spatial regions: in the center of a table and towards the edge of a table (e.g., a candle or a cup, 

respectively). I expected participants’ responses would rely on and bias towards long-term 

prototypes as opposed to the default. On average, responses biased away from the center, with 

Central objects exhibiting greater magnitudes of bias. A significant portion of responses were 

replaced on or beyond the default prototype, suggesting participants used their imagined 

positions as landmarks. Differences between groups suggest possible ways in which long-term 

prototypes are used. The data will help us understand the contribution of experience-based, long-

term prototypical locations for real-world objects in the combinatory processes of spatial 

memory.    
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Introduction 

Accurately remembering the locations of objects is essential for behaviors ranging from 

finding food to remembering where you left your car keys. Huttenlocher, Hedges, and Duncan’s 

(1991) Category Adjustment model proposes that people represent object locations at two levels 

of detail: metric (the object’s exact location in space) and categorical information (the general 

space in which the object was seen). Huttenlocher et al. proposed that a Bayesian combination of 

these sources is responsible for bias towards an angular prototype located at the 45° lines (a 

geometric prototype) and a radial prototype located at approximately two-thirds the distance 

from the center of the space to its circumference. According to Huttenlocher et al. (1991), using 

these prototypes maximizes overall accuracy and minimizes variance over time. The estimates 

follow Bayesian principles, and the relative weights of these sources of information vary 

depending on the degree of metric uncertainty of each representation.  

This model is quite influential, but the majority of its empirical data derives from spatial 

memory tasks for targets with little to no semantic information (e.g. with dots-in-circles instead 

of real-world objects). Studies like those by Sampaio and Cardwell (2012) and Friedman, 

Montello, and Burte (2012) demonstrated exceptions when using targets with semantic 

information within larger geographic spaces, including fountains within a university plaza or 

when using cities within a state, respectively. This is important because as people interact with 

the world, they form expectations about the locations of real-world objects based on the object’s 

surrounding environment (Brewer & Treyens, 1981; Hollingworth, 2005; Palmer, 1975) and the 

object’s function within that space (Castelhano & Witherspoon, 2016). As a result, people 

develop prototypical locations for objects based on their experience (e.g., that candles go in the 

center of a table as opposed to the edge). These experience-based associations ought to establish 

a spatial prototype that would inform a small range of locations with high reliability.
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My goal is to understand what contributions this long-term spatial prototype information 

makes towards improving the accuracy and reliability of memory in complex real-world spaces, 

beginning with understanding how it is integrated alongside the geometric prototypes in the dot-

in-circle task. I hypothesize that individuals will implement experience-based prototypical 

locations when estimating the locations of targets representing real-world objects from memory, 

either relying upon them exclusively or using them in conjunction with geometric prototypes. 

Improving our understanding of the relationship between objects and their probabilistic 

placements in the environment will improve our ability to reliably and confidently predict and 

measure our memory in more applicable settings.  

The Category Adjustment Model 

Huttenlocher et al.’s (1991) Category Adjustment model provides an explanation for a 

prevalent bias in spatial memory. The model accounts for the bias by proposing that estimates 

are biased due to a combination of short-term, rapidly-deteriorating metric information and 

longer-term, spatial-categorical information. The model is based on Bayesian principles, where 

sources of information are weighed against one another concerning their reliability and their 

utility. Sources of information unsuitable for determining where an object was are overshadowed 

by sources that are more suitable, which are more heavily weighted. The final product is 

considered the most optimal synthesis of available information. Target locations shown within a 

circular space exhibit bias towards the center of the quadrant in which the target had appeared 

(the prototypical point) upon recall, implying that people divide the space into four quadrants 

and encode the target as belonging to that region. This limits long-term variability by utilizing 

the averaged position of the distribution available in the category (Huttenlocher, Hedges, & 

Duncan, 1991; Huttenlocher, Hedges, & Vevea, 2000).  
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A key premise of this model is that information about the spatial category, called the 

prior, is stronger during recall than the metric information of objects within its bounds. 

Individuals are thought to segment circular spaces into equal quadrants, creating spatial 

categories that aid in location estimation (the priors). A distribution of possible locations is taken 

into account with the averaged response lying on the 45° angular value and towards a two-thirds 

radial value between the center and the edges of the quadrant (the default geometric prototype; 

Huttenlocher, Hedges, & Vevea, 2000). As targets are unlikely to be found on the outlying edges 

of the quadrant, responses adjust towards the center to maintain reliability over time. This leads 

to a systematic bias. These default geometric categories have been described as “immutable” 

when remembering an object’s location in the circular space (Huttenlocher et al., 2004) as well 

as within simple shapes including triangles, ellipses, and pentagons (Wedell, Fitting, & Allen, 

2007). Default prototypes are used even when stimuli presentation imply an alternative 

categorization scheme—such as one bounded at the diagonals (Huttenlocher, Hedges, Corrigan, 

& Crawford, 2004)—or when explicit alternative categories were presented during retrieval 

(Sampaio & Wang, 2010).  

Huttenlocher et al. view these prototypical values as Bayesian priors, the pre-existing 

statistical likelihood of a target’s location before other evidence is considered. For example, if 

asked the question “Is it raining in Seattle?”, pre-existing knowledge regarding the temperature, 

climate, and meteorological history of the Pacific Northwest would be incorporated into your 

answer before being shown a weather report for that day. Similarly, during category adjustment, 

the prior knowledge of the geometric prototype is weighed against the remaining exact metric 

information (typically called a “metric trace”). Metric information and the geometric prototype 

are then combined to reach a compromise between the two sources.  
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One criticism of using Bayes’ definition for priors in the standard dot-in-circle task is that 

the priors are unlike those used in other domains. Targets in this literature typically lack semantic 

information or identifying details. As a result, adjustments are made towards a geometric 

prototype, located at a category’s center, as it provides the most reliable resource for estimation. 

However, these geometric prototypes are not “true” prior probabilities as they do not stem from 

experience beyond the testing environment. 

This may not be the case with real-world objects: computational models like the 

Differential-Weighting Model (Eckstein, Drescher, & Shimozaki, 2006) and studies like that 

conducted by Hemmer and Steyvers (2009) demonstrate that we utilize pre-existing expectations 

about a target, including location, to help clarify an otherwise “noisy” metric trace. For instance, 

Eckstein and colleagues (2006) found that when people searched for a target “chimney” in a 

scene containing a house, the target was found faster and more accurately when it was in its 

expected position. When the target was not present, people still utilized the expected location as 

a resource and paid attention to where such an object should go. In this case, even before the 

presentation of a space, a target’s identity provides information regarding an expected 

prototypical value. Using this information during recall would be an example of using a “true” 

prior.  

Knowledge about a target’s expected location varies depending on the degree of 

familiarity one has with the target object. Therefore, we could classify it as an experience-based 

prototype. I expect that familiar items in a common setting (e.g., a dining-room table with lamps, 

cups, vases, etc.) have these specific priors in memory that serve to inform an object’s probable 

location. For this experiment, a “table” setting will be used, with target objects being ones 

typically found upon that table. This tends to be a space which undergoes segmentation between 
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a central space and a distal space, wherein certain objects are typical of one region and not the 

other (e.g. you wouldn’t typically find a candle on the edge of a table but would expect it to be in 

the middle of the table). If people use these prototypes to help inform memory, this might 

provide an additional resource that is compared against geometric-categorical information during 

Bayesian combination.  

Friedman, Montello, and Burte’s (2012) study underscores the complex relationship 

between these sources of information. They tested students from an Albertan and a Californian 

university regarding the locations of real-world cities within their respective regions. When 

given only the names of cities within an identified space (names-only) and asked to click where 

they thought that city belonged, responses erred towards the center of the region. However, when 

presented with the true location (dots-only) and with both the true location and the name of the 

city (dots-and-names), responses moved away from the central prototype to a small but 

significant degree. 

They note that their findings “represent the first time that estimates from perception alone 

(i.e., dots-only) have exhibited this behavior” (pg. 1350). The anomalous results of their dot-and-

name condition are also curious; had geometric (i.e. default) and long-term information been 

combined in a Bayesian fashion, a bias towards a midpoint between the two sources would be 

expected. To explain their findings, they proposed that personal experience and knowledge 

regarding the target cities (e.g., climate, geography, and proximity to neighboring cities) could 

help in the creation and use of regions in the space associated with the target city. These regions 

could be very specific, personalized regions instead of Cartesian quadrants, and could provide 

additional resources alongside geometric information. Additionally, the relative difficulty of their 

task could factor into prototype use: cities-in-regions present a greater challenge than dots-in-
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circles, and alternative information could be used to help refine responses. Finally, citing work 

by Uttal, Friedman, Hand, and Warren (2010), they propose that other contextual information 

and a long history of personal experience could play a role in how people create and use 

prototypes within specific contexts. 

I will focus on how this information may be used in accordance with Huttenlocher et al.’s 

original framework: as one contributing source to be weighed against default geometric 

prototypes to help inform memory. To account for the above concerns, the present study will 

adapt Huttenlocher et al.’s (1991) paradigm using a simple, familiar setting with representations 

of everyday objects. A circular testing space will be used, with targets being pictures of familiar 

objects.  

Experience-Based Prototypes 

 In a separate literature, there is a wealth of knowledge regarding how people create and 

maintain categories for objects in the real world. The way in which these experience-based 

categories are used may also apply to spatial prototypes in Huttenlocher et al.’s dot-in-circle 

paradigm.  

 Hollingworth (2005) conducted an object-replacement task using pictures of everyday 

objects and familiar spaces (e.g., replacing a barbell in a gym setting). His goal was to ascertain 

the impact that scene context had on memory and how a target’s identity could guide accurate 

replacement. Three conditions were identified: one where a target object was present in the scene 

(target present preview), one where the target was absent (target absent preview), and one where 

no scene or target were presented (no preview). Participants saw a picture of a detailed virtual 

environment with a target object (present or absent, depending on condition). Those in the no 

preview condition did not see such an environment. After a delay, participants were shown the 
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identity of the target. Participants clicked on the position where they had either seen the object 

(target-present) or where such a target would be in the scene (target-absent/no preview 

conditions). Participants with no knowledge of the target object were only slightly less accurate 

than those who had seen both the location and identity of the target. His results indicate that 

experience-based information could be used both in the absence of clear physical boundaries and 

in complex environments, even when no physical prior distributions were enforced by the 

researchers.  

Other real-world tasks like Brewer and Treyens’ (1981) famous study have shown 

experience in real-world environments plays a role in how people remember or expect an 

object’s position in space. In their case, participants’ schemas for what belonged in a “graduate 

student” office aided in their ability to remember objects typical of that environment but 

hindered their ability to remember atypical objects like a skull, picnic basket, or bottle of wine. 

Participants were even found to remember the presence of objects which were not there, 

including textbooks. These long-term prototypes for what objects belonged in the space and their 

expected locations are a good example of employing priors from long-term memory to aid in 

estimation. 

Typical dot-in-circle tasks use enclosed geometric shapes devoid of detail, color, or 

identifying characteristics, wherein geometric regions are implemented to organize the space into 

disparate quadrants (Crawford & Jones, 2007); the priors are located at the center of the 

quadrant. This does not necessarily mean those prior distributions are inherent in the space. The 

default prototypical value of the quadrant used is not pre-existent, but instead a malleable value 

which can be altered depending on the information presented (in this case, where the geometric 

boundaries are imposed; Huttenlocher et al., 2004). Sampaio and Wang (2010) and Crawford and 
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Jones (2011) provide examples using dot-in-circle tasks with colored shapes as targets as 

opposed to black dots. Their aims were to better understand how the presentation of alternative 

classification schemas (color, shape, membership, etc.) impacted the types of information 

utilized when making estimates from memory. Objects were presented for a brief period in a 

circular space, then removed from view. Participants then clicked or moved objects to the 

location where they had been seen. Non-default prototype use (towards prototypes at 45°, 135°, 

225°, and 315°) was found when there was a clear associative relationship between the objects 

shown and the quadrants available to participants, both when the boundaries were explicitly 

marked (Sampaio & Wang, 2010) and when they had to be inferred through exposure (when 

multiple objects were to be remembered simultaneously; Crawford & Jones, 2007, 2011). In 

short, when reliable alternative categorization schemes are made available, they may be used in 

lieu of default prototypes under proper conditions.  

Castelhano and Witherspoon (2016) found similar trends using visual-searching tasks. 

Ambiguous, 3D objects were shown in a realistic household scene. Objects were either presented 

in a neutral form (having no identity or function) or imbued with an identity conducive to its 

placement in the scene (e.g., a “soap-dispensing” object placed beside a sink in a kitchen). They 

found that participants found objects faster and more accurately when target objects were imbued 

with a purpose congruent with their position in the scene and when they were located in that 

position in space. Object identity was a determining factor in where an object belonged in a 

space, with objects being located faster when they were located in the ideal position for objects 

of that group. This view is dependent on both an understanding of the context of the scene (e.g., 

that tables are where vases are typically placed) and the object being remembered (e.g., that a 

target object is classified as a vase) (Hollingworth, 2005; Palmer, 1975). 



  

9 

 As people interact with the world, they develop expectations for where objects should go 

in a scene (Brewer & Treyens, 1981; Carlson-Radvansky, Covey, & Lattanzi, 1999; Hirtle & 

Mascolo, 1986; Hollingworth, 2005). Objects whose use is congruent with their placement in the 

scene are more easily found and remembered (Castelhano & Witherspoon, 2016; Eckstein, 

Drescher, & Shimozaki, 2006; Oliva & Torralba, 2007; Palmer, 1975), especially when people 

are exceedingly familiar with those objects in that environment (Brockmole, Hambrick, 

Windisch, & Henderson, 2008). I expect that, as people consistently encounter objects in specific 

locations in real-world spaces, information denoting not only what an object is, but where it 

should be, is encoded. People may create prototypical locations for an object based on the degree 

of typicality for that object in that position.  

 For example, if one always sees a vase in the center of the table, they should be more 

likely to replace that vase in the center of future tables than on the edges of those tables. In this 

instance, the typicality of having the vase in the center of the table would be relatively high. A 

distal placement for the vase would be highly atypical, as vases are not typically found on the 

edges of a table. This changes for an object like a glass of wine, which would typically be placed 

within reach (i.e., towards the edge of the table) and not in the center of the table. This 

interaction would depend not only on a target’s identity and utility in the surrounding space, but 

successful experience one has with that object in that specific place. Without these, no valid 

long-term priors would be available for later use.  

The following experiment explored whether this kind of association is used. A common 

table setting was used, with targets being everyday objects one would typically find on that table. 

In this particular environment, there tends to be clear delineation between objects you would 

commonly find in the center and towards the edge of the table. Because of this, I focused on 
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radial bias between these two prototypes, or the degree of error along the continuum between the 

center and the circumference of the space. Adjustment towards alternative categories (to the 

center or the edge of the space) would denote the use of long-term experience-based prior use as 

opposed to the default geometric prototype (towards the two-thirds radial position). 

Present Study and Predictions 

The inclusion of a second categorical influence in this Bayesian process means the 

combinatory mechanism behind this bias might differ from past experiments using the dot-in-

circle task. As categorical influences become more discrepant, one source is typically selected 

over the other to use during combination. In contrast, sources similar in reliability and utility can 

be combined into a single estimate (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007). If the 

experience-based and default geometric prototypes are being combined, we might expect a 

response to err towards a point between the geometric and experience-based prototypes. In 

contrast, if experience-based information is lacking or is not being used, its Bayesian weight 

would be relatively low leading to a default adjustment. 

Participants were shown real-world photographs of household objects in a blank circular 

space. Each object was a member of a pair and possessed one of two identities: one where the 

expected location for that object is the middle of the table (e.g., cake, basket, or vase), or one 

where the expected location is toward the outside edge of the table (e.g., cup, napkin, or plate). 

Both objects in each pair were shown in the same location. A photograph of the object was 

displayed briefly on the computer screen, then removed from view. Participants clicked on the 

location where the object was seen. Comparing differences in replacement between shapes 

(distal vs. central) on the table will allow us to understand whether and how experience-based 

prototypes are used in estimating locations.  
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I predicted that if experience-based spatial prototypes are exclusively used in estimates, 

then placements from memory would be biased towards the middle (for Central objects) or 

towards the edges of the space (for Distal objects). If this information was combined with default 

geometric prototypes—robust in dot-in-circle tasks—then estimates would be biased between the 

two prototypes (with the specific location reflecting the weight of each prototype). If experience-

based prototypes were not used, then estimates would be biased towards the default geometric 

prototype regardless of shape’s identity. 
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Method 

Participants 

 35 undergraduate participants (60% Female) were recruited on a voluntary basis from the 

Western Washington University student population to participate in a 30-minute experiment. 

Participants received course credit for their participation. 

Materials 

The E-Prime experimental suite was used to create a dot-localization task in a blank, two-

dimensional space. 40 pairs of objects were established by the experimenter, with each pair 

containing one Distal object and one Central object for a total of 80 objects. Images were 

selected from the Bank of Standardized Stimuli (Brodeur, Dionne-Dostie, Montreuil, & Lepage, 

2010), the Amsterdam Library of Object Images (Geusebroek, Burghouts, & Smeulders, 2005), 

and from the Massive Memory database (Brady, Konkle, Alvarez, & Oliva, 2008). Selected 

objects were those one would typically find in a household “table” setting and were accompanied 

by a real-world picture of the object. 

The intention was to have each target position determined based on a norming study. In 

the norming study, a separate group of participants were shown pictures of everyday objects and 

asked where they believed the objects should be placed within the table. The range for target 

placement in the experiment was intended to be determined by the upper (Central) and lower 

(Distal) prototypical responses provided by these participants (i.e., the highest and lowest 

positions where they thought objects should go). These values were averaged to create initial 

target locations for a pilot study. A random-number generation equation was intended to be used 

to then select initial Y-values for each pair of objects within this range. However, the researcher 

used the averaged recalled midpoint positions from the pilot study instead of the original 

norming study bounds. The error resulted in a lower and more restrictive range of possible 
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locations. This means that the target positions were lower than intended and did not encompass 

all radial positions in the bottom hemisphere of the space.  

The environment was presented on 22” Dell UltraSharp 2208WFP monitors seated 

approximately 18 inches from the participants. Screens were cleaned regularly to ensure dust, 

debris, and other residue did not influence responses. See Figure 1 for an example of the testing 

environment presented to participants.  

To prevent objects in the same pair from being presented sequentially, two lists 

containing 40 targets each were used. List A contained one type of object from each pair (e.g., 

the Distal object from Pair 1, the Central object from Pair 2, etc.) and was presented randomly 

without replacement. List B contained the other object of the pair (e.g., the Central object from 

Pair 1, the Distal object from Pair 2, etc.). List A was presented first, with objects presented in a 

random order for each participant. List B was then presented, again with objects randomly 

presented.  

Procedure 

 Pilot. A pilot was conducted beforehand to establish experience-based prototypes as a 

reference for the experiment. 34 participants were given a written briefing followed by a written 

and verbal instructional period. Additional instructions were presented in the E-Prime program. 

Participants were presented with a circular space labeled as a “table”. The interior of this space 

was white and its boundaries were black. Participants were randomly presented with an object 

belonging to one set of objects. For example, they were told what the shape represents (e.g., 

“This object is a cup”), followed by instructions to “click on the location where the cup belongs 

on the table”. Once the object had been placed, the screen went blank and another object was 

presented at random. Each object was presented once before being removed from the pool (20 
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trials per individual). Once all objects had been presented, participants were debriefed and the 

session concluded.  

Experiment. The experiment followed a dot-localization procedure similar to ones used 

in the Category Adjustment literature. Prior to testing, participants submitted written consent. 

Participants were given verbal instructions regarding their task. These instructions were repeated 

upon beginning the program. Participants were given as much time as needed to become familiar 

with the instructions before beginning. Real-world pictures of the target were displayed for a 

period of 4000 ms below a prompt naming the object. This prompt and the object were then 

removed from view. The blank circular space appeared for a period of 1000 ms. Targets were 

presented briefly on the bottom half of the space for a period of 500 ms. The space was masked 

with an image of visual noise (TV static) for 2500 ms. Participants were then shown the blank 

circular space. Participants clicked on the location where they saw the center of the object. Once 

participants made their response, the target and the space disappeared. A black screen was 

displayed for a period of 2500 ms, after which the process repeated until all objects had been 

displayed. A brief resting period was granted between the two blocks of objects (after 40 trials) 

to prevent fatigue. 

Once completed with the experiment, participants completed a short survey with 

questions regarding their experiences with the objects presented. The images of the real-world 

objects used in the study were displayed. Participants were asked whether they believed the 

objects they had seen had a prototypical location on the table (Yes, towards the edges; Yes, 

towards the center; or No). Two 5-point Likert scales followed. The first asked participants 

“How familiar are you with this object?” with possible responses ranging from 1 (Not at all 

Familiar) to 5 (Extremely Familiar). The second asked “During the average week, how often do 
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you interact with this object?” with possible responses ranging from 1 (Never) to 5 (Every day). 

These questions were repeated for each type of object presented. Upon completion, participants 

received a written debriefing and were thanked for their participation. 

Data Analysis 

Targets were displayed directly on the North-South axis. A target’s position in the scene 

was calculated by measuring the Euclidean distance between the target and the center of the 

space. Bias was calculated by subtracting each target’s initial Euclidean distance from its 

corresponding response distance. Negative values correspond to adjustment towards the center. 

Positive difference values would indicate an adjustment towards the edges of the space (towards 

the distal prototype), but not necessarily towards the bottom of the screen. These distances reflect 

movement along the dimension ranging from the center to the outside edges of the space. 

Replacements made on either side of the midline may still be categorized as “further” or “closer” 

from the center as long as the distance between the estimate and the center is greater than or less 

than it was during initial presentation, respectively. Responses beyond 2 SD from the mean bias 

were excluded from analysis to help eliminate the possible effects of outliers.  

Differences between Distal and Central responses would indicate that participants are 

using different prototypes depending on the identity of the object. If alternative prototypes are 

used exclusively, there should be a larger degree of bias towards experience-based prototypes. 

This would be indicated by large negative difference values for Central objects and large positive 

difference values for Distal objects. If alternative prototypes are being combined with the 

geometric prototype, then we might expect this combination to result in bias towards a point 

between each object’s corresponding alternative prototype and the default radial value. If 
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alternative prototypes are not being used, then targets should be replaced towards the two-thirds 

default radial value regardless of identity. 

Results and Discussion 

It should be reiterated that the targets only appeared within a limited range at the bottom 

of the circle. The range used in this study was between Y=756 to Y=836 rather than Y=665 to 

Y=836. As a result, target placement for the experiment was much more restricted and lower 

than intended. 

Participants’ responses take the form of a Cartesian coordinate, with the origin (at 

840,525) located in the exact middle of the circle. Positive degrees of bias indicate adjustment 

towards the edges of the space, while negative bias indicates adjustment towards the center. All 

participants followed instructions, resulting in zero omitted participants. Because all objects were 

presented in the bottom-hemisphere of the space, responses made above the X-axis were 

determined to be the result of guessing. These responses were eliminated from the study (.001% 

of data). Additionally, responses beyond 2 SD from the mean response bias were omitted (4.4% 

of remaining data). Responses were then aggregated into two mean scores for each participant, 

one for each object type. Reported numbers are rounded to two significant figures. A full graph 

showing participants’ responses is presented in Figure 2. On average, responses were made 

within 23.75 pixels of their initial position (SD = 15.40), equivalent to 6.28 mm. 

A paired-samples t-test looked at whether there was a significant difference in 

directionality between Central and Distal objects for each subject, which would indicate possible 

use of long-term alternative prototypes. This t-test showed that there was significant positive bias 

for both Central (M =18.77, SD= 12.30) and Distal objects (M= 14.43, SD= 11.44), t(34) = 6.10, 

p < .001. Overall bias was significantly different from zero, t(34) = 8.41, p < .001. Splitting by 
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object type, bias was significantly different from zero for Central objects, t(34) = 9.03, p <.001; 

and Distal objects, t(34) = 7.46, p < .001. The large positive difference values for Central objects 

indicate that prototypes were not combined during estimation, as combination would predict 

adjustment between the proposed alternative and default radial values, resulting in patterns of 

slightly negative bias.  

Comparing the trends between the pilot and this experiment affords the opportunity to 

better understand the impact geometry has on incorporating long-term expectations into this 

paradigm. Therefore, the aforementioned analyses were replicated using the pilot data with 

responses collected from 34 undergraduate students (23 Female). Results beyond 2 SD mean 

response bias were excluded (5.88% of data). Participants’ responses were then aggregated to 

acquire a mean value for Central and Distal objects. Values have been rounded to 2 significant 

figures. 

A paired-samples t-test was used to determine whether there were significant differences 

in direction between Central and Distal objects for participants in the Pilot study. The test was 

one-tailed, as we expected different degrees of bias depending on the objects’ type. Differences 

in direction would indicate that participants were using long-term alternative prototypes instead 

of the default prototype, which would predict uniform positive biases for all objects. Significant 

differences existed between bias for Central (M = 9.32, SD = 17.90) and Distal (M = 11.64, SD = 

16.44) objects, t(33) = 1.77, p <.05. Splitting by object type, one-sample t-tests showed that 

Central objects, t(33) = 3.04, p = .005; and Distal objects, t(33) = 4.13, p < .001, were both 

significantly different from zero. These results indicate that alternative long-term prototypes 

were not relied upon during replacement, as there was no significant difference in direction 

between object types. 
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These results indicate that pre-existing expectations regarding object position are not 

influencing bias in the same manner as the geometric influences detailed by Huttenlocher et al. 

The geometry of the space still heavily influences accuracy despite pre-existing expectations; 

responses were still biased away from the center regardless of object type, contrary to my 

predictions. Future studies should manipulate individual aspects of the current design to better 

understand the individual impact of specific variables, such as relative object size, shape, and the 

availability of affordances present when working with real-world objects.  

My primary hypothesis that objects would err in the direction of their experience-based 

prototypes was not supported. Instead, results are similar to those found by past category 

adjustment literature, with objects erring in the direction of default geometric prototypes. 

Comparing the pilot data to the data gathered for the experiment proper, we see a similar trend: 

participants erred towards the outside edges of the space regardless of object type. However, we 

see two different patterns stemming primarily from the differences between initial target range. 

Bias for Distal objects was significantly greater in the pilot, but bias for Central objects was 

significantly greater in the current experiment. I strongly suspect the lower initial target 

placement as the factor responsible for this difference. However, another explanation for this 

trend could be that long-term information is not implemented in the form of a fixed, global 

location as predicted. Instead, it could play a role in how people attend to objects incongruous 

with their position in the scene.  

Studies exploring frame theory (Minsky, 1975) have shown that we make sense of our 

environment by understanding how specific objects fit within surrounding spaces. This 

processing is relatively automatic, with familiar objects being recognized faster than novel ones 

(Friedman, 1979). Explorations into the idea of novel pop-out, or NPO (Johnston, Hawley, & 
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Farnham, 1993; Johnston, Hawley, Plewe, Elliott, & DeWitt, 1990), have shown people pay 

more attention to objects or occurrences which “stand out” in their surrounding environment 

(e.g. a vacuum cleaner atop a coffee table as opposed to on the floor beside it). This idea was 

tested in recent Category Adjustment literature in the field of facial recognition, which found 

attenuated (albeit insignificant) bias for eyes viewed as extreme distances from the prototypical 

“eye” location (Adams, 2013).  

A similar trend could explain the present results and provide an explanation as to why 

two different patterns of bias were found. For example, a Distal object (bowl of cereal) could be 

considered more appropriate when seen towards the edges than its Central counterpart (a candle), 

which would be found in the center. If the expected position of the object and its initial position 

are consistent, the initial reliability of the placement could be considered greater, leading to less 

reliance on the default; if the object is generally where it should be, then the need to rely on 

default information would be lower as it is within its expected range. If that object is out-of-place 

upon initial presentation, any pre-existing expectations could be rendered unreliable, thereby 

increasing reliance on the metric position. However, as metric information decays almost 

immediately after presentation, responses would err towards a default for lack of reliable 

alternatives. This may explain why schema-inconsistent objects erred more than schema-

consistent objects.  

Ultimately, I believe that the trends in our data can be explained as a combination of two 

factors: long-term information being applied to determine the validity of a target’s initial 

placement, and the Bayesian combination between long-term and default information. Bias in the 

direction of the default radial category was found across objects and between the pilot and the 

experiment. However, it seems the degree of bias was mediated by whether or not the object 
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displayed was presented in a space consistent with the object’s identity.  I expect that people are 

applying their knowledge of where the object should go during initial presentation to support the 

validity of the metric information they have for where an object was, thereby informing them as 

to an expected long-term prototype alongside the default information already inherent in the 

space.  

When objects break this assumption by being seen in a schema-inconsistent region upon 

initial presentation (e.g. the lower Central objects in the experiment and the higher Distal objects 

in the pilot), the long-term prototypical information is weakened. This, combined with the 

deteriorating metric accuracy, leads to the use of the default. When the expectation is upheld, the 

long-term information maintains its validity, informing participants that the initial location is 

indeed reliable as it conforms to long-term expectations. This leads to smaller combination 

between the two prototypes and an overall reduction in bias. Whether or not the metric 

information of schema-consistent objects is maintained better than schema-inconsistent 

information cannot be ascertained with the present data. I would expect, however, that 

deterioration of this information is attenuated when the surrounding range of long-term values is 

congruent with the object’s identity. 

Evidence from the survey data lends some credit to the idea that pre-existing 

expectations, familiarity, and increased interaction play a role in bias. Differences in bias 

between the levels of each variable was explored with a one-way ANOVA and a Tukey’s post-

hoc follow-up test. When asked about their expectations for where targets should go within the 

experimental space, participants’ results indicate that objects which were expected to be 

“towards the edges’ (M = 14.58, SD = 19.34) erred significantly less than objects expected 

“towards the center” (M = 17.55, SD = 21.13), F(2, 78) = 6.06, p = .002. When reporting their 
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history of Interaction with the targets, participants who “never” (M = 17.17, SD = 21.12) or 

“almost never” (M = 17.80, SD = 20.88) used a target during an average week exhibited 

significantly more bias on average than those who used a target “every day” (M = 13.35, SD = 

19.41), F(4,78) = 3.25, p = .011. See Figure 3 for more details. Similarly, bias was significantly 

greater for “not at all familiar” objects (M = 21.32, SD = 22.10) compared to “extremely 

familiar” objects (M = 15.02, SD = 19.58), F(4,78) = 3.76, p = .005. Although we still see error 

away from the center for all objects, participants’ responses became less varied as Familiarity 

increased (See Figure 4).  

It could be that people relied upon their imagined positions as a landmark in the 

experiment, and that bias is reflective of people’s adjustments towards themselves instead of the 

default. The data indicate that when objects were presented at a lower position on the screen 

during the experiment, the degree of error was higher than when presented during the pilot. The 

two-thirds radial prototype was at Y=837, which is 312 pixels away from the center of the space. 

In the experiment, approximately 26% of participants’ responses were at or beyond this value, 

meaning they replaced the object beyond the default prototype. This is contrary to previous 

findings which shows bias approaching, but not exceeding, this value. Previous work has 

demonstrated the impact of local and distal landmarks on memory for location (Li & Gleitman, 

2002; Wang & Spelke, 2000) as well as the influence of initial learning angles and frames of 

reference (Rump & McNamara, 2013; Jiang & Swallow, 2013; Sargent, Dopkins, & Philbeck, 

2011). Experimentally manipulating learned and imagined reference angles within this paradigm 

could explore if people are using landmarks outside the space to help understand distance. We 

could find that when people are asked to recall the position of a presented object after the 
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environment has been rotated, their responses show bias towards themselves as opposed to the 

intrinsic quadrants of the space.  

Relative object size may also influence how people report where objects were in a space, 

with variability in response accuracy increasing as objects become larger. For instance, a roast 

turkey dinner necessitates a larger relative size compared to a dinner plate, as the former is 

intended for multiple people while the latter is for the individual. A larger size could lead to 

increased metric uncertainty regarding the centers of objects, thereby increasing bias in memory. 

To address whether this had an impact, I performed a linear regression looking at the impact of 

objects’ dimensions (Height, Width, and Total Area) on mean bias for each object. I expected 

that as an object increased in size along the Height and Total Area dimensions, we could expect 

greater degrees of radial bias, whereas Width would not predict radial bias. The adjusted R2 

value for the three dimensions showed that those dimensions predicted 54.5% of the variance. 

Closer examination at the individual coefficients highlighted that only object height was 

significantly different from zero, t(76) = 4.98, p < .001, and that it predicted a .164 pixel increase 

in radial bias for every pixel an object increases in height. We cannot determine whether this 

difference is due to the memory itself becoming distorted or merely a by-product of the test 

itself, although I highly suspect the latter. Further exploration is necessary and encouraged.  

As a goal of this study is to better understand environmental influences on spatial 

memory and replicate real-world human behavior, expansion into virtual reality or with actual 

objects is encouraged. Objects’ affordances (e.g. if they can be grasped, clasped, eaten, etc.) 

could play a role in how people remember their positions. It may be that objects which undergo 

or have undergone more physical manipulation in the past are remembered more accurately in 

memory. Work surrounding the two-stream hypothesis has shown that humans are especially 



  

23 

attuned to changes in object orientation and identity (Goodale & Milner, 1992; Valyear, Culham, 

Sharif, Westwood, & Goodale, 2006), factors which are typically not-present using dots-in-

circles. Additional work has even shown that rapid-reaching tasks can employ probabilistic 

interpretations of space to maximize accuracy when predicting the location an object found in 

that space (Chapman, et al., 2010). In future work, studies should focus on understanding this 

relationship: To what extent does physical manipulation and action influence memory? Would 

the long-term “true” priors suggested in this paper come to light when interacting with actual 

objects?  

This study cannot definitively state that long-term, global prototypes are applied in the 

dot-in-circle paradigm. The expected patterns of bias which would corroborate this were not 

observed. Although the differences in bias between object types within and between the pilot and 

the experiment could suggest that long-term information is being applied to determine the 

schema-consistency of objects and their subsequent initial validity, the unintended lower 

positioning of the objects prevents us from disentangling explanatory factors and stating 

definitively that this is the case. Future replications should emphasize encompassing a greater 

range of radial and angular space and establishing pair-specific prototypes, as well as placing 

greater attention on using physical objects as opposed to two-dimensional targets to help remove 

potential barriers to our understanding of how long-term prototypical information is used in the 

real-world. As it stands, further research will be required to understand whether this information 

is being used in the Category Adjustment model.  
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Figure 1. Example of the Experimental Space as viewed by Participants. Targets were pictures of 

real-world objects (e.g., the round cookie in the bottom-half of the circular space) as viewed 

from a top-down perspective.  
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Figure 2: Responses sorted by Object Type. The solid vertical and horizontal lines indicate axes 

in the environment, with the vertical (at X = 840) indicating the midline upon which targets were 

displayed. The dotted line indicates the midpoint of the bottom half. Most objects were shown 

and replaced within this bottom-half as a result of error. Blue circles indicate Central objects, and 

red circles indicate Distal objects. 
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Figure 3: Bar Graph: Self-Reported Interaction scores against Bias. Red bars denote Central 

objects, and blue bars indicate Distal objects. Error bars denote 95% confidence intervals. 

Asterisks indicate significant differences between object types for each level. Here, we see bias 

decreasing with increased interaction for Distal objects, but not for Central objects. This could 

indicate that people are paying attention to where objects should go, and that error increases 

when that expectation was not upheld. Future exploration is necessary.   
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Figure 4: Bar Graph: Bias as Self-Reported Familiarity Increases. Asterisks indicate significant 

differences in bias between object types for each level. Here, we can see that the degree of 

variance in responses decreases steadily as Familiarity with the target increases. Though this did 

not change the magnitude of the bias, it does give some indication that Familiarity with the 

objects in the space gave reliability to the estimate and helped decrease error.  
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Figure 5:Scatterplot of Mean Bias by Trial. The dotted vertical line indicates the break between blocks of 

objects. The solid line indicates the linear-fit line. As participants completed successive trials, mean radial 

bias increased slightly. This could indicate the fatigue played a possible role in radial bias.  
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Figure 6: Scatterplot: Means for each object sorted by Object Type. The filled circles represent 

the average bias across participants for Distal and Central objects. Blue circles indicate the Distal 

object of the pair, while red circles indicate the Central object. Though each pair varied, the 

overall trend shows Central objects biasing to a greater magnitude than their Distal counterparts. 

Pair 39 shows the hypothesized pattern of bias, with the Distal object exhibiting positive bias and 

the Central object exhibiting negative bias.  
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Figure 7: Scatterplot of Bias by Familiarity for Participant 31. Example of the expected trend 

between Object Familiarity and Bias. Dots indicate response bias for individual items. The fit 

line and the R2 coefficient indicate that Familiarity impacted bias, with increasing familiarity 

predicting a lower degree of bias. However, this trend was not universal across participants. This 

could be explained by participants’ subjective understanding of where certain objects should be.   
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Table 1 

Regression Coefficients for Object Dimensions' Effect on Bias 
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