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Abstract

Fault-bounded slices of allochthonous Paleozoic to Mesozoic bedrock of the San 

Juan Islands in northwest Washington provide a locality in which to study terrane 

translation and ductile and brittle deformation in an accretionary wedge setting, as well as 

the factors involved in preservation of blueschist-facies terranes. This study contributes 

to understanding of the tectonic evolution of the Lopez Structural Complex, a major Late 

Cretaceous terrane-bounding fault zone in the San Juan Thrust System. Structural study 

is combined with X-ray diffraction and fluid inclusion analysis to constrain the relative 

timing, kinematics, and P-T conditions of fabric formation and post-fabric brittle 

deformation in the Lopez Structural Complex.

Deformation is characterized by multiple generations of ductile and brittle 

structures. After formation of a regional flattening fabric by two processes, pressure 

solution and localized bi-directional shearing, the area was crosscut by brittle structures 

including: 1) early strike-slip structures related to bi-directional northwest/southeast 

shear, 2) southwest-vergent thrusts, 3) extension veins and normal faults related to 

northwest/southeast extension, and 4) conjugate strike-slip structures also related to 

northwest/southeast extension. The presence of comparable structures in the eastern San 

Juan Islands (Lamb and Schermer, 2003) and adjacent to the Lopez Structural Complex 

indicates this sequence of brittle deformation is widespread in the San Juan nappes.

X-ray diffraction and petrographic observations of vein material identify

aragonite- and prehnite-bearing veins associated with thrust, normal, and strike-slip 

structures, although most of the latest strike-slip faults contain only prehnite and calcite.
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High pressure minerals constrain brittle deformation to have occurred at greater than ~ 20 

km depth and at most ~ 200° C. Fluid inclusion analyses of aqueous and methane

bearing inclusions in vein quartz are in agreement with low temperature conditions after 

vein formation and tentatively suggest rapid exhumation to shallow depths under near 

isothermal conditions.

Sustained high-pressure - low-temperature conditions and the preservation of 

widespread aragonite are possible only if structures formed in an accretionary prism 

during active subduction. Therefore, meter-scale brittle structures in rocks of the Lopez 

Structural Complex record a pattern of internal wedge deformation at depth or early 

during uplift of the San Juan nappes. The sequence observed is generally consistent with 

internal orogen-normal contraction and vertical thickening followed by vertical thinning 

and lateral along-strike extension. Possible mechanisms for brittle deformation include a 

change in the angle or magnitude of plate convergence vectors, a large underplating or 

accretion event, or the collision of the Cretaceous prism with the margin of Wrangellia.
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I. Introduction

Long-lived subduction and terrane accretion along the western margin of North 

America have emplaced a melange of tectonic elements in much of Washington, Oregon, 

and California. Two processes in particular related to this subduction may have played a 

significant role in modifying terranes and their locations during westward growth of the 

continental margin: terrane translation and accretionary wedge tectonics. Some 

Cordilleran geologists propose 'fixist' models that state terranes have moved only tens to 

hundreds of kilometers following accretion (Monger and Price, 1996; Mahoney et al., 

1999; Butler et al., 2001), while others debate a translational history in which many 

terranes have traveled northward thousands of kilometers along the Cordilleran margin 

during periods of oblique subduction (Irving et al., 1996; Housen and Beck, 1999).

While paleomagnetic evidence has lent much support to translation, geologic evidence 

for this translation is sparse and thus it becomes increasingly important to include 

structural evidence in tests of translation hypotheses.

To identify the structures within an accretionary setting that may accommodate 

terrane translation during oblique subduction, an understanding of all ductile and brittle 

deformation episodes is crucial. Accretion of tectonic elements in an accretionary prism 

can result in several deformation events, multiple metamorphic fabrics, and complex 

structural patterns. Models of accretionary prism processes generally support a period of 

large-scale faulting, fabric formation, and ductile flattening during and after underplating, 

followed by intrawedge deformation and finally exhumation (e.g., Platt, 1986; Feehan 

and Brandon, 1999). In this way, high pressure-low temperature metamorphosed rocks



such as those in the San Juan Islands are created and can be emplaced near the surface 

and preserved in ancient prism settings.

One particular debate regarding accretionary processes involves the relative 

importance of uplift mechanisms for underplated and high pressure metamorphosed 

terranes in ancient prism settings. Brittle uplift by large scale listric normal faulting or 

late, out-of-sequence thrusting during continued subduction have long been discussed as 

likely mechanisms for the juxtaposition of high pressure rocks with shallow assemblages 

(Platt, 1986, 1987, 1993; Dewey, 1988; Harms et al., 1992; Fassoulas et al., 1994). More 

recently, some workers have stressed ductile thinning by pressure solution and volume 

loss as an important steady-state process facilitating exhumation in low temperature 

environments (Feehan and Brandon, 1999; Ring and Brandon, 1999). If the fore-arc of 

an orogen becomes subaerially exposed, erosion may also contribute significantly to 

removal of material from the crest of the prism and exhumation of deep rocks (Brandon 

et al., 1998). Of course, evidence for multiple processes can exist in a preserved prism.

It becomes an interesting challenge to determine which of these mechanisms is active at 

what P-T conditions, as well as what effect plate-scale external changes can have on the 

kinematics, timing, and operation of a given deformational style.

Project Introduction

The fault-bounded slices of Paleozoic to Mesozoic bedrock of the San Juan 

Islands, situated along the North American margin in northwest Washington State, 

provide a locality in which to study terrane translation, deformation in an accretionary 

wedge setting, and the factors contributing to uplift of blueschist-facies metamorphosed
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rocks. However, the geologic history of the San Juan Islands is complex and remains 

controversial. Three main tectonic interpretations have been published, two of which 

involve some amount of eoastwise translation during periods of oblique subduction 

(Brandon et al., 1988; Maekawa and Brown, 1991; Bergh, 2002). Other workers have 

documented several post-metamorphic deformational events that may have reactivated 

faults and reoriented rocks in the region, but uncertainty in the ages and magnitudes of 

these events leaves the effect on orientations of older structures unknown (Burmester et 

al., 2000; Lamb, 2000; Lamb and Schermer, 2003). The relative and absolute timing of 

high pressure metamorphism, large-scale faulting and terrane assembly, and brittle 

deformation has been studied (Brandon et al., 1988; Brown et al., in press; Lamb and 

Schermer, 2003) but results are controversial so more data are required to constrain the 

relative ages of events and P-T conditions, especially regarding late deformation. Apart 

from fission track data (Johnson et al., 1986), very little post-fabric pressure and 

temperature information is available. Consequently, more study is necessary in order to 

better understand the complieated tectonic evolution of rocks in the San Juan Islands.

This study investigates the late-stage tectonie evolution of the Lopez Structural 

Complex in the San Juan Islands by studying the kinematies, relative timing, and P-T 

conditions of brittle deformation. Traditional field methods were used to gather 

structural data throughout the study area. Mineralogical data on vein material collected 

by x-ray diffraction and supported by petrographic observations help determine pressure 

and temperature conditions for specific deformational events. Reconnaissance fluid 

inclusion research on inclusion assemblages in two vein sets provides additional 

information on late brittle P-T conditions. Hypotheses on the deformation of rocks in the

3



San Juan Islands presented by previous workers are evaluated in light of these new 

kinematic, geochronologic, and thermobarometric data. Finally, the information gathered 

in this study leads to a better understanding of the complex geologic history of the San 

Juan Islands and contributes data to further the study of accretionary wedge processes 

and Cordilleran tectonics.
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II. Geologic Setting and Previous Work

Regional Geology

The San Juan Islands are located along the northwest coast of Washington State 

(Figure 1). To the north is the Coast Plutonic Complex in British Columbia, which 

intrudes Mesozoic accreted terranes and is part of the Cretaceous Cordilleran magmatic 

arc (Armstrong, 1988). East of the Straight Creek fault in the North Cascades range are 

the plutonic and high grade metamorphic rocks of the Late Cretaceous to Tertiary 

magmatic arc (Misch, 1988; Haugerud, 1989). In the lower elevations west of the 

Straight Creek fault and stretching out towards the Puget Sound lies the Northwest 

Cascades System (NWCS; Brown, 1987), which is probably part of the Cretaceous 

Cordilleran accretionary complex. The NWCS is described by Brown (1987) as a thrust 

stack composed of Paleozoic to Mesozoic accreted terranes that experienced low grade, 

high pressure metamorphism in Cretaceous time. Because of broad similarities in rock 

types and timing of metamorphism, the NWCS has been linked to terranes in the Klamath 

Mountains (Brown, submitted). Bedrock of Vancouver Island to the northwest belongs to 

Wrangellia (Jones et al., 1977), a large terrane of island arc affinity accreted in Jurassic or 

Cretaceous time. The Olympic Mountains to the southwest expose exhumed accretionary 

wedge material and ocean floor rocks that were accreted in the early Cenozoic (Brandon 

etal., 1998).

Basement rocks of the San Juan Islands (Figure 2) are a complex of accreted 

oceanic metasedimentary and metavolcanic terranes named the San Juan Thrust System
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Figure 1: Regional tectonic map of western Washington and southwest British Columbia. 
The San Juan Islands lie within the boxed area (Figures 2a, 3). PRC = Pacific Rim 
Complex. LRS = Leech River Schist. From Brandon et al. (1988).
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Figure 2: (a) Beiirock geologic map of the San Juan Islands. The study area, the Lopez 
Stmctural Complex, is boxed (Figure 4). From Maekawa and Brown 0991). (b) 
Schematic cross-section through the San Juan nappes showing approximate terrane 
stratigraphy and age relations. From Brandon et al. (1988).
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(SJTS; Brandon et al., 1988). The SJTS is possibly part of the larger NWCS, or is 

correlative (Brown, 1987). Most of the terranes in the San Juan Islands are known to 

have experienced high pressure, low temperature metamorphism sometime in the 

Cretaceous. The geology of the San Juan Islands is discussed in detail below. Along the 

northern edge of the islands, the metamorphosed terranes are in fault contact with 

unmetamorphosed rocks of the Upper Cretaceous Nanaimo Group, a syn-orogenic clastic 

sequence that lies unconformably on basement rocks of Wrangellia on Vancouver Island 

(Brandon et al., 1988).

Geology of the San Juan Islands

Terranes of the San Juan Islands are thin nappes that are stacked along major 

bounding faults that presently dip gently or moderately southeastward (Brandon et al., 

1988). Rocks range in age from Paleozoic to mid-Cretaceous and the rocks young 

structurally upwards and to the east (Brandon et al., 1988). Within the area of interest, at 

least four distinct terrane assemblages exist (Figure 2).

Paleozoic Terranes

The oldest and structurally lowest nappe is the Turtleback terrane, a suite of arc 

plutonic and volcanic rocks of Ordovician to Permian age (Brandon et al., 1988). This is 

separated by a faulted contact interpreted as the Orcas thrust (Vance, 1977) from Permian 

to Jurassic pillow basalt with interbedded limestone of the Deadman Bay volcanics and 

the Triassic to Jurassic Orcas chert. Together these imits form the discontinuous 

stratigraphy of the Deadman Bay terrane (Brandon et al., 1988). The Rosario Thrust
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(Brandon, 1980) defines the upper boundary of the Deadman Bay terrane (Figure 2b). It 

is a thin, 100 to 200 meter wide imbricate fault zone that contains small slices of Permo- 

Triassic exotic mafic material of the Garrison Schist (Vance, 1975; Brandon, 1980). The 

Garrison Schist is not equivalent in metamorphic grade or composition to other rocks in 

the San Juan Islands and therefore provides evidence for offset of at least 30 kilometers 

along the Rosario fault zone (Brandon et al., 1988).

Mesozoic Terranes

East and south of the Rosario fault zone is the Jura-Cretaceous Constitution 

terrane, an arc-related clastic sequence of massive sandstone interbedded with mudstone, 

ribbon chert, and pillow basalt (Brandon et al., 1988). The Lopez Structural Complex has 

been interpreted by most workers as a thrust system (Brandon et al., 1988; Maekawa and 

Brown, 1991) that defines the upper boundary of the Constitution terrane (Figure 2b), 

although the contact is not exposed. However, the Buck Bay fault (Figure 2a), which 

strikes northeast through the islands and bounds the southeastern extent of the 

Constitution Formation in map view, may be this contact (Burmester et al., 2000). The 

Lopez Structural Complex is the focus of this study and is discussed in detail below.

Bedrock in the eastern San Juan Islands was previously assigned to the 

structurally highest Decatur terrane (Brandon et al., 1988), which is divided into an 

ophiolitic sequence called the Fidalgo Igneous Complex (Brown, 1977) and the 

unconformable clastic and volcanic Lummi Formation (Vance, 1975). However, recent 

work suggests that the Lummi Formation and other associated packages are unrelated to 

the Fidalgo Complex because contacts between the components are faulted and

9



differences in chemistry and metamorphic history exist (Figure 3; Burmester et ah, 2000). 

The Jurassic Fidalgo Igneous Complex includes mafic and ultramafic rocks succeeded by 

island arc-related quartz diorite, volcanic rocks, and turbidite deposits (Brandon et ah, 

1988), while the other Jurassic to Early Cretaceous clastic and volcanic packages are 

composed of high-pressure metamorphosed metagreywacke, MORB-type pillow basalt, 

and ribbon chert of ocean floor affinity (Burmester et ah, 2000; Blake et ah, in 

preparation). For the purpose of clarity and because no official terrane name has been 

assigned, rocks of ocean floor origin once belonging to the Decatur terrane will be 

referred to in this study as the Ocean Floor Complex after unpublished maps by Blake et 

ah (in preparation). Although Brandon et ah (1988) show the Lummi Formation in 

unconformable depositional contact with the Fidalgo Igneous Complex, Lamb (2000) 

proposed that Ocean Floor Complex rocks lay structurally beneath the overthrust 

ophiolite.

The Lopez Structural Complex

The Lopez Structural Complex (LSC), exposed along the southern edge of Lopez 

Island and the southeastern peninsula of San Juan Island (Figures 2, 4), separates the 

Constitution terrane from the structurally higher Fidalgo Complex and the Ocean Floor 

Complex (Brandon, 1980). The LSC is a 2.5 km wide imbricate zone composed of large 

coherent blocks of Ocean Floor Complex clastic and volcanic rocks. Constitution terrane 

sandstone and disrupted mudstone sequences, and exotic material. One important exotic 

slice called the Richardson complex is composed of middle Cretaceous pillow lava, 

volcanic breccia, and associated argillite (Brandon et ah, 1988). Minor components of

10
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Figure 3: Revised terrane map of the San Juan Islands. The structurally highest and 
most eastern Decatur terrane is now considered to be two distinct suites of rocks 
based on formation in an ocean floor or island arc setting. Basalts in the Lopez 
Structural Complex are only consistent with ocean floor geochemistry. From 
Burmester et al. (2000).
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the LSC include highly imbricated mudstone and a small slice of the Turtleback 

Complex. Foliation and fault contacts in the LSC dip moderately or steeply to the 

northeast, and terrane lenses are generally elongate northwest-southeast (Figure 4).

These structural features approximately parallel the northern boundary of the zone, 

named the Lopez Thrust by Brandon (1980), where most of the offset in the zone is 

thought to have occurred (Brandon et al., 1988). The upper boundary of the LSC is the 

fault contact with the Fidalgo Complex and the Ocean Floor Complex (Burmester et al., 

2000).

The age of faulting and terrane juxtaposition along the LSC is constrained to 112- 

84 Ma. The youngest known rock in the LSC is an argillite containing 112 Ma 

foraminifera found within the Richardson complex (Brown et al., in press). Thus, 

faulting must have occurred after 112 Ma. Uplift of these terranes occurred by at least 84 

Ma, constrained by the presence of blueschist detritus from the SJTS in 84 Ma fossil- 

dated beds of the Nanaimo group (Ward, 1978; Brandon et al., 1988).

Geologic History of the SJTS

Controversial Tectonic Interpretations

Although much of the San Juan Islands has been extensively mapped, controversy 

surrounds interpretation of the Cretaceous accretionary events. This disagreement is due 

in part to the complexity of fault zone structures as well as uncertainty in the relative and 

absolute timing of peak metamorphism and major faulting. Three main published 

tectonic interpretations exist; a contraction model, a translation model, and a linked 

faulting model. All three models are based on field mapping, fault zone kinematics.

13



metamorphic assemblages, and geochronology, and all assume that burial by thrust 

stacking caused the high pressure, low temperature metamorphism. In the contraction 

model (Figure 5a), the entire SITS was accreted and thrust to the southwest over the 

present Cascade crystalline core during orogen-normal contraction related to the collision 

of Wrangellia at approximately 100 Ma (Brandon et al., 1988). This produced major 

southwest-vergent thrusts and caused northeast/southwest shortening of the terranes. The 

apparent southwest-vergent asymmetry of folds and shears within the Rosario and Lopez 

fault zones supports a top-to-the-southwest transport direction for the S JTS (Cowan and 

Brandon, 1994). After burial and blueschist facies metamorphism, a prevalent northeast

dipping solution mass transfer (SMT) flattening cleavage was imposed on the terranes 

and fault zones during rapid uplift (Feehan and Brandon, 1999).

In the translation model (Figure 5b), the terranes, following accretion, 

juxtaposition, and possibly partial subduction farther south along the Cordilleran margin, 

were emplaced into their present position by orogen-parallel dextral motion (Maekawa 

and Brown, 1991). Convergence with the previously accreted Wrangellia resulted in 

northwest-vergent thrusting and right-lateral shearing, which produced a 

northwest/southeast lineation in the fault zones and synchronous high pressure 

metamorphism. The linked faulting model (Figure 6; Bergh, 2002) suggests a link 

between thrusting and translation. In this hypothesis, the onset of orogen-normal 

accretion caused southwest-vergent thrusting and large-scale folding. Both the thrusts 

and the axial planar cleavage steepen landward so that these structures are nearly vertical 

in the LSC. Bergh (2002) hypothesized that a change to oblique subduction initiated left- 

lateral strike-slip motion within the steep LSC and northwest-directed thrusting within

14



Figure 5: Schematic maps of two competing models of Late Cretaceous orogeny. S = 
San Juan nappes, (a) Illustration of the contraction model showing orogen-normal 
contraction and southwest-vergent thrusting, (b) Illustration of the translation model 
showing orogen-parallel dextral translation and northwest-vergent thrusting of the 
San Juan nappes. From Cowan and Brandon (1994).
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Figure 6: Illustrations of the linked faulting model, (a) Orogen-normal subduction results 
in southwest-vergent thrusting and large scale folding, (b) A shift to oblique 
subduction results in reactivation of fault zones; northwest-vergent thrusting occurs 
in the shallowly dipping Rosario fault zone, while sinistral strike-slip faulting occurs 
in the steeply dipping Lopez fault zone, (c) Map view of the Lopez Structural 
Complex, dissected by anastomosing sinistral faults. From Bergh (2002).
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the Rosario fault zone. Slip along reactivated foliation and faults concentrated in high 

strain zones formed a northwest trending, gently plunging L2 lineation. As a result of the 

D2 deformation, the LSC was dissected by anastomosing left-lateral faults subparallel to 

the regional fabric (Figure 6b, c; Bergh, 2002).

Ages of Deformation

The relative and absolute timing of deformational events in the San Juan Islands 

is uncertain. Previous work determined that the major faulting along the Lopez and 

Rosario thrusts occurred between 112 and 84 Ma in the Late Cretaceous (Brandon et al., 

1988; Brown et al., in press). However, a recent Ar/Ar date from LSC fault rocks 

associated with major faulting revealed that the onset of blueschist facies metamorphism 

may be significantly older than the 112 Ma faulting constraint. Phengite, high-pressure 

mica found in metamorphic fabric of the exotic Richardson basalt unit, was dated at 125 

Ma (Brown and Lapen, 2003; Brown et al., in press). Additionally, two Ar/Ar dates from 

mica in the fabric of Ocean Floor Complex metagreywacke in the northeast San Juan 

Islands yield Late Jurassic metamorphic ages of 154 Ma and 137 Ma (Lamb, 2000; Lamb 

and Schermer, 2003).

Thus, blueschist metamorphism of terranes in the San Juan Islands probably 

began prior to formation of the LSC during Late Cretaceous fault juxtaposition. Brown 

et al. (in press) revise the translation model to account for this age discrepancy. Terranes 

may have been accreted and metamorphosed separately to the south in a prism setting, 

then juxtaposed after 112 Ma, translated northward as a fore-arc sliver, and finally thrust 

to the northwest atop Wrangellia. Recent Ar-Ar results suggest a possible Ar-loss event

17



in the Late Cretaceous around 100 Ma, which correlates loosely in time with 

juxtaposition and/or final emplacement (Lamb, 2000). Fission-track dating of the 

Nanaimo Group, which overlaps Wrangellia yet contains detritus attributed to unroofing 

of the San Juan terranes, revealed evidence suggesting partial annealing of apatite grains 

at approximately 60 to 70 Ma (Johnson et al., 1986). Although not well constrained, this 

Early Tertiary date may be the age of low temperature post-emplacement deformation or 

the age of exhumation to near-surface conditions.

Other Relevant Work

There is evidence for appreciable post-assembly deformation in rocks of the San 

Juan Islands. A recent paleomagnetic study by Burmester et al. (2000) demonstrated that 

Late Cretaceous structures have been reoriented sometime after terrane juxtaposition. 

Rocks in the San Juan Islands were remagnetized in a normal polarity paleomagnetic 

field by low temperature, hydrothermal processes (Burmester et al., 2000). This most 

likely occurred during the Cretaceous normal superchron, from 118-83 Ma, and was 

probably associated with terrane accretion or juxtaposition. Since that event, the 

magnetic directions have been scattered and now show virtually no large-scale 

consistency across the San Juan Islands (Figure 7). Mechanisms to account for the 

scatter include folding, listric block faulting, vertical axis block rotation, and coastwise 

translation, all of which are possibilities for terranes of the San Juan Islands (Burmester 

et al., 2000). However, consistency within the LSC (Figure 7: boxed) suggests that rocks 

in the complex, while paleomagnetically different from elsewhere in the San Juan 

Islands, were not locally reoriented with respect to one another. A major problem that

18



Figure 7: Map of the eastern San Juan Islands shown with paleomagnetic directions. 
Shorter arrows indicate steeper inclination. Magnetic directions show significant 
scatter across the region, but are locally consistent, e.g., in the LSC (boxed). The 
four black stars show the locations of field sites outside the LSC: (a) Constitution 
Terrane, (b) Fidalgo Complex, (c) Lummi Formation - Ocean Floor Complex, (d) 
Obstruction Formation - Ocean Floor Complex. Modified from Burmester et al. 
(2000).
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arises from evidence of differential rotation by independent rotation axes is that all 

orientations of structures are inherently suspect and may not be characteristic of original 

orientations. All compass directions that describe structural orientations in the San Juan 

Islands, including those used in this study, represent present orientations that are not 

directly applicable to Cretaceous orientations without better understanding of the causes 

and amount of rotation. This limits our ability to fully interpret the tectonic history of the 

San Juan Islands, so it is important to examine late structures that may be responsible for 

local and regional rotation in the attempt to restore all structures to their original 

orientations.

The existence and prevalence of late structures was noted previously by Maekawa 

and Brown (1991), although until recently very little was known about their kinematics. 

Lamb and Schermer (2003) documented three stages of brittle deformation in the eastern 

San Juan Islands that post-date Late Jurassic to Early Cretaceous blueschist 

metamorphism. After terrane juxtaposition and mostly north to northeast-vergent thrust 

faulting, a period of generally top to the south and west extension by normal faulting 

occurred. Next followed conjugate strike-slip deformation associated with approximately 

north/south extension. Each of these post-fabric events has associated faulting and 

veining. The latest documented deformational event caused km-scale broad folding of 

the region around a shallowly southeast-plunging fold axis (Feehan and Brandon, 1999; 

Lamb, 2000). Brittle structures could partly be the cause of the magnetic direction scatter 

found by Burmester et al. (2000). However, Lamb (2000) found considerable differences 

in orientations of even these structures across the eastern San Juan Islands. Therefore, 

the late regional folding, and possibly other as of yet unknown mechanisms, may have
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played a significant role in reorienting rocks of the region. It is unclear, though, what 

effect late structures have had in total on the orientations of Late Cretaceous structures in 

the San Juan Islands.
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III. Structural Descriptions and Kinematics

Introduction

Rocks of the Lopez Structural Complex have been deformed by multiple 

generations of both ductile and brittle events. This study describes the relative ages and 

characteristics of the several stages in development of brittle structures in order to better 

understand the later stages of structural and tectonic evolution experienced by terranes in 

the San Juan Islands. Meter-scale structures were studied in representative rocks across 

the entirety of the LSC on Lopez and San Juan Islands, both within coherent terrane 

blocks and near terrane contacts. Sites were selected based on bedrock terrane affiliation 

and rock type as well as geographic location within the complex and proximity to 

previously mapped thrusts and strike-slip faults. The distribution of terrane slices and 

location of major faulted contacts was determined using the revised terrane map of the 

Lopez Structural Complex (Figure 4), structural maps by Bergh (2002), and petrologic 

maps by Blake et al. (in preparation). Preliminary structural data were also collected in 

adjacent terranes for comparison with the timing and kinematics of deformation in the 

LSC.

Structural analysis for each site included measuring fabric and post-fabric brittle 

structures as well as determining relative ages using cross-cutting relationships. The slip 

sense of faults was determined by offset of rock types or drag folding of nearby fabric. 

Where these were not present, other features such as the asymmetry of slickenside steps 

and the orientation of subsidiary fractures were used as described in Petit (1987). See
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Appendix A for details on the methods of data collection. Cross-cutting relationships 

were used to divide observed structures into several major groups. Faults and veins in 

each group were analyzed kinematically. Plotting of fault and shear zone data and 

kinematic analysis were completed using StereoWin v 1.2.0 and FaultKinWin v 1.2.2 

(Allmendinger, 2003). FaultKinWin v 1.2.2 calculates principal strain axes for each 

fault, which takes into consideration the orientation of the fault or shear plane and striae, 

as well as the slip sense. After analysis, faults are represented by P and T axes. The P 

axis (closed circle) corresponds to the maximum contraction direction for a fault. The T 

axis (open square) corresponds to the maximum extension direction. Consistency in the 

relative timing of structures and visible clustering of P and T axes within a group allows 

for broad kinematic interpretation of the principal strain axes for the entire group. Details 

of data analysis are provided in Appendix A.

Ductile and brittle structures are divided into several major groups based on 

relative age and structure type. Early structures such as folded bedding and folded vein 

sets predate fabric formation. Multiple types of fabric are present in the LSC, including a 

regional pressure solution foliation, a localized non-coaxial foliation and lineation, and a 

cataclastic foliation. Evidence exists for four stages of brittle structures. Early strike-slip 

deformation was followed by meter-scale southwest-vergent thrusting. After contraction, 

extension was accomplished first by veining and normal faulting, then later by conjugate 

strike-slip deformation. Structures are discussed in order of relative age below. All of 

the following references to compass directions correspond to present coordinates and 

may not accurately reflect Cretaceous orientations.
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Early Structures

Early structures are defined here as structures that predate and are overprinted by 

the regional pressure solution foliation. These include disrupted and folded sedimentary 

and volcanic layering as well as deformed vein sets. In terranes dominated by clastic 

sequences, bedding is locally well preserved. Layers are generally subparallel to the 

regional foliation, dipping to the northeast (Figme 8). Graded bedding in metagreywacke 

units indicates some bedding is overturned, but because of limited outcrop and extensive 

faulting it is difficult to follow layers and observe fold characteristics. Smaller, meter- 

scale folding is best seen in turbidite sequences in rocks affiliated with the Ocean Floor 

Complex. These folds are generally tight to isoclinal and reclined, with axial planes that 

approximately parallel local fabric (Figure 9).

In mudstone-rich assemblages, metagreywacke, chert, and greenstone lenses are 

discontinuous and boudined on a centimeter to meter scale within an argillaceous matrix 

(Figure 10a). Lithologic layering in argillaceous rocks is best seen in thin section, 

although it is typically disrupted by deformation. Siltstone and shale layer contacts 

mostly parallel the anastomosing foliation. Coarser material occurs within lenses bound 

by selvage zones or mudstone-rich layers. Detached tight or isoclinal fold hinges of thin 

beds are common (Figure 10b). The foliation is axial planar to mm-scale folds.

Early vein sets are deformed by the regional foliation (Figure 11). Field 

observations indicate that deformed veins are composed primarily of quartz and/or 

carbonate. Sets are of similar size and amount of vein material to later cm-scale vein 

sets, but are obviously folded or boudined into parallelism with the foliation. Foliation is
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Figure 9: (a) Tight, reclined folds of bedding in graded metagreywacke at Shark Reef 
Limbs are subparallel to foliation. A folded contact is traced by the dashed line. This 
fold is crosscut by a meter-scale thrust fault and offset top-to-the-south out of view. 
Taken looking down to the northeast, (b) A tightly folded black shale layer in 
turbidite layering on Iceberg Point. The upper shale boundary is traced. Foliation in 
the area is generally axial planar to folds of bedding but local variations exist. Taken 
looking down to the southeast.
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Figure 10: (a) Original bedding in argillite-rich zones is highly disrupted. Boudins of 
chert, sandstone, and basalt stand out from the fine matrix, (b) Photomicrograph of 
a detached isoclinal fold hinge of shale (marked by the red arrow) surrounded by 
siltstone. Foliation runs approximately horizontal across the picture. An 
argillaceous shear zone, shown in greater detail in Figure 16, runs subparallel to the 
siltstone foliation near the bottom of the photograph.
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Figure 11: An early vein set in an argillite-rich outcrop at Cattle Point. Veins display 
mm-scale open to close folds and foliation is approximately axial planar to the
folds. Yellow pencil for scale is aligned with trace of foliation. Outcrop surface is
subhorizontal.
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approximately axial planar to the folds. Because data on folds of bedding and early vein 

sets are very sparse, no kinematic interpretation has been attempted.

Regional Fabrics

Three types of fabrics exist within the LSC. A pressure solution foliation of 

varied intensity is seen in zones of coarse grained rocks. A localized shear fabric is 

found in zones of fine grained rocks. Cataclastic zones are found at several terrane 

boundaries within the LSC.

Fabric in Coarse Clastic Rocks

The pervasive fabric within the LSC is a pressure solution foliation of varied 

intensity. In outcrop, it is seen most easily in the generally coherent metagreywacke units 

(Figure 12a) and within pods of coarse material in argillaceous units. The foliation dips 

moderately to the northeast and its orientation is fairly consistent across the LSC (Figure 

13). No prevalent lineation is observed in outcrop. Pressure solution at the grain scale 

was the dominant mechanism of foliation formation. In thin section, dark selvage zones 

anastomose between coarse grains of primarily quartz, chert, and feldspar (Figure 12b). 

Grain edges parallel to foliation are truncated by the selvage zones. Some quartz grains 

show evidence for grain boundary dissolution and recrystallization along jagged surfaces 

peipendicular to foliation. Reprecipitated fibrous quartz extends fi'om these boundaries 

in the plane of foliation (Figure 14). Thus, grains are typically asymmetrical and show a 

preferred shape orientation parallel to the selvages. However, they are not significantly 

internally strained. Some quartz grains show evidence of undulatory extinction but
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Figure 12: (a) Pressure solution foliation in medium grained sandstone at Cattle Point. 
Pencil points to the WNW and is aligned with the trace of fabric. Taken looking 
down to the southwest, (b) Pressure solution foliation in thin section from a medium 
grained sandstone sample. Large grains show a shape preferred orientation and dark 
selvages anastomose between grains.
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Figure 14: Evidence of pressure solution processes acting on an individual quartz grain 
within a coarse sandstone. Surfaces parallel to foliation are truncated unevenly and 
the grain is lengthened by precipitation parallel to foliation. Under cross polarized 
light, quartz grains show little or no evidence of internal deformation. Dashed line 
aligned with trace of fabric. Taken in plane polarized (a) and cross polarized (b) light 
at lOOx magnification.
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subgrains are generally not developed, and many grains are not visibly internally 

deformed.

Fabric in Fine Grained Rocks

Argillaceous rocks are typically more strongly foliated in outcrop than are coarse

grained rocks, and evidence suggests that the fabric in these finer zones may be partly 

non-coaxial in nature. Foliation within argillaceous zones dips steeply to the north- 

northeast (Figure 15), and is generally slightly steeper than the pressure solution foliation 

prevalent in coarse clastic zones. In outcrop, inclusions of metagreywacke exhibit 

pressure solution foliation subparallel to foliation in the surrounding matrix. However, 

pressure solution foliation does not appear to continue directly from metagreywacke 

lenses into the argillite. Subhorizontal slickenlines oriented approximately west- 

northwest/east-southeast are found on some chert and metagreywacke inclusion-matrix 

contacts, along slip planes which parallel the argillaceous fabric (Figure 15). Evidence of 

a shear component of fabric formation is also seen locally in thin section. Shear zones 

are distributed within some mm-scale mudstone-rich layers, while pressure solution 

foliation is preserved within more coarse grained lenses (Figures 10b, 16a). Scattered 

silt- and sand-sized particles within fine zones are generally aligned within the foliation 

and many have asymmetric tails (Figure 16b), but no consistent shear sense is observed. 

As noted in outcrop, pressure solution foliation is not observed to continue into these 

shear zones. Thus, while evidence of pressure solution processes exists within coarse 

clasts in argillaceous zones, macroscopic and mesoscopic indications of localized layer- 

parallel shearing along discrete planes are also present.
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Figure 16: Evidence in thin section of lateral shearing in a mudstone-rich zone, (a) 
Pressure solution foliation (red line) is present in the silty lens at the bottom of the 
photograph but does not continue directly into the mudstone-rich zone. At this 
contact, the siltstone foliation is truncated and dragged by shearing, (b) Many quartz 
grains within the fine zone have asymmetric tails indicative of shearing, but no 
consistent shear sense is observed.
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The Relative Timing of Fabrics

The relative timing of pressure solution foliation and localized shear fabric is 

typically ambiguous, but at some contacts seen in thin section shearing appears to have 

continued after the cessation of pressure solution processes. Foliation in mm-scale 

mudstone-rich zones is generally not parallel to foliation in neighboring coarse-grained 

pods, and foliation is not continuous across shear zone contacts. Additionally, shear 

zones truncate and drag pressure solution foliation at some layer contacts (Figures 10b, 

16a). To deform pressure solution foliation, some localized shearing must have occurred 

after pressure solution ceased, although the lack of clear crosscutting relations at many 

contacts seen in thin section suggests the pervasive pressure solution fabric and localized 

shear-related fabric may have formed during the same episode of deformation.

Cataclastic Fabric

Cataclastic zones generally upwards of 1 meter thick occur at several of the 

terrane boundaries previously mapped by Brandon et al. (1988). The strong fabric in 

cataclasites dips moderately to the north (Figure 17), which is roughly equivalent in 

orientation to regional pressure solution fabric. Dip-slip slickenfibers are found on 

foliation-parallel vein material in the fault zone at Davis Head, and an oblique stretched 

clast lineation is seen on cataclastic foliation surfaces at Iceberg Point. From field 

observations, it is unclear whether formation of the cataclastic zones postdates or 

precedes and is overprinted by pressure solution foliation. However, cataclastic foliation 

and pressure solution foliation display similar timing constraints relative to brittle 

stmctures in outcrop. Early veins are boudined and nearly parallel to fabric, while
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several generations of late veins and faults crosscut the cataclastic zones (Figure 18). So, 

although field observations in cataclastic zones provide no new clarity on the relative 

timing of major faulting and fabric formation debated by previous authors, both episodes 

of deformation are known to precede the brittle structural sequence discussed below.

The Kinematics of Fabric Formation

Information on the kinematics of deformation during fabric formation can be 

derived fi'om the orientation and type of fabric present. The regional pressure solution 

foliation is interpreted as a flattening foliation: grains display a consistent long axis 

orientation in the plane of the foliation, but they form no observable lineation to signify a 

preferred stretching direction. Therefore, the mean orientation of poles to foliation is the 

maximum shortening direction (Price and Cosgrove, 1990). In the LSC, poles to pressure 

solution foliation on average plimge moderately to the SW (Figure 13).

Argillaceous fabric displays three key features for interpretation: large grains are 

oriented approximately parallel to the surrounding foliation as they are in coarse-grained 

rocks, striations occur on some clasts in outcrop within the plane of foliation, and there is 

no consistency to shear sense within this fabric. Because of the evidence for flattening of 

large grains and lack of a consistent shear sense, poles to argillaceous foliation are also 

interpreted to represent the maximum coaxial shortening direction. Poles plot shallowly 

to the SW (Figure 15), which is roughly equivalent to the poles of pressure solution 

foliation in metagreywacke rocks. The lineation on clasts constrains the slip vector of 

localized shearing in argillite-rich rocks as subhorizontal to the northwest/southeast. The 

slight difference in orientation of metagreywacke and argillite foliations on the regional
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Figure 18: Brittle veins and faults crosscut cataclastic foliation at Davis Head, (a) A 
carbonate extension vein set in cataclasite. Yellow pencil for scale is parallel to the 
trace of fabric on the steep face, (b) A normal fault in cataclasite with top down-to- 
the-NW sense of slip. Arrows show relative motion of fault blocks.
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level and the discontinuity of foliation between rock types in outcrop could be attributed 

to cleavage refraction, although some disruption is surely caused by local deformation of 

the pressure solution foliation from layer-parallel shearing along lithologic contacts.

Data on cataclastic fabric are too few to allow kinematic interpretation.

Brittle Structures

Brittle structures within the LSC are divided into four groups based on relative 

timing and structure type. The first group consists of early strike-slip structures related to 

northwest/southeast lateral slip. Next are thrusts related to northeast/southwest 

shortening. Third, northwest/southeast extension and vertical thinning are accomplished 

by widespread extensional veining and normal faulting. The latest faulting episode 

consists of conjugate strike-slip structures, which are also consistent with 

northwest/southeast extension. Groups are discussed below in order of relative age as 

understood from outcrop observations.

Early Strike-slip Structures

Layer-parallel Slip in Coarse Rocks

Layer-parallel strike-slip surfaces are locally found on bedded chert-greywacke 

and shale-greywacke contacts at Iceberg point and Colville point (Figure 19). Since 

bedding generally parallels regional pressure solution foliation, the slip planes mostly dip 

moderately northeast (Figure 20a). Slickensides plot subhorizontally to the 

northwest/southeast. Slip sense is generally not known. The timing of this slip is loosely 

constrained at one location; vein material with subhorizontal slickenfibers, which lies
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Figure 20: (a) Equal area plot of chert and shale bedding planes with slickensides at 
Iceberg Point and Colville Point. The majority of lineations (dots) are shallow to 
horizontal northwest/southeast on their respective planes. Sense of slip is not 
known, (b) Vein material on an exposed shale bedding plane at Iceberg Point 
crosscut by several small extension veins. Yellow pencil is parallel to the 
slickenfiber lineation. Plane of view is subhorizontal.
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atop a shale layer, is crosscut by extension veins (Figure 20b). Turbidite layering in 

greywacke units at multiple locations outside of the LSC also show evidence of early 

layer-parallel subhorizontal slip (see Appendix B).

Shear Veins

Rare strike-slip shear veins are restricted to dominantly metagreywacke and 

metavolcanic lenses in the LSC (Figure 19). Shear veins postdate pressure solution 

foliation and are crosscut by extensional structures (Figure 21), but their timing relative 

to thrust faults is unknown. They dip moderately or steeply and strike inconsistently 

east/west to northwest/southeast (Figure 22). Slickenfibers on vein faces indicate strike- 

slip or oblique-slip motion, mostly to the northwest and southeast. Right and left-lateral 

shear veins are approximately equal in abundance. Shear veins typically range from 2 to 

5 cm wide but occur as large as 20 cm and many trace for greater than 10 meters where 

exposed. The amount of offset across these features is generally not known because they 

occur inside large coherent blocks of relatively homogeneous metagreywacke and 

metavolcanic units with no reference layers. Shear veins generally contain quartz, 

carbonate, and prehnite, and can exhibit several layers of minerals oriented parallel to the 

vein walls (Figure 23). Layering is the result of several generations of fluid input and 

mineral growth, and therefore suggests multiple stages of dilation and shearing during 

vein formation.

Early Strike-slip Faults

Rare early strike-slip faults are found locally in the LSC. For this study, an early
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Figure 21: (a) A strike-slip shear vein crosscuts foliation in a metagreywacke outcrop at 
Cattle Point. Arrows show sense of motion interpreted from subsidiary en echelon 
veinlets. Pencil is parallel to the trace of foliation. Taken looking down to the SW. 
(b) An extension vein crosscuts a shear vein in metagreywacke at Cattle Point. Pencil
is parallel to trace of weak foliation.
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Figure 22: Equal area plots of early strike-slip structures. Arrows show sense of hanging 
wall motion. Right-lateral and left-lateral structures are subequal in abundance, (a) 
Shear veins with known slip sense, (b) Shear veins without complete kinematic 
information, (c) Early strike-slip faults, which generally strike northwest or southeast, 
(d) Kinematic axes for early strike slip structures. P axes (closed) mostly plot
shallowly to the north-northeast and south-southwest. T axes (open) mostly plot
shallowly northwest and southeast.
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Figure 23: Thin section photograph of mineral layering in a strike-slip shear vein. The 
several vertical layers shown above are parallel to the vein walls. Within layers, 
mineral fibers grow perpendicular or parallel to vein walls, (a) Plane polarized light. 
Q = quartz, Pr = Prehnite. (b) Cross-polarized light.
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strike-slip fault is defined as a meter-scale fault similar in length and appearance to late 

conjugate strike-slip faults discussed below, but with definitive crosscutting evidence in 

outcrop that it precedes thrust faulting and/or extensional faulting. This small fault group 

has an average orientation similar to other early strike-slip structures. Faults strike 

northwest/southeast and dip moderately to steeply northeast or southwest (Figure 22c). 

Occurrence is mainly limited to within greenstone outcrops near the trace of the Lopez 

Thrust (Figure 19). Therefore, relative timing of these faults with respect to fabric in the 

clastic rocks is only poorly constrained. In argillite on the south end of John's Point, an 

early strike-slip fault crosscuts but runs approximately parallel to the local fabric.

Kinematics of Early Strike-slip Structures

Kinematic analysis was conducted on complete data fi-om shear veins and early 

strike-slip faults. Data on the small number of bedding-parallel slip surfaces were not 

included because they lacked a reliable slip sense. P-axes for early strike-slip structures 

cluster loosely to the north-northeast and south-southwest (Figure 22d). T-axes generally 

plot shallowly to the northwest and southeast. The subequal amount of right- and left- 

lateral early strike-slip structures all oriented approximately northwest/southeast suggests 

that these structures accommodated lateral extrusion and extension to the northwest and 

southeast during northeast/southwest contraction. Thus, kinematic axes of shear veins 

and early strike-slip faults and slip vectors of all early strike-slip structures are broadly 

consistent with a continuation of the northeast/southwest contractional regime as 

interpreted above for the kinematics of shear fabric formation.
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Contractional Structures

Thrust faults are found in all major rock types throughout the LSC but are not as 

abundant as other brittle structures. Thrusts are mainly southwest-vergent, with a smaller 

northeast-vergent set (Figure 24). Most thrusts are subparallel to but crosscut or 

reactivate foliation and bedding (Figures 25). Slickenlines and slickenfibers range from 

down-dip to oblique, with more oblique slip generally occurring on shallower fault planes 

(Figure 24). Some thrusts contain several centimeters of gouge and fold foliation up to 2 

meters on either side of the primary slip surface. Offsets are usually indeterminable, but 

where observed range from tens of centimeters to several meters. Some thrusts juxtapose 

different rock types and may accommodate greater offset (Figure 25). Thick vein 

deposits containing quartz, carbonate, and prehnite are common along the major slip 

plane. Thrust faults are seen most easily in argillaceous assemblages, where deformation 

is commonly distributed across a several meter wide zone with multiple slip planes and 

intense folding of fabric. Thrust faults in greenstone and metagreywacke outcrops 

generally slip on one discrete surface or within a centimeter- to decimeter-wide gouge 

zone.

Kinematics of Thrust Faults

The results of kinematic analysis of thrust faults show a general consistency of 

strain axes (Figure 24c). P-axes for thrust faults plot shallowly in the northeast and 

southwest quadrants. T-axes for thrusts are steeply plunging but not preferential to any 

one map direction and thus average to approximately subvertical.
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Figure 24: (a) Equal area plot of thrust faults in the LSC. Arrows show motion of the 
hanging wall. Most thrusts are southwest-vergent and subparallel to foliation, (b) 
Equal area plot of thrust sense faults with no slickenside data and faults without a 
reliable sense of slip but with a similar relative timing and orientation as other thrusts, 
(c) Equal area plot of strain axes from kinematic analysis of thrust faults in the LSC.
P and T axes are filled circles and open squares, respectively. Thrusts are generally
consistent with northeast/southwest shortening and subvertical extension.
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Extensional Structures

Extension Vein Sets

Extension vein sets are common and widespread in the LSC. These extensional 

structures cross-cut thrust faults (Figure 26a) and shear veins (Figure 21b). Extension 

veins are generally steep to subvertical and strike mostly northeast or southwest (Figure 

27). Other orientations are present but much less common. Mutual cross-cutting 

relationships in many locations indicate all orientations were probably active at once. 

Veins range in size from 0.5 to 2 cm wide and 10 cm to 1 meter long, but most are 

approximately 1 cm wide and 0.5 meters long (Figure 26b). The majority of sets include 

10 to 15 veins, but some include as few as 3 or as many as 20 veins. Extension veins are 

especially abimdant in the metagreywacke and greenstone lenses, but are also commonly 

found in argillaceous units.

Vein mineralogy generally correlates with host rock composition, which suggests 

vein sets were at least partially filled with locally derived precipitate. Quartz-rich veins 

are found in metagreywacke- and chert-dominated sequences. Carbonate veins are 

common in greenstone blocks and argillite-rich zones. Most extension veins, however, 

contain at least a small amount of quartz, plagioclase feldspar, prehnite, as well as calcite 

and/or aragonite. Because of this association between veins and host rock chemistry, 

extensional vein fibers preserved near the vein walls are almost exclusively syntaxial 

(Figure 28). However, the fibers only rarely continue far into or through the vein. Most 

of the vein consists of relatively large, subequant quartz or carbonate grains that generally 

increase in size towards the vein center (Figure 28). This change in grain shape and the 

presence of relict vein boundaries within some vein interiors (Figure 28b)
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Figure 26: (a) Extension veins crosscut a thrust contact and associated fault vein at 
Colville Point. Pencil sits on the contact. Veins continue from the metagreywacke 
through the fault vein but generally end inside the fault gouge below, (b) A typical 
extension vein set in metagreywacke near Iceberg Point. Veins strike 
northeast/southwest. Outcrop surface is subhorizontal.
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n = 105

Figure 27: (a) Equal area plot of extension vein sets from across the LSC. Most veins 
strike northeast/southwest or north/south, (b) Poles to extension veins mostly plot 
shallowly in the northwest and southeast quadrants. Other poles are spread around 
horizontal, (c) 1% area contour plot of poles to extension veins. Contour interval is 
2%. Poles are interpreted to represent the maximum extension direction for each vein 
set. Extension veins are generally associated with northwest/southeast extension.
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Figure 28: Thin section photographs of an extensional quartz vein from a metagre3wacke 
outcrop. At the vein walls, small syntaxial fibers of quartz extend from the boundary 
towards the vein center. However, most of the vein body is composed of large, 
subequant quartz grains. Under cross polars, thin zones of debris are visible. These 
zones probably represent previous vein-wall rock contacts. Taken in (a) plane 
polarized light and (b) cross polarized light.
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suggests that the majority of material was precipitated by crack-seal processes in one or 

several dilational events. The preservation of microstructures related to vein formation 

precludes the possibility of widespread vein recrystallization.

Normal Faults

Normal faults, while less abundant than extension vein sets in the LSC, are still 

very common and widespread throughout all rock types. Normal faulting post-dates 

thrust faulting (Figure 29a) and extension veining, but these structures also strike mostly 

northeast and southwest (Figure 30). Slickenlines on fault surfaces and slickenfibers in 

vein material within faults indicate mostly dip-slip motion, but many measured faults also 

accommodated a small component of lateral motion. Northeast and southwest striking 

faults are more common than other orientations by a ratio of approximately 4:1. There is 

no consistent relative timing difference between orientations, so they may have all 

formed contemporaneously. Normal faults occur at regularly spaced intervals of 

approximately 10 meters or less at many places. This spacing appears most consistent 

within coherent metagreywacke and greenstone lenses. Observable offsets range from 

decimeter to meter scale (Figure 29). Most normal faults contain carbonate or quartz- 

bearing vein material which is deposited along the main slip plane. Some possibly larger 

slip systems contain fault gouge as well and deform the surrounding foliation more 

significantly.
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Figure 29: (a) A top-to-the-north-northeast normal fault offsets a thrust contact and 
associated fault vein (highlighted in red) by ~ 1 meter at Colville Point. Arrows 
show sense of motion. Chisel for scale, (b) A top-to-the-north normal fault 
system crosscuts and drags graded bedding and foliation at Shark Reef. Arrows 
show sense of motion along several subsidiary planes.
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Figure 30: (a) Equal area plot of normal fault planes in the LSC. Normal faults most 
commonly strike northeast and southwest. Other orientations exist but are less 
abundant, (b) Equal area plot of probable normal faults without measurable striae. 
Grouping is based on a normal slip sense and similar orientation and character to 
other normal faults, (c) T axes of normal faults (hollow squares) cluster visibly in 
the northwest and southeast quadrants, but also spread around horizontal. P axes 
(filled circles) are subvertical, (d) 1% area contour plot of normal fault T axes. 
Contour interval is 2%.
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Kinematics of Extensional Structures

Results of kinematic analysis of extension vein sets and normal faults suggest that 

the two types formed under very similar kinematic regimes. The maximum extension 

direction for an extension vein set is perpendicular to the vein plane (Price and Cosgrove, 

1990). Poles to extension veins in the LSC trend primarily shallowly northwest/southeast 

(Figure 27b). The remainder of poles spread about the subhorizontal plane. Kinematic 

analysis of normal faults shows T-axes mostly plunge shallowly to the northwest and 

southeast with a smaller group spread around horizontal (Figure 30c). Thus, principal 

extension directions for extension veins and normal faults are approximately the same. 

The apparent spread of subhorizontal extension axes and overlap in timing of all 

orientations of veins and normal faults suggests that subvertical shortening may have 

been a dominant process during formation of these structures. The extensional structures 

would act to spread material outward horizontally with a preference to the northwest and 

southeast.

Conjugate Strike-slip Structures

En Echelon and Sigmoidal Vein Sets

Sigmoidal and en echelon vein sets are comparable in size to extension vein sets 

but are much less common, relatively younger (Figure 31a), and are observed to define 

shear zones. Data collection was restricted to sets observed in three dimensions in order 

to accurately constrain shear zone orientation. For representation and analysis of en 

echelon vein sets, the shear zone slip vector was calculated by plotting the orientation of
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Figure 31: Photographs of en echelon and sigmoidal vein sets, (a) An en echelon set 
crosscuts extension veins in metagreywacke near Iceberg Point. Arrows show 
sense of shear. Outcrop surface is horizontal, (b) Two sets of sigmoidal veins in 
metagreywacke at Cattle Point. The vein sets show opposite sense (black arrows) 
but form a conjugate pair consistent with northwest/southeast extension (red 
arrows). Yellow pencil aligned with trace of fabric. Outcrop surface is horizontal.
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vein tips and shear zone. The slip vector lies 90° along the great circle of the shear zone 

from the intersection with the vein tips. En echelon vein sets occur in two main 

orientations that can form subvertical conjugate sets (Figure 31b); shear zones for the 

right-lateral sets generally strike north/south or northeast/southwest while shear zones for 

the left-lateral sets strike east/west or northwest/southeast (Figure 32). However, data on 

these structures are sparse and relatively inconsistent. Sets usually include 5 to 10 veins 

which are on average 1 cm wide and 30 to 50 cm long. Measured in the horizontal plane, 

subvertical en echelon shear zones range in size from 25 to 50 centimeters wide and 0.5 

to 2 meters long. En echelon vein sets contain primarily quartz and occur almost 

exclusively in metagreywacke lenses.

Strike-slip Faults

Strike-slip faults are found in all rock types throughout the ESC. They are 

interpreted to be the latest widespread structure because they consistently crosscut 

extensional structures (Figure 33a) as well as en echelon vein sets. Strike-slip faults 

occur in two approximately conjugate populations of steeply dipping faults. Cross

cutting relationships indicate no significant difference in relative timing of formation 

between the two groups, although they are not usually observed to be associated in 

outcrop. Left-lateral faults generally strike east/west and right-lateral faults generally 

strike north/south (Figure 34). Slickenlines from both groups of strike-slip faults are 

typically subhorizontal but can vary to 40° rake. Both dip-slip and strike-slip slickenlines
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a n= 14

Figure 32: (a) and (b) Equal area plots of left-lateral and right-lateral en echelon vein 
sets. Left lateral sets most commonly strike east/west or northwest/southeast. 
Right-lateral sets mostly strike north/south or northeast/southwest, (c) Equal area 
plot of P and T axes for en echelon vein sets. T axes cluster loosely to the 
northwest and southeast. P axes cluster loosely to the northeast and southwest.
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Figure 33: Photographs of strike-slip faults, (a) A discrete strike-slip fault in greenstone 
near Cattle Point offsets a steep normal fault (highlighted in red) surface by ~ 0.3 
meters. The subvertical right-lateral fault strikes north-northeast. Outcrop surface is 
horizontal, (b) An example of a large strike-slip fault zone in metagre}wacke at 
McArdle Bay with ~ 0.5 meters of gouge between two slip surfaces. Sense was 
interpreted as left-lateral from drag of gouge. Arrows show sense of motion. Outcrop 
surface is horizontal.
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Figure 34: Equal area plots of (a) left-lateral and (b) right-lateral late strike-slip faults. 
Left-lateral faults on average strike approximately east/west. Right-lateral faults 
strike approximately north/south. Bold arrows show sense of motion, (c) Equal 
area plot of P and T axes for late strike-slip faults. Note both right and left-lateral 
faults are consistent with northwest/southeast extension and northeast/southwest 
shortening, (d) 1% area contour plot of T axes for late strike-slip faults. Contour 
interval is 2%.
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can be found on many fault planes, which indicates strike-slip deformation reactivated 

some normal fault surfaces.

Most strike-slip fault planes are small and relatively discrete with thinner gouge 

zones compared to the generally more significant thrusts and normal faults. However, 

rare large strike-slip faults with substantial gouge do exist in the LSC (Figure 33b). 

Observable offsets on strike-slip faults range from ~ 10 centimeters to several meters, but 

a majority of offsets are approximately 0.5 -1 meter in size. No consistent spacing of 

faults is observed as with normal faults, except where several adjacent normal fault 

planes are reactivated as strike-slip faults. Multiple faults are seen in close proximity to 

one another in many locations, though, especially in metagreywacke and greenstone 

outcrops.

Kinematics of Strike-slip Structures

Kinematic analysis verifies that strike-slip faults are regionally consistent and

effectively conjugate. T-axes for right-lateral and left-lateral strike-slip faults cluster

shallowly to the northwest and southeast, while P-axes cluster shallowly to the northeast

and southwest (Figure 34c, d). Data on en echelon shear zones are sparse and much more

inconsistent, but the two generally conjugate orientations are also kinematically

compatible with approximately northwest/southeast extension. Most T-axes plot

shallowly in the northwest or southeast quadrants while P-axes cluster loosely to the

northeast and southwest (Figure 32c). The loose clustering of P and T axes when right

and left-lateral faults and vein sets are plotted together indicates that most of these are
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effectively conjugate, even if they are rarely seen as such in outcrop. Thus, late strike- 

slip deformation in the LSC did not accommodate unidirectional shear but is indicative of 

continued subhorizontal northwest/southeast extension and renewed northeast/southwest 

shortening of the region.

Brittle Structures in Adjacent Terranes

Structural data were collected in the three adjacent terranes for comparison with 

the relative timing and kinematics of deformation in the LSC. See Figure 7 for site 

locations. Results by location and structure are summarized in Appendix B. A 

comparable deformational sequence in similarly oriented meter-scale structures was 

observed in the Constitution terrane structurally below the LSC as well as in the Lummi 

Formation and Obstruction Formation, components of the Ocean Floor Complex, 

structurally above the LSC. At the location within the Fidalgo Complex, though, 

structural orientations are possibly inconsistent with the LSC. Rocks in this location may 

have been rotated with respect to the LSC after strike-slip faulting, but the data are too 

few to provide an estimate of rotation magnitude or evaluate whether the site was simply 

subject to localized variation during faulting. Alternatively, events that produced the 

structures in the Fidalgo Complex may be unrelated to the accretionary prism 

deformation seen in rocks of the LSC, Ocean Floor Complex, and Constitution terrane. 

The small amount of data available for analysis from each location prevents any 

significant comparison to the orientation of late structures in the LSC, but the existence 

of an identical structural sequence in all adjacent terranes verifies that late brittle
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deformation is widespread throughout much of the San Juan Islands and is not only the 

result of localized deformation in the LSC.

Structural and Kinematic Summary

The relative timing, orientations, and kinematics of each structural group found in 

the LSC are summarized in Table 1. Preserved but folded and boudinaged structures 

include sedimentary and volcanic layering and early vein sets. Regional fabric was 

possibly formed by two deformational processes; pressure solution in coarse clastic 

rocks, and bi-directional foliation-parallel shearing in thin mudstone-rich zones and along 

boudin contacts in argillaceous rocks. Several cataclastic zones are located at major 

terrane boundaries. These large fault zones also predate the remainder of brittle 

structures. The earliest group of brittle structures includes bedding-parallel slip, rare 

strike-slip shear veins, and local strike-slip faults. Southwest-vergent thrusts produced in 

a contractional stage are crosscut by widespread extension vein sets and normal faults. 

Conjugate strike-slip faults and en echelon vein sets are the latest brittle structures seen in 

the LSC.

The change in kinematics over time records a local progression within the study

area from flattening and contraction to extension-related deformation. The pervasive

pressure solution fabric accommodated coaxial flattening with a maximum shortening

direction that plunges moderately to the southwest. Bi-directional noncoaxial

deformation in fine layers accomplished lateral northwest/southeast extrusion of material

and is reasonably associated with the regional flattening event. Early strike-slip

structures indicate northwest/southeast shearing by brittle deformation. Calculated P and
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T axes for the remaining stages of brittle deformation show: 1) northeast/southwest 

shortening and subvertieal extension, 2) subhorizontal extension mostly to the northwest 

and southeast coupled with sub vertical shortening, and 3) continued northwest/southeast 

extension and a return to northeast/southwest subhorizontal shortening.
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Stage Structure Orientation Kinematics

Fabric
Formation

Coarse elastics: 
Pressure solution 
foliation

Argillite-rich rocks: 
Pressure solution 
foliation and bi
directional shear
zones

Strikes ~ NW, 
dips moderately 
to the NE

Strikes ~ WNW, 
dips moderately 
to steeply NE, 
subhorizontal 
slickenlines in 
foliation

Flattening:
S3 plunges 
moderately to 
shallowly SW, 
extrusion NW/SE

Large fault zones: 
Cataclastic 
foliation, pressure 
solution foliation?

Strikes ~ NW, 
dips moderately 
to the NE, 
variable lineation

Early
Strike-slip
(Localized)

Metagreywacke 
and Greenstone: 
Strike-slip shear 
veins and faults, 
bedding slip

Strike ~ NW/SE, 
dips inconsistent, 
shallo\« slicks

NW/SE shearing 
(extrusion)

Contraction Thrust faults

Strike ~ NW, 
dips moderately 
to steeply NE 
orSW

P axes: NE/SW

T axes: subvertical

Extension veins Strike - NE/SW, 
dip steep P axes: subvertical

Extension

Normal faults Strike ~ NE/SW, 
dip moderate

S1 + T axes:
NW/SE, spread 
subhorizontal

Conjugate
Strike-slip

En-echelon veins

Strike-slip faults

Left-lat: Strike
E/W to NW/SE, 
Right-lat: Strike
N/S to NE/SW

Left-lat:
Strike - E/W, 
Right-lat:
Strike - N/S

P axes: NE/SW

Taxes: NW/SE

Table 1: Summary of structural orientations and kinematics for each stage of 
deformation in the LSC.
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IV. P-T Conditions of Brittle Deformation

Introduction

For a tectonically complex and constantly evolving setting such as an accretionary 

prism, it is important to understand not only the kinematics of deformation but also the 

depth and temperature conditions at which this deformation occurs. By associating P-T 

conditions with late structures specifically, each kinematic stage can be related to an 

approximate depth and we can understand not only peak metamorphic conditions but also 

which processes are related to internal prism deformation and which occur during uplift 

of high pressure terranes. The significant amount of veining associated with all stages of 

brittle structures in the LSC provides an opportimity to study the pressure and 

temperature conditions related to each stage of brittle deformation.

Previous workers have documented high-pressure - low-temperature 

metamorphic minerals present in the fabric and in crosscutting veins in the San Juan 

nappes. Glassley et al. (1976) observed widespread and stably coexisting lawsonite, 

prehnite, pumpellyite, and aragonite in rock samples from locations across the San Juan 

Islands. All of these minerals are also found in deformed veins that are overprinted by 

foliation as well as undeformed veins that crosscut foliation (Brandon et al., 1988; Cowan 

and Brandon, 1994; Maekawa and Brown, 1991). However, no previous study has 

addressed the mineralogy in veins associated with widespread brittle faulting in the San 

Juan nappes.
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Two techniques were used in this study to analyze the conditions of vein 

formation and post-vein deformation. X-ray diffraction, supplemented with petrographic 

observations, was used on carbonate-bearing veins to identify the high pressure 

polymorph aragonite as well as bulk vein mineralogy for each structural stage. Fluid 

inclusion analysis was performed on two inclusion populations, one water-bearing and 

one primarily methane-bearing, from two quartz vein samples to provide additional data 

on post-peak P-T conditions. The results of each technique are first discussed separately 

and then combined to construct a P-T path for rocks of the San Juan Islands.

Vein Mineralogy

X-ray Diffraction

Carbonate-bearing veins kinematically associated with each structural stage were 

collected to test for the presence of aragonite. Aragonite is generally indistinguishable 

from calcite in hand sample and thin section, but records a unique diffraction pattern. X- 

ray diffraction was performed on 69 powdered carbonate vein samples. Methods for 

sampling, laboratory analysis, and interpretation of diffraction patterns are provided in 

Appendix C.

Complete X-ray diffraction results by sample number and associated structure are

shown in Table 2. Quartz and calcite are the most common minerals within veins of the

San Juan Islands. Other minerals include aragonite, plagioclase, chlorite, and prehnite, in

order of frequency of occurrence and approximate relative abundance estimated from

diffraction patterns. Aragonite and prehnite are consistently found in deformed veins, as

well as within most cross-cutting structures including thrusts, shear veins, normal faults,
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Sample # Quartz Calcite Aragonite Plagioclase Chlorite Prehnite
Deformed OC06c X X m m
Veins LP01b m X X

LP01C m X m m
LP09b X X m m m
LP10a X X X m
LO02a X X X m
LP36a X X m m
LP40b X X X
SJ1c X X X m m
LP45b X X
LP45C X X X m m
LP53e X X X m m

Thrusts LP04C X X X m
LP23a X m m m
LP25a X X X
LP34a X X X X
LP34b X X X
LP53h X X m X m m
LP57a X X m

Shear OC06b X X X m m
Veins LPOSd X X m X

L001b X X m m m
SJ2a X X X m m
SJ3a X X m m
SJ4b X X X
LP43a X X m
LP51a X X m m
LP51b X X X X X
LP53k X X X m

Table 2: Full results of x-ray diffraction on carbonate-bearing veins by sample number 
and structure type. X = major component, m = minor component. Bold sample 
numbers indicate presence of aragonite.
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Sample # Quartz Calcite

Extension LPOta X X
Veins LP14a X X

LP14b X
LP16b m X
LP28b X X
LO02b m X
LP33a X X
LP34d X X
LP34e X X
LP38a X X
LP38b X X
SJ2b X X
LP42a X X
LP43b X m
LP43C X X
LP52a X X
LP53b X X
LP53C X X
LP53d m X
LP19d X X
LP25a X X

Normal LP28a X X
Faults LP41a X X

LP48a X X
LP51C X X
LP52b X X
LP52C X X
LP52d X X
LP53a X X
SJ9a X X
SJ9b X X

Strike-slip LP09a X X
Faults LP31a X X

LP43e X X
LP48b X X
LP48C X X
LP48e X X
LP48f X X
LP53i X X

Aragonite Plagioclase Chlorite Prehnite

X mm
X m
X

X
X

m m
X
m m

m 
m 
X 

X
X m X m
X

m
X m X
X m m
X m
X m m
X

m X m
X
X m
X

m
m m
m
m m

X
X

m
X

X
m

X m m m
m
m

X

Table 2 (continued): Full results of x-ray diffraction on carbonate-bearing veins 
by sample number and structure type. X = major component, m = minor 
component. Bold sample numbers indicate presence of aragonite.
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and extension veins. High pressure minerals are rare in veins associated with late strike- 

slip faults. The percent occurrence of aragonite in carbonate-bearing veins from each 

structure type is shown graphically in Figure 35. Aragonite occurrence in brittle 

structures is not restricted to one source terrane or rock type, but is found across the LSC 

(Figure 35).

Minerals in Thin Section

A petrographic survey of vein minerals was conducted to support and validate the 

results of x-ray diffraction. No additional minerals were found in thin section, and the 

relative abundances estimated from diffraction patterns are consistent with petrographic 

observations. As expected from preliminary field tests and diffraction results, quartz and 

carbonate are the major constituents in all stages of veining. It is common to observe 

both minerals in a given vein, though quartz is found principally in veins from 

metagreywacke lenses and carbonate in veins from metavolcanic lenses. Although no 

real attempt was made to distinguish calcite from aragonite in thin section, carbonate in 

some older vein sets exhibits multiple textural styles which may be associated with this 

mineralogical difference (Figure 36). One type occurs as anhedral carbonate mats 

containing many distinct grains revealed under cross-polarized light. The other type 

occurs as massive, euhedral to subhedral singular crystals with well defined borders and 

continuous twinning patterns. Because of its more chaotic appearance, smaller grain size, 

and sporadic occurrence within the massive grains, the first variety may represent 

carbonate material which was recrystallized from aragonite to calcite after re-entry into 

the calcite stability field during uplift. The second variety could represent the preserved
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Figure 36; Two textural styles of carbonate in an aragonite-bearing vein. Taken under 
cross polarized light. A large single carbonate crystal (‘1’) at extinction in (b), is 
bordered by and encloses patches of carbonate mats (‘2’). See text for discussion.
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aragonite which is known from the results of x-ray diffraction to exist commonly in 

carbonate veins from the LSC.

Lesser vein constituents include feldspar, prehnite, and chlorite. Feldspar is 

identified to be mostly or wholly plagioclase, based on commonly observed albite 

twinning (Figure 37). This is consistent with diffraction results. Plagioclase is generally 

euhedral, relatively large grained, and almost exclusively foimd at vein walls, which 

indicates that it was precipitated early in the formation of a given vein set. Prehnite 

occurs as very fine grained fibrous mats or fine to coarse grained euhedral blades (Figure 

37). Prehnite is thought to be a later overgrowth in previously precipitated vein material 

(Brandon et al., 1988). These overgrowths are generally either attached to the wall rock 

at vein edges or to wall rock inclusions within vein interiors.

The Significance of Aragonite

The presence and preservation of aragonite in veins of the San Juan Islands 

constrains pressure and temperature conditions during brittle deformation, while also 

restricting the P-T conditions during uplift. The pressure needed to crystallize aragonite 

is dependent on temperature. At temperatures of ~180 - 200° C, which correspond to 

peak metamorphic conditions estimated by Brandon et al. (1988), aragonite formation 

requires pressures greater than ~4.5 kilobars (Carlson and Rosenfeld, 1981). For 

structures containing aragonite, this eorresponds to a depth of formation greater than or 

equal to ~ 18 kilometers (Figure 38). The crystallization of prehnite as an overgrowth 

(Brandon et al., 1988) requires lower pressures but generally higher temperatures. At its 

lowest possible erystallization temperature of -200° C, prehnite occurrenee in structures
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Figure 37: Thin section photographs of minerals in a shear vein. Taken under (a) plane 
polarized light and (b) cross polarized light. Albite twinning in plagioclase (‘F’) is 
visible under cross polarized light. Prehnite (‘P’) crystals are tabular and exhibit 
higher birefringence and relief than the surrounding quartz and feldspar.
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Figure 38: P-T information from the results of X-ray diffraction and fluid inclusion analysis 
are applied to current knowledge of the P-T path (bold line) experienced by the San Juan 
Nappes from Brandon et al. (1988). The shaded region corresponds to the stability range 
of prehnite + lawsonite + quartz. The crystallization of aragonite in brittle structures must 
have occurred near point 'A' above reaction 1, the aragonite/calcite transition. Prehnite 
overgrowth must have occurred after rocks entered the shaded zone (below reaction 2), 
but previous workers suspect this zone may overlap with reaction 1 (Glassley et al., 1976). 
Results of fluid inclusion analysis, although suspect, suggest aqueous inclusions were 
trapped at high temperatures but low pressures (~ point 'B') along the inclusion isochore.
If accurate, the P-T path should be revised (bold dashed line) to reflect greatly reduced 
pressures but sustained temperatures during the majority of exhumation. Mineral 
abbreviations used: ar = aragonite; cc = calcite; Iw = lawsonite; gr = grossular; q = quartz; 
he = heulandite; pr = prehnite; la = laumontite; v = vapor. Modified from Brandon et al. 
(1988).
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of the LSC indicates formation at pressures greater than ~2 kilobars, or ~8 kilometers 

depth (Spear, 1993). Therefore, aragonite provides the higher pressure estimate, but the 

preservation of aragonite and later crystallization of prehnite in many veins has been 

noted by previous workers to constrain peak and post-peak temperature conditions to 

-200° C (Figure 38) (Glassley et ah, 1976; Brandon et al., 1988). In agreement with the

low maximum temperature estimate, Carlson and Rosenfeld (1981) calculated that, for 

typical uplift rates of-1 mm/year, aragonite reverts quickly to calcite if temperatures 

exceed -200° - 220° C. Thus, the results of x-ray diffraction and petrographic 

observation indicate that most stages of faulting and veining were active at approximately 

peak metamorphic conditions while at a depth of at least 20 km, and that post-peak 

temperatures did not significantly exceed the temperature conditions present during 

brittle deformation at depth.

Fluid Inclusion Analysis

Introduction

A fluid inclusion is a micrometer-scale bubble of liquid and/or gas trapped within

a mineral. In a vein, a fluid inclusion forms either as the mineral precipitates out of

solution during initial vein formation (primary), or later as a result of localized

precipitation during healing of microfractures (secondary) (Roedder, 1984). Small

pockets of fluid become separated from the source liquid and are enclosed by the new

mineral. The fluid inclusion represents a closed system which, if undisturbed, preserves

the P-V-T relations at the time of entrapment. Therefore, two key assumptions must be

adopted in order to use inclusions in determining source fluid composition and the P-T
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conditions of entrapment (Roedder, 1984): 1) The inclusions were trapped from a 

homogeneous fluid and the portion trapped is indicative of the fluid on a larger scale. 2) 

Subsequent deformation has neither opened the system to leak material nor appreciably 

changed the volume of the inclusion. If studied correctly and within the context of a 

structural study, fluid inclusions provide a powerful tool to help constrain P-T conditions 

of deformation. They are also abundant in quartz, which makes them particularly well 

suited for this study.

Fluid inclusion assemblages from two quartz-bearing veins in the study area were 

analyzed to determine the conditions of inclusion entrapment and thus further constrain 

the P-T path of rocks in the San Juan Islands. Sample LP22b was taken from a steeply 

south-dipping extension vein set in metagreywacke at Colville Point. Sample LP07 was 

taken from a subvertical ~ N/S striking right-lateral sigmoidal vein set in Ocean Floor 

Complex metagreywacke at Hughes Bay, just north of the inferred trace of the Lopez 

Thrust and therefore structurally outside the LSC. Sample locations are shown on the site 

map in Figure Al. Procedures for selection of appropriate inclusion assemblages and 

heating/cooling analysis follow those discussed in Roedder (1984) and Goldstein and 

Reynolds (1994). Details on the methods of fluid inclusion analysis employed in this 

study are provided in Appendix D.

Results

Quartz grains in sample LP22b contain abundant two-phase inclusions which 

range from ~ 1 to 20 /xm in length or diameter. Many lie along confined trails but some 

appear to be more isolated. A fluid inclusion assemblage is defined in this sample to
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include all two-phase inclusions of varying size with similar vapor-to-liquid ratios of 

approximately 15 - 20% within one particularly clear quartz grain (Figure 39a). Tnitial 

observations during cooling runs indicate freezing of the liquid occurs at approximately 

0° C, which is consistent with a water-dominant composition. Final melting temperatures 

(Tm) of ice in representative inclusions were recorded to determine actual fluid 

composition (Figure 39b). Melting occurs within the majority of inclusions at Tm = 0°

C, and only one inclusion recorded a depressed melting temperature of Tm < -1° C. The 

sample was heated to determine total homogenization temperatures (Th) at which the 

vapor bubble dissipates completely and the inclusion becomes a single phase (Figure 

39b). Homogenization temperatures range from Th = 177 to 206° C, but the majority of 

inclusions measured homogenize near Th = 180° C.

One quartz grain in sample LP07 contains a large number of single- and two- 

phase fluid inclusions of varying size and shape that were tentatively assigned to a single 

assemblage based solely on proximity and general appearance (Figure 40).

Initial cooling runs confirm these two types of inclusions are reasonably related. When 

cooled a few degrees from room temperature, vapor bubbles nucleate in the inclusions 

that have only one phase at room temperature and the two groups become 

indistinguishable. Cooling to near -200° C reveals the inclusions are methane-rich; 

evidence of freezing was observed below ~ -180° C and homogenization of the methane 

component to liquid occurred very near the pure methane phase transition temperature of 

Thm = -82.6° C (Figure 41a; Goldstein and Reynolds, 1994). However, at least one 

additional unidentified gas component must be present, as a vapor bubble persisted 

through warming until total homogenization of the system was observed between
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Figure 39: (a) Thin section photograph of several aqueous fluid inclusions in one quartz 
grain from sample LP22b. Taken at room temperature, inclusions contain a water 
vapor bubble that is on average 20% of the total inclusion volume, (b) Histograms 
showing results of freezing and heating analysis of aqueous inclusions. Tm = final 
melting temperature of ice. Th = total homogenization temperature, (c) P-T plot 
with the isochore constructed from representative homogenization data. Trapping 
conditions should plot along this line of constant volume. The dot marks a 
temperature value of ~200° C.
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Figure 40: Thin section photographs of methane-rich inclusions in a quartz grain from 
sample LP07. (a) At room temperature, some inclusions contain a liquid and a gas 
bubble. Others contain only one phase until cooled, (b) At -90° C, methane-rich 
inclusions contain two bubbles, one of which contains methane gas. The inner 
bubble dissipates when the sample is heated to above ~ -80° C.
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Figure 41: Results of analysis of methane-rich inclusions, (a) + (b) Freezing and
heating runs conducted on ‘single phase’ inclusions, (c) + (d) Freezing and heating 
runs conducted on ‘2-phase’ inclusions. Th(c) = carbonic homogenization 
temperature, at which the methane-rich gas and liquid homogenize. Th(t) = total 
homogenization temperature. See text for discussion.
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Tht = 2° C and 17° C (Figure 41b). The room temperature two-phase inclusions behave 

similarly but at different temperatures. The methane component homogenizes to liquid 

between Thm = -78° C and -71° C (Figure 41c). Total homogenization occurs over a 

much larger range of temperatures, between Tht - ~ 50° C and 120° C (Figure 41d).

Interpretation of Fluid Inclusion Results

Two-phase Water/Vapor Inclusions

The melting temperature of ice in a water-rich inclusion can be used to determine 

composition, as increasing salinity depresses the melting point of water (Goldstein and 

Reynolds, 1994). The assemblage in sample LP22b is interpreted to be composed of 

approximately pure water and water vapor because the majority of inclusions melt at 0° 

C. Because the vapor phase would not be present at the time of entrapment, the modal

homogenization temperature of Th = 180° C is interpreted as the minimum trapping 

condition (Roedder, 1984). Although the homogenization data are generally consistent, 

the higher values recorded for some inclusions suggest trapping of this assemblage may 

have occurred over a period of time and could reflect decreasing or fluctuating fluid 

temperatures.

Assuming a pure water composition, the equation of state by Haar et al. (1984) 

can be used to construct an isochore, or line of constant volume, for the inclusion 

assemblage. The windows program FLINCOR v. 1.4 (Brown, 1989) was used to 

calculate isochore pressure and temperature values from homogenization data. The 

isochore begins at surface pressures; it intersects the temperature axis at 180° C, the 

representative homogenization value (Figure 39c). The trapping conditions should plot
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along this line. Unfortunately, pressure and temperature conditions along the isochore 

may not be compatible with the P-T constraints from mineralogy discussed above. At a 

temperature of ~200° C, the isochore estimates a pressure of less than 0.5 kilobars when a 

value of several kilobars is reasonably expected (Figure 39c). Therefore, temperature 

values may be anomalously high. Kerrich (1976) states that even small amoimts of 

intracrystalline strain can cause minor leakage in inclusions that in turn yield 

uncharacteristically high homogenization values. Although the vein samples used in 

analysis were not highly strained, most quartz grains display undulatory extinction, so the 

homogenization temperatures from aqueous inclusions analyzed in sample LP22b may 

not accurately represent trapping conditions. Since leakage generally affects larger 

inclusions more drastically (Goldstein and Reynolds, 1994), minor leakage should create 

a spread in homogenization temperatures loosely dependent on inclusion size. A more 

rigorous fluid inclusion study could help determine if homogenization temperatures of Th 

= 180° C are truly indicative of aqueous inclusions of all sizes, and thus more reliable in 

determination of trapping conditions.

Methane-rich Inclusions

Total homogenization temperatures for methane-bearing inclusions also represent 

a minimum trapping temperature (Goldstein and Reynolds, 1994). However, the large 

range of homogenization temperatures recorded and coexistence of single and two-phase 

inclusions at room temperature indicate the composition of inclusions in this assemblage 

is not uniform. Inclusions with less methane and more water homogenize at a higher 

temperature (Kerkhof and Thiery, 1994). Therefore, they more closely represent trapping
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temperature. The minimum trapping temperature for this assemblage is interpreted to be 

~ 120° C. However, because no water-dominated inclusions were found in this 

assemblage, the above estimate may be significantly lower than the actual trapping 

conditions. Without accurate compositional data, it is not possible to construct an 

isochore for this assemblage and thus the pressure of entrapment cannot be estimated.

Coexistence of Inclusion Assemblages

After analysis of sample LP07, an assemblage of single and two-phase inclusions 

most likely rich in methane was also observed in sample LP22b but not analyzed because 

of inadequate time. The relative age of entrapment for each assemblage in reference to 

one another is not known, but both are probably secondary populations. Because the 

assemblages coexist, it is possible that they were trapped as part of the same immiscible 

system, in which case they would represent two end-members of composition. The 

minimum trapping temperature of Th = 180° C estimated from analysis of the water-rich 

inclusions would then apply to both assemblages. However, a more detailed fluid 

inclusion study is necessary to reach full interpretation. Future work should concentrate 

on testing the possible association and relative timing of water-rich and methane-rich 

inclusions. A quantitative technique, such as electron probe microanalysis, gas 

chromatography, or spectroscopy (Goldstein and Reynolds, 1994), should also be 

employed to gather compositional information on methane-bearing assemblages in order 

to determine the exact chemical system to use for a more exhaustive interpretation of 

entrapment conditions.
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The P-T Path

Many previous studies have documented in detail the blueschist-facies 

metamorphic mineralogy present both in wall rock and veins of the San Juan Islands, but 

none has attempted to relate P-T conditions to any specific stage of post-fabric 

deformation. The conditions of peak metamorphism and the inferred prograde P-T path 

proposed by Brandon et al. (1988) are adopted here with the assumption, based on the 

relative timing of brittle structures versus the regional fabric, that the initiation of peak 

conditions preceded most veining and all late faulting. The results of x-ray diffraction 

and fluid inclusion analysis discussed above are added to the latter portion of this P-T 

path in Figure 38.

Structures from contractional and extensional stages of brittle deformation 

commonly contain aragonite and prehnite. Although these structures crosscut regional 

fabric, they must have formed at near peak conditions of ~20 km depth and -200° C 

(Figure 38: point A). Because aragonite occurs only rarely in late strike-slip faults, these 

faults may have formed near the calcite-aragonite transition zone at a slightly lesser depth 

during uplift. The occurrence of prehnite in all late structures, coupled with the 

preservation of aragonite, indicates temperatures were probably consistent at -200° C 

throughout brittle deformation. Aqueous fluid inclusions in quartz veins, whether 

primary or secondary, provide data consistent with this temperature (Figure 38: point B). 

The majority record minimum trapping temperatures of-180° C, just rmder peak 

conditions, while no inclusions measured had homogenization temperatures greater than 

-200° C, which is consistent with preservation of aragonite. Although the isochore

constructed from these data is suspect for reasons discussed above, an alternative P-T
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path is shown (Figure 38: dashed line) that considers a sustained maximum temperature 

but greatly reduced pressure after significant exhumation, as suggested by the aqueous 

inclusion isochore. This interpretation implies that uplift occurred faster than the rocks 

could cool. Of course, because leakage may have shifted the aqueous inclusion isochore 

to higher temperatures, it is possible that rocks in the San Juan Islands experienced a P-T 

path between that presented here (Figure 38) and that provided by Brandon et al. (1988). 

Methane-rich inclusions record minimum trapping temperatures of less than ~120° C. 

However, the lack of an independent compositional constraint prevents an estimate of 

true entrapment conditions at depth. If this is not a gross imderestimate, methane-rich 

inclusions are secondary and formed under cooler conditions after a period of 

exhumation.
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V. Discussion

The Nature of Regional Fabric

Results from this study suggest fabric in the LSC formed by a combination of two 

processes, pressure solution and shearing, which are both interpreted to be related to 

regional flattening. Pressure solution that facilitated flattening in coarse grained clastic 

rocks and produced an approximately axial planar foliation is kinematically related to 

shortening perpendicular to the foliation plane. The localized non-coaxial fabric shows 

flattening or rotation of large grains within the foliation and subequal evidence of right 

and left-lateral northwest/southeast shear along high contrast bedding planes and weak 

mudstone-rich zones subparallel to foliation. Price and Cosgrove (1990) state that in low 

grade, fine grained sedimentary rocks, shearing along foliation planes can occur late 

during the same deformational episode that produced the flattening fabric. Therefore, bi

directional shearing in argillaceous rocks of the LSC could indicate lateral extrusion of 

material late during ductile thinning. The existence of two temporally associated fabrics 

could be a result of strain partitioning. Because of rheological differences, pressure 

solution and shearing were partitioned primarily into terranes dominated by 

metagreywacke and argillite, respectively, but both processes contributed to ductile 

thinning of the San Juan nappes. These conclusions are based on a small amount of data, 

however, so future work should concentrate efforts on determining if there is in fact any 

reliable shear sense for foliation-parallel slip planes and whether there is a regionally 

consistent difference in relative ages of the two fabrics.
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Association with Early Strike-slip Structures

Rare early strike-slip structures are tentatively thought to precede all other meter- 

scale brittle structures in the LSC, and are kinematically similar to the localized shear 

fabric. Bedding-parallel slip in coarse clastic imits accommodates bi-directional shear to 

the northwest and southeast along planes of high layer contrast in otherwise fairly 

homogeneous clastic terranes. This is comparable to the discrete shear surfaces observed 

on some clasts in outcrops of argillite-rich rocks, and it could also be related to 

subhorizontal extrusion of material during regional flattening. Most early strike-slip 

faults and shear veins, which also show subequal evidence of right and left-lateral shear, 

are conceivably associated by orientation and kinematics with this event as well. Early 

strike-slip structures occur almost exclusively in massive metagreywacke and greenstone 

vmits and therefore crosscut flattening fabric. However, because late motion within the 

shear fabric is thought to locally postdate cessation of pressure solution processes, early 

strike-slip structures could have formed within coherent terrane blocks while the shear 

fabric was still active within argillaceous zones.

Comparison to Previous Studies

The Controversy over Late Cretaceous Kinematics

Models of large-scale Late Cretaceous faulting in the San Juan nappes proposed 

by previous workers can be evaluated with structural data collected in this study. The 

model proposed by Brandon et al. (1988) suggests that the Lopez Structural Complex is 

an imbricate thrust zone created during top-to-the-southwest motion, with offset confined 

to terrane-bounding cataclastic zones that were later overprinted by a solution mass
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transfer flattening fabric. The dip-slip slickensides measured on boudinaged, foliation- 

parallel vein material at Davis Head provide tentative support for northeast/southwest 

motion. However, because the vein material is discontinuous and relatively minor 

compared to most fault-related veins in the study area, it is unclear if the slickensides 

reflect major fault motion or if the vein actually crosscuts originally unoriented 

cataclasite (Brandon et al., 1988) and thus reflects later, minor slip along the vein surface. 

Meter-scale thrusts within terrane blocks and argillaceous zones are southwest-vergent, 

but these structures crosscut cataclastic fabric at Davis Head and consistently crosscut 

regional fabric. Therefore, they must post-date both large-scale faulting and the solution 

mass transfer fabric of Brandon et al. (1988).

Maekawa and Brown (1991) argue that Late Cretaceous thrusting was directed 

towards the northwest and that the thrusting imposed a kinematically related fabric in the 

cataclasite and argillaceous shear zones. These conclusions are based in part on a 

shallowly plunging northwest/southeast lineation within shear zones produced by sheared 

vein material, stretched rock fragments, and slickensides. The oblique stretching 

lineation measured in cataclastic fabric at Iceberg point plunges moderately to the 

northwest and is broadly consistent with lineation orientations presented in Maekawa and 

Brown (1991). Subhorizontal northwest/southeast slickenside lineations from 

argillaceous outcrops are consistent with shear zone lineations documented by Maekawa 

and Brown (1991), and they also note some ambiguity in the shear sense of such 

structures. However, evidence from this study indicates northwest/southeast 

subhorizontal motion continued along brittle, meter-scale structures after fabric 

formation. Thus, northwest/southeast shear is not restricted to have occurred only during
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major faulting but may be a more continuous process than proposed by Maekawa and 

Brown (1991).

Support is found for the linked faulting model of Bergh (2002), which states that 

orogen-normal contraction led to isoclinal folding of bedding and production of a 

regional axial planar cleavage. Southwest-directed thrusting during the same 

deformational episode was followed by strike-slip reactivation of fault zones. The 

southwest-vergent thrusts oriented subparallel to but crosscutting foliation documented in 

this study are consistent in relative timing and kinematics with this model, and some are 

reactivated as strike-slip faults. Evidence was also found for early northwest/southeast 

strike-slip motion, both within localized shear fabric and along structures that crosscut 

foliation. A detailed comparison with the results of Bergh (2002) is provided below.

Shear Fabric

The existence of a steeply west-northwest-striking shear-related fabric in 

argillaceous rocks of the LSC is documented by Bergh (2002). The D2 shear foliation of 

Bergh (2002) post-dates and reactivates an axial planar D1 flattening fabric along the 

steep limbs of kilometer-scale folds of bedding in the Lopez Structural Complex. Bergh 

(2002) suggests this reactivation is caused by left-lateral subhorizontal shearing 

concentrated within the weaker, mudstone-rich zones. It is manifested as a composite 

fabric with synthetic, left-lateral faults parallel to foliation and antithetic right-lateral 

faults oriented approximately orthogonal to the foliation.

The observations of shear foliation in argillaceous rocks and the early strike-slip 

structures documented in this study are also consistent with an early subhorizontal
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northwest/southeast shearing event. However, the relative timing relationships between 

the flattening fabric and shear fabric, as well as the overall sense of shear, are ambiguous. 

An approximately equal number of early right- and left-lateral foliation-parallel faults 

were recorded. More data on foliation and bedding-parallel slip were collected, but 

usually the sense of slip was indeterminable. Ample evidence was also found for right- 

lateral strike-slip faults similar in orientation to the antithetic faults of Bergh (2002), 

although these faults occurred not only in argillite but were widespread in greenstone and 

metagreywacke lenses as well. These north/south striking right-lateral faults were 

interpreted to be late structures because they clearly crosscut regional fabric and 

extensional structures, so they could not be associated with the earlier, foliation-parallel 

shearing.

Post-fabric Deformation

Common Structural Sequence

Brittle structures are widespread throughout the San Juan Islands. The relative 

timing of structures documented within the Lopez Structural Complex is identical to the 

sequence found elsewhere in the San Juan nappes. Ocean Floor Complex and Fidalgo 

Complex rocks exposed in the eastern San Juan Islands are deformed by meter-scale 

thrusts, extensional structures, and conjugate strike-slip structures, in order of relative age 

(Lamb, 2000; Lamb and Schermer, 2003). Because the same sequence of post-fabric 

structures exists across terrane boundaries in the San Juan Islands, this deformation is 

interpreted to have occurred after terrane juxtaposition. Orientations among late 

structures may have once been regionally consistent. At present, however, the
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orientations of structures and the kinematics of deformation, although consistent within 

the LSC, vary regionally depending on geographic location. The results of kinematic 

analyses from structures in the LSC are illustrated in map view in Figure 42 for 

comparison with generalized kinematic results of Lamb (2000).

The Question of Reorientation

Burmester et al. (2000) have discussed the likelihood of late structural 

reorientation and the problems associated with assuming that kinematic interpretations of 

earlier structures in present day coordinates are directly applicable to deformation in 

Cretaceous time. While orientations of brittle structures and paleomagnetic directions are 

consistent within the LSC, Lamb (2000) documented significant variation in the eastern 

San Juan Islands. Although brittle structures may be partly responsible for locally 

reorienting fabric, it is clear from the regional disparity in orientations of late structures 

that at least some differential reorientation post-dates all of the structural sequence 

described in this study. Broad regional folding about a shallowly southwest-plunging 

axis (Feehan and Brandon, 1999; Lamb, 2000) after conjugate strike-slip faulting 

probably contributes to some of the observed discrepancy. However, Burmester et al. 

(2000) were unable to restore consistency in paleomagnetic directions simply by 

removing the effects of late folding. Also, kinematic axes for thrusts, normal faults, and 

strike-slip faults in the eastern San Juan Islands are not systematically folded or rotated 

with respect to those in the LSC. For example, thrusts in each location are subparallel to 

local foliation and record similar contraction directions but have opposite vergence 

(Figure 42). In each study location, extension directions are parallel for normal faults and
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Figure 42: Regional comparison of kinematic axes from analysis of brittle structures. 
Results from the Lopez Structural Complex (bottom of figure) and generalized 
results from the eastern San Juan Islands (Lamb, 2000) differ. Thrust vergence is 
approximately opposite but P axis trends are similar. While T axes for extensional 
and strike-slip structures consistently trend northwest/southeast in the LSC, T axes 
in the eastern San Juan Islands trend approximately north/south. Base map from 
Burmester et al. (2000).
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conjugate strike-slip faults but the relation of late extension directions to thrust vergence 

and foliation is noticeably dissimilar.

Because of these complexities, restoration of paleomagnetic directions and 

structural orientations is not trivial and cannot be accomplished by a simple rotation. A 

combination of mechanisms, including structures that are not currently exposed on land, 

must contribute to the reorientation of paleomagnetic and structural data. Additional data 

on late structures in other areas of the San Juan Islands may help constrain the magnitude 

of local variations. Coupled with the published paleomagnetic data from Burmester et al. 

(2000), further comparison of late structural orientations should lead to a more complete 

understanding of the timing and local mechanisms of reorientation. Until restoration can 

be accomplished, the orientations and kinematics of structures in the San Juan Islands are 

best considered in terms of present day coordinates.

The Timing of High-pressure Conditions and Deformation

Recent Ar/Ar geochronology in the San Juan Islands indicates high pressure 

metamorphism and the crystallization of metamorphic minerals was not caused by thrust 

stacking during Late Cretaceous faulting but began sometime in the Early Cretaceous 

(Brown and Lapen, 2003; Brown et al., in press; Lamb and Schermer, 2003). The linked 

structural and P-T results presented in this study reveal high pressure, low temperature 

conditions in the Lopez Structural Complex persisted through and after terrane 

juxtaposition as well. The formation of high pressure minerals in veins did not cease 

during ductile thinning, as was proposed by Brandon et al. (1988) and Feehan and 

Brandon (1999). Pervasive crosscutting extensional structures associated with
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either subduction-related deformation at depth or early uplift of the San Juan terranes 

contain the high pressure minerals aragonite and prehnite. This high pressure signatiure is 

consistent throughout all but the latest stages of brittle deformation. Therefore, in order 

to maintain the low temperatures and high pressures required to crystallize and preserve 

aragonite through several stages of late deformation, the structures discussed herein could 

only have formed at depth within an accretionary prism during active subduction.

This conclusion is in disagreement with relative geochronology in the 

translational model of San Juan thrusting proposed by Maekawa and Brown (1991). 

Based on fault zone kinematics and the observed synchronicity of thrust-related fabric 

and high-pressure mineralogy, Maekawa and Brown (1991) states blueschist-facies 

metamorphism did not occur within a subduction zone but resulted from thrust 

stacking at a step-over bend in the North American margin. In contrast, sustained high- 

pressme - low-temperature metamorphism is generally consistent with the interpretation 

of Ar/Ar results by Brown et al. (in press) that states subduction-related metamorphism 

initiated in the Early Cretaceous and is unrelated to emplacement onto the continental 

margin.

Deformation in an Accretionary Prism

Ductile Thinning

The high pressure metamorphic signature and several stages of brittle faulting and 

veining in the San Juan nappes are indicative of structures seen in rocks that were 

deformed at depth after being underplated in an accretionary prism setting. Each
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structural stage should be related to a prism process such as accretion, internal wedge 

adjustment, or exhumation. Feehan and Brandon (1999) have proposed that the pressure 

solution fabrie is related to vertical ductile thinning after assembly of the San Juan 

terranes at the base of an accretionary prism. This is based on their conclusion that fabric 

in metagreywacke units is entirely coaxial at the regional scale, and the observation of 

Brandon et al. (1988) that pressure solution fabric overprints fault zones in the San Juan 

nappes. Feehan and Brandon (1999) interpret ductile thirming coupled with erosion as 

the main method of exhumation which is active from depths greater than 20 km to within 

a few kilometers of the surface. The discovery of aragonite within contractional and 

extensional structures that crosscut the regional pressure solution foliation contradicts this 

model because the crosscutting structures must have formed at a depth of at least ~ 20 

km. Ductile vertical thirming and lateral extrusion by fabric formation in the San Juan 

nappes must have been a less continuous process that was active at depth after 

underplating but ceased long before exhumation was complete. Instead, this mode of 

deformation was replaced by brittle faulting and veining prior to the majority of uplift. 

Beeause P-T conditions probably did not vary appreciably at depth during active 

subduction, the switch from ductile to brittle deformation more likely refleets a change in 

material behavior due to substantial fluid loss by presstu"e solution processes and/or an 

increase in strain rate in response to externally driven changes in wedge geometry.

Brittle Faulting

The faulting seen in accretionary environments, with the possible exception of 

near-surface deformation, can generally be attributed to internal adjustments that
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maintain wedge shape in response to external influences such as erosion, additional 

accretion, or changes in subduction conditions (e.g., Davis et ah, 1983; Platt, 1986). Late 

thrusts in the Lopez Structural Complex are most likely a result of orogen-normal 

contraction and internal wedge adjustment. If the regional fabric in an underplated 

terrane is reasonably assumed to have formed approximately parallel to the boundary 

with the subducting plate, synthetic thrusts exploiting the weak foliation and bedding 

planes would also form parallel to the subduction horizon (Figure 43a). These are 

accompanied by a smaller number of antithetic thrusts. Late or out-of-sequence thrusts 

can occur as post-accretionary structures and are a common occurrence within 

accretionary prism environments, accommodating and resulting in internal thickening of 

the wedge after additional accretion of material (Platt, 1986). Silver et al. (1985) suggest 

that for turbidite sequences found in ancient accretionary complexes, small late thrusts 

can be common and provide an important mechanism for stratal disruption and 

steepening of local dips without appreciably disturbing surrounding material.

The prevalent extension vein sets and normal faults in the LSC signal a kinematic 

shift from contraction to subhorizontal extension and subvertical shortening that initiated 

at depths of at least ~ 20 km. Normal faults accommodated mostly orogen-parallel 

extension with a smaller amount related to orogen-normal and orogen-oblique extension 

(Figure 43b). Extensional structures would have acted to spread material outward 

laterally with an along-strike bias presumably because of continued subduction with no 

lateral buttress. This deformation could be a result of internal wedge adjustment after 

overthickening of the prism center due to the previous thrusting, additional underplating, 

or a combination of both. Platt (1986) predicts subduction-related extension to be
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Meter-scale Thrusting 
(Orogen-normal contraction)

Normal Faulting 
(Along-strike extension)

Conjugate Strike-slip Faulting 
(Along-strike extension)

V
Figure 43: Schematic cartoon illustrating the tectonic interpretation of three stages of brittle

structures. Shown in map view at ~ 20 km depth within an accretionary prism. Arrows 
show approximate kinematic regimes inferred from the results of structural analysis. See 
text for discussion.
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accomplished mainly along large offset kilometer-scale listric faults whieh begin at the 

surfaee and initially extend to ~ 12-15 km depth, at whieh point the deformation typieally 

becomes ductile in nature. Small-scale extensional deformation in the LSC eould 

conceivably be a brittle but more evenly distributed version of Platt's (1986) large 

discrete faulting that would have produced the same result of vertically thinning and 

exhuming the high pressure rocks. The ~20 kilometer depth at whieh the San Juan 

nappes were located may have prevented such major structures from penetrating down to 

the LSC, while low temperatures and a possibly high strain rate dictated brittle faulting as 

opposed to ductile deformation. It is feasible that large extensional structures did exist 

structurally above the rocks now exposed, or do exist in the San Juan Islands but are not 

currently exposed.

Conjugate strike-slip deformation continued the along-strike extrusion of accreted 

material during sustained subduction (Figure 43c). The change from normal faulting to 

strike-slip faulting, however, signals a shift in importance from vertical thinning and 

horizontal extension to orogen-parallel extrusion and possibly a renewed greater 

influence of orogen-normal contraetion. One likely cause of this change is simply the 

reduction in wedge thickness by extension to the point at which the maximum 

compressive stress ceases to be vertical and once again is shallow and orthogonal to the 

orogen. This would not necessarily be true for the entire wedge; the effective vertical 

load on a given region such as the LSC would be continuously reduced during along- 

strike extrusion and/or uplift and erosion. If a comparable orogen-normal compressive 

stress were maintained throughout brittle deformation, at a certain reduced overburden 

the mode of faulting would change to provide a better mechanism for both lateral orogen-
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parallel extrusion and orogen-normal contraction. If subduction continued, extensional 

faulting and veining might still be active at depth during conjugate strike-slip faulting at 

shallower levels.

The model presented here for the sequence and orientations of brittle structures 

relative to a Cretaceous subduction zone (Figure 43) may not be entirely applicable to 

rocks deformed in other locations on strike within the same accretionary prism. The 

prevalence of orogen-parallel extension in virtually every stage of deformation requires a 

lack of along-strike buttressing to allow extrusion to occur. It is also likely that the San 

Juan nappes, when at depth, were located within a zone of higher accretion relative to 

other areas in the subduction complex. This discrepancy in accumulation, and thus 

wedge thickness, would encourage the along-strike redistribution of material after 

accretion, as suggested by persistent orogen-parallel extension in the structural sequence.

Plate-scale Influences on Deformation

A plate-scale external change that requires a responsive adjustment in wedge 

geometry could cause the shift from the relatively slow process of ductile thinning to 

brittle faulting in the San Juan nappes. Ductile deformation at low temperatures by 

pressme solution may deform rocks too slowly to contribute effectively to wedge stability 

(Ring and Brandon, 1999). Platt (1986) states that, if subjected to a period of higher 

stress, intrawedge deformation may simply occur at a higher rate. Therefore, it is 

appropriate to discuss plate tectonic changes as a likely cause for meter-scale brittle 

deformation in the San Juan Islands. Likely causes include a significant frontal accretion 

episode of which we have no currently observable evidence, a shift in the plate
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convergence rate or direction, or a large undeiplating event possibly related to the arrival 

of a sediment pile or even the collision of Wrangellia with the Cretaceous prism.

North American and Farallon Plate Interaction

Changes in plate boundary conditions between the North American and oceanic 

Farallon plate could facilitate intrawedge contraction, assuming the San Juan nappes were 

part of a Cordilleran accretionary prism and not some other subduction complex located 

elsewhere. Since meter-scale brittle structures crosscut foliation that overprints major 

fault zones (Brandon et al., 1988), the timeframe of interest must postdate earliest 

faulting constraints in the LSC of 112 Ma (Brown et al., in press) and predate exposure of 

the San Juan nappes by 84 Ma (Brandon et al., 1988). If ductile thinning reflects a period 

of relative wedge stability (Ring and Brandon, 1999) and low strain rates, an increase in 

the plate convergence rate could cause late thrusting. The orogen-normal component of 

convergence for North American subduction is thought to have increased at -100 Ma, 

from 50 km/m.y. to over 100 km/m.y. (Engebretson et al., 1985). This change could raise 

basal shear stress on the wedge at the plate boundary and lead to internal thickening 

(Dahlen, 1984). The sense of oblique convergence between the Farallon and North 

American plates also changed at -100 Ma, from left-lateral to right-lateral (Engebretson 

et al., 1985). It is plausible that during this switch the convergence vector was for a short 

time approximately orthogonal to North America, which would increase the orogen- 

normal component and cause internal contraction. When convergence became more 

oblique again, the wedge may have collapsed laterally into a new geometry appropriate
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for the revised plate boundary conditions, assuming there was no lateral buttress to 

prevent the along-strike extrusion of excess material.

Influence of Wrangellia

A major underplating or subduction event could also reasonably initiate the 

sequence of late thrusting followed by extension at depth. Any passage or addition of 

material at the base of the wedge would result in contraction before and during accretion, 

then lateral extrusion above the added material to maintain appropriate wedge thickness 

(Platt, 1986). Recent structural investigation of the Chugach Complex revealed a similar 

sequence of thrusting followed by normal and conjugate strike-slip faulting associated 

with oblique extension, which some workers have attributed to the passage of the 

Kula/Farallon ridge (Kusky et al., 1997).

The collision and possible partial underthrusting of the margin of Wrangellia 

beneath the Cretaceous prism could overthicken the wedge. Silver et al. (1985) suggest 

that, although high pressure metamorphism may occur in all subduction zones, the uplift 

and preservation of blueschist terranes is not due to steady-state accretionary prism 

processes but can only be facilitated by the collision of buoyant material. The margin of 

Wrangellia could not subduct and would effectively be underplated to the base of the 

wedge, which would thicken, then elevate the previously stable material and lead to a 

lateral collapse. This scenario could involve either of two events; the actual arrival of 

Wrangellia in the Late Cretaceous and collision with the fore-arc of North America (e.g. 

Brandon et al., 1988), or the northward translation of an active fore-arc sliver, as 

suggested by Brown (submitted), which could collide with and be thrust atop the
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previously accreted Wrangellia. Brovra and Lapen (2003) and Brown et al. (in press) 

show that the onset of metamorphism predates major faulting in the LSC. Results of this 

study indicate high pressure conditions persisted after major faulting in the Late 

Cretaceous. If assembly of the LSC and emplacement atop Wrangellia occurred as part 

of the same faulting episode (Brandon et al., 1988) during active subduction but after 

underplating and metamorphism of the San Juan nappes, it is likely that the late brittle 

deformation followed soon after emplacement and reflects contraction and rapid uplift of 

the San Juan nappes caused by this collision. If metamorphism and assembly of the LSC 

occurred to the south near the Klamath Mountains (Brown, submitted) but during active 

subduction, late brittle structures could either be related to the initiation of emplacement 

from an active forearc sliver to atop Wrangellia after translation, or to internal wedge 

deformation caused by changing plate motions and terrane translation in an overall 

transpressive environment.

Unfortunately, it is not realistic to distinguish by kinematics whether the small- 

scale brittle deformation in the San Juan nappes is a result of changing plate boundary 

conditions and translation or rapid uplift after emplacement atop Wrangellia. However, if 

brittle deformation occurred during translation and not emplacement, the structures 

described in this study must predate and be overprinted by emplacement-related 

structures. Therefore, knowledge of the relative timing of emplacement structures would 

help determine which event caused the brittle deformation. A future study in the San 

Juan Islands could focus attention on the relative timing and kinematics associated with a 

possible emplacement structure, the structurally lowest fault contact in the San Juan 

nappes that defines the boundary with the external Nanaimo Formation and Wrangellia.
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VI. Conclusions

Based on a primarily oceanic origin of material, a complex ductile and brittle 

deformational history, and the widespread preservation of high pressure-low temperature 

mineralogy, terranes in the San Juan Islands were most likely underplated and deformed 

deep within a Cretaceous accretionary prism. While the kinematics of major faulting and 

the age of blueschist-facies mineral growth for the San Juan nappes remain controversial, 

results presented in this study help constrain the kinematics, relative timing, and P-T 

conditions of late stage deformation. Pressure solution foliation in coarse clastic rocks 

provides evidence for regional flattening during ductile deformation. There is some 

evidence for generally synchronous northwest/southeast bi-lateral shearing partitioned 

into thin mudstone-rich zones and along high-contrast contacts in argillaceous terranes of 

the LSC. Also indicative of lateral northwest/southeast motion, the earliest brittle 

structures include rare northwest and southeast striking bedding-parallel slip surfaces, 

shear veins, and early strike-slip faults. Three stages of widespread brittle structures 

post-date fabric formation and early northwest/southeast shearing. Southwest-vergent 

thrusts subparallel to fabric are crosscut by abundant extension veins and normal faults 

that mostly strike northeast and southwest. Late strike-slip faults are effectively 

conjugate; right-lateral faults strike ~ north/south and left-lateral faults strike ~ east/west.

Kinematic analysis of the deformational sequence recorded by rocks in the LSC 

shows a progression within the study area from flattening and contraction to extension- 

related deformation. Pressure solution foliation formed under a principal contraction
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direction that plunges moderately to the southwest. The localized shear fabric and early 

strike-slip structures are consistent with continued northeast/southwest contraction, and 

they accommodated lateral extrusion of material to the northwest and southeast. Meter- 

scale thrusts also show northeast/southwest contraction after ductile deformation was 

replaced by brittle faulting. Prevalent extension veins and normal faults indicate a period 

of vertical thinning and subhorizontal extension, mostly to the northwest and southeast. 

Late conjugate strike-slip faulting is also related to northwest/southeast extension but 

shows a renewed significance of northeast/southwest contraction. Therefore, the entire 

structural sequence documented here is generally consistent with northeast/southwest 

contraction and northwest/southeast extension, with periods of enhanced emphasis on 

vertical thinning. Results of structural investigation in adjacent terranes are comparable, 

which suggests late brittle deformation is common throughout the San Juan nappes. 

Unfortunately, because of poorly constrained differential rotation throughout the San 

Juan Islands due to late regional folding and other less imderstood mechanisms, it is not 

presently possible to restore structural orientations and kinematic axes to their Cretaceous 

directions.

High pressure minerals in structures constrain brittle deformation to have 

occurred at greater than ~ 20 km depth and at most ~ 200° C, near peak metamorphic 

conditions and above the calcite/aragonite transition. These P-T conditions and the 

preservation of widespread aragonite are only possible if the brittle structures formed 

within an accretionary prism during active subduction. Reconnaissance fluid inclusion 

results substantiate the continuation of low temperature conditions after vein formation 

and during uplift. Therefore, meter-scale brittle structures in rocks of the LSC preserve a
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record of internal wedge deformation at depth and/or early during uplift of the San Juan 

nappes. The sequence observed is consistent with internal orogen-normal contraction and 

vertical thickening followed by lateral along-strike extension and vertical thinning. For 

brittle faulting to replace ductile thinning as the dominant mechanism of deformation at 

depth, an external influence on wedge geometry may be necessary. Some possibilities 

include a change in the orientation or magnitude of plate convergence vectors, a large 

underplating or accretion event, or the collision of the Cretaceous prism with the margin 

of Wrangellia. By combining detailed, outcrop-scale structural analysis of brittle features 

with multiple techniques for determining the pressure and temperature conditions of vein 

deposits associated with deformation, this study contributes to greater knowledge of the 

tectonic history of terranes deformed in an active Cretaceous accretionary prism and 

provides a basis for future structural study of the San Juan Islands.
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VII. APPENDICES

Appendix A: Methods of Structural Study

Field Work

Field work was focused within the Lopez Structural Complex, exposed on 

southern Lopez Island and southeastern San Juan Island (Figure 2), during 2003 and 

2004. Terranes adjacent to the LSC were studied on eastern San Juan and northern Lopez 

Islands, as well as to the northeast on Orcas and Lummi Islands. Transportation to sites 

was primarily by ferry, car, and foot, but the WWU Geology department inflatable boat 

was used for small island study and exploration of otherwise inaccessible coastlines.

Field sites were selected in order to distribute data collection and sampling among the 

several rock types in the LSC, as well as to provide coverage through the complex 

(Figure Al).

Detailed outcrop analysis for each site included measuring and interpreting brittle 

structures, determining relative ages using cross-cutting relationships, and sampling rock 

types and vein material within the structures. First, foliation (and bedding if present) was 

measured. The orientation and relative timing of faults and shears was found. If 

possible, offset of older structures or layering was used to estimate fault sense and 

displacement magnitude. Drag folding of bedding or foliation and the direction of 

slickenside steps was also helpful in determining fault sense when offset was not 

apparent. Techniques using minor fault plane structures to determine sense on brittle 

faults without visible offset or drag, especially useful in the massive sandstones and
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homogeneous basalts of the San Juan Islands, are described in Petit (1987). Of these, a 

common feature used in this study were localized vein deposits on fault surfaces called 

accretion steps which develop on the leeward side of irregularities and therefore show the 

relative sense of motion of the absent block. Other common minor structures are 

generally oriented at a low angle to the main fault surface and include vacant or vein- 

filled en-echelon tensile fractures with no displacement, and small synthetic 'R' and 'P' 

fractures which show the same sense of relative motion as would the fault plane. The 

trend and plunge or rake of slickensides was measured to constrain the direction of fault 

movement. Several features of vein sets were documented, including: variety - 

extensional, shear, en echelon, or sigmoidal; pattern of fiber growth - syntaxial, 

antitaxial, or layered parallel to the vein wall; size of veins and spacing of array; shear 

sense and slickenfiber orientation if applicable.

Definition of Structures

Structural data were tentatively assigned to one of several groups in the field and 

groups were verified later during analysis. Faults are grouped according to relative age, 

slickenside rake, and sense of slip. Many faults in the field area contain slickensides with 

rakes > 10° or < 80° and are thus technically oblique-slip (van der Pluijm and Marshak, 

1997). However, because most slickensides rake < 30° or > 60°, it is most useful in this 

study to classify faults as either primarily dip-slip or strike-slip. Dip-slip faults of either 

normal or reverse sense are defined to contain slickensides with a rake of ~ 45° or 

greater. Slickensides on strike-slip fault surfaces rake ~ 45° or less. Vein sets are 

divided into three groups by vein type. Shear veins are defined as continuous planar
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fissures in which the displacement across the vein is parallel to the vein walls (Ramsay 

and Huber, 1983). Mineral layering also parallel to the vein walls is typically visible in 

outcrop, and slickenfibers are generally seen on the vein walls. They are separated from 

faults in this study because of the large amount of vein material and lack of deformation 

in the nearby wallrock associated with these features. Extension and en echelon veins 

display growth fibers approximately perpendicular to the vein wall (Ramsay and Huber, 

1983). Veins are assumed to be extensional in this study if there is no visible shear zone 

defined by the vein set. En echelon and sigmoidal vein sets lie within and at an angle to a 

measurable shear zone (van der Pluijm and Marshak, 1997). They are appropriately 

grouped together in this study because the process of formation for each is diagnostically 

similar and there is no observed difference of relative timing in the ESC.

Data Representation and Analysis

Structural data was plotted using the StereoWin v 1.2 and FaultKinWin v 1.2.2 

programs (Allmendinger, 2003). Lower hemisphere projections and equal area stereonets 

were used exclusively for all data plots. Contour plots of large data sets were constructed 

using 1% area contours with contour intervals appropriate to the amount and spread of 

data for each plot. The average orientation of fabric was calculated in StereoWin v 1.2 

by finding the mean trend and plunge of poles.

Fault data with complete information (fault orientation, sense of slip, and 

slickenside rake or trend and plunge) was analyzed in FaultKinWin v 1.2.2 to find the 

principal strain axes corresponding to each fault. The program calculates P and T axes 

that represent the maximum shortening direction and maximum extension direction.
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respectively (Marrett and Allmendinger, 1990). For each fault, a great circle is 

constructed that contains the slickenside data point and the pole to the fault plane. Both 

the P and T axis are plotted along this great circle at 90° from one another and 45° from 

the pole to the fault plane. Each fault, then, is represented by strain axes which can be 

visually compared to other data and interpreted kinematically. The program also allows 

for weighting of data by fault magnitude, but because offset on faults in the LSC was 

generally not foimd construction of the contour plots assumes all data are weighted 

equally. Although it is not possible to verify this assumption without comparing results 

to a weighted analysis of the same data, Marrett and Allmendinger (1990) state that the 

kinematics of most fault populations they have observed are scale-invariant, so 

contouring of data by uniform weighting is an acceptable proxy for weighted analysis.

Other assumptions inherent in the P and T axis calculations of FaultKinWin v 

1.2.2 are less easily dismissed for rocks in the San Juan Islands. Local or regional 

reorientation of structures, a likely problem for this study, would obviously change the 

orientation of strain axes as well and could lead to scattering of data and even kinematic 

misinterpretation if reorientation is severe enough. Since the possible effects have not 

been quantified on a local or regional level in the San Juan Islands, this study must accept 

the assumption that reorientation is minor and the kinematics of structures are interpreted 

directly. Other assumptions necessary for interpreting the kinematics of a fault 

population include homogeneous strain and representative sampling. Field observations 

reveal no major variation in the scale, amount, or orientation of structures on the outcrop 

or kilometer scale within the study area, and care was taken diuing field work to measure
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all types of structures in major rock types across the study area to ensure a representative 

data set.

Appendix B: Brittle Deformation in Adjacent Terranes

The Constitution Terrane - Eastern San Juan Island

Greenstone and metagreywacke of the Constitution terrane at Friday Harbor 

Peninsula on eastern San Juan Island is highly dissected by normal faults and strike-slip 

faults. Local foliation strikes northwest and dips moderately northeast. Cross-cutting 

relationships show that northeast striking normal faults are followed by northwest 

striking normal faults. This is potentially reversed from the relative timing pattern 

documented in the LSC but the orientations of normal faults are generally consistent with 

faults in the LSC (Figure Bl). Strike-slip faults cut normal faults and form a conjugate 

pattern of approximately north striking right-lateral faults and northwest or southeast 

striking left-lateral faults (Figure Bl). Kinematic analysis shows T axes for normal faults 

in the Constitution terrane plot shallowly to the southeast or northeast/southwest, while P 

axes are subvertical (Figirre B2). T axes for strike-slip faults mostly plot shallowly to the 

southeast, while P axes plot shallowly to the northeast and southwest.

The Fidalgo Complex - Northern Lopez Island

Metaconglomerates at northeastern Upright Head on northern Lopez Island are 

deformed by normal and strike-slip faults as well as abundant extension vein sets. These 

sedimentary rocks are mapped as arc-related and belonging to the Fidalgo complex 

(Burmester et al., 2000; Blake et al., in preparation). Local foliation strikes north-
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a n = 6

Figure B1: Equal area plots of brittle struetures in the Constitution Terrane on
eastern San Juan Island, (a) Normal faults, (b) Left-lateral strike-slip faults, (c) 
Right-lateral strike-slip faults. Arrows show direction of hanging wall movement.
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Figure B2: Equal area plots of kinematic axes from brittle structures in the
Constitution Terrane on eastern San Juan Island, (a) Normal faults, (b) Strike- 
slip faults. P-axes = closed circles and T-axes = open squares.
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northwest and dips shallowly to moderately towards the east-northeast but is not well 

defined in outcrop. Normal faults and extension veins all strike approximately east/west 

(Figure B3). Normal faults are mostly associated with top-to-the-northeast motion. 

Strike-slip faults crosscut extension vein sets and strike north-northeast/south-southwest 

(Figure B3). The majority are left-lateral but slip sense conflicts within this one 

orientation. Kinematic analysis of extensional structures shows T-axes of normal faults 

and poles to extension veins cluster shallowly to the north and south (Figure B4). 

Kinematic analysis of strike-slip faults is inconsistent for this small data set.

The Lummi Formation (Ocean Floor Complex) — Southwestern Lummi Island

Metasedimentary rocks of the Lummi Formation exposed near Mary Point on the 

western shore of Lummi Island are of ocean floor affinity (Bunnester et al., 2000; Blake 

et al., in preparation). There are strong similarities in rock type and late structures with 

the LSC. Data on brittle structures are shown in Figure B5. Local foliation and bedding 

both dip moderately to the northeast. Slip surfaces along bedding contacts and exposed 

foliation planes indicate early northwest/southeast strike-slip motion. As in the LSC, 

later thrusts crosscut and drag contacts and foliation but are generally oriented subparallel 

to them. However, local variations in layering scatter orientations in this small data set. 

Extension veins crosscut foliation and strike northeast. Normal faults crosscut extension 

vein sets and strike northwest or northeast. Results of kinematic analysis by structure 

type are shown in Figure B6. T axes of thrusts are subvertical, but P axes are 

inconsistent. Poles to extension veins indicate a shallow to moderately plunging
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Figure B3: Equal area plots of brittle structures in the Fidalgo Complex on northern 
Lopez Island, (a) Extension vein sets, (b) Normal faults, (c) Strike-slip faults. 
Arrows show direction of hanging wall movement.
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Figure B4: Equal area plots of kinematic axes from brittle structures in the Fidalgo 
Complex on northern Lopez Island, (a) Poles to extension vein sets, (b) Normal 
faults, (c) Strike-slip faults. For (b) and (c), P-axes = closed circles and T-axes = 
open squares.
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a n = 3

Figure B5: Equal area plots of brittle structures in the Lummi Formation on western 
Lummi Island, (a) Layer parallel slip surfaces, (b) Thrust faults, (c) Extension 
vein sets, (d) Normal faults. Arrows show direction of hanging wall movement.
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Figure B6: Equal area plots of kinematic axes from brittle structures in the Lummi 
Formation on western Lummi Island, (a) Thrust faults, (b) Poles to extension 
vein sets, (c) Normal faults. For (a) and (c), P-axes = closed circles and T-axes = 
open squares.
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northwest/southeast extension direction. T axes of normal faults are spread horizontally 

but most are consistent with northwest/southeast extension.

The Obstruction Formation (Ocean Floor Complex) — Southeastern Lopez Island

Metasedimentary rocks of the Obstruction Formation exposed just north of the 

Lopez Thrust at Watmough Head on southeastern Lopez Island are part of the Ocean 

Floor Complex (Burmester et al., 2000; Blake et al., in preparation). However, brittle 

deformation in the turbidite sequences at this location is indistinguishable from that seen 

in the LSC. Data on brittle structures are shown in Figure B7. Layer-parallel strike-slip 

surfaces such as those seen locally in the LSC are prevalent along shale layers in well- 

bedded turbidite sequences at Watmough Head. Slip is subhorizontal to the west- 

northwest/east-southeast, and right and left-lateral faults are subequal in abundance. 

Thrust faults deform foliation, but most are south or southwest-vergent and oriented 

subparallel to local layering. Normal faults and extension veins occur in several 

orientations but many strike northeast and southwest as in the LSC. Results of kinematic 

analysis by structure type are shown in Figure B8. Layer-parallel slip data is excluded 

from analysis because the conflicting shear sense on similarly oriented planes yields 

inconsistent kinematic data. T axes of thrusts are subvertical and P axes are consistent 

with approximately north/south contraction. Poles to extension vein sets and T axes of 

normal faults indicate shallow to moderately plunging extension, but directions are 

inconsistent so extension is spread about horizontal.
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Figure B7: Equal area plots of brittle structures in turbidites of the Obstruction
Formation at Watmough Head on southeastern Lopez Island, (a) Bedding parallel 
slip planes, (b) Thrust faults, (c) Extension vein sets, (d) Normal faults. Arrows on 
striae show sense of hanging wall movement.
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c

Figure B8: Equal area plots of kinematic axes from brittle structures in the
Obstruction Formation at Watmough Head on southeastern Lopez Island, (a) 
Thrust faults, (b) Poles to extension vein sets, (c) Normal faults. For (a) and (c), 
P-axes = closed circles and T-axes = open squares.
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Appendix C: Methods of X-ray Diffraction

Field and Laboratory Methods

Carbonate-bearing veins within each type of structure were collected in the field 

for use in x-ray diffraction. Care was taken to assure that veins sampled from faults were 

kinematically associated with that faulting episode, and not an artifact of previous 

veining or faulting incorporated into the fault plane. Thus, sampling was restricted to 

veins that were continuous, undeformed, relatively planar features found on the fault 

plane and veins that contained slickenfibers associated with vein growth during faulting. 

Veins from faults with evidence of reactivation were excluded from testing to reduce the 

possibility of vein preservation from a previous faulting event.

Laboratory work was conducted at WWU. Vein samples were first separated 

from any remaining wall rock and crushed by hand, then pulverized for approximately 2 - 

5 minutes to a fine powder in the Spex Mixer Mill with steel grinding container and %" 

steel grinding balls. X-ray diffraction on the powdered sample was performed using a 

General Electric XRD-5 Diffractometer with motorized rotating goniometer and nickel- 

filtered X-ray tube operated at 35 KeV/15 mA. Diffraction patterns were recorded at a 

rate of 2°/minute for Id values of 18° - 52°, which covers the peak signatures of common 

vein forming minerals.

Analysis of Diffraction Patterns

X-ray diffraction patterns were interpreted manually using the Mineral Powder

Diffraction File (JCPDS, 1980) as a reference for 26 values. The 16 angle and relative

magnitude of each peak in a pattern was first identified. Angles were then compared to
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the documented major peaks of several vein forming minerals: quartz, calcite, aragonite, 

plagioclase feldspar, prehmte, and chlorite. Significant Id values used in this study to 

identify each of these minerals are listed in Table Cl.

Appendix D: Methods of Fluid Inclusion Research

Field and Laboratory Methods

During field work, quartz-rich veins from each stage of structures were collected 

in order to conduct a fluid inclusion study. An initial search in thin sections for 

undeformed and definitively primary inclusions was unsuccessful. Most samples are too 

filled with small inclusions to identify distinct populations. Four of the clearest samples 

that contain larger inclusions were selected and doubly polished fluid inclusion sections 

were ordered from Vancouver Petrographies. From two of the samples, two suitable and 

consistent groups of inclusions were identified during preliminary petrographic 

investigation. Prior to analysis, the polished sample plates were soaked overnight in 

acetone to remove them from the glass slides.

The remainder of laboratory work was completed with the help of Assistant 

Professor Dan Marshall at Simon Fraser University in Vancouver, BC. Analysis was 

conducted on an Olympus BX51 long objective petrographic microscope with an 

attached Linkam heating/cooling stage and digital temperature gauge accurate to 0.1° C. 

Liquid nitrogen pumped through the stage was used to cool the sample. To reduce the 

risk of inclusion destruction, freezing runs were conducted first (Roedder, 1984). Water- 

rich inclusions were cooled quickly to —40° C and then reheated at a slow rate of 

l°/minute to observe the melting temperature of ice. Because this phase transition was
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Quartz 20.9 26.6 36.5 39.5 50.2

Calcite 23.1 29.4 36.0 47.5 48.4

Aragonite 26.2 27.3 33.2 37.9 45.8

Plagioclase 22.1 23.8 27.8 30.6 33.8

Prehnite 25.6 27.2 29.0 31.8 35.2

Chlorite 18.8 25.2 31.5 40.0

Table Cl: 16 values used in identification of minerals during manual
interpretation of x-ray diffraction patterns. Key values are shown in bold. 
Values provided by the Mineral Powder Diffraction File (JCPDS, 1980).
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usually difficult to observe, freezing runs were .duplicated to ensure accuracy. Methane- 

rich inclusions were cooled to ~ -100° C and slowly reheated to record methane 

homogenization temperatures. Heating runs were conducted on both inclusion 

assemblages to record total homogenization temperatures at a rate of 2-3°/minute. 

Homogenization values were taken when the vapor bubble completely dissipated and the 

inclusion became entirely one phase.
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