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ABSTRACT

The mid-Cretaceous Skeena Group of British Columbia is a sedimentary continental 

margin deposit that overlies the lower Jurassic Hazelton Group of the Stikine Terrane. Nine 

paleomagnetic sites were collected in 2006 and 2007, demagnetized thermally in 50-15° C 

steps, and high temperature components fit using principal component analysis. A new 

Ar^'^/Ar^^ age of 93.9 ± 0.6 Ma for a flow of the Rocky Ridge Formation was also collected.

Three volcanic sites of the Rocky Ridge Volcanics possess coherent magnetizations, 

but did not prove useful. Five of six sedimentary sites from the Rocher de Boule and Bulkley 

Canyon Formations appear more likely to retain a primary magnetization. Curie temperature 

analysis indicates the primary carrier of magnetic remanence is magnetite. Hysteresis and 

direct field demagnetization data indicate the magnetite is primarily multi-domain in the 

volcanic sites and possess a mix of single and multi-domain grains in the sedimentary rocks, 

which may account for the more likely primary remanence from the sedimentary formations

When subjected to a bootstrap fold test, the sedimentary sites have maximum 

grouping at 40% untilting, but the hypotheses that the magnetization was acquired either 

before or after tilting cannot be rejected at the 95% confidence level. An inclination-only 

paleolatitude analysis was used to estimate paleolatitude as different declinations between 

sites suggest rotation between sites. The resulting paleolatitude for the Skeena Group is -57°

± 21°. This is equivalent to a location -1150 ± 2000 km south of the expected latitude with 

respect to North America.

Uranium-lead ages of detrital zircons from a sample of the Rocher de Boule 

Formation were obtained using laser ablation inductively coupled mass spectrometry. These 

ages form several Mesozoic peaks indicating that the majority of zircons came from Stikine ■
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terrane units and Mesozoic arc volcanism. A Mississippian peak with some Proterozoic aged 

grains suggests a source from the Yukon-Tanana terrane. No Archean-aged grains were 

found.
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INTRODUCTION

The Cordillera of western North America is a complex jigsaw puzzle of terranes 

assembled by orogenic events spanning hundreds of million years (Coney, et al., 1980; 

Colpron, et al., 2007). Understanding the history of the Cordillera is important to 

comprehending the workings of the modem tectonic setting of western North America.

Numerous paleomagnetic studies of Cretaceous units of the Cordillera have suggested 

that the active margin was a dynamic and mobile belt of exotic terranes (Figure 1; Irving, et 

al., 1996; Cowan, et al., 1997). Volcanic, plutonic and sedimentary units of ages from the 

mid-Cretaceous to the Eocene (110-48 Ma) show a trend of anomalously shallow inclinations 

of primary paleomagnetic directions with respect to the continental North America 

geomagnetic poles of the same ages (Figure 2; Beck, 1989; Enkin, 2006). The implication of 

these results is that the terranes these units were deposited on were as much as 3000 km 

south of their present latitude, and moved northward at rapid plate velocities. This is contrary 

to structural evidence that these terranes were far less traveled (Price and Carmichael, 1986; 

Gabrielse, et al., 2006; Wyld, et al., 2006). Attempts to explain this contradiction (Butler, et 

al., 2001; Umhoefer, 2003) do not properly address the large amount of evidence of 

northward translation.

Recent studies suggest an even more complicated story. Enkin et al. (2003) and 

Haskin et al. (2003) present geological evidence that two major terrane domains, the Insular 

and Intermontane Superterranes (Monger, et al., 1982), were linked by the Dash-Chum 

overlap sequence in the Churn Creek area between the Yalakom and Fraser faults in southern 

British Columbia (Figure 1). Mid-Cretaceous sedimentary and volcanic units from both



Intermontane Superterrane
1st! Stikine 1^ Yukon-Tanana
IHrI Harper Ranch 1^ Cache Creek
IWI Quesnellia Cassiar

fSMI Slide Mountain

E]
Bowser Basin (uJ-IK)
Skeena Group (IK) / 
Sustut Group (IK) 

tcGiei Coast Plutonic Complex

□ Insular Superterrane 
(undivided)

Paleomagnetism
• Skeena Group 

Localties (SG)
(this study)

• Kasalka Group 
Localties (KG) 

(Enkin, personal 
communciation, 2006)

^ Dash-Churn (DC)
^ (Enkin etal., 2003)

■ Mount Tatlow (MT)

Figure 1: Terrane map of the Canadian Cordillera and the Skeena Group, associated 
sedimentary basins and relevant paleomagnetism studies.

Simplified from Colpron et al. (2007)
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Figure 2: Paleomagnetic studies from late Cretaceous and Eocene units across the 
Cordillera have discordant paleolatitudes with respect to the North America pole. 
Geomagnetic polarity timescale included at bottom of each plot.

A) Expected paleolatitude at Mount Tatlow (MT, Figure 1; 51.3° N, 123.8° W) based 
on North America poles for the late Cretaceous and Eocene

B) Paleolatitudes from studies in the Cordillera (Enkin, 2006). Diamonds represent 
error margin for each study; dark grey diamonds are bedded rocks, lighter grey are 
intrusive units.
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superterranes (Figure 3) are believed to be in stratigraphic contact (Haskin et al., 2003). This 

contradicts the classic “Baja British Columbia” model (Irving, 1985; Irving et al., 1996; 

Cowan, et al., 1997) that the superterranes were separate units during the late Cretaceous and 

Eocene and the northward displacement is partitioned between the two superterranes 

(Figure 4).

Paleolatitude estimates from the overlap sequence suggest a new model for terrane 

motion in the late Cretaceous. Paleomagnetic samples of the Albian-aged (112-97 Ma) 

Empire Valley volcanics, equivalent to the Spences Bridge Group (Irving, et al., 1995), have 

a paleolatitude of 53.2° ± 2.8° (Haskin et al., 2003). Overlying the volcanics is the Chum 

Creek conglomerate, equivalent to the late Cretaceous Silverquick/Powell Creek Sequence 

(Schiarizza et al., 1997), which has a paleolatitude of 36.1° ± 2.4° (Enkin et al., 2003). These 

results imply that instead of partitioned domains that moved northward separately, the 

superterranes were one large domain that was -1000 km south of expected paleolatitudes at 

-100 Ma, then moved south -2000 km in -10-15 Ma, then moved north to their present 

location by 48 Ma (Irving and Brandon, 1990).

As this model requires a rate of southward motion of 38 ± 16 cm/yr (Enkin et al., 

2003), far quicker than estimated plate motions (5-10 cm/yr; Kelley, 1993) during this 

period, it is important to examine this model critically. The geologic evidence for the overlap 

sequence is complicated by thmst faults between the two units of the Chum Creek sequence. 

This suggests instead of a stratigraphic contact at -95 Ma, it is a younger stmctural contact 

related to the Yalakom-Fraser strike-slip faults, with interleaving of units via flower-stmcture 

deformation (Figure 5). A paleomagnetic test of this model (termed the “yo-yo model” due to 

its prediction of rapid southward then northward motion for these rocks) is to determine a

4



52° N
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Silverquick/Powell 
Creek sucession 
at Mount Tatlow 

36.8° ±5.4'

Insular
Superterrane

Conglomerate of
r*.hiirn PrAAlr

0 ©
Churn Creek 
Stratigraphy 0 ©

SB
Spences Bridge 

Volcanics 
at Spences Bridge 
™ 52.0° ±4.2°

Intermontane
Superterrane

Figure 3: Paleolatitudes for units of the Dash-Churn overlap sequence (Enkin et al., 
2003), south-central British Columbia. The conglomerate of Churn Creek (CH) is 
believed to stratigraphically overlie the Empire Valley Volcanics (EV) and laterally 
correlates with units on both superterranes. It is suggested that this is evidence that 
the superterranes were linked by 95 Ma.

Paleomagnetic results for Mount Tatlow and the Spences Bridge Volcanics from 
Enkin et al. (2006) and Irving et al. (1995). Adapted from Enkin (2006).
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Figure 4: The classic "Baja British Columbia hypothesis" divides the late Cretaceous 
Cordillera into two separate tectonic blocks, the Intermontane and Insular 
Superterranes. This allows partitioning of the strain of dextral translation. Closed 
circles are paleomagnetic studies with good tilt correction, open circles with 
uncertain tilt corrections. Studies from Irving et al., 1996.

Red circles are studies from Enkin et al., 2003 (CH: Churn Creek) and Haskin et al., 
2003 (EV; Empire Valley Volcanics). They are believed to be in stratigraphic contact, 
therefore they are evidence that the two blocks were instead linked during the late 
Cretaceous.

6



Figure 5: Thrust faults in the Dash-Churn overlap sequence possibly indicate that 
instead of being in stragraphic contact, the Churn Creek Conglomerate is 
overthrust onto the Empire Valley Volcanics as a part of a flower-structure system 
related to the Yalakom-Fraser fault zone. Modified from Enkin et al. (2003)
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paleolatitude for younger units of the Intermontane Superterrane. If they provide a 

paleolatitude placing them further south than the Spences Bridge Group at ~105 Ma, then the 

overlap sequence is reasonable, supporting the yo-yo model.

The Skeena Group (described by Bassett and Kleinsphen, 1997) is an early to mid- 

Cretaceous fluvial-deltaic sedimentary sequence that unconformably overlies volcanic rocks 

belonging to the Stikine Terrane, a part of the Intermontane Superterrane (Figure 1). 

Radiometric ages of andesitic volcanics from the Skeena Group range from 104.8 ±1.2 Ma 

to 95.1 ±1.6 Ma (MacIntyre, et al., 2004; Bassett and Kleinsphen, 1996). Clastic 

sedimentary units have fossil and pollen ages from the Neocomian to the late Albian 

(Bassett, 1995). Therefore, paleolatitude results for the Skeena Group provide an opportunity 

to answer the problem raised by the yo-yo model. If the Skeena Group has a paleolatitude 

matching units of the Insular Superterrane, this would support the yo-yo model. If the results 

match a predicted “Baja BC” model displacement of less than -1000 km, this would refute 

the yo-yo model.

A second way to examine the problem is to characterize the location of the younger 

Intermontane sediments through detrital zircon geochronology. If the Skeena Group were at 

the southern latitudes predicted by the yo-yo model, Archean-aged grains from the craton 

(Mahoney et al., 1999) should be found. If no Archean-aged grains are present, then the 

moderate displacement of—1000 km is possible. Grain ages could also describe the relative 

location of inboard units of the Intermontane Superterrane.
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PREVIOUS PALEOMAGNETIC STUDIES

Over the last three decades, several attempts have been made to collect paleomagnetic 

samples from volcanic rocks of late Cretaceous and Eocene age throughout central Stikinia 

(personal communication, Enkin, 2006). Quality paleomagnetic results from these units have 

been difficult to acquire due to several factors: the difficulty of access to outcrops, low 

outcrop quality of geomagnetic records due to lightning strike remagnetization, lack of 

adequately detailed geologic mapping, and few radiometric geochronology data.

Most of the accepted paleomagnetic data come from the upper Cretaceous Kasalka 

Group, an extensive intermediate volcanic arc that unconformably overlies the Skeena 

Group. Unpublished radiometric ages for the Kasalka Group range from 74 Ma (K/Ar) to 

93.4 ± 4.7 Ma (K/Ar hornblende) (Enkin, personal communication, 2006). The few sites that 

appear to yield useful results were collected over a large geographic range (Figure 1; Table 1; 

provided by Enkin, personal communication, 2006). In these specimens, magnetization 

persisted up to 675° C; it is believed that both magnetite and hematite are primary magnetic 

remanence carriers in these samples.

In all, nineteen sites from eight localities were used to produce a Fisher mean 

direction corrected to paleohorizontal (Figure 6) with a declination (D) of 351.8° and an 

inclination (I) of 67.2°. Using the fold test of Enkin (2003), the optimum amount of untilting 

is 94.5% ± 6.0. A high percentage of untilting for optimum clustering of directions is an 

indication that this direction was recorded prior to deformation, and therefore is likely the 

primary magnetic remanence. If it is assumed that each locality is a separate block, then the 

Fisher mean inclination is 65.8° ± 4.8°. Assuming an axial dipole model for the geomagnetic 

field at magnetization, this provides a reasonable estimate of a paleolatitude (7.) of 48.05° ±

9



Table 1. Paleomagnetic results for the Kasalka Group

Site N Dgeo Igeo Dstrat ^strar k “95

Owen Lake (54.1°N, 126.8°W) - combined into one site (from Vandall, 1990)

7-14 36(7) 29.6 73.5 303.3 70.8 734.3 12

Nadina Lake (53.9°N, 127.0°W) - (from Vandall, 1990)

17 4 66 24 315 78 75 10.7

18 4 59 20 •337 73 176 6.9

23 3 323 70 323 70 290 13

25 4 331 70 331 70 90 9.7

Kenny Dam (53.7°N, 125.0°W) - from 1995

JNN12 10 169.2 -59.9 167.3 -67.9 141.9 4.1

Newcombe Lake (54.0°N, 127.1°W) - from 1995

JNN13 8 259/0 -82.3 116.6 -81.3 154.6 4.5

JNN15 4 70.6 68.2 29.8 79.1 689.7 3.5

Mount Ney (53.9°N, 127.3°W) - from 1999

KSK04 3 133.1 -61.3 149.1 -67.2 34.2 21.4

KSK05 10 149.2 -64.6 170.2 -67.8 214.7 3.3

KSK06 . 11 144.6 -65.5 166.2 -69.4 179.8 3.4

KSK07 5 259.7 28.1 339.2 60.4 48.0 11.2

Morricetown (55.1°N, 127.4°W) - from 1999

KSK09 9 215.6 69.4 38.9 67.1 184.5 3.8

Babine Lake (55.3°N, 126.7°N) - from 2000

KSS04 9 102.4 77.7 44.6 49.6 38.4 8.4

KSS05 10 174.0 79.7 37.8 62.3 103.2 4.8

Skeena Mountains (55.0°N, 127.0°N) - from 2000

KSS13 4 10.6 37.1 320.7 54.2 102.4 9.1

KSS14 9 33.6 19.3 9.7 59.0 97.2 5.2

KSS15 10 22.1 20.8 353.1 53.2 108.8 4.7

KSS16 4 11.1 34.2 325.3 53.2 59.3 12.0

Unpublished paleomagnetic directions for 19 sites from the late Cretaceous Kasalka Volcanics of 
central British Columbia. Eleven sites at Owen Lake and Nadina Lake were collected by Tom 
Vandall for his Ph.D. Thesis (1990). The seven sites at Owen Lake are combined into one site 
here as they appear to not average out any polar secular variation. The remaining 14 sites were 
collected during several field seasons by Randy Enkin and others of the Geologic Survey of Canada.

All data and information courtesy of Randy Enkin (persona! communication, 2006).
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North

Figure 6; Tilt corrected and inverted to normal polarity means for paleomagnetic 
sites (n=19) from the late Cretaceous Kasalka Group (Enkin, 2006, personal 
communication).
Mean direction; D = 351.8°; I = 67.2 095 = 6.9°.
Mean location: 54.35° N 126.9° W
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6.8° for the late Cretaceous Kasalka volcanics. Using an appropriate pole for North America 

(Dickinson and Butler, 1998), the Kasalka volcanics are estimated to have formed 1300 ± 

1000 km south of its expected latitude with respect to North America at ~80-75 Ma.

The main weaknesses in interpretations of these data are that the sites come from a 

large geographic region and the age of primary remanence is poorly constrained. Averaging 

these, sites to one paleolatitude introduces further error in the amount of displacement. If the 

ages of these rocks truly span 20 Ma, this decreases the utility of the results to constrain the 

timing of terrane migration.

12



GEOLOGIC SETTING

The early to mid-Cretaceous Skeena Group of central British Columbia (Figure 1) is a 

sequence of sedimentary and volcanic units that records transgression and regression in the 

southern margin of the marine Jura-Cretaceous Bowser Basin. This sequence sporadically 

crops out over a 32,000 km^ region and uncomformably overlies several different units, 

including the late Jurassic Bowser Lake Group in the north and west and the early to middle 

Jurassic Hazelton Group in the south. Stratigraphically, the Skeena Group is overlain 

uncomformably by the late Cretaceous Kasalka Group (MacIntyre et al., 2004). The Skeena 

Group has since been broken up by post-Eocene block faulting (Richards, 1990). Three units 

of the Skeena Group were sampled during field work in 2006 and 2007: the Kitsuns Creek 

member of the Bulkley Canyon Formation, the Rocky Ridge Volcanics, and the Rocher 

Deboule Formation (Figure 7).

Kitsuns Creek Member of the Bulkley Canyon Formation

The Kitsuns Creek member of the Bulkley Canyon Formation is described from 

exposures near the headwaters of Kitsuns Creek near Kitseguecla, British Columbia (Bassett, 

1995). This name originally was applied to all micaeous sandstones and siltstones of 

Neocomian-Albian age (Richards, 1990). Bassett (1995) renamed the separated 

volcaniclastic sandstones and conglomerates found in association with volcanic centers of 

Rocky Ridge-type flows as a member of the newly named Bulkley Canyon Formation. The 

type section (“Sc” in Bassett, 1995) records coarsening sediment, with several episodes of 

volcanic clast-dominated conglomerate river channels with cross-bedded litharenites and 

mudstones. Small basalt flows, believed to be related to the Rocky Ridge Formation, are

13



Kasalka Group (UKK) (93-74 Ma) (?) 
Continental arc intermediate volcanics

----------------------------- unconformity------------------------------------

Rocher Deboule Formation (KRDB) 
Fluvial-deltaic chert pebble conglomerate, sandstone

Rocky Ridge Formation (KRR/KRH) (104-95 Ma) 
Intrabasinal rift volcanics (basaltic to 
intermediate), flows and pyroclastic breccias

Bulkley Canyon Formation 
(Kitsuns Creek Member) (KKC) 
Fluival-deltaic siltstones and sandstones

unconformity/contact?______________________

Hazelton Group (uJh) /
Bowser Lake Group (Bowser Basin)

Figure 7: Simplified stratigraphic column for the Skeena Group near Smithers, British 
Columbia, with the locations of previous radiometric ages (Bassett and 
Kleinsphen, 1996; MacIntyre et al., 2004), and sample sites from this study.

Adpated from MacIntyre et al. (2004).
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interbedded in the sequence. Bassett (1995) describes observed northeastward paleocurrent 

directions, pointing from the Rocky Ridge volcanic vent. Pollen collected from the Kitsuns 

Creek Mernber indicates a Neocomian to early Cenomanian age (Bassett, 1995).

Rocky Ridge Volcanics

The term “Rocky Ridge Volcanics” was loosely applied to basalt-andesite volcanic 

flows found throughout the middle Skeena Group (Tipper, 1976). A more precise description 

has followed in more recent years (Richards, 1990; Bassett and Kleinsphen, 1997; Maqintyre, 

et al., 2004). The type section includes the numerous flows, emption breccias and tuffs of 

Rocky Ridge, north of Smithers, British Columbia. Sandstones similar to the Kitsuns Creek 

member are found interbedded with Rocky Ridge flows. Several volcanic outcrops of similar 

composition and age throughout the Skeena Group region have been described as individual 

vents of subaerial pryoclastic eruptions related to basin subsidence (Bassett and Kleinsphen, 

1996). The flows are typically 10 to 20 meters thick and basaltic to basaltic-andesitic 

composition (Bassett and Kleinsphen, 1997). Large (4-10 mm) phenocrysts of hornblende are 

found in outcrops on Kitsuns Creek ridge (Sc in Bassett, 1995). Radiometric dates include a 

"^®Ar/^^Ar age of95.1 ± 1.6 Ma (Bassett and Kleinsphen, 1996) and aU/Pb age of 104.8± 1.2 

Ma (MacIntyre, et al., 2004) (Figure 7). For this study, a hornblende-rich flow on Ridge “Sc” 

(06KRH01; Figure 8) was sampled during the 2006 field season, and sent for Ar'^'^/Ar^^ age 

analysis at the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the 

University of British Columbia. The sample yielded a hornblende Ar'^^/Ar^^ plateau age of 

93.9 ± 0.6 Ma (Figure 9). Pollen assemblages indicate an early Albian to middle Cenomanian 

age (Bassett, 1995). Elongated vesicles indicate a northwestward flow direction, pointing

15
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Figure 8: Simplified geologic map of region northwest of Smithers, British Columbia.

Adapted from the 1:125,000 geologic maps for Hazelton (Richards, 1990) and Smithers 
(Tipper and Richards, 1976).
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away from Rocky Ridge as the source vent, and internal structures indicate hot emplacement 

of the breccias as pyroclastic flows (Bassett and Kleinsphen, 1996).

Rocher Deboule Formation

The Rocher Deboule Formation (from Bassett and Kleinsphen, 1997) is the newest 

name for the chert-rich pebble conglomerates found stratigraphically above Rocky Ridge 

flows. These strata used to be grouped with sandstones and siltstones of the Red Rose 

Formation, which has been reclassified as belonging to the Jurassic Bowser Lake Group 

(Richards, 1990). The type section for the Rocher Deboule Formation spans a pair of ridges 

just north of Rocky Ridge (Sections Hf, Hg, Hh of Bassett, 1995) in the southern Hazelton 

Map (Richards, 1990). The Rocher Deboule Formation conformably overlies andesite-basalt 

flows correlated with the Rocky Ridge Volcanics. Outcrops are dominantly chert pebble 

conglomerate with interbedded micaeous sandstones and red siltstones, interpreted as being 

deposited in river channels and crevasses splays, but include debris flows (Bassett, 1995). 

The chert pebble clasts may share an affinity with the Tango Creek Formation of the nearby 

Sustut Basin deposits (Eisbacher, 1981).

Paleocurrent directions measured in sandstone units of the type section indicate a 

west to southwest direction of flow (Bassett, 1995). However, these results were quite varied, 

which is attnbuted to deposition in a meandering river channel. Paleocurrent directions 

measured near Smithers, British Columbia (map area of Tipper and Richards, 1976) indicate 

north and west-southwest directions of flow. To the north, near Terrace, British Columbia, 

(map area of Woodsworth, et al., 1985), units have a north-northwest paleocurrent direction
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(Bassett, 1995). Pollen collected by Bassett, 1995 indicates a late Albian to early 

Cenomanian age.
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PALEOMAGNETISM

SAMPLE COLLECTION AND PREPERATIQN

In the summers of 2006 and 2007, five to eight cores were collected from each of 

nine sites in the Skeena Group (Figure 8; Table 2). Three sites are of Rocky Ridge Volcanics 

(06KRR) from the Kitsuns Creek type section Sc (Bassett, 1995), five are of the Kitsuns 

Creek Member (06KKC) from the same section and one of a sandy member of the Rocher de 

Boule Formation (Bassett, 1995) type section Hf (07KRDB). Site selection was governed by 

accessibility and outcrop distribution, as the region has been subject to Holocene Cordilleran 

glaciation and erosion. Each of the two field areas is in a different tectonic block produced by 

Eocene faulting (Richards, 1990).

All sites were sampled using a standard 2.54 cm diameter diamond core drill. Care 

was taken to sample coherent and attitudinally measurable units as outcrop quality was 

generally poor. Also, outcrop location was taken into consideration to reduce the chance of 

lightning strike remagnetization.

Samples were oriented in situ using a sun compass and magnetic compass.

Agreement of sun and magnetic compass bearings is interpreted to indicate lack of intense 

remagnetization at the outcrops. Three strike and dip measurements were taken at each 

outcrop, then averaged to minimize human error and attitude irregularity. The volcanic units 

(06KRR) lacked measurable structures; therefore their orientation was determined by 

sedimentary interbeds. Cores were cut into standard 2.25 cm length specimens using a non­

magnetic diamond saw at the Pacific Northwest Paleomagnetism Laboratory at Western 

Washington University.
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Table 2. Paleomagnetic results for the Skeena Group

Low-temperature Component
80-300® C Geographic Stratigraphic

Site Latitude Longitude Dip
Azimuth Dip n D 1 k “95 D 1 k “95

06KKC3 54.927 232.151 15 37 7 35.4 68.2 205.8 4.2 23.8 32.1 205.8 4.2
06KKC4 54.927 232.151 15 37 6 55.0 61.7 7.9 25.5 35.4 29.0 7.9 25.5
06KKC5 54.927 232.151 15 37 5 28.0 64.2 43.9 11.0 21.3 28.1 43.9 11.0
06KKC7 54.934 232.158 42 35 5 20.1 47.2 57.1 10.2 26.9 13.9 57.1 10.2
06KRR1 54.931 232.155 15 37 6 7.1 66.4 29.9 12.5 11.4 29.6 29.9 12.5
06KRR2 54.934 232.158 42 35 7 345.5 68.4 44.7 9.1 18.3 40.2 44.7 9.1

07KRDB2 55.016 232.398 178 70 7 174.2 82.5 194.7 4.3 177.5 12.5 194.7 4.3

Medium-temperature Component 
200-430° C Geographic Stratigraphic

Site Latitude Longitude Dip
Azimuth Dip n D 1 k “95 D 1 k “95

06KKC3 54.927 232.151 15 37 7 182.8 45.7 47.8 8.8 142.8 79.2 47.8 8.8
06KKC4 54.927 232.151 15 37 6 187.7 56.1 36.6 11.2 65.5 84.8 36.6 11.2
06KKC5 54.927 232.151 15 37 5 182.0 32.9 7.8 29.3 164.9 67.8 7.8 29.3
06KKC7 54.934 232.158 42 35 5 232.4 63.4 136.6 6.6 14.0 80.1 136.6 6.6

07KRDB2 55.016 232.398 178 70 7 36.1 -10.8 2.6 47.3 52.0 41.5 2.6 47.3

High-temperature Component
380-550° C Free Line Fit Geographic Stratigraphic

Site Latitude Longitude Dip
Azimuth Dip n D 1 k “95 D 1 k “95

06KKC3 54.927 232.151 15 37 6 236.8 66.5 29.9 12.4 334.8 65.7 29.9 12.4
06KKC4 54.927 232.151 15 37 6 223.9 64.2 18.8 15.9 333.5 71.5 18.8 15.9
06KKC5 54.927 232.151 15 37 7 212.8 51.4 5.3 29.0 283.5 79.0 5.3 29.0
06KKC7 54.934 232.158 42 35 5 244.9 66.8 6.8 31.7 8.3 74.0 6.8 31.7
06KRR1 54.931 232.155 15 37 3 16.0 51.0 6.8 51.7 15.6 14.0 6.8 51.7
06KRR2 54.934 232.158 42 35 5 17.3 58.9 11.8 23.2 28.2 25.6 11.8 23.2

07KRDB2 55.016 232.398 178 70 5 27.9 48.0 5.5 35.8 144.3 53.1 5.5 35.8

High-temperature Component
380-550° C Anchored Line Fit Geographic Stratigraphic

Site Latitude Longitude Dip
Azimuth Dip n D 1 k “95 D 1 k “95

06KKC3 54.927 232.151 15 37 6 230.0 70.4 29.0 12.6 346.0 66.6 29.0 12.6
06KKC4 54.927 232.151 15 37 5 220.9 63.4 25.6 15.4 332.9 73.0 25.6 15.4
06KKC5 54.927 232.151 15 37 6 221.3 57.0 5.7 30.6 310.4 74.5 5.7 30.6
06KKC7 54.934 232.158 42 35 4 325.9 67.1 7.4 36.1 10.0 44.5 7.4 36.1
06KRR1 54.931 232.155 15 36 3 355.1 57.6 4.5 66.5 3.6 22.8 4.5 66.5
06KRR2 54.934 232.158 42 35 3 306.8 79.4 38.6 20.1 23.6 54.6 38.6 20.1

07KRDB2 55.016 232.398 178 70 3 29.8 66.3 30.0 22.9 162.1 39.4 30.0 22.9

Remagnetized Sites Geographic Stratigraphic

Site Latitude Longitude Dip
Azimuth Dip n D 1 k “95 D 1 k “95

06KKC6 54.933 232.158 42 35 6 324.4 24.9 4.1 37.9 336.4 13.5 4.1 37.9
06KRR3 (Low-T) 54.942 232.165 42 35 5 151.4 59.1 69.5 9.2 96.0 53.2 69.5 9.2
06KRR3 (High-T) 54.942 232.165 42 35 5 166.6 28.8 39.1 12.4 142.3 42.8 39.1 12.4

stratigraphic coordinates represent geographic coordinates 
corrected to paleohorizontal.
n = number of samples, D = Declination, I = Inclination, k = dispersion
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MAGNETIC MINERALOGY

Magnetic properties of samples from the Skeena Group were measured using a 

Princeton MicroMag Model 3900 Vibrating Sample Magnetometer (VSM) to determine the 

magnetic remanence carriers. Work consisted of using small chip samples to determine the 

temperature dependence of saturation moment, hysteresis loops and direct current 

demagnetization (DCD) of remanence. The first test determined that Curie temperatures were 

consistent with only magnetite as the magnetic mineral. The other two tests collected values 

for the ratios of saturation remanence to saturation magnetization (Mrs/Ms), and remanent 

coercivity to ordinary coercivity (Hcr/Hc), to generate a Day plot (Day et. al, 1977). This plot 

portrays the magnetic domain status and inferred grain size of the magnetite present in the 

samples.

The decay of saturation moment with heating indicates that the Curie temperature 

(Tc) for the materials analyzed is near 570° C, consistent with magnetite being the primary 

magnetic mineral present (Figure 10). Problems with temperature calibration and procedure 

consistency prohibited precise determination of Tc, but Tc is probably slightly lower than 

that of pure magnetite. This is consistent with small amounts of titanium in the magnetite 

stmcture. All hysteresis loops were corrected for high field slope (response of non­

ferromagnetic minerals) (Figure 11). Samples from the Kitsuns Creek Member and Rocher 

Deboule Formation plot on a modified Day Plot (Dunlop, 2002) near the single domain (SD) 

- multi-domain (MD) mixing line as 80-85% MD magnetite (Figure 12; Table 3). Most 

samples from the Rocky Ridge Volcanics plot in the multi-domain field. One site, 06KRR3, 

plots in the pseudo-single domain (PSD) field, but could be a mix of 90% MD and 10% SD
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Figure 10: Decay of saturation moment with heating to determine the Curie 
temperature (To) for a sample of the Rocky Ridge Volcanics (06KRR2.2).

A) Saturation moment measured versus temperature.
B) & C) First and second derivative of intensity curve to determine inflection point 
(Tc) of curve A. Tc near 570 C indicates the presence of only magnetite.

This is a typical result for all samples from the Skeena Group.
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Figure 11: Hysteresis loops for samples from the Skeena Group.
a) Sandstone from the Rocher de Boule Formation
b) Andesite of Rocky Ridge Volcanics
c) Sandstone of Kitsuns Creek Member of the Bulkley Canyon Formation
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Figure 12: Modified Day Plot (Dunlop, 2002) for nine samples of the Skeena Group. 
The ratios of saturation remanence to saturation magnetization, Mrs/Ms, and 
remanent coercivity to ordinary coercivity, Hcr/Hc, are used to charcterize the 
magnetic domain state of magnetic grains.
MD = multi-domain, SD = single domain, SP = superparamagnetic,
PSD = psuedo-single domain
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Table 3: Hysteresis loops results for the Skeena Group

Sample Ms (emu) Her (Oe) Hcr/Hc Mrs/Ms

06KKC3.10 3.25E-05 3.68E+02 2.50E+00 2.29E-01
06KKC4.4 2.00E-05 3.48E+02 2.55E+00 2.59E-01
06KKC5.3 8.50E-05 3.82E+02 2.30E+00 3.39E-01
06KKC6.7 1.74E-05 6.69E+02 2.32E+00 4.31 E-01
06KKC7.8 2.34E-06 3.80E+02 4.14E+00 2.39E+00
06KRR1.3 1.98E-03 3.76E+02 1.30E+01 2.28E-02
06KRR1.8 4.64E-03 4.85E+02 1.30E+01 2.90E-02
06KRR2.2 1.52E-06 1.51E+04 8.73E+02 1.51E-02
06KRR3.7 1.02E-02 3.18E+02 2.93E+00 1.02E-01

07KRDB2.5 1.71 E-04 2.96E+02 1.39E+00 1.55E-01

Ratios are unitless.

Ms = Saturation moment 
Mrs = Saturation Remanence 
He = Magnetic Coercivity 
Her = Remanent Coercivity
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grains. This is probably a result of finer grain size, indicating a quicker cooling history than 

the other flows of Rocky Ridge Volcanics.

Using a Bartington Instruments MS-2 susceptibility meter, magnetic susceptibility of 

pilot samples was measured during thermal demagnetization to determine the stability of the 

magnetic carriers (Figure 13). Except for one sample (06KRR3), samples behaved according 

to lithology. After exposure to high temperatures, the susceptibilities of sedimentary samples 

increased where as the susceptibilities of the volcanic samples decreased. This is indicative 

of changes in the magnetite present; the larger grains in the volcanics breaking down, and 

smaller detrital magnetite or clay mineral grains of the sedimentary units oxidizing to 

increase bulk susceptibility. The result of this is an increase in noise in the natural 

remanence, making determination of any recorded components of the ancient geomagnetic 

field less precise.

Susceptibility was also compared to magnetic intensity of natural remnant 

magnetization (NRM) (Figure 14). The ratio of intensity to susceptibility times an applied 

field is the Koenigsberger ratio (Q) (Koenigsberger, 1938). Samples with extremely low or 

high Q values are of interest. Low Q values can indicate poor magnetic remanence and high 

Q values indicate possible lightning strike remagnetization (Hankard et al., 2005). Magnetic 

remanence acquired due to lightning strike currents have far higher intensity than remanence 

acquired in the Earth’s ambient magnetic field.

MEASURMENT AND ANALYSIS

Anisotropy of magnetic susceptibility (AMS) was measured on an Agico KLY-3 

ICappabridge. The natural remnant magnetization (NRM) of each specimen was measured
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Figure 13: Susceptibility versus temperature for pilot samples of the Skeena Group. 
The level lines for repeat measurements of standards Ref54, Ref3095 and 3.04e-5 
verify that changes in specimens are well outside of measurement error.
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using a 2-G Enterprises Model 755 cryogenic magnetometer in a magnetically shielded room 

with a 350 nT internal field. All nine sites have well-determined and coherent NRM 

directions. Susceptibility measurements from the KLY-3 and NRM intensity were combined 

to calculate Koenigsberger ratios (Q) (Koenigsberger, 1938). All samples were treated at 

least once with liquid nitrogen to cool them to 77K, allowing multi-domain (MD) magnetite 

grains to lose their soft MD magnetization during the Verwey transition (Verwey, 1939), 

cleaning up the magnetic signal (Dunlop and Argyle, 1997).

Pilot samples were thermally demagnetized in 15° to 50° C steps from 80° C to 600° 

C using an ASC Model TD-48 thermal demagnetizing oven (Figures 15, 16, and 17).

Samples were oriented differently in the oven at each successive temperature step to 

eliminate possible magnetic bias introduced by the oven. Results were evaluated using 

orthogonal plots (Zijderveld, 1967), equal area plots of directions, and relative intensity plots. 

The remaining samples were then demagnetized using temperature steps selected to 

adequately quantify the direction of each magnetic component. Magnetic susceptibility was 

measured with a Bartington MS-2 susceptibility meter between heating steps to monitor 

changes to magnetic minerals. Directions of components were determined by principal 

component analysis (Kirschvink, 1980). The components were identified as linear trends of 

the demagnetization paths. Lines fit to just the measurements along these linear segments are 

termed free lines. The last-removed component defined by a path that appeared to go to the 

plot origin was fit with a line through the origin, called an anchored line, as well as a free 

line. Rough assessment of the quality of the lines is given by their Maximum Angular 

Deviation (MAD). Comparable components from all samples from each site were combined 

using the method of Fisher (1953) to calculate site means and statistics.
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Figure 15: (Clockwise from left) Orthogonal vector, equal area and relative intensity 
plots for stepwise thermal demagnetization of samples 06KRR3.8 and 06KKC6.5. 
Black text - horizontal component, Red - vertical component.
Units in Celcius.
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Figure 16: (Clockwise from left) Orthogonal vector, equal area and relative intensity 
plots for stepwise thermal demagnetization of samples 06KRR1.1 and 06KRR2.1. 
Samples have a poorly defined last-removed (high-temperature) component.
Blue text - horizontal component, Red - vertical component.
Units in Celcius.
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Figure 17: (Clockwise from left) Orthogonal vector, equal area and relative intensity 
plots for stepwise thermal demagnetization of samples 06KKC3.1 and 07KRDB2.5. 
Samples have a well defined first and last removed components (low- and 
high-temperature). Black text - horizontal component, Red - vertical component. 
Units in Celcius.
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RESULTS

Of the nine sites, two had last-removed (highest temperature) components with 

significantly different declinations and inclinations than the other sites (Figure 15). Site 

06KKC6 has a single component that trends to the origin of an orthogonal plot (in-situ Fisher 

mean: D = 324.4°, I =24.9°) and site 06KRR3 has an errant high-temperature component 

(mean: D = 166.6°, I = 28.8°). Combined with high Koenigsberger ratios (Q)

(Koenigsberger, 1938) (Figure 14), this leads to the conclusion that these sites (and samples 

06KRR1.7 and 1.8) have been remagnetized by lightning strikes (Hankard, et al. 2005).

The remaining seven sites have low- and high-temperature components (Figures 18 

and 19; Table 2). The low-temperature component reaches unblocking temperatures around 

200-300° C with the sedimentary sites (06KKC) unblocking at lower temperatures than the 

Rocky Ridge and Rocher de Boule sites. The sedimentary sites (06KKC and 07KRDB) also 

have a poorly defined intermediate temperature component (Figure 18; Table 2), which 

appears to contain little useable information.

The high-temperature component (380°-550° C) represents the presumed last- 

removed component of magnetization. By approximately 550° C, remanence in each sample 

was either too weak or too noisy to continue demagnetizing. Free and anchored line fits were 

made for each sample (Figure 19). For most sites, the free and anchored fits are similar, with 

the anchored lines having lower MAD values. The two Rocky Ridge sites (06KRR1 and 

06KRR2) have different directions from the sedimentary sites from “Sc” ridge, which is 

unexpected on samples from the same tectonic block. Given the generally poor definition of 

the last component (Figure 17) and unusually low tilt corrected inclinations (Table 2), these 

sites have been excluded from further consideration. It is important to note that the directions
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Low temperature component 
(80-300 C)

06KKC & 07KRDB only (200-430 C)

Figure 18: Equal area stereoplots of Principal Component Analysis free fits for 
remagnetized sites (A and B), low temperature components (C and D), and medium 
temperature components (E and F) for sample sites from the Skeena Group.

A, C, and E are in-situ (geographic) directions from individual samples.
B, D, and F are site mean directions and ags envelopes of confidence.

Solid circle = Lower hemisphere (positive polarity), Open circle = Upper hemisphere.
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Figure 19: Equal area stereoplots of Principal Component Analysis free fits (A and B) 
and anchored fits (C and D) of the last-removed (high-temperature) component 
(380-550 C) for sites from the Skeena Group. Note differing anchored fit direction 
for 06KKC7.

Plots A and C are in-situ (geographic) directions from individual samples.
Plots B and D are site mean directions and ags envelopes of confidence.

06KKC - yellow, 06KRR - red, 07KRDB - green 
Solid circle = Lower hemisphere (positive polarity)
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are not unreasonably inconsistent due to the problems of polar secular variation (PSV). As 

volcanic units average PSV over a shorter time period than sedimentary units, the difference 

in directions could be an effect of magnetic polar wander.

Because the anchored line fits have lower MADs, they were preferred in subsequent 

analysis. The one exception was 06KKC7 as the free line fit had a slightly lower MAD, but 

with a significantly different direction, neither could be preferred. The anchored line fit 

directions were tilt-corrected to see if dispersion would decrease as the sites^ere restored to 

paleohorizontal. Using the Fisher precision parameter k as inverse of dispersion, if k is 

highest at 100% untilting, then this is clear evidence that the remanence predates relative 

reorientation of the strata, and possibly was acquired early during lithification or cooling. 

Since there is a low number of sites, and little attitudinal diversity, the fold test was 

inconclusive (Figure 20). The minimum scatter is at approximately 40% untilting. However, 

since 100% untilting is within 95% confidence (ags), the hypothesis that the high temperature 

component is primary cannot be rejected. Other possible reasons for the intermediate peak in 

clustering includes between-site rotations and compound structures such as plunging folds, 

which cannot be ruled out due to the lack of good geologic mapping in the region.

INTERPRETATION

The first-removed (low-temperature) component would be expected to possess an 

observed present day geomagnetic field inclination of 73.4°. The in-situ Fisher mean has a 

lower than expected inclination of 68.8° ± 12.9° for the sample sites, but this is well within 

a95 confidence. Therefore, it is reasonable to describe the low-temperature component as a 

modem day magnetic field overprint.
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Figure 20: Parametric bootstrap fold test (Tauxe, 2002) of the sedimentary units of 
the Skeena Group (06KKC3 - 5, 06KKC7, and 07KRDB2). Volcanic units 
(06KRR1 and 2) were omitted.

Minimum scatter is at ~40% untilting but is not distinguishable from either 0% or 
100% untiltihg within 95% confidence.
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As sites from 2006 and 2007 are found on different tectonic blocks (Figure 8), it is 

appropriate to estimate the mean inclination and statistics using the inclinations only 

(McFadden and Reid, 1982) to calculate the overall inclination of the Skeena Group. The 

Rocher de Boule sample site, 07KRDB2, presents some challenges in this method of 

interpretation. While most tectonic blocks in the region, including the “Sc” ridge block, are 

tilted to the north, 07KRDB2 is tilted nearly vertical to the south. Two hypotheses for this 

discrepancy are large amounts of block rotation (up to 180 degrees!) or stmctural 

complexities yet unmapped. Field observations and the descriptions of Bassett (1995) do not 

suggest a structural answer for this problem. Tilt correction of the anchored line fit for 

07KRDB2 block indicates that block rotation probably occurred before tilting, however, the 

relatively shallower inclination of 07KRDB2 may indicate some tilting occurred before block 

rotation. This reduces reliability of interpreting this site as it is impossible to assess the 

relationship between directions at this site, and the other sites, without uncertainty about the 

influence of block rotation.

With the uncertainties in the preferred data, the results of inclination-only analysis 

were varied (Table 4). The Gaussian mean inclination is a straight average of the inclination, 

assuming the declination for each site is zero. The Fisher mean inclination presumes a range 

of declination that would correspond to the observed range in inclination for a Fisher 

distribution. Therefore, the Fisher mean inclination is a more realistie calculation for the 

overall inclination of the Skeena Group.
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Table 4. Paleolatitude analysis of the Skeena Group

Sites Gaussian mean 
Inclination

Fisher mean 
Inclination N R k “95

Paleolatitude
P^)

Error
(degrees)

Displacement
(km)

06KKC3-5, 06KRDB2, 
06KKC7 (Anchored) 59.4 64.0 5 4.6 10.8 19 45.7 30.5 2300

06KKC3-5, 06KRDB2, 
06KKC7 (Free)

65.3 71.3 5 4.7 12.0 18 55.9 32.7 1200

Sites Fisher mean 
Declination

Fisher mean 
Inclination N R k “95

Paleolatitude
(X)

Error
(degrees)

Displacement
Ocm)

06KKC 3-5 and 7 (Free) 340.2 73.0 4 3.97 107.7 6.75 58.5 11.6 900

North American Pole Pole Latitude Pole Longitude “95 Age Source

Housen et al., 2003 70.1 191.2 2.7 125-85 Ma Various North American Sites

Dickinson and Butler, 1998 81.6 201.5 5.4 84-66 Ma Elkhom and Adel Mountains

Results of paleolatitude analysis of the Skeena Group and North American 
paleopoles used in analysis.These poles are prefered as they only include North 
American sample sites, increasing paleopole accuracy.



Using the equation

tan 1 = 2 tan X

where I is the inclination and X is the latitude, the paleolatitude for the Skeena Group, 

including 07KRDB2, is 55.9° ± 32.7°. Without 07KRDB2, the paleolatitude is 58.5° ± 11.6°. 

Comparing these with an appropriate North American pole for the late Cretaceous (Housen et 

al., 2003), the Skeena Group formed either 1200 ± 3000 or 900 ± 1000 km south of its 

expected latitude with respect to North America at ~95 Ma. These distances are within error 

of each other; however, it is important to note that since the number of sites (n) is small, the 

error is inherently large.
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DETRITAL ZIRCON GEOCHRONOLOGY

U-Pb detrital zircon geochronology can provide insight into the development and 

provenance of sedimentary basins. For detrital zircon geochronology, the use of laser 

ablation inductively coupled plasma - mass spectrometry (LA ICP-MS) is ideal as it requires 

only few kilograms of sample material and allows quick sample preparation and analysis 

(Chang et al., 2006). Using this technique, the large number of single grain detrital zircon 

ages necessary (n = 117; Vermeesch, 2004) to statistically characterize the provenance of 

sedimentary units and their regional context is far less daunting (and less expensive) than 

using other U-Pb dating methods.

One sample from the Rocher Deboule Formation, the uppermost unit of the Skeena 

Group, was analyzed in late 2007. The results are used to characterize the sedimentary 

sources for the Skeena Group in the late Cretaceous and to discuss the implications of these 

sources on the paleogeographic provenance of Stikinia.

MEASUREMENT AND ANALYSIS

Sampling

One detrital zircon sample (07KRDB1) of medium- to fine-grained sublithic arenite 

from the Rocher Deboule Formation was collected in August of 2007 from a ridge designated 

in Bassett (1995) as “Hf’ (Figure 8). The upper-most unit of the Skeena Group was chosen to 

characterize incoming sediment shed from inboard terranes, and, potentially, the continent, 

into the fluvial-marginal deposits of the Skeena Group. Pollen assemblages from this section 

(Bassett, 1995) indicate a Late Albian to Early Cenomanian age. This age is sensible as the
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Rocher Deboule Formation conformably overlies the older Rocky Ridge Volcanics. Two 

hornblende-rich samples from the “Sc” ridge (Figure 8) have '^*’Ar/^^Ar ages of 95.1 ± 1.6 and 

94.9 Ma ± 0.6 Ma (Bassett, 1995; Sample 06KRH01).

Analytical Procedure

Sample.preparation at the Mineral Separation Lab at the University of Idaho in 

October 2007 followed procedures from Chang et al. (2006). This included precautions to 

assure clean conditions to prevent contamination from stray detrital zircon grains. Fist sized 

(0.5-1.0 kg) samples were crushed first in a jaw crusher, then a disc mill. A Gemini water 

table removed light minerals and fine grains. Free fall and tilted Frantz Isodynamic magnetic 

separation removed magnetic minerals. Heavy liquid separation using Methylene Iodide 

(MEI) then isolated zircon grains from the remaining concentrate. From 6-8 kg of material, 

over 300 zircon grains with a typical size of 30-100 pm were extracted. To eliminate 

potential bias, no differentiation based on grain physical properties was made.

The detrital grains were mounted along with control zircons (Peixe, age=1099 Ma 

and FCl, age=564 Ma; Chang et al., 2006) at Washington State University, encased in a 

“puck” of epoxy, and then polished to expose the grains at their mean half thickness. The 

mounted grains were carbon coated, then imaged with an AMRAY 1830 Scanning Electron 

Microscope using scanning electron microscopy-cathodoluminescence (CL-SEM) at the 

Materials Characterization Laboratory at the University of Idaho to determine the grains’ 

internal structures. All grains showed zoning, and few showed inherited cores (Figure 21).

From the sample, 140 zircon grains were analyzed at the Geoanalytical Laboratory at 

Washington State University using a Finnigan Element2 HR-ICP-MS (High Resolution-
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Figure 21: Scaning electron microscope cathodoluminescence (CL-SEM) image of 
detrital zircon grains from 07KRDB1. Most grains have clear zoning, euhedral to 
rounded/broken grain shape, and are ~50-100 pm long.
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Inductively Coupled Plasma-Mass Spectrometer) combined with a New Wave UP-213 laser 

ablation (LA) system. Each grain was ablated using a 213 nm laser with a 30 pm spot for 35 

seconds. Results for all grains were calibrated to the two control zircons FCl and Peixe, 

which were analyzed multiple times after every fifth analysis of an unknown zircon grain. 

Results using both control zircons were similar; hence the data presented are based on the use 

of the Peixe control zircon. Each analysis was taken near the rim of the grain to avoid 

sampling an inherited core.

Discordance

Of 140 analyzed zircon grains, 16 were immediately rejected as having poor analyses 

due to the choice of location of the ablation spot or grain composition. The remaining 124 

grains were then assessed for discordance from their “Concordia” ages (Ludwig, 1998). 

Ninety two grains were determined to be either concordant within an error of 2ct or within 

30% of concordance on a Concordia plot (Figure 22). Thirty two grains failed the 

discordance test. However, it is not believed this is evidence of lead loss as many points are 

“pulled up” the Concordia diagram. Lead loss is usually indicated by lower than expected 

concordant values. Unless there has been a large amount of lead loss, the reasonable 

hypothesis is that common lead contamination is a likely cause for this shift. Also, the young 

ages of the grains means a small amount of contamination can create the appearance of 

considerable ^®^Pb/^'*^Pb age discordance.

Using the methods of DeGraaff-Surpless et al. (2004), possible modem common lead 

contamination was assessed. This employs a mixing line on a Tera-Wasserburg diagram 

(Tera and Wasserburg, 1972) from a modem ^®’Pb/^°^Pb ratio of 0.86 for common lead
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207pb/235u
data-point error ellipses are 2c

Figure 22: Concordia Plot of 206Pb/238U ratios versus 207Pb/235|j ratios for 124 detrital 
zircon grains for sample 07KRDB1. Mesozoic grains (inset; n = 118) have elevated 
207pb/2oepb ratios, indicating common lead contamination.

Plot generated using Isoplot 3.0 (Ludwig, 2003)
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(Cumming and Richards, 1975) to the age-corrected value on Concordia for each grain 

(Figure 23). Using this mixing line, all grains passed a level of 5% discordance at an error of 

2ct. Using a Tera-Wasserberg concordia diagram to plot the ratios of Pb/ Pb versus 

23«u/206pb of individual discordant grains, the ages for these grains can be corrected by 

linearly regressing points back down the ^®’Pb/^*^^Pb mixing line from 0.86. This correction 

changes the uncorrected age values minutely (0.1-0.2 Ma), well within all initial age errors of 

2a. Therefore, it is proposed that these ages be accepted in the analysis of data. In total, all 

124 unknown grains analyzed from sample 07KRDB1 were accepted for analysis.

Statistical Analysis

Small amounts of modem common lead can produce a large discordance of 

207pb/206pb values in young detrital grains, the ^°^Pb/^^*U ratio is a more appropriate measure 

of age in all grains younger than 1 Ga. Common lead contamination in older grains produces 

less discordance, and therefore ages derived from ^°^Pb/^°^Pb ratios were used. Data were 

processed using Isoplot 3.0 (Ludwig, 2003) and all accepted grains were plotted on relative 

age probability diagram using a histogram bin width of 5 Ma (Figure 24). Using the Gaussian 

unmixing function in Isoplot (based on Sambridge and Compston, 1994) as a guide, rough 

mean ages for the main peaks were established (Table 5).

RESULTS

The detrital zircon age distribution for the Rocher Deboule Formation is marked by 

six distinct peaks: two main peaks at ~100 and ~180 Ma, side peaks at ~140 Ma and ~215
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Figure 23: Tera-Wasserburg diagrams (Tera and Wasserburg, 1972) for 207pb/2oepb 
ratios for 124 detrital zircon grains from sample 07KRDB1. Blue ellipses are 
concordant grains; red are discordant grains.
(A) Discordance of grains is estimated by using a mixing line from Concordia to a 
common lead 207Pb/2oepb ratio of 0.86 (Cummings and Richards, 1975).
(B) Using the 0.86 mixing line as a reference, all grains are less than 5% discordant 
from the Tera-Wasserburg Concordia due to modern common lead contamination.
Method from Degraaf-Surpless et al., 2003. Plots generated by Isoplot 3.0 (Ludwig, 2003).
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Figure 24: Relative probability plot of U-Pb ages for 124 detrital zircon grains from 
sample 07KRDB1. Histogram bins of 5 Ma.

Generated using Isoplot 3.0 (Ludwig, 2003).
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Table 5. Detrital zircon peak ages

Age
(Ma)

2a
error

Fraction 2a
error

100.94 0.66 0.17 0.08

141.84 0.79 0.19 0.08

180.06 0.65 0.52 0.13

214.5 2.5 0.08 0.05

332.6 2.8 0.04 —

Peak age results of the Unmix Ages function in Isoplot 3.0 (Ludwig, 2003). 
Algorithm of Sambridge and Compston, 1994.
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Ma, a small Mississippian peak, and several middle- to early-Proterozoic-aged grains. No 

Archean-aged grains were found during this analysis.

The mid-Cretaceous peak at -100 Ma sets the upper bound on the age of the Rocher 

Deboule Formation, with the youngest grain at 87.3 ± 2.2 Ma (07KRDB1_53). This 

conforms to other radiometric ages for related units of the Skeena Group (95.1 ±1.6 Ma for 

the Rocky Ridge Formation (Bassett and Kleinsphen, 1996)). This, however, contradicts 

pollen provenance ages of Late Albian-early Cenomanian (106-95 Ma) from the same study. 

Grains from this peak are believed to be derived from one main source: concurrent and older 

mid-Cretaceous intermediate volcanism of the Rocky Ridge Formation (Bassett and 

Kleinsphen, 1996). Rocky Ridge volcanism lasted from at least 107 Ma (MacIntyre, et al., 

2004) to 95 Ma (Bassett and Kleinsphen, 1996). This peak records erosion of local volcanic 

exposures and transport of sediment into the Skeena basin.

The largest peak for 06KRDB1 is of middle to early Jurassic age grains (-180 Ma). 

The best possible source is the early- to middle-Jurassic Hazelton Group (Marsden and 

Thorkleson, 1992; Gordee, et al., 2004), a calc-alkaline island arc which is found extensively 

throughout Stikinia, and stratigraphically underlies the Skeena Group. Ages for the Hazelton 

Group range from 197 Ma (Marsden and Thorkleson, 1992) to 166 Ma (MacIntyre, et al., 

2001). The -180Ma peak thus likely records the uplift and erosion of the older Hazelton 

volcanics during the late Cretaceous.

Side peaks of the main peak include a late Jurassic peak at -140 Ma and a late 

Triassic peak at -215 Ma. Both peaks are poorly defined, a possible side effect of the size of 

the -180 Ma peak; therefore the interpretations of these peaks are less precise. Suspected
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sources for these peaks are the late Jurassic Francois Lake intrusive suite (Schiarizza and 

MacIntyre, 1999) and the late Triassic Takla-Stuhini Group (Monger and Church, 1977). The 

Francois Lake intrusive suite is a group of granitoid stocks and dikes with ages ranging from 

148 to 138 Ma (MacIntyre, et ah, 1997; Whalen, et ah, 2001).The Takla Group (Monger and 

Church, 1977) is a late Triassic island arc assemblage with ages ranging from 218 to 193 Ma 

(MacIntyre, et ah, 2001).

The two older peaks of Mississippian (~330 Ma) and Proterozoic (1.6-2.0 Ga) ages 

represent the oldest and perhaps most distant source material for the Rocher DeBoule 

Formation. The Cache Creek Terrane (Struik, et ah, 2001), directly east of the Skeena Group 

and Stikinia, would be a likely source, because the chert pebbles of the Rocher Deboule 

Formation are consistent with input of sediment derived from the Cache Creek Terrane ocean 

floor sediments. However, no known volcanic units of Mississippian ages are found in the 

oldest local rocks of the Cache Creek Terrane (Struik, et ah, 2001). Also, it is impossible to 

tell if the Proterozoic grains came directly from an original source (North American 

continent) or are reworked detrital grains from younger units. An alternative hypothesis is 

that these peaks represent detritus from the Yukon-Tanana Terrane (Colpron, et ah, 2005). U- 

Pb zircon ages of -320-340 Ma are found in volcanic units in the Yukon-Tanana Terrane 

(Nelson and Friedman, 2004). Ages of detrital grains in units of the Yukon-Tanana Terrane 

(Gehrels and Kapp, 1998; Ross et ah, 2005; Bradley et ah, 2007) also match the Proterozoic 

peak.
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DISCUSSION

The Skeena Group presents an excellent opportunity to test different reconstructions 

of late Cretaceous paleogeography. When found, units of the Skeena Group possess good 

paleomagnetic sampling qualities, and record the history of sedimentation with detrital 

zircons. Understanding how these different stories compliment each other is important to 

making a clear statement about the paleogeography of the Skeena Group.

The paleomagnetic results are inconclusive due to the low number of sample sites. As 

they are within error, no hypothesis can be ruled out. However, combined with the larger data 

set of the younger Kasalka Group (1300 ± 1000 km), it is clear that the Intermontane 

Superterrane was not ~3000 km south of its expected latitude with respect to North America 

between 95 and 75 Ma.

Several questions remain to be answered. The age of the Kasalka Group is uncertain, 

preventing their use in precisely describing plate rates during translation. Within error, it is 

impossible to rule out possible complications in terrane motion. The similarity in translation 

distance could indicate two possibilities: plate motion slowdown during the latest Cretaceous 

or a small southward motion. Further refinement of the sources of error could provide 

interesting insights into the details of the “Baja British Columbia” model.

There is no direct evidence in the detrital zircon data that directly suggests that 

Stikinia was -1000 km south of its expected position at -95 Ma. However, the data do not 

rule out this hypothesis, as no Archean-aged grains were found in 07KRDB1. Archean grains 

are derived from northern cratonic sources, and are used as evidence against southern latitude 

locations (Mahoney et al., 1999). Two explanations for this are a) the Roche Deboule river 

system was not sufficiently long enough to reach the craton, or b) Stikinia was at the
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moderate southern latitude suggested by the paleomagnetic evidence. Also of interest is the 

age distribution of Proterozoic grains in 07KRDB1. While most of the grains are of a 

common age range (1.6-2.0 Ga) for several regions of the craton, one grain is of an age (1.4 

Ga) to be potentially from the Belt-Purcell Basin or more likely from its syn-depostional 

source (Anderson and Davis, 1995). While one grain is not conclusive proof, and could be far 

traveled or recycled multiple times, this is another potential line of evidence for a moderate 

location for the Intermontane Superterrane at 95 Ma. Future detrital zircon samples from 

lower sections of the Skeena Group could confirm the lack of Archean zircons, and the 

possibility of a Belt-Purcell source.

FUTURE WORK

The Skeena Group has the potential to be a further source for clues about late 

Cretaceous Cordilleran paleogeography. However, improvements must be made in the 

general geologic knowledge of the Skeena Group. Current mapping (Tipper, 1976; Richards, 

1990) is at a reconnaissance scale, and lacks important details about structure.

Future paleomagnetic sampling will be dictated by three factors: accessibility, 

exposure, and outcrop quality. The best exposures of the Skeena Group are in the high 

country of the Rocher de Boule Range. This introduces several complications: the expense 

and inflexibility of helicopter access, an increased chance of lightning strikes that reset the 

ancient geomagnetic records, and scarcity of water for cooling the sampling drill. Also, most 

ridges are representative of separate tectonic blocks with little structure, making collecting 

enough samples for an adequate fold test to assess primary magnetic remanence difficult.
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Each formation has its own unique problems in sampling. The Kitsuns Creek Member 

produces the most reliable paleomagnetic results, has good exposures and clear sedimentary 

structures. The Rocky Ridge Volcanics are commonly brecciated, especially on Rocky Ridge 

(Tipper, 1976), so finding good flows is difficult. Also, some flows have been 

hydro thermally altered (Bassett, 1995), making the likelihood of good magnetic remanence 

low. The Rocher Deboule Formation is dominantly a chert pebble conglomerate, so only the 

few sandy members are reasonable for sampling.

From the results of this study, further sampling of the Kitsuns Creek Member would 

be ideal for expanding the results. The Kitsuns Creek member is more widely found and 

sampling fi’om two to three more ridges would allow for a more definite fold test. Also, it 

would be ideal for further detrital zircon samples as detrital zircons are common in the 

Kitsuns Creek member (Figure 25). More samples fi'om the Rocky Ridge Formation could 

help average out the possible effects of polar secular variation, and allow the reintroduction 

of the excluded 06KRR1 and 2 high-temperature directions. A potential new study area is the 

Sustut Basin, believed to be similar in age and source as the Skeena Group (Eisbacher, 1981). 

More radiometric dates would also provided better geochronological control of the Skeena 

Group. Undated igneous zircons were extracted from the sampled flows of the Rocky Ridge 

Volcanics on “Sc” ridge. The potential to date these and other flows could provide clarity to 

the paleomagnetic story of the Skeena Group
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CONCLUSIONS

The Skeena Group of British Columbia preserves a story of late Cretaceous 

paleogeography for the Intermontane Superterrane. Paleomagnetic sampling from units of 

varying ages of the Skeena Group suggests that deposition occurred -1000 miles south of its 

present day latitude. Further sampling is required to confirm this finding, but the chances of 

adding to the story are promising as some units are good carriers of paleomagnetic signals.

The ages of detrital zircon grains from a unit of the Skeena Group suggest that the 

Skeena Group received the bulk of its material from local units that were rifted and exposed 

during the intrabasinal volcanism that produced the Rocky Ridge Volcanics. Some grains 

came from units that are not directly inboard of Stikinia today, suggesting that relative 

positions of these terranes were different than they are today. The absence of Archean-age 

grains in a statistically significant sample of detrital zircons does not rule out different 

models for the paleogeography of the Skeena Group, but does support the paleomagnetic 

results.
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