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Abstract

The Kyuquot Group is a series of marine clastic deposits of Late Jurassic to Early 
Cretaceous age located on the NW portion of Vancouver Island. These sediments have been 
folded, but not metamorphosed, and so provide an attractive target for paleomagnetic study. 
Results from these rocks fill a significant (50 m.y.) time gap in our knowledge of the 
paleomagnetic paleolatitude record of Wrangellia. Paleomagnetic results from the 
underlying Bonanza Volcanics (Symons, 1984) show no significant relative latitudinal 
displacement of Wrangellia with respect to North America. This, along with geological 
correlations between other similar-aged clastic sediment units, has led several workers 
(Brandon et al., 1988, McClelland et al., 1992) to propose that the Kyuquot Group represents 
a clastic overlap tying Wrangellia to the North American margin. Younger sedimentary 
rocks from Vancouver Island (the Upper Cretaceous Nanaimo Group) have shallow 
inclinations, indicative of 2500 km of translation (Enkin et al., 2001).

A total of 324 samples from the Jurassic Kapoose Formation and the Cretaceous One 
Tree Formation were collected. Thermal cleaning of 111 specimens from the Berriasian to 
Lower Valanginian One Tree Formation revealed two remanence components; one a low- 
unblocking temperature overprint, the other a high-unblocking temperature component 
displayed in 77 specimens. The high Tub components pass both an inclination only test and a 
combined great circle and line-fit fold test after correction for a suspected small block 
rotation. The fold test results in a 100% bedding corrected direction of Dec. 214.4°, Inc. 
85.6°, ± 3.3°, and k = 25.2. Results from the Lower Callovian to Upper Tithonian Kapoose 
Formation are more scattered. 132 specimens were measured, 66 specimens have a 
recognizable high Tub component. The high Tub component fails both an inclination only 
fold test and a combined great circle and line-fit fold test.

The Lower Cretaceous One Tree Formation mean inclination corresponds to a 
paleolatitude of 81.3° ±6.5°, which is 28° (3100km) north of the expected paleolatitude, 
assuming North American paleogeography. This high paleolatitude, combined with the low 
latitude results for the Late Cretaceous, is inconsistent with paleolatitudes predicted by 
models for Wrangellia (WV-1 and WV-2, Debiche et al., 1987). The high paleolatitude is 
consistent with the postulated revised plate model of Engebretson et al. (1995).
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Introduction

This report is based on the paleomagnetic investigation of the Jura-Cretaceous 

Kyuquot (ki-yu’-kut) Group located on the NW coast of Vancouver Island, British Columbia 

(Fig. 1). The Kyuquot Group is a shallow marine sedimentary unit that unconformably 

overlies either the Lower Jurassic Bonanza Group or the Upper Triassic Vancouver Group of 

the Wrangell Terrane (Fig. 1, Muller et al., 1981). Hence, paleomagnetic results from the 

Kyuquot group can be used to fill the Late Jurassic to Early Cretaceous gap in the 

paleolatitude transport history of Wrangellia.

The objectives of this study were to 1) determine reliable paleomagnetic poles from 

both the Jurassic and Cretaceous formations of the Kyuquot Group for comparison with 

Jurassic and Cretaceous paleopoles from the North American craton, and 2) use anisotropy of 

magnetic susceptibility (AMS) to estimate paleocurrent directions. Comparison of the 

paleomagnetic paleopoles helps to answer the following questions concerning the tectonic 

evolution of the North American Cordillera. (1) What was the latest Jurassic and earliest 

Cretaceous paleomagnetic paleolatitude of Wrangellia? (2) Has the paleomagnetic 

declination of the Kyuquot group changed due to a rotation about a vertical axis? (3) What 

plate motion model best fits the paleomagnetic paleolatitude record of Wrangellia? The 

AMS data are used to test for inclination shallowing due to compaction and provide a 

paleocurrent direction that can be used for provenance studies.

Wrangellia is a Permian-Jurassic sequence of island arc volcanic and sedimentary 

rocks and is currently located along the west coast of North America stretching from Oregon 

to Alaska (Jones et al., 1977) (Fig. 2). The Wrangell, Alexander, and Peninsular terranes 

make up the larger terrane called the Insular Superterrane. The Upper Jurassic to Lower 

Cretaceous Gravina volcanic and volcaniclastic sequence overlaps Alexander and Wrangell 

terranes, tying them together by the Late Jurassic time (Berg et al., 1972). Wrangellia was 

joined to the Peninsular terrane by Cretaceous time, based on stratigraphic and fossil 

assemblage correlations (Jones, 1963). Cowan (1994) summarized the connection between 

the Insular Superterrane and the Coast Plutonic Complex, which were adjacent to each other 

by Late Cretaceous time, based on Cretaceous sedimentary overlapping sequences, detritus



from eastern imbricate zones within Cretaceous overlapping sequences, and Cretaceous 

intrusive contacts.

The Cretaceous paleogeography of the Insular Superterrane is in dispute. Magmatic 

and provenance links to the Intermontane Superterrane and the North American continent 

suggest the Insular Superterrane was adjacent to the eastern Intermontane Superterrane (Fig.

2) by the Middle Jurassic (e.g., van der Heyden, 1992; McClelland et al., 1992; Monger and 

Joumeay, 1994). These models constrain the Insular Superterrane near its present position 

relative to the North American continent during the late Mesozoic Era (ca. 150-90 Ma., see 

summary in Cowan, 1994). Geological correlations between other similar-aged clastic 

sediment units has led several workers (Brandon et al., 1988, McClelland et al., 1992) to 

propose that the Kyuquot Group represents a clastic overlap tying Wrangellia to the North 

American margin (Fig. 3).

Existing paleomagnetic data do not provide support for a mid-Cretaceous northern 

paleolatitude for the Insular Superterrane during the Cretaceous. The data from the Insular 

Superterrane and all connected terranes are listed in Table 1 and plotted in Figure 4. The 

data show that the Insular Superterrane was at low paleolatitudes during the Triassic, mid- 

paleolatitudes during the Jurassic, mid-paleolatitudes during the mid-Cretaceous (see 

summaries in Beck, 1989, and Irving and Wynne, 1990, Irving et al., 1996). Note the gap in 

paleomagnetic studies between 110 and 160 Ma. Moores (1998) proposed that the Insular 

belt was well offshore before it accreted in the mid-Cretaceous at mid-latitudes, based on the 

distribution of ophiolites.

Late Jurassic to Early Cretaceous paleomagnetic data from the Kyuquot Group can be 

used to test the models discussed above and fill in the gap in Wrangellia displacement history 

between 160 and 110 Ma (Fig. 4 and Table 1). A better understanding of the relative motion 

between outboard terranes and North America can be used to evaluate models developed for 

oceanic plate motion (e.g., Engebretson et al., 1985,1995). The Kyuquot Group is good for 

paleomagnetic study because the sequence is well described, has well-defined age 

constraints, and has not been metamorphosed (Jeletzky, 1950, Muller et al., 1981).
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Geology and Structure of the Kyuquot Group

Geology

The Kyuquot Group is located along the coastline and offshore islands near Kyuquot 

Sound (Fig. 1). It consists of predominantly outer shelf deposits composed of sandstone, 

limy siltstone and shale, and a basal conglomerate (Fig. 5). Everywhere, fossils are abundant 

and well preserved. The sedimentary sequences and fossils were described and dated and 

named by Jeletzky (1950). The name for the Kyuquot Group was assigned in Jeletzky 

(1950), and the two formations, the Upper Jurassic Kapoose Formation and the Lower 

Cretaceous One Tree Formation, were assigned in Muller et al. (1981) (Fig. 5). The fossil 

dates that were assigned by Jeletzky (1950) were given minor revision by Muller et al.

(1981). The following summary is from these two sources.

The Callovian to Kimmeridgian Kapoose Formation is located along the mainland 

coastline and on the northeastern sides of both Grassy Island and the McQuarrie Islets (Fig.

1). It unconformably overlies the Early Jurassic Bonanza Group or the Late Triassic 

Vancouver Group at McLean Cove and Jurassic Point, and the Triassic Parson Bay 

Formation at Kapoose Rocks (Fig. 1). A basal conglomerate lies directly on each of the 

contacts. It contains cobble size clasts and is thickest at McLean Cove. To the SE, it thins 

and reduces to gravel size clasts at Jurassic Point (compare Figs. 6, 7, and 8). The majority 

of beds are dark, limy siltstones (Fig. 9), with exception of the outcrop at McLean Cove 

location that is a basal conglomerate overlain with sands showing beach facies.

The Berriasian to Lower Valanginian One Tree Formation crops out on Grassy 

Island, Clark Island, and the McQuarrie Islets. There is a disconformity between the 

Kapoose Formation and the One Tree Formation on Grassy Island. The contact is identified 

on the NW side of Grassy Island by a basal conglomerate containing Cretaceous fossils (Fig. 

10, Jeletzky, 1950). Most beds are gray to tan fossiliferous siltstones and sandstones (e.g.. 

Fig. 11). Similar stratigraphic sections crop out on both islands, so it is assumed that they are 

the same section. The beds are primarily bioturbated with some density flow structures.
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The Kyuquot Group sediments are primarily outer shelf deposits deposited in a neritic 

environment between wave base and ~200m depth (Muller et al., 1981). The Kyuquot Group 

comprises the southern extent of the Jura-Cretaceous Hectate forearc basin that also includes 

sedimentary units on North Vancouver Island and the Queen Charlotte Islands (Haggart, 

1993). It has been proposed that sediments of the Hectate basin came predominantly from 

the east and contain clasts from Wrangellia and apparently the Coast Plutonic Complex (see 

summary, Haggart, 1993 and Monger et al., 1994). To the west, the expected subduction 

complex is missing. Haggart (1993) proposed that the Jura-Cretaceous Yakutat Terrane, 

located in southeast Alaska, contains the missing subduction complex. Other workers have 

proposed that the Jura-Cretaceous Pacific Rim Complex may be the missing subduction 

complex (e.g., Muller et al., 1981).

Structure

Structural measurement and analysis is useful for constraining the age of the 

acquisition of remanent magnetism. Fold tests are used to decipher the proper orientation of 

the rock units based on the dispersion of the magnetic remanence directions. Correction of 

paleomagnetic and AMS data for dispersion due to folding and small block rotations is 

important for orientating a primary magnetic remanence to its position of acquisition. 

Deciphering the timing of folding, faulting and small block rotations is imperative for 

constraining the age of the acquisition of remanent magnetism.

There is an abundance of large-scale (Fig. 1) and small-scale (Figs. 8 and 12) faults in 

the field area (Jeletzky 1950). Northwest trending faults are shown on the schematic 

geologic map in Figure 1. Jeletzky (1950) mapped the faults as dextral strike slip faults. 

Muller et al. (1981) stated that the Westcoast fault runs through Brecciated Point and has 

undergone dextral oblique slip (Fig. 1). Muller et al. (1981) found evidence for constraining 

the motion of the Westcoast fault between the Late Jurassic and Early Eocene. It is assumed 

here that the fault between Clark Island and Grassy Island is a strand of the Westcoast fault 

system because of its proximity and parallel trend (Fig. 1). Faulting of the Westcoast fault is 

thus constrained between the Early Cretaceous and Early Eocene. A schematic cross-section, 

running from A-A’ on the map in Figure 1, was made from the information from the geologic
4



map provided in Jeletzky (1950), and is shown in Figure 13. It emphasizes the effects of 

faulting and folding in the field area.

Muller et al. (1981) stated, “Apart from local syndepositional folding...Mesozoic and 

Tertiary formations [in the Nootka Sound Map-area] are mainly block-faulted.” Counter to 

this general statement, broad NW-SE trending folds were observed in the field and can be 

discerned on Jeletzky’s (1950) Map. The folds are shown in the cross-section in Figure 13. 

There is also evidence that some of deformation was taken up by small-scale faulting (e.g.. 

Figs. 8 and 12).

Correction to a Common Framework

A detailed structural analysis is necessary to restore the sampling locations to a 

common framework. Structural orientation data were taken in the field with a magnetic 

compass and from the geologic map provided by Jeletzky (1950). The poles to bedding for 

four locations are plotted on lower hemisphere of equal area plots in Figure 14. The fold 

axes were determined as the pole to the best-fit great circle through the poles to bedding.

The corresponding fold axes are also plotted with their associated confidence ellipses 

(derived using a bootstrap procedure modified from Tauxe’s (1998) boot_di.exe program). 

The results show the GPJ location has a fold axis plunging shallowly to the SE, the KPJ 

location has a fold axis plunging shallowly to the NW, the CIK location has a fold axis 

plunging steeply to the S, and the GIK location has a fold axis plunging moderately to the 

SE.

If folding was before faulting then the fold axes should be a common linear feature 

that can be used to match individual blocks for a reconstruction. The discordant fold axes 

from the GIK and CIK locations suggest that folding occurred before faulting. Faulting is 

thus assumed to have offset and rotated the GIK location 57° counterclockwise relative to the 

CIK location.

An example of a small block rotation correction, using the fold axis as a common

linear feature, is shown in Figure 15. The fold axes determined for the CIK location and the

GIK location (Figs. 14, 15a) are first corrected for fold plunge (Fig. 15b, step 1). The fold
5



axes are then corrected for declination by arbitrarily fixing Clark Island and rotating the fold 

axis azimuth from Grassy Island 57° clockwise (cw) to match the Clark Island fold axis (Fig. 

15b, step2).

Sampling and Laboratory Techniques

Samples were collected on islands and outcrops along the rugged NW coast of 

Vancouver Island south of Kyuquot Sound and north of Esperanza Inlet (Fig. 1). Vegetation 

above winter wave height is substantial, so a 12-foot inflatable boat was necessary to access 

the islands and coastline. The inflatable boat and supplies were driven to a boat launch at 

Fair Harbor (~20km east of Rugged Point), which is the nearest access to Kyuquot sound. 

Base camp was located on the northeast side of Rugged Point (Fig. 1).

Every outcrop of the Kyuquot Group was sampled with exception of the McQuarrie 

Islets, because the water was always too rough to land on these rocky islets (Fig. 1). A 

copious selection of outcrops (Fig. 1) and steeply dipping beds (Fig. 11) made it possible to 

sample nearly the entire exposed section of the Kyuquot Group. An average of 8 oriented 

cores per site were collected from multiple beds spanning approximately 10m of sequence. 

Approximately 20m separated sites at each location. 133 cores were collected from 16 sites 

in the One Tree Formation over an available -320 m thick sequence. 191 cores were 

collected from 25 sites in the Kapoose Formation over an estimated thickness of 400-800m. 

Extensive faulting and numerous isolated outcrops (Figs. 1, 8) make it difficult to estimate 

the total thickness of the Kapoose Formation. Cores were collected using a portable gasoline 

powered drill and oriented with a magnetic compass, and with a sun compass when the sun 

was available. Site latitudes and longitudes were taken with a recreation grade GPS unit.

In the laboratory, the 2.4cm diameter cores were cut to 2.2cm in length and measured 

first with a KLY-3 Kappabridge Spinning Sample Magnetic Susceptibility Anisotropy Meter. 

The specimens were then moved to a magnetically shielded room where the natural remanent 

magnetization (NRM) was measured on a 3-axis 2-G SQUID magnetometer. Specimens 

were thermally demagnetized in an ASC TD-48 magnetically shielded oven. The magnetic 

susceptibility of specimens was measured between each demagnetization step with a
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Bartington susceptibility meter. Curie temperatures of selected samples were acquired using 

the KLY-3 Kappabridge within an Argon gas atmosphere to retard oxidation. Hysteresis 

curves were acquired at the University of Minnesota’s Institute for Rock Magnetism.

Rock Magnetism

To determine what magnetic minerals likely carry the remanence or influence 

susceptibility anisotropy, Curie temperatures and hysteresis parameters were determined on 

representative samples. An example of a typical thermomagnetic curve is shown in Figure 

16. The second derivative of the thermomagnetic temperature heating curve shows a peak 

between 570 and 580° C, indicating that magnetite is the main carrier of NRM (Fig. 17, 

Tauxe, 1998). The increase in the total magnetic susceptibility on the cooling curves 

indicates the growth of new minerals during heating. The magnetic susceptibility measured 

between each thermal demagnetization step also showed an increase in susceptibility above 

~350°C during thermal demagnetization (Fig. 18).

Hysteresis curves for 53 representative samples were acquired at the University of 

Minnesota’s Institute for Rock Magnetism. Typical hysteresis curves for both the Kapoose 

and One Tree formations are shown in Figure 19. Parameters of the hysteresis curves are 

shown on Day et al. (1977) plots in Figure 20. The data are concentrated in the pseudo

single-domain field (PSD) with some in the multidomain field (MD). Also shown are the 

trends for North American remagnetized limestones from Jackson (1990) and single domain 

(SD) & multidomain (MD) magnetite mixtures from Parry (1982). Comparison of the 

Kyuquot Group data to the trends from Jackson (1990) and Parry (1982) suggests that the 

mineral grains are a mixture of SD and MD sized magnetite grains with no influence of 

superparamagnetic grains.

7



Anisotropy of Magnetic Susceptibility

Introduction

The anisotropy of magnetic susceptibility (AMS) of sedimentary rocks can be used to 

estimate the paleocurrent direction (Hamilton and Rees, 1970, Ellwood, 1980, also see 

review in Tarling and Hrouda, 1993). Current flow during the time of deposition aligns the 

magnetic minerals similar to alignment of sediment particles commonly seen in river 

deposits. For moderate velocity flows, the long axes of particles lie along the direction of 

current flow. Sediments deposited in moderate velocity flows have an AMS lineation (axis 

of maximum susceptibility) parallel to the direction of current flow with an axis of minimum 

susceptibility nearly perpendicular to bedding (see review in Tarling and Hrouda, 1993). 

Under higher velocity flow conditions, the long axis of elongate particles will be aligned 

perpendicular to the current flow, due to rolling. In this case, the axis of maximum 

susceptibility will be oriented perpendicular to the direction of current flow and the axis of 

maximum susceptibility will dip up current (see review in Tarling and Hrouda, 1993).

Methods and Results

Susceptibility of 84 One Tree Formation specimens and 162 Kapoose Formation 

specimens was measured on a KLY-3 Kappabridge Spinning Sample Magnetic Susceptibility 

Anisotropy Meter. The data were reduced with the program SUSAR supplied with the 

instrument, then plotted along with means and their bootstrap confidence ellipses using 

Tauxe’s (1998) plotams.exe program. The resulting in situ AMS data are plotted on the 

lower hemisphere of equal area plots (EA) in Figure 21. Flinn (1962) diagrams of the AMS 

data are shown in Figure 22. The Flinn (1962) diagrams show that the One Tree Formation 

and the Kapoose Formation have triaxial anisotropy that is slightly oblate. The Flinn (1962) 

diagrams also show that One Tree Formation has a slightly higher anisotropy compared to 

the Kapoose Formation.
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Analysis

Before paleocurrent estimations can be made, a tectonically influenced AMS fabric 

caused by folding must be ruled out. If the AMS fabric is dominated by a cleavage-bedding 

intersection lineation, then the maximum axes should lie along that lineation intersection. No 

cleavage is visible in the rocks sampled, so to evaluate whether an incipient cleavage controls 

orientation of the maximum susceptibility axes, maximum directions were first compared 

with fold axes. This comparison assumes that the cleavage would be axial planar.

If the folding event controls the AMS fabric, then the maximum AMS axis will lie 

along the direction of the fold axis. Figure 23 shows the AMS data compared to the fold 

axes calculated above for the four most structurally intact locations. Grassy Island (GIK), 

Clark Island (CIK), Gross Point (GPJ), and Kapoose Point (KPJ). The 95% confidence 

ellipses for the mean maximum AMS axes and the fold axes overlap from three of the four 

locations (CIK, GPJ, and KPJ, Fig. 23). The mean maximum AMS axes from these three 

locations are close enough to the fold axes to warrant suspicion that the AMS data include a 

mixture of tectonic origin (bedding cleavage intersection) lineation in some specimens and 

sedimentary origin in others. Yet, a tectonic influence cannot be ruled out. A purely tectonic 

fabric cannot explain the bimodal distribution of maximum susceptibility axes from the GU 

location (Fig. 21) or the dissimilar fold axis and mean maximum AMS lineation seen in the 

GIK location (Fig. 23).

If the AMS fabrics is dominated by current flow then the patterns should be 

consistent with the following: 1) calmly settled sediments should have a minimum 

susceptibility axis perpendicular to bedding (vertical); 2) moderate current flow should align 

the maximum susceptibility axis along the direction of current flow, 3) high current flow 

should align the maximum axes perpendicular to current direction and streak the minimum 

axes in the direction of current flow.

The in situ data from the One Tree Formation were corrected first for fold plunge 

(Fig. 15b, step 1), and then corrected to paleohorizontal. The Kapoose Formation data were
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corrected to paleohorizontal without correction for fold plunge. The tilt corrected AMS data 

are shown in Figure 24.

Since it is possible that the AMS fabric contains a primary depositional fabric, then 

the AMS data plotted in Figure 24 can be analyzed for the above patterns. The AMS data 

from the One Tree Formation on Clark Island has a near horizontal maximum axis lineation 

trending NE-SW, consistent with paleocurrents directed NE or SW. The data from the One 

Tree Formation section of Grassy Island has a horizontal maximum axis trending NW-SE, 

consistent with paleocurrents directed NW or SE. Both sites have 95% confidence ellipses 

that are indistinguishable from vertical, which is consistent with the bedding plane.

The data from the Kapoose Formation are more complex. The AMS data from the 

Jurassic point location shows a mean maximum axis trending NW-SE with a mean minimum 

axis that is indistinguishable from vertical, which is consistent with a paleocurrent directed 

either NW or SE. The Kapoose Point and Kapoose Creek locations also show the dominant 

NW-SE maximum axis lineation but the minimum axes are streaked from vertical to the SW. 

These data possibly suggest a high flow regime with a paleocurrent directed to the SW. The 

data from the Grassy Island Kapoose Formation location show two clusters of maximum 

axes, one with a SSW trend and slight plunge, and the other with a horizontal NW-SE trend. 

The NW-SE maximum axis lineation is consistent with all Kapoose Formation locations and 

the minimum axes plot near vertical, so the pattern may represent a dominant paleocurrent 

directed either NW or SE. The SW cluster is anomalous and cannot be explained. The 

remaining data from Gross Point, McLean Cove, and Kapoose Rocks show a NW-SE 

maximum axis lineation, but have too few data to make definitive paleocurrent direction 

estimates. The mean maximum axis lineations are plotted on the location map in Figure 25.

Discussion

The AMS data from every location shows a dominant NW-SE directed maximum 

axis lineation with exception of the CIK location. A SE directed paleocurrent direction is 

consistent with observations made in the field area of the basal conglomerate thinning to the 

SE with a corresponding clast size reduction (compare Figs. 6, 7, and 8). A SE directed
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paleocurrent is also consistent with clasts within the Kyuquot group being similar to the 

lithology of the adjacent Bonanza or Vancouver Group, as suggested by Haggart (1993) and 

Monger et al. (1994).

Abundant faulting was seen throughout the field area, which may be associated with a 

small block rotation that rotated the CIK location maximum AMS axis lineation relative to 

all other locations. The paleocurrent directions for the One Tree Formation on Clark Island 

are rotated 53° cw from the One Tree Formation on Grassy Island. This rotation is similar to 

the disparity between the fold axes trends calculated for the two islands (57°, Figs. 14 and 

15). The consistency of AMS maximum axes and the similarities of rotation estimates 

between the Clark Island and Grassy Island One Tree Formation locations validates the 

assumption that parallel folds developed before block rotation.

Paleomagnetism (General)

Methods

The NRM of each specimen was measured on a 3-axis 2-G SQUID magnetometer. 

Specimens were demagnetized in an ASC TD-48 magnetically shielded oven. The magnetic 

susceptibility of specimens was measured between each demagnetization step with a 

Bartington susceptibility meter. The remanent magnetization was analyzed using principle 

component analysis (PCA) (Kirscvink, 1980)of visually identified linear and planar segments 

of thermal demagnetization paths.

Linear segments were fit with free lines using PCA. Best-fit free lines were accepted

if their maximum angular deviation (MAD) was less than 10. It was also required that the

last linear demagnetization segment either had an angle to the origin < 6° or was

indistinguishable from an anchored line fit. If the highest temperature demagnetization

segment had a line fit MAD > 10, and appeared planar (showed streaking along a great circle

path on an equal area plot), then the segment was fit with a best-fit plane. Only great circle

fits with a MAD <15 were accepted. Magnetic stability tests used to constrain the age of

magnetization of the line and great circle fits are the McFadden and Reid (1982) inclination

only fold test, the McFadden and McElhinny (1988) combined great circle and line fit fold
11



test, and a reversal test. Line fits and great circle fits were all given equal weight for the 

stability tests.

Results

Typical examples of thermal demagnetization paths are shown in Figure 26. Thermal 

demagnetization paths generally show two components, a low unblocking temperature (low 

Tub) component, and a high unblocking temperature (high T„b) component. The specimens 

that have only one linear component generally have a direction that is indistinguishable from 

the mean the low Tub component discussed below. The typical unblocking temperature 

spectra for low Tub components is from 80-200°C, and for the high Tub components is from 

250-450°C (e.g.. Fig. 26).

Paleomagnetism of the Upper Jurassic Kapoose Formation 

Kapoose Formation PC A Results

Remanent magnetic directions from the Upper Jurassic Kapoose Formation are 

scattered. Of the 132 specimens measured, 74 specimens have an acceptable low Tub 

component, and 66 specimens have a recognizable high Tub component. Specimens were not 

used if they did not meet the criteria listed in “Paleomagnetic Methods.”

Kapoose Formation Stability Tests

The 74 acceptable low Tub line fits fail the McFadden and McElhinny (1988) fold test 

with a maximum k at 20% and the minimum at 100% (10.8, and 3.4 respectively. Fig. 27). 

The 0% unfolding mean direction is, D = 32.6°, I = 72.7°, 0(95 = 5.5°.

The acceptable high Tub components fail both a McFadden and Reid (1982) 

inclination only test and a McFadden and McElhinny (1988) combined great circle and line 

fit fold test. The inclination only fold test has a maximum k value at 0° (9.4, Fig. 28). The

12



combined great circle and line fit fold test has a maximum k value of 5.5 at 40% tilt 

correction (Fig. 29).

Paleomagnetism of the Lower Cretaceous One Tree Formation 

One Tree Formation PC A Results

Thermal cleaning of 111 specimens from the Lower Cretaceous One Tree Formation 

revealed two components of remanence; one is a low Tub component displayed in 91 

specimens, the other is a high Tub component displayed in 77 specimens (e.g.. Fig. 26). 

Specimens were not used if they did not meet the criteria listed in “Paleomagnetic Methods.” 

Thirteen specimens were also rejected because they showed a demagnetization path with a 

line fittable low Tub path but the path appeared to be section of a dominantly curvilinear path, 

because and influence from the high Tub component could not be ruled out. Duplicate 

samples from 6 beds were also excluded.

Five specimens from four sites on Clark Island, from four different stratigraphic 

levels, show demagnetization paths with reversed directions that pass the criteria listed in 

“Paleomagnetic Methods.” Both sites 3 and 5 have a specimen with a multi-component 

demagnetization path that shows the high Tub section of the path heading to the reversed 

direction. Site 4 contains two specimens with demagnetization paths going to the reversed 

direction. All four specimens above provide a path that can be fit with a best-fit great circle 

(e.g.. Fig. 30). Site 2 has a specimen showing a reversed polarity demagnetization path that 

is line fittable (Fig. 31).

One Tree Formation Stability Tests

The 91 acceptable low Tub components fail the McFadden and McElhinny (1988) fold 

test with the maximum k value of 13 at 0% tilt correction and the minimum k value of 5 at 

100% tilt correction (Fig. 32). The 0% unfolded mean direction is D = 29.0°, I = 74.9°, (X95 = 

4.3°.
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The high Tub component data (45 line fits) pass a McFadden and Reid (1982) 

inclination only test (Fig. 33). The inclination only fold test results in a large change of k 

from 6.2 at 0% tilt correction to the maximum 59.3 at 100% tilt correction. The 100% tilt 

corrected orientation inclination estimate is 82.1°, OC95 = 3.3°.

The McFadden and McElhinny (1988) combined great circle and line fit fold test 

results are shown in Table 2. Before correcting data for fold plunge and the suspected small 

block rotation, the combined great circle and line fit fold test results in a maximum k value of 

26 at 70-80% tilt correction (Fig. 34). A common assumption for a mid-tilt correction peak 

in k is that it indicates a synfolding remagnetization. However, it could also result from 

combining data from blocks that have been rotated relative to one another. There is a major 

fault between Grassy and Clark Islands (Fig. 1, see map in Jeletzky, 1950). Small block 

rotations are commonly associated with faults, and since the line fit data pass an inclination 

only fold test at 100% unfolding, the mid-tilt correction peak might be due to a small block 

rotation that was subsequent to the folding event.

Correction of the paleomagnetic data for the suspected small block rotation requires 

that all blocks had a directional feature with a common orientation before rotation. One 

choice is to use the 57° disparity between the fold axis trends observed between Grassy and 

Clark Island (Fig. 14). The high Tub component data are first corrected for fold plunge (Fig. 

15b, step 1), then the Grassy Island data are rotated 57° clockwise (cw) to match the Clark 

Island fold axis (Fig. 15b step 2). After correction for fold plunge and the small block 

rotation, the high Tub component data pass a McFadden and McElhinny (1988) combined 

great circle and line fit fold test (45 line fits, 32 great circle fits. Figs. 35, 36, and Table 2). 

The minimum k value is 8.5 at 0% tilt correction with the maximum k of 25.4 achieved at 

90% tilt correction. The difference between the 90% tilt corrected k value and the 100% k 

value (25.2) is insignificant. The 100% tilt corrected mean direction is D=214.4°, 1=85.6°, 
0X95=3.3°.

An alternative correction for the small block rotation is to use the 53° difference in 

the maximum susceptibility directions seen in Figure 23. The result of the McFadden and
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McElhinny (1988) combined great circle and line fit fold test is shown in Figure 37. The 

minimum k value of 6.9 is at 0% tilt correction and a maximum k value of 25.1 is at 90% tilt 

correction. The difference between the 90% tilt corrected k value and the 100% k value 

(24.8) is insignificant. The 100% tilt corrected mean direction is D= 186.8°, 1=86.2°,
0(95=3.3°.

Antipodal reversed directions are used to support the consistency of a remanent 

component and that the component was acquired over a suitable amount of time to average 

out secular variation. As seen in Figure 38, the 95% confidence circle of the fold corrected 

mean of the five reversed directions, flipped to the antipode, does not include the fold 

corrected mean for all the acceptable high Tub components from Clark Island, nor the overall 

mean. The mean reversed directions fail the reversal test. Yet, more reversed directions are 

necessary for a significant reversal test, especially with line fittable paths to define sector 

constraints.

If the high Tub component magnetization is not just pre-folding but detrital, then it 

may have been shallowed by compaction. Thirty-three specimens from Grassy Island and 

Clark Island, showing a line fittable high Tub component, were used for a test for inclination 

error. The correlations between tan I vs. ^min/^max for all specimens, and for 13 specimens 

with itmin < 15° from vertical, were found to be not significant at the 95% confidence level (R 
< ta/2/(taA2^ + N - 2)’^ ). Three factors may contribute to the low correlation; 1) a small 

susceptibility anisotropy (fc^ax exceeding fcniin by only 2.5%), 2) few samples with ^min axis 

<15° from vertical, and 3) inclination shallowing is insignificant in samples with a high mean 

inclination (Tauxe, 1998). Hence, the inclination shallowing estimate using the Hodych et al. 

(1999) method is not an appropriate correction. A detrital remanent magnetization with a 

steep inclination of 85.6° is unlikely to have been affected by inclination shallowing.

Discussion

The low Tub mean directions from both the Lower Cretaceous One Tree Formation (D 

= 29.0°, I = 74.9°, 095 = 4.3°) and the Upper Jurassic Kapoose Formation (D = 34.2°, I =

74.1°, 0(95 = 5.9°) are similar to the IGRF model expected present-day field, and closer to the
15



1945 expected field (Fig. 39). The two low Tub component mean directions are 

indistinguishable (both confidence circles envelop both mean directions), so the 

remagnetization must have occurred after the folding and small block rotation events. The 

low Tub components seen in the Kapoose and One Tree Formations show a direction that is 

probably a present day viscous remagnetization.

The high Tub component seen in the Kapoose Formation specimens passes neither a 

McFadden and Reid (1982) inclination only test nor a McFadden and McElhinny (1988) 

combined great circle and line fit fold test. Failure of these tests indicates that the high Tub 

component is not primary. The data are too scattered to estimate the proper orientation when 

the rocks acquired the remanent magnetization. The remanent magnetization may be a low 

temperature chemical remagnetization.

The One Tree Formation high T„b components more clearly predate small block 

rotation and at least some folding, but whether they are primary and were acquired when the 

rocks were horizontal is less clear. The high Tub components pass a McFadden and Reid 

(1982) inclination only test and, after correction for a small block rotation, a McFadden and 

McElhinny (1988) combined great circle and line fit fold test. Also, Five specimens carry a 

reversed direction. These results suggest that the high Tub component is pre-folding and is 

possibly a primary detrital remanent magnetization (Figs. 33, 35, and Table 2). The 

inclination, after correcting for fold plunge and fold azimuth, is 85.6° ± 3.3°, which 

corresponds to a paleolatitude of 81.3° ±6.5°. All three corrections result in a similar steep 

inclination (82-86°). The fold plunge and fold azimuth correction is preferred because it 

more accurately represents the paleomagnetic field than the inclination only result or the 

AMS maximum axis correction. The inclination only result does not take into account 

declination and has an inherent error at steep inclinations (i.e., 82°). The maximum AMS 

axis correction result has a 100% fold correction k value (24.8) is less than the fold plunge 

and fold azimuth corrected k value (25.2).

Assuming the magnetization is primary and was acquired while the beds were 

horizontal, the declination of the fold corrected Lower Cretaceous One Tree Formation high
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Tub component deviates significantly from the declination expected assuming North America 

paleogeography during the time of deposition. Clark Island was chosen for the fixed block in 

the small block rotation correction (Fig. 15). The resulting declination is 214° ±43°. If 

Grassy Island is held fixed, the resulting declination is 157° ±43°. As a result, the 

declination lies between 114° and 257°. Error estimates for the declination are large because 

of the steep inclination and because of the suspected small block rotation between Clark and 

Grassy Islands. Even with this large error, there has been substantial clockwise (-260° cw 

±43°) or counterclockwise (100° ccw ±43°) rotation relative to the expected declination of 

316° for the 140 Ma North American reference pole extrapolated from the paleomagnetic 

Euler pole path of Beck and Housen (2000).

If the high Tub component represents a secondary magnetization then the most 

probable time for its acquisition would be during the Cretaceous Normal Superchron. The 

high percentage (96%) of samples retains a normal high T„b component. Six reversed chrons 

span the depositional time represented by the Kyuquot Group (Gradstein et al., 1994). Only 

5 specimens have a path that is fittable with a great circle or line fit (e.g.. Figs. 30 and 31). 

The mean of these 5 reversed directions does not pass a reversal test (Fig. 38). Normal and 

reversed chrons are evenly distributed throughout the Berriasian and the Lower Valanginian, 

so there should be an equal probability of a specimen having a reversed direction as a normal 

direction. The low number of reversed directions is an argument for the remagnetization 

hypothesis for the high Tub component seen in the One Tree Formation.

The fold tests establish that the high Tub component was acquired before folding, so 

the beds had to have been coplanar during the time of the remagnetization. However, this 

does not mean that they were horizontal. Remagnetization of the One Tree Formation had to 

occur while the beds were in an orientation other than horizontal because the oversteepened 

inclination of 85.6° ± 3.3° does not resemble any paleolatitude from rocks of a younger age 

(Table 1). As a result, the following events would have had to occur: 1) Early Cretaceous 

deposition of the One Tree Formation, 2) tilting or large wavelength folding before the mid- 

Cretaceous, 3) acquisition of the high Tub component during the Cretaceous Normal
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Superchron 4) shorter wavelength folding, 5) faulting and small block rotation to their 

current configuration.

Remagnetization during the Cretaceous Normal Superchron does not explain why 5 

specimens at four different sites carry reversed directions, unless they are some of the only 

specimens still holding the primary magnetization. The possibility exists that the high Tub 

component from the Lower Cretaceous One Tree Formation is a primary detrital remanent 

magnetization.

Insular Paleogeography Implications

This study was aimed at determining reliable paleomagnetic paleopoles for both the 

Upper Jurassic Kapoose Formation and the Lower Cretaceous One Tree Formation. The 

Kapoose Formation does not carry a stable paleomagnetic direction. The One Tree 

Formation has a high Tub component that passes a fold test and has 5 specimens with 

reversed directions. If the One Tree Formation direction is primary (see discussion above) 

then the mean tilt corrected direction can be used to fill in the missing data for the 

paleomagnetic paleolatitude transport of Wrangellia and the Insular Superterrane.

The resulting paleolatitude from the tilt corrected mean direction from the One Tree 

Formation (81.3° ±6.5°) is 28° north (3100 km) of the expected paleolatitude calculated for 

the 140 Ma North American reference pole (X 70.3°N, <t> 162.9° E) extrapolated from the 

paleomagnetic Euler pole path of Beck and Housen (2000, Fig. 40). The 81.3° paleolatitude 

is also 43°, approximately 4700 km, north of the paleolatitude reported by Enkin et al. (2001) 

from the Upper Cretaceous Nanaimo Group (38.3° ±3°) (Table 1, Fig. 40). Combined with 

other paleomagnetic studies from the Insular Superterrane (Fig. 40, Table 1), the 

paleolatitude path for the Insular Superterrane; starts at low latitudes during the Triassic; 

shifts to mid-latitudes during the Jurassic; shifts to near the north pole during the Early 

Cretaceous; then shifts back down to mid-latitudes during the Late Cretaceous; and finally 

northward to its position relative to North America by the Eocene.
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The terrane motions of Vancouver Island developed by Debiche et al. (1987, Figs. 41 

and 42), based on the plate motions of Engebretson et al. (1985), are not consistent with the 

rate of southward motion necessary to shift Wrangellia from 81.3° ±6.5° N 140 Ma (this 

study) to 38.3° ±3° N 78 Ma (Enkin et al., 2001). A minimum southward plate motion of 74 

km/m.y. is required to move Wrangellia from 81°N to 39°N between 139 and 78 Ma. The 

Farallon plate motions predicted by Engebretson et al. (1985) cannot account for this high 

rate of southward displacement during the Cretaceous.

Rapid southward motion during the Early Cretaceous is consistent with the postulated 

revised Kula plate motions from Engebretson et al. (1995, Fig. 43). Prior models of Kula 

plate history (Engebretson et al., 1985) suggest that it was formed at 85 Ma. The postulated 

revised model by Engebretson et al. (1995) suggests that the Kula plate has been in existence 

since ca. 180 Ma. This revised model has the Kula plate rotating around an Euler pole 

located in the south Pacific between 180 Ma and 100 Ma. During this time, “the Kula plate 

had a SE directed absolute velocity of ~175 km/m.y. along the west coast of North America” 

(Engebretson et al., 1995). The southward plate motion during the interval 180-120 Ma is 

consistent with Jurassic and Early Cretaceous sinistral strike slip structures observed along 

the Western boundary of North America (Ave Lallemant and Oldow, 1988; Monger et al., 

1994; and Oldow et al., 1984) and the pattern of west coast paleomagnetic displacements 

recognized by Beck (1989).

Figure 43 shows the tracks that terranes would have traveled if they were riding on 

the Kula plate 180 to 100 Ma ((Engebretson et al., 1995). If the Wrangell terrane docked 

onto North America near its relative position to North America, then it would have traveled 

along the upper path. The lower track is for terranes that accreted onto North America down 

by Baja 90-100 Ma. The current mid-Cretaceous paleomagnetic data supports the lower 

terrane track (Fig. 40). The Lower Cretaceous One Tree Formation was deposited over a 

span that includes 140 Ma, which is the most northern point, relative to North America, on 

the curve shown in Figure 43. If North America was rotated clockwise relative to its present 

position, then it would place the lower terrane track far enough north to match the 81°N 

paleolatitude measured in the Lower Cretaceous One Tree Formation. The Absolute North
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American motion developed by Beck and Housen (2000) shows that North America was 

rotated significantly clockwise relative to its present orientation 160 Ma (Fig. 44). North 

America then moved to its highest paleolatitude 140 Ma (Fig. 45 and 40). By combining the 

terrane tracks by Engebretson et al. (1995) with the North American orientation 140 Ma 

predicted by Beck and Housen (2000), an 81°N paleolatitude for the Wrangell terrane is 

consistent with the current paleomagnetic paleolatitude data from the Insular Superterrane 

(Fig. 40).

Terranes traveling on the Kula plate from the Late Jurassic to Early Cretaceous would 

be rotated clockwise (Engebretson et al., 1995, Fig. 43). The declination of the Lower 

Cretaceous One Tree Formation deviates 260° cw (100° ccw) and the Jurassic Bonanza 

Group deviates 285° cw (75° ccw) (Irving and Yole, 1987), relative to the extrapolated 

reference poles from the North American paleomagnetic Euler pole path of Beck and Housen 

(2000). Rotating Wrangellia about an Euler pole in the southeast paleopacific from 180 to 

100 Ma, then adding more clockwise rotations due to small block rotations during dextral 

transpression along the west coast of North America after 100 Ma could explain the large 

clockwise deviations in declination. Alternatively, if Wrangellia were semi-accreted to 

North America by the Late Jurassic (e.g., van der Heyden, 1992; McClelland et al., 1992; 

Monger and Joumeay, 1994), then bocks could have been rotated counterclockwise due to 

shear against North America caused by southeast directed motion of the Kula plate 

(Engebretson et al., 1995, Fig. 43). Small block rotations under a sinistral transpressional 

regime between 180 and 100 Ma could have created the smaller counterclockwise rotations. 

This combination could explain why the declination deviations from the three Triassic to 

Early Jurassic Vancouver Island units show an opposite deviation relative to the Middle 

Jurassic to Early Cretaceous results (VI Intrusions, 38°cw; West Coast Crystalline Complex, 

43°cw; Karmutsen Formation, 41°cw, Table 1, Symons, 1984; Irving and Yole, 1987; Irving 

and Wynne, 1990).

Few paleocurrent studies consider vertical axis rotations when estimating possible 

source areas (i.e.. Mustard et al., 1994). Given the paleomagnetic declination deviations 

discussed above, the SE directed paleocurrent direction, estimated from the AMS maximum
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axes and field observations, should be rotated 100° ±43° ccw. The resulting paleogeography 

places the sedimentary source area to the southwest of the basin, with the paleocurrent 

directed to the NE. If the Wrangell terrane did travel along the path postulated by 

Engebretson et al. (1995, Fig. 43), then possible sedimentary sources are autochthonous 

sediment from Wrangellia or allochthonous sediment from the Eurasian Plate.

Conclusion

Paleomagnetic results from the Insular Superterrane for the Middle Jurassic to Early 

Cretaceous were nonexistent (Fig. 4 and Table 1). Revised plate motions for the Pacific 

basin by Engebretson et al. (1995) suggest a possible northern paleolatitude for terranes 

traveling on the Kula plate during this time. The paleomagnetic results presented here from 

the Lower Cretaceous One Tree Formation place Vancouver Island 28° (3100km) north of its 

present location relative to North America. This large amount of northern displacement of 

west coast terranes during the Late Jurassic or Early Cretaceous is unprecedented. Studies 

from similarly aged rocks of the Insular Superterrane are warranted.
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Figure 1. Sketch map showing the extent of the Kyuquot Group and regional geology 
(modified map fi’om Jeletzky, 1950). Sampling locations are identified with the three- 
letter acronym used to name the samples. Westcoast fault location is fi"om Muller et. al 
(1981). 25



Figure 2. Major terranes of western Canada and southern Alaska. Wide dashed lines show 
margin of Baja BC. Terrane abbreviations: Alexander (AX), Cassiar (CA), Cache Creek 
(CC), Chugach (CG), Miniterranes (MT), Monashee (MO), Nixon Fork (NF), Penninsular 
(PN), Quesnellia (QN), Selkirk (SK), Slide Mountain (SM), Stikine (ST), Wrangellia (WR), 
Yukon-Tanana (YT), SM in black. Coast Plutonic Complex, CPC (Modified figure and text 
from Umhoefer, 1987).

26



Figure 3. Tectonostratigraphic diagram for the San Juan Islands and adjacent areas. Each 
column represents a separate terrane with its name appearing below it. Stippled units are 
Jura-Cretaceous clastic linking sequences, which are inferred to postdate accretion of the 
terranes to continental North America (modified text and figure from Brandon et al., 1988),

27



Figure 4. Paleomagnetic paleolatitudes from Wrangellia and connected terranes plotted 
using the data shown in Table 1. Also shown are the expected paleolatitude North American 
paleolatitude paths from Beck and Housen (2000, blue solid) and Van der Voo and Torsvik 
(2001, red dashed). ■- Wrangell Terrane (WR); A - Alexander Terrane (AX); ♦-Peninsular 
Terrane (PN); •-Coast Plutonie Complex (CPC); • Coast Belt (CB).
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Figure 5. Kyuquot Group stratigraphic column
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Figure 6. Photograph of the basal conglomerate of the Kaposse Formation located at 
McLean Cove (see Fig., 1). The conglomerates are over 20 meters thick at this location. The 
lens cap is 52mm in diameter.
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Figure 7. Photograph of the basal conglomerate at the contact between the Upper Triassic 
Parson Bay Formation and the Upper Jurassic Kapoose Formation, located on Kapoose 
Rocks. Hammer handle is 35cm long.
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Figure 8. Photograph of a conglomerate at Jurassic Point. The bed is aproximatly 1/2 meter 
thiek and has been offset by numerous faiilts (shown as black lines).
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Figure 10. Photograph of the basal fossiliferous conglomerate of the Lower Cretaceous 
One Tree Formation where it contacts the Upper Jurassic Kapoose Formation on Grassy 
Island. Note belemnoid fossils.
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Figure 11. Photograph of steeply dipping beds of the Lower Cretaceous One Tree 
Formation on Grassy Island. Note the gentle syncline that curves the beds off to the right 
into the background. The individual beds in the foreground are approximately V2 meter thick. 
Photograph was taken from the western most part of the island facing east toward the 
“grassy” part of the island.
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Figure 12. Photograph of small-scale faulting near the northwest end of Grassy Island. 
Photo was taken facing along strike to the east.
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Grassy Clark
Island Island

Kapoose 
Point A'

0 500 m K One Tree Formation |
I I Jr Kapoose Formation^ 

I ^ j Jr Bonanza or VI Group

Kyuquot Group

Fault
Tr Parson Bay Formation

Figure 13. Schematic cross-section through the line A - A' on Figure 1. The cross- 
section is derived from the map provided in Jeletzky (1950). It is assumed by Muller et 
al. (1981) that the faults are vertical. It is assumed here that all the faults shown in this 
cross section are strands of the Westcoast Fault System (see text).
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Figure 14. Lower hemisphere equal area plots of poles to the bedding orientations 
collected from the field and from the map provided by Jeletzky (1950), shown with the 
best fit fold axis (star) with the coresponding 95% simple bootstrap elipses using a 
method adopted from the Tauxe (1998) boot_di.exe program.
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a) Clark Island Grassy Island
N N

Figure 15. Lower hemisphere equal area plots showing the fold axis plunge and rotation 
corrections used to correct the Createceous One Tree Formation on Grassy Island and 
Clark Island for a suspected small block rotation, a) Poles to bedding measured in the 
field are shown with a girdle fit through the poles (fi’om Fig. 14). The stars are the poles 
to the girdles, which are assumed to be the same fold axis before the block rotation, b) In 
step 1, the fold plunge is removed. The fold axis of Grassy Island is rotated 46° cw about 
an axis trending 210° and the Clark Island fold axis is rotated 55° cw about an axis 
trending 267°. In step 2, the Grassy Island fold axis is rotated about a vertical axis 57° 
cw to match the Clark Island fold azimuth.
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Figure 16. Typical thermomagnetic susceptibility heating and cooling curves. An increase 
in susceptibility after heating occurred in all the specimens measured in these experiments.



Smoothing Interval: 20 degrees

o 20 40 60 80 100
Smoothing interval

Figure 17. Derivative of a typical thermomagnetic heating curve for a specimen from the 
Lower Cretaceous One Tree Formation. The second derivative shows a peak at 577° C, 
indicates magnetite is the primary magnetic mineral (using Tauxe's (1998) curie.exe 
program).
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Figure 18. Plot of typical magnetic susceptibility patterns observed during thermal 
demagnetization. Magnetic susceptibility was measured after each thermal demagnetization 
step. Note the increasing magnetic susceptibility above 400-450"C.
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Figure 19. Typical hysteresis curves for A) the Kapoose Formation, and B) the One Tree 
Formation.
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b)

Figure 20. Bi-logarithmic Day et al. (1977) plots for a) samples from the Upper Jurassic 
Kapoose Formation and b) specimens from the Lower Cretaceous One Tree Formation. Both 
trends fall along the mixing trend for single domain (SD) and multidomain (MD) magnetites, 
and not the trend from superparamagnetic-influenced limestones. The majority of samples 
lie in the pseudo-single domain magnetite field (PSD).



Clark Island 
One Tree Formation

Confidence Ellipses

Figure 21. Lower hemisphere equal area plots of in situ AMS data fi’om the localities shown 
in Figure 1. 95% confidence ellipses are shown for data with significant clustering; smaller 
ellipses are simple bootstrap and larger ellipses are parametric bootstrap plotted using the 
Tauxe (1998) plotams.exe program.
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Figure 21 (Cont'd).
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Figure 21 (Cont'd).

47



Data Confidence Ellipses

Figure 21 (Cont'd).

AMS Axes 
Minimum o 
Maximum □

48



1.060

1.050 -

1.040 -

J 1.030 -

1.000

1.020 -

1.010

1.000 1.050 1.060

Figure 22. Flinn (1963) diagrams of the anisotropy of magnetic susceptibility measured for 
the A) One Tree Formation, and B) Kapoose Formation.
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Figure 23. Comparison between the in situ principal AMS axes from Figure 21 and the fold 
axes from Figure 14. Lower hemisphere equal area plots of in situ AMS data from the 
localities shown in Figure 1. 95% confidence ellipses are shown for data with significant 
clustering; smaller ellipses are simple bootstrap and larger ellipses are parametric bootstrap. 
Plotted using the Tauxe (1998) plotams.exe program.
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Figure 24. Lower hemisphere equal area plots of AMS data from the locations shown in 
Figure 1. The data from the One Tree Formation are corrected to paleohorizontal after 
correction for fold plunge (Fig. 15b, step 2). The AMS data from the Kapoose Formation are 
corrected to paleohorizontal using bedding orientation without correction for fold plunge. 
95% confidence ellipses are shown for data with significant clustering; smaller ellipses are 
simple bootstrap and larger ellipses are parametric bootstrap. Plotted using the Tauxe (1998) 
plotams. exe program. 51
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Figure 24 (Cont'd).
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Figure 24 (Cont'd).
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Figure 25. Location map from Figure 1 showing the AMS mean maximum axes 
(arrows) from Figure 24. Dashed arrows are for locations with insufficient data. The GIJ 
location is the only location showing a bimodal maximum axis distribution.
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A) W,Up

N

open boxes - vertical plane 
closed boxes - horizontal plane 
ticks = 1 mA/M

Figure 26. Typical multi component demagnetization behavior for specimens from both the 
One Tree Formation (A &B) and the Kapoose Formation (C). Demagnetization paths are 
shown on lower hemisphere equal area plots and Zijderveld plots along with the percent 
magnetic intensity vs. temperature plots. A) Typical demagnetization path that shows a 
streak along the equal area plot is defined by two components; a low unblocking temperature 
(T^Ij) component and a high T^^j component. A great circle fit is shown through steps 170- 
480°C. B) Typical demagnetization path showing the influence of multiple components with 
a line fitable path of the high T^^ component from 380-500°C and a low T^j^ component 
from 80-210°C. C) Typical demagnetization path from the Kapoose Formation that has a 
line fittable high T^|j component from 230-480°C and a low T^|j component from 80-230°C.
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Figure 26 (Cont'd).
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Figure 26 (Cont'd.)
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Figure 27. McFadden and McElhinny (1988) line-fit fold test for the low T„b component 
line fits from the Upper Jurassic Kapoose Formation.
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Figure 28. McFadden and Reid (1982) inclination only fold test for the high Tub component 
line fits from the Upper Jurassic Kapoose Formation.
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Figure 29. McFadden and McElhinny (1988) combined great circle and line-fit fold test for 
the high Tub components from the Upper Jurassic Kapoose Formation.
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00CIK4-3 W,Up

Figure 30. Zijderveld and equal area plots of a specimen demagnetization path from Clark 
Island site 4, corrected for tilt. The demagnetization path shows a reversed direction with a 
great circle fittable path heading to a reversed direction. The demagnetization path on the 
equal area plot starts at the large square. Closed squares and solid great circle are projected 
on the lower hemisphere, open squares and dashed great circle are projected on the upper 
hemisphere.
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Figure 31. Zijderveld and equal area plots of a specimen demagnetization path from 
Clark Island site 2, corrected for bedding. The demagentization path shows a linefitable 
reversed direction going to the origin. The demagnetization path on the equal area plot 
starts at the large square. Open squares are projected on the upper hemisphere.
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Figure 32. McFadden and McElhinny (1988) line-fit fold test for the low Tub component 
linefits from the Lower Cretaceous One Tree Formation.
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Figure 33. McFadden and Reid (1982) inclination only fold test for the high Tub component 
line fits from the Lower Cretaceous One Tree Formation. Error bars on the inclination plot 
are (X95 limits.
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Figure 34. McFadden and McElhinny (1988) combined great circle and line-fit fold test for 
the high Tub components from the Lower Cretaceous One Tree Formation.
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Figure 35. McFadden and McElhinny (1988) combined great circle and line-fit fold test for 
the high Tub components from the Lower Cretaceous One Tree Formation after correction for 
fold plunge and small block rotation using the fold azimuths (see text).
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Figure 36. Equal area plots of the high component linefits and great circle fits from
the Lower Cretaceous One Tree Formation. A) In situ data. B) Fold corrected and small 
block rotation corrected data shown with the 95% confidence circle. Closed circles and 
solid lines are projected on lower hemisphere, open circle and dashed lines are projected 
on upper hemisphere.
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Figure 37. McFadden and McElhinny (1988) combined great circle and line-fit fold test for 
the high Tub components from the Lower Cretaceous One Tree Formation after correction for 
fold plimge and small block rotation using the AMS mean maximum axis data (see Fig. 24, 
and text).
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Figure 38. Lower hemisphere equal area plot of the 100% rotated and fold corrected 
mean of the 5 reversed directions from Clark Island, flipped to the antipode (D=28.5, 
1=75.9, ap5=15.7). Also shown is the 100% rotated and fold corrected mean of all 
acceptable high components from Clark Island (D=234.5,1=85.4, a^5=4.7), and the 
100% rotated and fold corrected mean of all acceptable high components from both 
Clark Island and Grassy Island (D=214.4,1=85.6, a^5=3.3). The 95% confidence circle 
of the mean of the reversed directions does not envelop either of the overall mean 
directions. The reversed directions fail the reversal test at the 95% confidence level.
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Figure 39. Lower hemisphere plot of the magnetic direction expected at the field area 
using the IGRF models for present day and 1945, compared to the in situ mean low 
component directions for the One Tree and Kapoose Formations.
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Figure 40. Paleomagnetic paleolatitudes from Wrangellia and connected terranes, calculated 
using the data shown in Table 1, shown with the paleolatitude determined from the Lower 
Cretaceous One Tree Formation (KOTF). ■- Wrangell Terrane (WR); A- Alexander 
Terrane (AX); ♦-Peninsular Terrane (PN); •-Coast Plutonic Complex (CPC); • Coast Belt 
(CB).
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Figure 41. Vancouver Island terrane tracks developed by Debiche et al. (1987, Fig. 19, p. 
37), based on the plate models by Engebretson et al. (1985). Top terrane tracks are for 
terranes traveling on the Farallon plate only. Bottom terrane tracks are for terranes traveling 
on the Farallon plate until ~90 Ma then semi-accreted onto North America, then shifted north 
by the Kula plate. 72



Wrangellia—Vancouver Island

Age (Ma3

Figure 42. Paleolatitude models for Vancouver Island developed by Debiche et al. (1987, 
Fig. 19, p. 37), based on the plate models by Engebretson et al. (1985). Model WV-1 shows 
the paleolatitude of Vancouver Island as if it traveled only on the Farallon plate until it 
accreted onto North America by ~90 Ma. Model WV-2 shows the paleolatitude of 
Vancouver Island as if it traveled on the Farallon Plate until ~90 Ma, then oblique subduction 
of the Kula plate caused Vancouver Island to slide northward along the West Coast of North 
America until ~50 Ma. YI-S and YI-N, Karmutsen formation; SI, Stevens Island and 
Captain Cove intrusions; AX, Axelgold intrusions; SP, Spuzzum and Porteau plutons.
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Figure 43. Terrane track model for a terrane traveling on the Kula plate, developed by 
Engebretson (personal communication), based on the postulated revised plate motions by 
Engebretson et al. (1995).
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Figure 44. Absolute North American motions from Beck and Housen (2000). North 
America is rotated clockwise relative to its present orientation 160 Ma.
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Figure 45. Absolute North American motions from Beck and Housen (2000). North 
America’s west coast moved to its most northern position between 160 and 130 Ma (see Fig. 
40).
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