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Abstract 

 

Herein, we report new allylation reactions using ring-strained allylalkoxysiletanes. These reactions can 

achieve high yield and have high chemoselectivity, as evidenced by carefully designed substrates. Based 

on previous evidence, we propose that the reaction proceeds through an exchange mechanism, where 

first the alkoxy group of the siletane exchanges with the hydroxyl group of the substrate, followed by 

coordination of the substrate carbonyl to the siletane, and then intramolecular allylation of the carbonyl.  
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Chapter 1: Introduction 

1.1 Carbon-Carbon Bond Formation of Carbonyl Additions 

With over 100 different named reactions, carbon-carbon bond formation is easily one of the most 

studied types of reactions in synthetic organic chemistry. The enterprise of organic synthesis, that is using 

simple building blocks to construct more complex structures, requires making new carbon-carbon bonds. 

An important subset of these reactions focuses on carbonyl addition – the formation of a new carbon-

carbon bond between the carbon of a carbonyl and an incoming nucleophile. These reactions most 

commonly use Grignard or organolithium reagents to alkylate aldehydes or ketones, forming secondary 

and tertiary alcohols, respectively (Scheme 1-1).1  

 

Scheme 1-1. Formation of secondary and tertiary alcohols using Grignard or organolithium reagents. 

When considering these reactions, the reactivity of carbonyl compounds is worth mentioning 

(Figure 1-1). The reactivity of carbonyl compounds toward Grignard reagents is determined by the stability 

of each carbonyl relative to its transition state during the addition –  where stabilized transition states 

promote greater reactivity.2 In the case of aldehydes and ketones in regards to Grignard-type reactions, 

aldehydes react more readily, due to hydrogen being less sterically bulky than any carbon chain.  

While the exact mechanism of Grignard reagent addition is debated, the mechanism of 

organolithium addition is well known.3 These reagents are hard nucleophiles that take advantage of the 

strong, polar nature of C-Li bonds in order to generate highly basic species. The acidity of aliphatic 

Amides < Esters, Acids << Ketones < Aldehydes < Acid Chlorides 

 

Figure 1-1. Relative reactivities of carbonyl compounds toward nucleophiles. 

Increasing Reactivity 
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hydrocarbons decreases with the degree of substitution, making tert-butyl lithium the most basic, and 

therefore most aggressive alkyllithium reagent.4 However, alkyllithium reagents can be slow to react, even 

as thermodynamically strong bases, and as a result, optimization of reaction conditions is required.5 Once 

conditions are established, the mechanism is straightforward. The nucleophilic R-Li bond attacks the 

carbonyl carbon, resulting in a new carbon-carbon bond and an alkoxide. The positively charged lithium 

coordinates to the negatively charged oxygen, and during an aqueous work-up, the oxygen is protonated, 

producing the alcohol (Scheme 1-2).2  

 

Scheme 1-2. Mechanism of organolithium reagents with aldehydes and ketones. 

As fundamental and versatile as Grignard and organolithium reagents are, there are also drawbacks 

to utilizing them in synthesis. Grignards, for example, have the potential to cause enolization, reduction, or 

condensation reactions (Scheme 1-3).1,6,7 Meanwhile, organolithiums are pyrophoric, and as a result will 

react violently with air or water. Additionally, they may generate volatile compounds which may ignite due 

to the high temperatures of decomposition.4 
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Scheme 1-3. Side reactions of Grignard reagents. 

In contrast to Grignards and organolithiums, organosilanes are useful in carbonyl alkylations while 

being relatively non-toxic, with low molecular weights, and simple to handle.8 Most notable is the work of 

Hosomi and Sakurai, who discovered that allylations of carbonyls (ketones or aldehydes) occur with 

allyltrimethylsilane in the presence of a Lewis acid such as TiCl4 (Scheme 1-4).9 The reaction mechanism 

proceeds through a cyclic transition state which involves a nucleophilic attack of the allylsilane to the 

carbonyl carbon, which has been polarized by the added Lewis acid. This was an improvement on the 

previously reported methods of carbonyl allylation due to the variety of carbonyl compounds that could be 

reacted (aliphatic, alicyclic, aromatic), and the reaction was regiospecific.9 The reaction between 

electrophiles and allylsilanes has been explained by the β-silyl carbocation effect, where the β-silyl 

carbocation has stabilization caused by the σ-π conjugation between the σ Si-C orbital and the empty pπ 

orbital.10 The majority of the following thesis focuses on allylsilylations of a specific subset of carbonyl 

compounds – α-oxocarboxylic acids, which contain a keto-acid moiety, as well as a variety of other 
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functional groups. Benefits of these new methods compared to the approaches previously reported 

include: chemoselectivity, air and moisture stability, and mild reaction conditions. 

 

Scheme 1-4. Sakurai allylations. 

 

1.2 Hydrosilylations and Carbosilylations 

Traditional methods to reduce ketones or aldehydes to hydroxyl groups include metal hydrides, 

such as LAH (LiAlH4), or NaBH4. Because of the electronegativity difference between aluminum and 

hydrogen, the hydrogen atoms of LAH carry a great amount of negative charge. As a result, LAH serves as 

a source of hydride ions. Generally, the reaction involves the nucleophilic attack of the hydride ion to the 

carbonyl carbon, while the lithium ion provides Lewis acidity to the reaction by coordinating to the carbonyl 

oxygen, thereby making the carbon more electrophilic, and susceptible to nucleophilic attack. After the 

addition, the resulting alkoxide salt further reacts with remaining AlH3, forming an aluminum alkoxide 

compound, which is further converted to the resulting alcohol in a protonation step with aqueous acid 

(Scheme 1-5). An advantage of using LAH in reduction reactions arises from the fact that all four hydrogen 

atoms can participate in reductions, therefore the reaction occurs in sub-stoichiometric amounts.2  

Scheme 1-5. Mechanism of LAH reductions. 

Sodium borohydride (NaBH4) works much the same way as LAH, with the main difference being 

that sodium is not as acidic as lithium, and therefore does not activate the carbonyl oxygen to the same 
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extent. Additionally, the B-H bond is not as polarized as Al-H, giving the hydrogen less hydride character 

than LAH. Because of this, reactions with NaBH4 are often carried out in protic solvents such as alcohols 

that coordinate to the carbonyl oxygen via hydrogen bonding, thus activating the carbonyl.2 Similarly to 

LAH, NaBH4 can be used in sub-stoichiometric quantities. However, protonation of the alcohol occurs via 

deprotonation of the solvent, instead of during a separate step. A significant benefit of using NaBH4 over 

LAH is its functional group tolerance. LAH possesses such basic hydrides that it reacts with alkyl halides, 

esters, alkyl tosylates, and nitro groups. Although NaBH4 is a slower reaction, in the presence of these 

functional groups it is a better choice to reduce aldehydes and ketones.2    

Much like Grignard and organolithium reagents, LAH and NaBH4 suffer from similar problems that 

make their use potentially hazardous (e.g. reactions with moisture to generate H2). In contrast to these 

standard methods, carbonyl hydrosilylations have uses as a mild, selective alternative in carbonyl 

reductions.11 There are examples of Lewis acid- and Lewis base-mediated hydrosilylations of ketones and 

aldehydes, as well as a variety of transition metal catalyzed reactions.12-14 In general, organosilicon hydrides 

undergo spontaneous reactions with organic compounds only if the organic reactant is a strong electrophile 

or the silane has been first activated by a nucleophilic species at the silicon center.15 Often, this involves 

activation of the silicon species by fluoride, or the production of an extremely basic hydride species in the 

case of many of the transition metal catalyzed hydrosilylations.12-14 Previous work by the O’Neil group 

showed an alternative mechanism for activating silanes toward hydrosilylation. They demonstrated that β-

hydroxyketones can be intramolecularly reduced, forming cyclic disiloxanes when treated with 

diphenylchlorosilane, imidazole (ImH) and an amine base such as triethylamine (Et3N). Due to product 

instability, the resulting cyclic disiloxanes were typically treated with tetra-n-butylammonium fluoride 

(TBAF) to afford the diol (Scheme 1-6).15  
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Scheme 1-6. Cooperative-base mediated hydrosilylation. 

  The proposed mechanism as illustrated in Scheme 1-6 is based on key elements of this process that 

were identified. For instance, imidazole is necessary for the reaction to occur. In cases where the reaction 

was performed in the presence of Et3N, but not imidazole, no hydrosilylation occurred, and only the non-

cyclized β-hydridosilyloxyketone product was present.15 Also of note, a large excess of imidazole did not 

increase the amount of hydrosilylated product. Replacing imidazole with other bases, such as DMAP or NMI 

failed to produce hydrosilylated product.15 Additionally, the β-hydroxy functionality is required for 

hydrosilylation to occur under these conditions. The O’Neil group reacted propiophenone according to 

their standard procedure (Ph2SiHCl, imidazole, Et3N), and recovered exclusively starting material, even after 

prolonged reaction times.15 Based on these observations, a nucleophilic activation mechanism was 

proposed.  
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The reactivity of silicon in these reactions is predicted to arise from a valence-expanded, 

pentacoordinate hydrosilanide species that has stronger reducing power than the tetravalent precursor.16 

The specificity of the reaction for diphenylchlorosilane (as opposed to di-tert-butyl and diisopropyl 

derivatives) can be explained by stabilization of developing negative charge on silicon during the reaction 

by the phenyl substituents of Ph2SiHCl.15 Additionally,  the amine base is thought to promote hydrosilanide 

formation by abstracting the proton from imidazole when bound to silicon (Scheme 1-6).  

It was proposed that by using a carbon nucleophile, that an intramolecular carbosilylation reaction 

under similar conditions could be developed. The original model used by the O’Neil group involved 

diphenylbromosilane with phenylacetylene replacing the previous hydrogen. The idea was very similar to 

the hydrosilylation experiments. The halogen leaving group would exchange with the incoming alcohol, and 

carbosilylation followed by cyclization would afford the desired product (Scheme 1-7). However, under the 

same conditions for hydrosilylation, the product recovered was the silyl ether where no carbosilylation or 

cyclization had occurred. In thinking about how to potentially affect the carbosilylation, a few key points 

were made clear. The leaving group needed to be present in order for the incoming alcohol to attach to 

the silicon center, the substituents on silicon needed to be more activating than phenyl, and the 

nucleophile used had to be more nucleophilic than phenylacetylene.   

Scheme 1-7. Attempted carbosilylations by the O’Neil group.
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Chapter 2: Silacyclobutanes (Siletanes) 

2.1 Reactivity of Siletanes and Carbonyls 

 Matsumoto and coworkers observed that silacyclobutanes (siletanes) are easily activated 

by the attack of a nucleophile to give a pentacoordinate silicate.17,18 This is thought to arise from relief of 

ring strain upon rehybridization for the 5-coordinate siletane (vide infra). Matsumoto’s group then 

hypothesized that allylsiletanes could add to carbonyl compounds without the addition of a catalyst.17
 

Indeed, when 1-allyl-1-phenylsilacyclobutane was reacted with benzaldehyde at 130 °C, the result was 1-

phenyl-3-buten-1-ol in 85% yield (scheme 2-1). The same reaction performed with 

allyldimethylphenylsilane only afforded starting material, even after increased temperature and prolonged 

reaction times (Scheme 2-1).17 Thus, it was confirmed that the increased Lewis acidity of the siletane is 

critical for the allylation of aldehydes. 

 

Scheme 2-1. Matsumoto’s allylation of benzaldehyde using 1-allyl-1-phenylsilacyclobutane. 

In order to investigate whether a pentacoordinate species is a transition state, Fujimoto and 

coworkers studied computational molecular orbitals (MOs) on simplified model systems.19 To do this, they 

tested four models which consisted of allylsilanes and formaldehyde (Scheme 2-2).  
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Scheme 2-2. Fujimoto’s models to study the reactivity of allylsilanes. 

While studying the siletane system, it was noted that a six-membered cyclic transition state was 

formed, which involved the silicon center, the allyl substituent, and the carbonyl of formaldehyde; the 

silicon center was seen to be pentacoordinate, where the carbonyl oxygen and C3 of the siletane occupied 

the apical positions.19 In the tetravalent species, silicon is sp3 hybridized, with preferred bond angles of 

109.5°. In the activated, pentavalent species, silicon becomes sp3d hybridized, with preferred bond angles 

of 90°and 120° (Figure 2-1).  Indeed, it was observed that the angle between the apical and equatorial 

positions was smaller than the angle between the bonds in the tetravalent species, and they proposed this 

to be a reason why the C1-Si-C3 angle of the siletane ring is slightly reduced in the transition state. It was 

also observed that the bond length between Si and C3 of the siletane is actually elongated in the transition 

state, causing ring strain to be partially released.19 In comparing the data from all of the systems, it was 

found that the siletane not only had the lowest activation barrier, but it was observed that in the transition 

state, the C-Si-C bond angle of the siletane ring was 75.7°, whereas in the dimethyl system the Me-Si-Me 

bond angle was 100.8°.19 Computations were carried out to test the effect of the C-Si-C bond angle on 

reactivity, and it was discovered that the activation barrier is reduced as the C-Si-C bond angle is made 

smaller; therefore the reactivity of allylsilanes is closely related to the local arrangement of bonds at the 

silicon center.19 



10 
 

 

Figure 2-1. Preferred bond angles for tetracoordinate and pentacoordinate silicon species. 

Studies to investigate the Lewis acidity of siletanes were also performed by Fujimoto. A molecular 

orbital of silicon must extend in the direction from which the carbonyl attacks, which is generated from the 

3s, 3p, and 3d atomic orbitals of the silicon atom. As Fujimoto states in his work, “if the orbital consists 

mainly of low-lying unoccupied MOs of an allylsilane molecule, the silicon center will be a strong electron 

acceptor…if the orbital is found for the most part in the occupied MOs or in the high-lying unoccupied MOs 

of an allylsilane molecule, the silicon center will be a poor electron acceptor.”19 Based on the results from 

their previous studies, and the work by Matsumoto, it was predicted that the silicon of a siletane would be 

a strong electron acceptor. Indeed, the siletane model showed a low-lying unoccupied orbital relative to 

allyldimethylsilane, confirming that the siletane should be a stronger electron acceptor, and therefore more 

reactive than silanes that do not contain the siletane moiety.19  

2.2 Reactions of Allylalkoxysilacyclobutanes 

 Matsumoto and coworkers then tuned the Lewis acidity of allylphenylsilacyclobutane by 

exchanging the phenyl for an alkoxy group. The reaction between 1-allyl-1-(cyclohexyloxy)silacyclobutane 

(1) with a variety of aldehydes proceeded at a lower temperature than the phenyl precursor due to the 

increased Lewis acidity associated with having an electronegative atom bound to silicon.17 For example, the 

reaction of benzaldehyde and 1-allyl-1-(cyclohexyloxy)silacyclobutane proceeded at 100 °C in N,N-

dimethylformamide (DMF), as opposed to 130 °C for allylphenylsilacyclobutane (Scheme 2-3). 



11 
 

 

Scheme 2-3. Matsumoto’s reaction of 1-allyl-1-(cyclohexyloxy)silacyclobutane and benzaldehyde. 

Acetophenone was also subjected to the same conditions, and only starting material was 

recovered.17 This result is rationalized by the general reactivity of carbonyls. As previously mentioned, 

aldehydes react more readily than ketones (Figure 1-1). In the context of carbonyl additions, aldehydes are 

more reactive due to not only sterics, but electronics. The carbonyl carbon of ketones is less reactive due 

to the weak electron-donating nature of the alkyl groups on either side of the carbonyl. This makes the 

carbonyl carbon less electrophilic, and it is therefore less likely to react with an incoming nucleophile. On 

the other hand, aldehydes only have one alkyl group attached to the carbonyl carbon that can donate 

electrons, so the carbon is less negatively (more positively) charged compared to a ketone, making it more 

willing to react with an incoming nucleophile. 

 

Scheme 2-4. Reaction of 1 with various α-hydroxy ketones. 

Based on 1 showing reactivity with benzaldehyde and benzoin, Matsumoto’s group examined the 

reactivity of 1 with α-hydroxy ketones (Scheme 2-4).  Because free cyclohexanol was observed in the 

products of these reactions, and mindful of the fact that acetophenone showed no reaction, it was 

predicted that the mechanism first involves exchange of the alkoxy group on silicon. To test this, 1-

(cyclohexyloxy)-1-phenylsilacyclobutane was treated with isopropyl alcohol at 100 °C, which yielded 1-



12 
 

isopropyl-1-phenylsilacyclobutane and free cyclohexanol (HOCy), leaving behind only a trace of the original 

alkoxy silane (Scheme 2-5). This exchange reaction even occurred at room temperature, and a mixture of 

silanes and free alcohols were observed in a 1:1:1:1 ratio.17 Further proving the unique reactivity of 

siletanes, the same exchange reaction was attempted using dimethylphenyl(cyclohexyloxy)silane and 

isopropyl alcohol. Under the same reaction conditions, only starting material was obtained.17  

 

Scheme 2-5. Matsumoto’s alkoxy exchange. 

Having evidence for alkoxy exchange, Matsumoto suggested a non-catalyzed allylation mechanism 

that involves an intramolecularly activated pentacoordinate silicon species. It is proposed that first the 

alkoxy exchange occurs, followed by the coordination of the nucleophilic carbonyl oxygen to silicon, yielding 

the activated pentacoordinate silicon species in a five-membered chelate, and finally stereoselective 

intramolecular addition of the allyl group from the silicon to the carbonyl (Scheme 2-6).17 

 

Scheme 2-6. Matsumoto’s proposed reaction mechanism. 
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 The O’Neil group became interested in compound 1 for the purposes of our carbosilylation 

experiments. Compound 1, however, first needed to be synthesized as it is not commercially available. In 

their original report, Matsumoto reported a 29% yield of 1 when 1,1-dichlorosilacyclobutane was reacted 

with allyl Grignard (1 eq.) followed by etherification with HOCy in the presence of Et3N (Method A, Scheme 

2-7).17 However, when attempting this chemistry, very low yields (~10%) of 1 were consistently obtained. 

Reversing the order of addition (i.e. HOCy/Et3N followed by allyl Grignard) gave similar results (Method B, 

Scheme 2-7, Figure 2-2).  

 

Scheme 2-7. First attempts to synthesize 1. 

 

Figure 2-2. 1H NMR – Products from Methods A and B. 
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 With significant amounts of diallylsilacyclobutane (2) obtained from those reactions, we then 

turned to Hosomi and Sakurai’s method of iodine-promoted silyl etherification of alcohols in an attempt to 

convert 2 into the desired mono-silylether 1.20 Treating 2 with catalytic iodine (10 mol%) and HOCy (1 eq.) 

at 50 °C gave a mixture of 1, 2, and diether 3 in a statistical mixture. From this process, 1 could be 

consistently isolated in ~ 30% yield (Scheme 2-8). 

 

Scheme 2-8. Iodine-promoted silyl etherification of cyclohexanol. 

 

2.3 Iodine Mediated Rearrangement of Diallylsiletane 

The crude 1H NMR of the previous reaction showed small peaks that were characteristic of a 

diastereotopic methylene group (Figure 2-3). It was thought that products of type SI-2 could result from 

the initial cation intermediate SI-1, based on previous reports of electrophile-promoted rearrangements of 

diallylsilanes (Scheme 2-9).21,22 Inspired by the potential synthetic utility of SI-2, we continued to explore 

this possible iodine-mediated rearrangement. 

 

Scheme 2-9. Iodine-promoted rearrangement of diallylsiletane. 
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 It was hypothesized that increasing the amount of iodine should also increase the amount of 

rearranged product, and indeed, silyl ether 4 was isolated in 54% yield when 2 was treated with 1.0 

equivalent of I2 followed by HOCy/Et3N (Scheme 2-10). 

 

Scheme 2-10. Synthesis of compound 4. 

It has been noted that the substituents on silicon can have a significant effect on reaction 

outcomes.15,23,24 Therefore, the reaction was also performed with diallyldimethyl, diallyldiisopropyl, and 

diallyldiphenyl silanes. The reactions were monitored by NMR and ratios of rearranged product to non-

rearranged product were determined by the presence of allyl iodide (as an indicator of non-

 

Figure 2-3. 1H NMR – Iodine promoted silyl etherification of cyclohexanol. 

HOCy 1 
3 
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rearrangement). As shown in Figure 2-3, diallyldiphenylsilane gave the highest ratio of rearranged product 

(7.86:1), and diallyldimethylsilane yielded the lowest degree of rearrangement (1.48:1), potentially 

indicating some steric effects. Comparing results for diallyldiphenyl- and diallyldiisopropyl- silanes (7.86:1 

and 6.63:1, respectively), suggests there is also an electronic factor to the selectivity for these silanes to 

rearrange (Figure 2-4). This may arise from the ability of nearby Si-C bonds to stabilize the cation 

intermediate, SI-1, through hyperconjugation.25 

 

 

 

 

Figure 2-4. 1H NMR – Comparison of different substituted diallylsilanes subjected to rearrangement 

conditions.  
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The reactions performed at 50 °C and room temperature gave the same ratios of rearranged to 

non-rearranged product. However, cooling the reaction to 0 °C displayed a destruction of selectivity for the 

rearranged product. Chloroform or dichloromethane (DCM) were favorable solvents for rearrangement to 

occur, while toluene, tetrahydrofuran (THF), DMF, and dimethyl sulfoxide (DMSO) all yielded trace 

amounts, at best, of rearranged product. Using the optimal conditions, compound 5 was isolated in 72% 

yield (Scheme 2-11). 

 

Scheme 2-11. Synthesis of compound 5. 

The rearranged products have proven to be quite versatile synthetic intermediates. For instance, 

compound 5 could be alkylated with dimethylmalonate, producing silyl diester 6 in 76% yield (Scheme 2-

12). Additionally, cross-metathesis between 5 and methyl acrylate generated 7 in 98% yield, which was 

then treated with benzylamine to give the silylmethyl-functionalized pyrrolidine 8 (Scheme 2-12).   

 

Scheme 2-12. Synthetic utility of compound 5. 
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Chapter 3: Carbosilylations Using 1-Allyl-1-Cyclohexyloxysiletane  

3.1 α-Oxocarboxylic Acids 

 Tertiary α-hydroxy carboxylic acids are common functional units in many natural products, such as 

integerrimine, and monocrotaline (Figure 3-1).27-29 Because of this, several synthetic methods have 

emerged for the formation of the α-hydroxy carboxylic acid moiety, including dihydroxylation of α,β-

unsaturated ketones and enolate addition of α-keto esters.30,31 However, there are not many reports of 

creating α-hydroxy carboxylic acids directly from α-keto acid starting materials. 

 

Figure 3-1. Two natural products, integerrimine and monocrotaline, containing the α-hydroxy carboxylic 

acid functionality. 

 One example from Wang et al., describes the reaction of α-oxocarboxylic acids with 

allyltrichlorosilane.27 While many allylsilations of aldehydes have been reported, addition of 

allyltrihalosilanes to ketones are limited. Initially using methods put forth by Sakurai (allyltrihalosilane in 

the presence of Et3N), Wang and coworkers found that the reaction afforded very low yields of the desired 

product.27,32 Their focus then turned to the work of Kobayashi and Denmark, who found that DMF or HMPA 

coordinates to silicon, forming a hypervalent silicate, which is then more nucleophilic.33,34 Using DMF 

and/or HMPA in their own studies, Wang discovered that either additive successfully catalyzed the reaction. 

However, after optimization, it was found that using 1.0 equivalent of both DMF and HMPA was necessary 

for complete conversion (Scheme 3-1).27 The reaction of α-oxocarboxylic acids under optimized conditions 
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occurred relatively quickly, with the shortest reaction times being about 3-4 hours. Notably, it was found 

that α-oxocarboxylic esters or ketones under the same conditions reacted very slowly (> 60 hours), if at 

all.27 It was determined that the α-carboxylic group not only activates its ketone neighbor, but also plays a 

key role in the allylation step, by complexing with the silicon atom, which in turn complexes with the keto 

group, as also seen in Matsumoto’s work (Scheme 3-1).27,17 

 

Scheme 3-1. Allylation of α-oxocarboxylic acids using allyltrichlorosilane, HMPA, and DMF. 

With allyltrichlorosilane being highly unstable to air and moisture (and HMPA being toxic), it was 

our goal to investigate the reaction of 1 as an alternative for allyl additions to ketones of α-oxocarboxylic 

acids. Combining the work of Wang, Matsumoto, and Sakurai, the hypothesis was that a chemoselective, 

non-catalyzed, intramolecular allylation would occur between 1 and α-oxocarboxylic acids with no use of 

additives (due to the enhanced Lewis acidity of the siletane), through a similar mechanism proposed by 

both Matsumoto and Wang, i.e. first alkoxy exchange, followed by the intramolecular allylsilylation of the 

ketone that has been activated by the Lewis acidic siletane ring (Scheme 3-2). 
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Scheme 3-2. Allylation of α-oxocarboxylic acids using 1. 

These studies began with an initial investigation of the work reported by Matsumoto on reactions 

of 1 with α-hydroxycarboxylic acids.17 The reaction of 1 and 2-hydroxyacetophenone was performed under 

the same reaction conditions (i.e. using DMF as solvent, and heating the mixture to 100 °C). While analyzing 

the products of this reaction, it was noticed that the residual DMF was extremely difficult to remove during 

an aqueous workup procedure. Additionally, from the work by Kobayashi and Denmark, it was also thought 

that DMF could be activating the silicon.33,34 We considered switching to acetonitrile (MeCN), another polar, 

aprotic solvent, but were concerned that DMF might be needed due to its aforementioned activating 

ability. Moreover, with the lower boiling point of MeCN, the reaction temperature necessarily would also 

decrease (80 °C as opposed to 100 °C). 

 To our delight, the use of MeCN had no negative effect on the efficiency of the reaction, and 9 was 

isolated in 80% yield (Scheme 3-3).  

 

Scheme 3-3. Allylation of 2-hydroxyacetophenone. 
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 We then set out to investigate the allylation of α-oxocarboxylic acids under these same reaction 

conditions. It was first found that commercially available phenylglyoxylic acid could be successfully allylated 

with 1 in MeCN at 80 °C.  Having proof of principle, a library of α-oxocarboxylic acids were either purchased 

or synthesized as outlined in Scheme 3-4. The objective was to allylate an assortment of compounds with 

various characteristics including alkyl, alkenyl, aryl, and heteroaryl functional groups in order to understand 

the scope and potential limitations of the reaction.  

 

Scheme 3-4. Synthesis of compounds 10-12. 

As can be seen in Figure 3-2, all of the α-oxocarboxylic acid allylation products could be obtained 

in good yield (51-88%) after a simple basic extraction purification. To demonstrate that exchangeable 

groups are required on both the silane and carbonyl substrate, two control experiments were performed 

(Scheme 3-5). First, diallylsiletane and 2-hydroxyacetophenone were subjected to the reaction conditions. 

In this case, the silane does not contain an alkoxy group with which the substrate can exchange, and the 

reaction did not proceed. Next, identical conditions were applied to acetophenone and 1. Similarly, 

acetophenone does not have a hydroxyl group with which the cyclohexyloxy can exchange, and therefore 

no reaction occurred. Combined, these experiments add additional support to the proposed mechanism 

shown in Scheme 3-2. 
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Figure 3-2. Allylation products of various α-oxocarboxylic acids. 

 

 

Scheme 3-5. Control experiments proving exchangeable groups are required for allylation. 

 

3.2 β-Oxocarboxylic Acid 

 To determine whether allylation occurs with both α- and β-carboxylic acids, substrate 20 was 

prepared (Scheme 3-6). It is worth noting that in the 1H NMR spectrum, the peak observed at 5.72 ppm 

arises from the enolization of 20, while the peak seen at 4.09 ppm comes from the β-oxocarboxylic acid. 

Interestingly, when subjected to the reaction conditions, only silane byproducts and acetophenone, formed 

from decarboxylation of 20, were recovered (Figure 3-3). A series of experiments were then performed to 

investigate the effects of solvent on the rate of decarboxylation. 

 

Scheme 3-6. Synthesis of β-oxocarboxylic acid 20. 
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 To begin, 20 was heated (80 °C) in MeCN without the addition of 1, and it was noticed that 

decarboxylation still occurred. The proposed mechanism of this decomposition is shown in Scheme 3-7. 

Next, solvent studies were performed using CDCl3, benzene (d-6), and DMSO (d-6).  The mixtures were left 

at room temperature, and decarboxylation was tracked by NMR over the course of 3 hours. The solubility 

of 20 in each solvent is worth noting – while slightly soluble in CDCl3, and fully soluble in DMSO, the starting 

material was almost completely insoluble in benzene. Table 3-1 shows the ratios of starting material (enol 

+ ketone form) to decarboxylation product (acetophenone) over the duration of 3 hours for each solvent. 

The apparent reappearance of starting material at 1 hr in CDCl3 is thought to arise from a solubility effect, 

while the observed enhanced rate of decarboxylation in DMSO was likely due to the fact that both 20 and 

 

Figure 3-3. 1H NMR – Comparison of starting material, acetophenone, and reaction mixture for the 

attempted allylation of 20. 

 

 

 

Enol 

Ketone 
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acetophenone were completely soluble in the solvent. However, even with solubility playing a role, as can 

be seen in the table, a steady increase of decarboxylation product was observed in all solvents with the 

greatest amount of decarboxylation occurring in DMSO. Even after just 15 minutes, some amount of 

acetophenone was visible by NMR (Table 3-1).  

 

Scheme 3-7. Decomposition of 20 to acetophenone. 

Table 3-1. Ratios of starting material (20) to decarboxylation product (acetophenone) in various solvents. 

S.M. : Acetophenone 15 Min. 1 h  2 h 3 h 

CDCl
3
 12 : 1 18 : 1 11 : 1 7.8 : 1 

Benzene (d-6) 12 : 1 11 : 1 8.4 : 1 7.2 : 1 

DMSO (d-6) 7.1 : 1 2.0 : 1 1 : 1.2 1 : 1.9 

 A second experiment was performed to investigate whether or not the addition of a silane had any 

effect on the rate of decarboxylation. Dialkoxysilanes (i.e. silanes with two exchangeable sites) were 

introduced to the reaction mixture and the rate of decarboxylation was again monitored over the course 

of 3 hours. Due to the ability of DMSO to be a nucleophilic activator of silanes, the experiments all used 

CDCl3 as the solvent.33-35 Figure 3-4 shows the 1H NMR of each of these experiments after 3 hours; Table 3-

2 shows the ratios of starting material to acetophenone with the addition of each silane. As can be seen 

from both the figure and the table, the rate of decarboxylation was 4.5 times faster with the addition of 

dicyclohexyloxysiletane (3) while the addition of diphenyldicyclohexyloxysilane had no effect (Figure 3-4, 

Table 3-2). 
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Table 3-2. Comparison of decomposition experiments with 20 and two dialkoxy silanes. 

As the NMR shows, when dicyclohexyloxysiletane (3) was used, the release of free cyclohexanol 

was rapidly observed and no starting silane was present after 3 hours, indicating that exchange occurred 

between 20 and cyclohexanol. It is proposed that after exchange with cyclohexanol, the mechanism of 

decomposition is similar to the mechanism shown in 3-7, with silicon replacing hydrogen (Scheme 3-8). It 

S.M. : Acetophenone 15 Min. 1 H  2 H 3 H 

No Silane Additive 12 : 1 18 : 1 11 : 1 7.8 : 1 

Diphenyldicyclohexyloxysilane 21 : 1 14 : 1 9.5 : 1 7.2 : 1 

Dicyclohexyloxysiletane 19 : 1 3.5 : 1 2.3 : 1 1.6 : 1 

 

Figure 3-4. 1H NMR – Comparison of decomposition reactions involving diphenyldicyclohexyloxysilane 

and dicyclohexyloxysiletane. 

Enol 

Ketone 

Acetophenone 

Ph2Si(OCy)2 
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is also worth noting that no exchange occurred at all between 20 and diphenyldicyclohexyloxysilane, as 

indicated by the absence of free cyclohexanol in the 1H NMR. 

 

Scheme 3-8. Proposed decomposition mechanism of 20 to acetophenone in the presence of 

dicyclohexyloxysiletane. 

 Future investigations into the utility of these types of reactions may involve trapping 

silylenolethers of type SI-3 with electrophiles such as aldehydes (Scheme 3-9).36-38 This would yield yet 

another novel way to form carbon-carbon bonds without the addition of a catalyst. 

 

 

Scheme 3-9. Future work involving trapping silylenolethers with electrophiles. 

 

3.3 Allylation of Aldehyde Containing α-Oxocarboxylic Acids 

 As previously mentioned, nucleophilic additions can occur preferentially to aldehydes in the 

presence of other carbonyl groups (e.g. ketones) due to their increased reactivity. However, if the 

mechanism of allylations using compound 1 occurs as proposed in Scheme 3-2, we hypothesized that 

certain α-oxocarboxylic acid substrates might react differently than normal electrophilicity trends would 

predict. For instance, compound 21 was prepared to test if the ketone might be selectively allylated in the 

presence of an aldehyde (Scheme 3-10).  
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Scheme 3-10. Synthesis of compound 21. 

 When treated with 1 in MeCN at 80 °C, chemoselective addition of the allyl group to the ketone 

occurred giving a 5.7:1 mixture in favor of the monoallylated compound 22 along with smaller amounts of 

the diallylated product in 89% yield (Scheme 3-11). This result is quite impressive, as 21 has five different 

electrophilic sites – 3 carbonyls, including one α,β-unsaturated carbonyl that can participate in Michael 

addition, and an acidic proton. Furthermore, this is one of only a few examples of the addition of a carbon 

electrophile to a ketone in the presence of an aldehyde, and those examples generally involve protection 

and deprotection of the aldehyde in situ.39-41 In addition, many of these other examples still involve the use 

of organolithium reagents, Grignard reagents, or transition metal additions such as trimethylaluminum.39-

42 The same result could also be obtained using an isopropoxy (instead of cyclohexyloxy) siletane (1-iPr). 

The switch did not have an effect on yield, and aided in the purification process, as isopropanol can be 

evaporated, whereas cyclohexanol must be removed via column chromatography. 

 

 

Scheme 3-11. Allylation of 21. 
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Scheme 3-12. Synthesis of compound 23. 

To the same end, compound 23 was also prepared (Scheme 3-12). Curiously, the reaction of this 

simpler substrate (with only four electrophilic sites) proceeded less chemoselectively. Desired product (24) 

was indeed formed, but with significant amounts of aldehyde addition products as well. It was thought that 

allylation at the aldehyde resulted from an intermolecular reaction with allylsilanide SI-4 (Scheme 3-13). 

Upon treating 23 with 1, the reaction mixture became bright orange that we have attributed to the charged 

complex of SI-4. Moreover, rapid release of cyclohexanol was observed (< 15 min.) when monitoring the 

reaction by 1H NMR in MeCN (d-6). This was indicative of exchange with the substrate hydroxyl prior to the 

allylation event. 

 

Scheme 3-13. Allylation of aldehyde α-oxocarboxylic acid 23 - first attempts.  

 Arguably, the ketone of compound 23 is more sterically hindered than that of compound 21. It is 

thought that this may slow down the intramolecular process, allowing for the intermolecular allylation of 
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the aldehyde of 23 to compete. Therefore, to promote intramolecular allylation of the ketone, the reaction 

of 23 and 1 was performed under more dilute conditions (0.02M), and the mixture was allowed to react at 

room temperature to allow for the exchange of the alkoxy substituents, followed by heating to promote 

allylation (Scheme 3-14). Using these conditions, chemoselective ketone allylation product 24 was isolated 

in 65% yield. 

 

Scheme 3-14. Chemoselective allylation of 23.  

3.4 Allylation of Salicylaldehyde and Similar Substrates 

In thinking about other substrates to investigate, we saw promise in salicylaldehyde. Experiments 

had shown that benzaldehyde was unreactive when treated with 1 in MeCN at 80 °C. However, we 

wondered if by having a nearby hydroxyl group, we could promote the nucleophilic addition as we had seen 

with previous substrates. In fact, treating salicylaldehyde with 1 in MeCN at 80 °C produced clean allylation 

of the aldehyde, yielding compound 25 (Scheme 3-15). Moreover, in a 1:1 mixture with benzaldehyde, 25 

was recovered in > 90% yield, along with the unreacted benzaldehyde. The results from this experiment 

are represented graphically in Figure 3-5. 

 

 

Scheme 3-15. Allylation of salicylaldehyde. 
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 The bottom trace of Figure 3-5 (purple) shows the deliberate synthesis of allylated benzaldehyde 

using allyl Grignard. As can be seen in the figure, the reaction of 1 and benzaldehyde under our reaction 

conditions showed no allylated product (green); only starting silane and benzaldehyde (red) were present 

in the reaction mixture. The blue trace shows the reaction mixture of 1 with 1:1 benzaldehyde and 

salicylaldehyde (yellow). Noticeably, the aldehyde peak corresponding to salicylaldehyde is no longer 

present, and the peaks corresponding to compound 25 are slightly shifted from the starting material. Also 

of importance, is free cyclohexanol visible at 3.60 ppm, indicating exchange with salicylaldehyde occurred. 

 Interestingly, 2’-hydroxyacetophenone (the corresponding ketone equivalent of salicylaldehyde) 

failed to react under these conditions (Scheme 3-16). It is hypothesized that the lower electrophilicity of 

ketones vs. aldehydes plays a role.  

Figure 3-5. 1H NMR – Comparison of reactions of 1 with benzaldehyde and salicylaldehyde. 
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Scheme 3-16. Attempted allylation of 2’-hydroxyacetophenone. 

 Similar to α-oxocarboxylic acids, chemoselectivity could be achieved with salicylaldehyde-based 

substrates. For example, the allylation of 4-hydroxyisophthalaldehyde and 1 proceeded cleanly, and after 

treatment with TBAF, compound 26 was isolated in 58% yield (Scheme 3-17). Ito and coworkers were also 

able to perform the allylation of 4-hydroxyisophthalaldehyde using allyltributyltin.43 They explained their 

result as an intramolecular hydrogen bond between the phenol and ortho-aldehyde, thereby causing this 

aldehyde to be more electrophilic. While this phenomenon may contribute to what we observed, based on 

the understanding of our proposed mechanism, we argue that it is the intramolecular reaction of 

compound 1 that is most important for the chemoselectivity observed.  

 

Scheme 3-17. Allylation of 4-hydroxyisophthalaldehyde. 
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Conclusion 

To summarize, siletanes are easily activated silane compounds. This arises from the relief of ring 

strain when the silane goes from tetracoordinate to pentacoordinate. The groups of Matsumoto and 

Fujimoto confirmed the enhanced Lewis acidity of siletanes by comparing allylsiletane to 

allyldimethylsilane, a similar compound. Computations carried out by Fujimoto fully characterize the 

enhanced reactivity of siletane compounds relative to their non-cyclized counterparts. Due to Matsumoto’s 

success with allylalkoxysiletane 1, we set out to use 1 in our own investigations. Because Matsumoto’s 

reported synthesis did not work in our hands, we turned to Sakurai’s method of silyletherification of 

alcohols to obtain useful amounts of 1. During this process, a rearrangement product was observed in the 

1H NMR. It is thought that this product arises from an initial carbocation intermediate that is formed. We 

continued to explore these rearrangement products by preparing dimethyl-, diisopropyl-, and diphenyl- 

rearranged products. We then compared the amount of rearranged product to non-rearranged product 

and discovered that silanes with bulkier groups tended to have more rearranged product, while smaller 

groups, such as the dimethyl- and siletane products showed smaller amounts of rearranged product. This 

result has been rationalized by the fact that bulkier groups do not allow the initial iodine to attach to silicon, 

thereby releasing allyliodide. Instead, the second allyl group attacks the carbocation that is formed, leaving 

an empty space on silicon for either iodine or an alcohol to bind. These rearranged products were proven 

to be useful. Diphenyl- rearranged product 5 was alkylated with dimethylmalonate, producing 6 in high 

yield. Compound 5 was also treated with methyl acrylate and Grubb’s catalyst to afford 7, also in high yield. 

Finally, 7 was treated with benzylamine to form substituted pyrrolidine 8.  

We then focused our attention to the allylation of α-oxocarboxylic acids. It was thought that by 

having a more active silane, and proceeding through Matsumoto’s exchange mechanism, no additives 

would needed for the reaction to proceed. Indeed, allylation of α-oxocarboxylic acids and salicylaldehyde 



33 
 

derivatives can be achieved by reacting these compounds in the presence of 1 at 80 °C in MeCN. The 

reaction can achieve high yields with good chemoselectivity. The reaction does not occur unless both the 

siletane and substrate contain exchangeable groups, i.e. hydroxyls, near the reactive carbonyl. To 

demonstrate this, the reaction was attempted with 1 and benzaldehyde, as well as acetophenone. 

Furthermore, the reaction of diallylsiletane and 2-hydroxyacetophenone showed no allylation product. The 

reaction is proposed to proceed by alkoxyexchange between the substrate and siletane alcohol, followed 

by intramolecular coordination of the carbonyl to silicon, and finally allylation. The α-hydroxycarboxylic acid 

products were purified via a basic extraction procedure, while salicylaldehyde derivatives were treated with 

TBAF to afford the diol. These reactions occur without the presence of an added silicon activator, such as 

DMF, and it is presumed that MeCN plays no role in the allylation process. The results presented are 

presumed to arise from the Lewis acidity of siletanes like 1 and similar compounds (e.g. HOiPr instead of 

HOCy). The reactions were shown to be chemoselective for carbonyls near hydroxyl groups like that of α-

oxocarboxylic acids or salicylaldehyde. In addition, it was shown that β-oxocarboxylic acid 20 decomposes 

to acetophenone when treated with the same reaction conditions. Moreover, it was shown that 

salicylaldehyde reacts fully with 1 even in the presence of benzaldehyde, leaving the latter unreacted. 

Sterics may also play a role in the allylation of aldehyde containing substrates. Compounds that are less 

sterically hindered around the carbonyl tend to have better chemoselectivity towards allylation of the 

ketone over the aldehyde. More sterically hindered substrates required more dilute conditions in order for 

preferential allylation at the ketone to occur. In these cases, it was also necessary to allow exchange of the 

alkoxy groups to occur before heating. Future experiments may focus on the manipulation of steroids or 

natural products such as hydrocortisone and honokiol derivatives to provide a simple, greener process to 

transform more complex structures with multiple exchangeable hydroxyl groups, yet only one active 

carbonyl.  
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Supporting Information 

General: All reactions were carried out in an N2 atmosphere in flame-dried glassware unless otherwise 

specified. All solvents were dried via a column of activated alumina under nitrogen immediately prior to 

use. All reagents were purchased and used as received unless otherwise noted. All TLC analysis used 0.25 

mm silica layer fluorescence UV254 plates. Flash chromatography: SilaCycle silica gel P60 (230-400 mesh). 

NMR: Spectra were obtained on a Bruker Avance III 500 MHz FT-NMR Spectrometer in the solvents 

indicated; chemical shifts (δ) are given in ppm, coupling constants (J) are given in Hz. MestreNova 10.0 

software was used to determine yield of select substrates. Solvent signals were used as references (CDCl3: 

δC ≡ 77.00 ppm; residual CHCl3 in CDCl3 δH ≡ 7.26 ppm) 

Experimentals 

Compound 1: 1-Allyl-1-cyclohexyloxysiletane 
Method 1: Iodine Catalyzed Monoetherification of Diallylsiletane 

To a Schlenk flask containing a solution of diallylsiletane (2) (1.1 g, 6.9 mmol, 1.0 eq.) in DCM (35 mL) was 

added I2 (180 mg, 10 mol %) at room temperature, and the solution was stirred for 10 min. The solution 

turned deep red. HOCy (0.72 mL, 6.9 mmol, 1.0 eq.) was then added and the solution was heated to 35 °C 

for 30 min. The solution turned deep orange. After 30 min. a drop of pyridine was added, and the solution 

was concentrated in vacuo. Purification by chromatography on silica (20:1 to 10:1 Hex:EtOAc) gave 1 as a 

pale yellow oil (0.44 g, 30%, Rf = .98 in 10:1 Hex:EtOAc). 

Method 2: Direct Synthesis from 1,1-Dichlorosilacyclobutane 

To a Schlenk flask was added neat 1,1-dichlorosilacyclobutane (1.0 mL, 8.4 mmol, 1.0 eq.) at 0 °C. Allyl 

Grignard (1.0 M in diethyl ether, 8.4 mL, 8.4 mmol, 1.0 eq.) was added dropwise over 15 min. and the 

solution was stirred for 1 h at 0 °C, then filtered through a Schlenk filter under N2, using Et2O to rinse, and 

the solution was brought to 0.20 M in silane. The solution was cooled back to 0 °C, and 
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diisopropylethylamine (Hünig’s base, 2.2 mL, 13 mmol, 1.5 eq.) was added, followed by HOCy (0.92 mL, 8.9 

mmol, 1.1 eq.). The solution was stirred and warmed to room temperature over 3 h. The resulting product 

was filtered through cotton using Et2O, and concentrated in vacuo. The resulting mixture was triturated in 

Et2O overnight, and was again filtered through cotton with Et2O. The mixture was again concentrated in 

vacuo and used without any further purification. (1.9 g, 54.1% pure in 1 along with small amounts of 2, 3, 

and Hünig’s base). 

Spectral data matched that of Matsumoto.17 

Compound 1-iPr: 1-Allyl-1-isopropoxysiletane 

To a Schlenk flask was added neat 1,1-dichlorosilacyclobutane (2.0 mL, 17 mmol, 1.0 eq.) at 0 °C. Allyl 

Grignard (1.0 M in diethyl ether, 17.0 mL, 17 mmol, 1.0 eq.) was added dropwise over 15 min. and the 

solution was stirred for 1 h at 0 °C, then filtered through a Schlenk filter under N2, using Et2O to rinse, and 

the solution was brought to 0.20 M in silane. The solution was cooled back to 0 °C, and Hünig’s base (4.4 

mL, 25 mmol, 1.5 eq.) was added, followed by HOiPr (1.4 mL, 18 mmol, 1.1 eq.). The solution was stirred 

and warmed to room temperature over 3 h. The resulting product was filtered through cotton using Et2O, 

and concentrated in vacuo. The resulting mixture was triturated in Et2O overnight, and was again filtered 

through cotton with Et2O. The mixture was again concentrated in vacuo and used without any further 

purification. (2.9 g, 57.3% pure in 1-iPr, along with small amounts of 2, diisopropylsiletane, and Hünig’s 

base). 

Spectral Data:  1H NMR (500 MHz, CDCl3) δ 5.86 (ddt, J = 17.3, 10.0, 7.9 Hz, 1H), 4.97 (dq, J = 16.9, 1.5 Hz, 

1H), 4.91 (ddt, J = 8.8, 2.1, 1.1 Hz, 1H), 4.18 (sept., J = 6.1 Hz, 1H),  1.96 (m, 1H), 1.75 (dt, J = 8.1, 1.1 Hz, 

2H), 1.54 (m, 1H), 1.34-1.22 (m, 4H), 1.21 (d, J = 6.0 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 133.0, 113.9, 65.9, 

25.7, 23.3, 17.8, 13.4. 
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Compound 2: Diallylsiletane 

To a Schlenk flask was added pentane (17 mL) and 1,1-dichlorosilacyclobutane (1.0 mL, 8.4 mmol, 1.0 eq.) 

at -78 °C. Allyl Grignard (1.0 M in diethyl ether, 21 mL, 21 mmol, 2.5 eq.) was added slowly. The mixture 

was stirred at -78 °C for 1 h, then warmed to room temperature for an additional hour. The mixture was 

filtered through Celite ®545, and concentrated in vacuo (1.3 g, 98%). 

Spectral Data:  1H NMR (500 MHz, CDCl3) δ 5.86 (ddt, J = 16.9, 10.1, 8.1 Hz, 2H), 4.95 (dq, J = 17.1, 1.8 Hz, 

2H), 4.91 (dt, J = 10.1, 1.1 Hz, 2H) 2.05 (pent., J = 8.2 Hz, 2H), 1.79 (dt, J = 8.0, 1.2 Hz, 4H), 1.04 (t, J = 8.5 

Hz, 4H). 13C NMR (125 MHz, CDCl3) δ 133.7, 113.7, 22.5, 18.0, 11.9. 

Compound 3: Dicyclohexyloxysiletane 

To a Schlenk flask was added DCM (42 mL) and 1,1-dichlorosilacyclobutane (1.0 mL, 8.4 mmol, 1.0 eq.) at 

0 °C. Triethylamine (5.9 mL, 42 mmol, 5.0 eq.) was added, followed by HOCy (1.8 mL, 17 mmol, 2.5 eq.). 

The mixture was stirred and allowed to warm to room temperature overnight. The reaction was quenched 

with NH4Cl solution (15 mL), and the product was extracted with DCM (10 mL x 3). The combined organic 

extracts were dried over MgSO4, filtered, and concentrated in vacuo. The product was passed through silica 

using 10:1 Hex:EtOAc to remove excess HOCy (2.0 g, 95%). 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 3.90 (sept. J = 4.7 Hz, 1H), 1.92-1.84 (m, 4H), 1.80-1.66 (m, 6H), 

1.57-1.35 (m, 10H), 1.34-1.16 (m, 4H). 13C NMR (125 MHz, CDCl3) δ 71.3, 35.8, 25.5, 24.2, 21.6, 11.9. 

Compound 4: 1-Cyclohexyloxy-1-(2-(iodomethyl)pent-4-en-1-yl)siletane 

To a Schlenk flask containing diallylsiletane (2) (150 mg, 1.0 mmol, 1.0 eq.) and DCM (10 mL) at room 

temperature was added I2 (130 mg, 1.0 mmol, 1.0 eq.) and the mixture was stirred for 3 h. The reaction 

was cooled to 0 °C and Et3N (0.42 mL, 3.0 mmol, 3.0 eq.) followed by HOCy (0.21 mL, 2.0 mmol, 2.0 eq.) 

were added. The solution was allowed to slowly warm to room temperature over 3 h, and was then 
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quenched with water (25 mL) and extracted with DCM (20 mL x 2). The combined organic extracts were 

dried over MgSO4, filtered, and concentrated in vacuo. Purification by chromatography on silica (20:1 

Hex:MTBE) gave the alkyl iodide 4 as a clear, colorless oil.  (0.20 g, 54%) 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 5.75 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H), 5.16 (m, 1H), 5.10 (ddt, J = 

10.1, 2.1, 1.0 Hz, 1H) 3.83 (tt, J = 9.5, 4.0 Hz, 1H), 3.39 (dd, J = 9.5, 4.5 Hz, 1H) 3.34 (dd, J = 9.9, 5.5 Hz, 1H), 

2.25 (m, 1H) 2.04 (m, 1H), 1.99 (m, 1H), 1.87-1.80 (m, 2H), 1.78-1.72 (m, 2H), 1.72-1.66 (m, 2H), 1.61 (m, 

1H), 1.55 (m, 1H), 1.48 (m, 1H), 1.43-1.14 (m, 6H), 0.87 (d, J = 6.8 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 

135.6, 117.3, 71.6, 40.9, 35.7, 35.1, 25.5, 24.0, 21.3, 19.0, 18.7, 18.6, 13.7. 

Compound 5: (Cyclohexyloxy)(2-(iodomethyl)pent-4-en-1-yl)diphenylsilane 

To a Schlenk flask containing diallyldiphenylsilane (0.27 mL, 1.0 mmol, 1.0 eq.) and DCM (10 mL) at room 

temperature was added I2 (130 mg, 1.0 mmol, 1.0 eq.) and the mixture was stirred for 3 h. The reaction 

was cooled to 0 °C and Et3N (0.42 mL, 3.0 mmol, 3.0 eq.) followed by HOCy (0.21 mL, 2.0 mmol, 2.0 eq.) 

were added. The solution was allowed to slowly warm to room temperature over 3 h, and was then 

quenched with water (25 mL) and extracted with DCM (20 mL x 2). The combined organic extracts were 

dried over MgSO4, filtered, and concentrated in vacuo. Purification by chromatography on silica (20:1 

Hex:MTBE) gave the alkyl iodide 5 as a clear, colorless oil.  (0.35 g, 72%) 

Spectral Data:  1H NMR (500 MHz, CDCl3) δ 7.67-7.57 (m, 4H), 7.45-7.41 (m, 2H), 7.41-7.35 (m, 4H), 5.61 

(ddt, J = 17.2, 10.2, 7.2 Hz, 1H) 5.07-5.00 (m, 2H), 3.72 (ddt, J = 9.2, 5.1, 3.5 Hz, 1H), 3.30 (dd, J = 9.5, 4.2 

Hz, 1H), 3.24 (dd, J = 9.5, 5.0 Hz, 1H), 2.14 (m, 1H), 2.07 (m, 1H), 1.70 (m, 4H), 1.52 (m, 1H), 1.48-1.33 (m, 

4H), 1.29-1.11 (m, 4H). 13C NMR (125 MHz, CDCl3) δ 135.6, 135.3, 117.3, 71.6, 40.9, 35.7, 35.1, 25.5, 24.0, 

21.3, 19.0, 18.7, 18.6, 18.5, 13.7. 
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Compound 6:  Propanedioic acid, 2-[2-[[(cyclohexyloxy)diphenylsilyl]methyl]-4-penten-1-yl-1,3-dimethylester 

To a solution of dimethyl malonate (0.050 mL, 0.40 mmol, 1.0 eq.) in DMF (0.2 mL) at 0 °C was added NaH 

(16 mg, 0.40 mmol, 1.0 eq.) and the mixture was stirred for 20 min. Iodide 5 (50 mg, 0.10 mmol, 0.25 eq.) 

was then added and the mixture was allowed to slowly warm to room temperature for 24 h. The reaction 

was quenched with water (10 mL) and extracted with MTBE (10 mL x 2). The combined organic extracts 

were dried over MgSO4, filtered, and concentrated in vacuo. Purification by chromatography on silica (10:1 

to 4:1 Hex:EtOAc, Rf = 0.45 in 4:1 Hex:EtOAc) afforded 6 as an oil. (37 mg, 76%) 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 7.58 – 7.55 (m, 4H), 7.42 – 7.38 (m, 2H), 7.38 – 7.33 (m, 4H), 

5.64 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 4.97 (m, 1H), 4.91 (m, 1H), 3.68 (tt, J = 9.0, 3.4 Hz, 1H), 3.63 (s, 6H), 

3.46 (dd, J = 8.1, 7.2 Hz, 1H), 2.12 (m, 1H), 2.02 – 1.94 (m, 2H), 1.85 (dt, J = 14.0, 7.1 Hz, 1H), 1.72 – 1.60 

(m, 5H), 1.46 – 1.40 (m, 2H), 1.40 – 1.29 (m, 4H), 1.16 (d, J = 5.8 Hz, 1H), 1.15 (d, J = 4.2 Hz, 1H). 13C NMR 

(125 MHz, CDCl3) δ 170.0, 169.9, 136.0, 135.9, 135.8, 129.7, 127.7, 116.8, 71.6, 52.4, 52.3, 49.6, 40.0, 35.6, 

35.5, 31.5, 25.6, 23.9, 19.3. 

Compound 7: 2-Hexenoic acid, 6-[(cyclohexyloxy)diphenylsilyl]-5-(iodomethyl)-,methyl ester, (2E) 

To a solution of 5 (50 mg, 0.10 mmol, 1.0 eq.) in DCM (1 mL) was added methyl acrylate (0.05 mL, 0.5 mmol, 

5 eq.) followed by Grubbs’ 2nd generation catalyst (2 mg, 0.02 mmol, 0.2 eq.) and the mixture was stirred 

for 15 h before concentrating in vacuo. Purification by chromatography on silica (10:1 to 4:1 Hex:EtOAc, Rf 

= 0.6 in 4:1 Hex:EtOAC) afforded 7 as an oil. (53 mg, 98%) 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 7.60 – 7.56 (m, 4H), 7.46 – 7.41, (m, 2H), 7.41 – 7.36 (m, 4H), 

6.76 (ddd, J = 15.3, 7.9, 7.2 Hz, 1H), 5.83 (d, J = 15.6 Hz, 1H), 3.72 (s, 3H), 3.70 (m, 1H), 3.25 (dd, J = 9.8, 4.2 

Hz, 1H), 3.21 (dd, J = 9.8, 5.1 Hz, 1H), 2.36 – 2.27 (m, 2H), 2.22 (m, 1H), 1.74 – 1.60 (m, 4H), 1.47 – 1.33 (m, 

4H), 1.27 (dd, J = 15.1, 6.6 Hz, 1H), 1.19 (dd, J = 15.2, 6.6 Hz, 1H), 1.22 – 1.13 (m, 2H). 13C NMR (125 MHz, 
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CDCl3) δ 166.7, 146.1, 135.2, 135.1, 134.7, 134.6, 130.0, 129.9, 128.0, 127.9, 127.8, 123.2, 71.8, 51.4, 39.5, 

35.6, 35.5, 34.3, 25.5, 23.9, 20.6, 19.0. 

Compound 8: 2-Pyrrolidineacetic acid, 4-[[(cyclohexyloxy)diphenylsilyl]methyl]-1-(phenylmethyl)-, methyl ester 

To a solution of 12 (50 mg, 0.090 mmol, 1.0 eq.) in MeOH (1 mL) was added benzylamine (12 μL, 0.11 mmol, 

1.2 eq.) and the mixture was heated to reflux for 24 h. The solution was cooled to room temperature and 

MeOH was removed on a rotary evaporator. The residue was redissolved in MTBE (15 mL) and washed with 

water (10 mL) and brine (10 mL). The organic phase was dried over MgSO4, filtered, and concentrated in 

vacuo. Purification by chromatography on silica (1:1 to 0:1 Hex:EtOAc) afforded 8 as an oil. (30 mg, 64%) 

Spectral data for the mixture of stereoisomers: 1H NMR (500 MHz, CDCl3) δ 7.58 – 7.53 (m, 8H), 7.43 – 7.38 

(m, 4H), 7.38 – 7.32 (m, 8H), 7.32 – 7.20 (m, 10H), 3.87 (d, J =  12.4 Hz, 1H), 3.67 (m, 2H), 3.64 (s, 6H), 3.50 

(s, 1H), 3.46 (s, 1H), 3.25 (d, J = 12.5 Hz, 1H), 2.96 (m, 1H), 2.90 (m, 1H), 2.66 (dd, (J = 14.9, 4.0 Hz, 1H), 2.56 

(m, 1H), 2.55 (dd, J = 13.7, 3.5 Hz, 1H), 2.41 (m, 1H), 2.35 (m, 2H), 2.31 – 2.13 (m, 4H), 1.84 (t, J = 9.0 Hz, 

1H), 1.76 – 1.59 (m, 11H), 1.47 – 1.40 (m, 4H), 1.26 (m, 8H), 1.24 – 1.09 (m, 4H). 13C NMR (125 MHz, CDCl3) 

δ 172.7, 135.9, 134.8, 134.7, 134.6, 134.6, 129.9, 129.6, 129.1, 128.8, 128.2, 128.1, 127.9, 127.7, 126.9, 

76.8, 76.7, 71.4, 63.4, 60.3, 60.0, 58.6, 51.4, 42.1, 40.7, 40.4, 35.6, 35.5, 31.4, 31.2, 29.7, 29.6, 29.4, 25.6, 

25.5, 23.9, 22.7, 19.9, 14.1. 

Compound 9: 2-Phenylpent-4-ene-1,2-diol 

To a Schlenk flask was added 2-hydroxyacetophenone (50 mg, 0.37 mmol, 1.0 eq.) and 1 (84 mg, 0.40 mmol, 

2.0 eq.) in MeCN (1.2 mL). The mixture was heated to 80 °C and stirred overnight. The solvent was removed 

in vacuo, then the product was washed with water (10 mL), and extracted with EtOAc (15 mL x 3). (0.52 

mg, 80%) 

Spectral data matched that reported by Agami.44 
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Compound 10: α-Oxo-β-methyl-benzenepropanoic acid 

To a Schlenk flask was added phenylpyruvic acid (1.0 g, 6.1 mmol, 1.0 eq.) in THF (6.1 mL) at 0 °C. 

Iodomethane (0.38 mL, 6.1 mmol, 1.0 eq.) and 1 M NaOH (18 mL, 18 mmol, 3.0 eq.) were added and the 

solution was slowly warmed to room temperature and stirred for 48 h. The volatile solvent was removed 

in vacuo, and the impurities were extracted with EtOAc (20 mL x 3). The aqueous layer was cooled to 0 °C 

and acidified with 10% HCl to pH 1. The product was extracted with EtOAc (20 mL x 3), then washed with 

brine (10 mL x 3). The organic layers were combined, dried with MgSO4, and concentrated in vacuo. (1.0 g, 

92%) 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 7.35-7.32 (m, 2H), 7.30-7.27 (m, 3H), 4.70 (q, J = 6.9 Hz, 1H), 

1.51 (d, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 136.9, 129.2, 128.5, 127.9, 46.2, 25.2, 16.9. 

Compound 11: 2-Oxo-4-phenyl-3-butenoic acid 

To a Schlenk flask containing MeOH (0.64 mL) at 0 °C was added pyruvic acid (0.80 mL, 11 mmol, 1.0 eq.) 

and benzaldehyde (1.2 mL, 11 mmol, 1.0 eq.). A solution of KOH (950 mg, 17 mmol, 1.5 eq.) in MeOH (3.2 

mL) was added slowly. After 1 h stirring in an ice bath, the solution was moved to a refrigerator, and stored 

overnight. The resulting crystals were collected by filtration, and washed with cold MeOH and Et2O. The 

crystals were dissolved in DI H2O, and acidified to pH 1 with 10% HCl. The solid crystals that formed were 

dissolved in EtOAc, and the product was extracted (15 mL x 3). The resulting combined organics were 

washed with H2O and brine. The final organic layer was dried with MgSO4, filtered, and concentrated in 

vacuo. (1.7 g, 85%) 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 8.14 (dd, J = 16.6, 4.4 Hz, 1H), 7.72-7.68 (m, 2H), 7.60 (dd, J = 

16.2, 3.4 Hz, 1H), 7.53-7.44 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 182.3, 160.5, 151.3, 133.8, 132.4, 129.5, 

129.2, 117.7. 
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Compound 12: 4-(2-Furanyl)-2-oxo-3-butenoic acid 

To a Schlenk flask containing MeOH (0.64 mL) at 0 °C was added pyruvic acid (0.80 mL, 11 mmol, 1.0 eq.) 

and furfural (0.94 mL, 11 mmol, 1.0 eq.). A solution of KOH (954 mg, 17.0 mmol, 1.5 eq.) in MeOH (3.2 mL) 

was added slowly. After 1 h stirring in an ice bath, the solution was moved to a refrigerator, and stored 

overnight. The resulting crystals were collected by filtration, and washed with cold MeOH and Et2O. The 

crystals were dissolved in DI H2O, and acidified to pH 1 with 10% HCl. The solid crystals that formed were 

dissolved in EtOAc, and the product was extracted (15 mL x 3). The resulting combined organics were 

washed with H2O and brine. The final organic layer was dried with MgSO4, filtered, and concentrated in 

vacuo. (1.6 g, 83%) 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 15.8 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.40 (d, J = 15.7 

Hz, 1H), 6.95 (d, J = 3.6 Hz, 1H), 6.59 (dd, J = 3.6, 1.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 181.8, 160.1, 

151.0, 147.3, 136.1, 120.3, 115.2, 113.6. 

General Procedure for Allylations of α-Oxocarboxylic Acids (Compounds 13-19) 

To a Schlenk flask containing MeCN (0.3 M in α-oxocarboxylic acid) was added the α-oxocarboxylic acid (1.0 

eq.) and 1 (1.1 eq.). The solution was heated to 80 °C and stirred overnight. The solution was concentrated 

via rotary evaporator to remove MeCN. The resulting product was washed with 1 M NaOH (15 mL x 2), and 

the silane byproducts were removed with Et2O (15 mL x 2). The aqueous layer was acidified to pH 1 with 1 

M HCl, and extracted with EtOAc (20 mL x 3). The combined organic layers were dried with MgSO4, filtered, 

and concentrated in vacuo. 

Compound 13: 2-Hydroxy-2-methyl-4-pentenoic acid  

The general procedure was followed with pyruvic acid (100 mg, 1.1 mmol, 1.0 eq.) and 1 (210 mg, 1.3 mmol, 

1.1 eq.). (97 mg, 65%) 
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Spectral data: 1H NMR (500 MHz, CDCl3) δ 5.80 (ddt, J = 18.1, 9.3, 7.3 Hz, 1H), 5.20-5.13 (m, 1H), 4.97-4.86 

(m, 1H), 2.57 (dd, J = 13.6, 7.7 Hz, 1H), 2.43 (dd, 13.9, 7.3 Hz, 1H), 1.47 (s, 3H). 13C NMR (125 MHz, CDCl3) 

δ 180.9, 131.6, 119.9, 74.5, 44.3, 25.. 

Compound 14: 2-Ethyl-2-hydroxy-4-pentenoic acid  

The general procedure was followed with 2-oxobutyric acid (50 mg, 0.49 mmol, 1.0 eq.) and 1 (111 mg, 

0.53 mmol, 1.1 eq.). (49 mg, 70%) 

For purification and characterization purposes, compound 14 was converted to 14-OMe: To a round bottom 

containing MeOH (2 mL) was added 14 (50 mg, 0.34 mmol, 1.0 eq.) and pTSA (7 mg, 0.03 mmol, 0.1 eq.). 

The solution was refluxed for 4 h, then cooled and diluted with EtOAc (10 mL), washed with NaHCO3 (10 

mL x 3) and brine (10 mL x 1). The organics were collected, dried with MgSO4, and concentrated in vacuo. 

Purification by chromatography on silica (10:1 to 0:1 Hex:EtOAc) afforded 14-OMe as an oil (Rf = 0.24 in 

10:1 Hex:EtOAc). 

Spectral data for 14-OMe: 1H NMR (500 MHz, CDCl3) δ 5.77 (ddt, J = 18.2, 9.5, 6.8 Hz, 1H), 5.13-5.07 (m, 

2H), 3.77 (s, 3H), 2.47 (ddt, J = 13.8, 7.7, 1.2 Hz, 1H), 2.41 (ddt, J = 13.8, 7.8, 1.1 Hz, 1H), 1.79 (dq, J =  14.0, 

7.2 Hz, 1H), 1.70 (dq, J = 14.9, 7.6 Hz, 1H) 0.87 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 132.4, 118.8, 

52.6, 43.6, 31.7, 29.7, 22.6, 7.9. 

Compound 15:  α-Hydroxy-α-2-propen-1-yl-benzeneacetic acid 

The general procedure was followed with phenyl glyoxylic acid (50 mg, 0.33 mmol, 1.0 eq.) and 1 (76 mg, 

0.36 mmol, 1.1 eq.). (56 mg, 88%) 

Spectral Data: 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 7.6 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 7.3 

Hz, 1H), 5.79 (ddt, J = 17.2, 10.3, 7.0 Hz, 1H), 5.23 (d, J = 17 Hz, 1H), 5.18 (d, J = 10.0 Hz, 1H) 3.02 (dd, J = 
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13.8 Hz, 7.1 Hz, 1H), 2.81 (dd, J = 14.3, 6.7 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 178.9, 140.3, 131.8, 

128.4, 128.0, 125.6, 120.1, 44.0. 

Compound 16: α-Hydroxy-α-2-propen1-yl-benzenepropanoic acid 

The general procedure was followed with phenyl pyruvic acid (50 mg, 0.30 mmol, 1.0 eq.) and 1 (69 mg, 

0.33 mmol, 1.1 eq.). (46 mg, 73%) 

For purification and characterization purposes, compound 16 was converted to 16-OMe: To a round bottom 

containing MeOH (1 mL) was added 16 (46 mg, 0.22 mmol, 1.0 eq.) and pTSA (4 mg, 0.02 mmol, 0.1 eq.). 

The solution was refluxed for 4 hr, then cooled and diluted with EtOAc (10 mL), washed with NaHCO3 (10 

mL x 3) and brine (10 mL x 1). The organics were collected, dried with MgSO4, and concentrated in vacuo. 

Purification by chromatography on silica (20:1 to 10:1 Hex:EtOAc) gave 16-OMe as a pale yellow oil (Rf = 

0.31 in 10:1 Hex:EtOAc). 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 7.30-7.23 (m, 3H), 7.18 (m, 2H), 5.82 (dddd, J = 17.1, 10.3, 7.7, 

6.8 Hz, 1H), 5.16-5.11 (m, 2H), 3.72 (s, 3H), 3.06 (d, J = 13.2 Hz, 1H), 2.95 (d, J = 13.6 Hz, 1H), 2.62 (ddt, J = 

13.9, 7.6, 1.0 Hz, 1H), 2.50 (ddt, J = 13.8, 7.1, 1.4 Hz). 13C NMR (125 MHz, CDCl3) δ 175.5, 135.6, 132.3, 

129.9, 128.2. 126.9, 118.9, 78.2, 52.5, 45.1, 43.5. 

Compound 17: α-Allyl-α-hydroxy-β-methyl-benzenepropanoic acid 

The general procedure was followed with 10 (50 mg, 0.28 mmol, 1.0 eq.) and 1 (64 mg, 0.30 mmol, 1.1 eq.). 

(32 mg, 51%; d.r. 2.1) 

For purification and characterization purposes, compound 17 was converted to 17-OMe: To a round bottom 

containing MeOH (1 mL) was added 17 (32 mg, 0.14 mmol, 1.0 eq.) and pTSA (3 mg, 0.02 mmol, 0.1 eq.). 

The solution was refluxed for 4 h, then cooled and diluted with EtOAc (10 mL), washed with NaHCO3 (10 

mL x 3) and brine (10 mL x 1). The organics were collected, dried with MgSO4, and concentrated in vacuo. 
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Purification by chromatography on silica (20:1 to 10:1 Hex:EtOAc) gave 17-OMe as a pale yellow oil (Rf = 

0.35 in 10:1 Hex:EtOAc). 

Spectral data for mixture of diastereomers: 1H NMR (500 MHz, CDCl3) δ 7.35-7.18 (m, 10H), 5.76 (ddt, J = 

21.3, 8.4, 6.4 Hz, 1H), 5.66 (ddt, J = 20.6, 8.3, 6.5 Hz, 1H), 5.15-5.07 (m, 2H), 5.04-4.96 (m, 2H), 3.81 (s, 3H), 

3.57 (s, 3H), 3.16-3.10 (m, 2H) 2.69 (ddt, J = 13.8, 6.3, 1.5 Hz, 1H), 2.49 (ddq, J = 13.9, 8.3, 1.1 Hz, 1H), 2.35 

(ddd, J = 13.9, 8.3, 0.81 Hz, 1H), 2.03 (ddt, J = 13.9, 6.3, 1.4 Hz, 1H), 1.40 (d, J = 7.2 Hz, 3H), 1.24 (d, J = 7.1 

Hz, 3H) 13C NMR (125 MHz, CDCl3) δ 176.5, 175.7, 142.1, 141.5, 132.9, 132.8, 130.1, 129.2, 128.6, 128.3, 

128.1, 127.6, 127.5, 127.0, 126.9, 118.7, 118.6, 80.3, 80.2, 52.9, 52.3, 46.7, 46.6, 42.8, 41.7, 16.5, 14.6. 

Compound 18: 2-Allyl-2-hydroxy-4-phenyl-3-butenoic acid 

The general procedure was followed with 11 (50 mg, 0.28 mmol, 1.0 eq.) and 1 (64 mg, 0.30 mmol, 1.1 eq.). 

(45 mg, 72%) 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 7.40 (d, J = 7.9 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.27 (t, J = 7.3 Hz, 

1H), 6.87 (d, 16.1 Hz, 1H), 6.37 (d, 15.7 Hz, 1H), 5.84 (ddt, J = 16.4, 9.7, 7.5 Hz, 1H), 5.26-5.18 (m, 2H), 2.75 

(dd, J = 13.9, 8.1 Hz, 1H), 2.60 (dd, J = 14.6, 7.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 178.7, 135.9, 131.4, 

130.8, 128.7, 128.6, 128.0, 126.8, 120.2, 77.1, 43.8. 

Compound 19: 2-Allyl-[4-(2-Furanyl)]-2-hydroxy-3-butenoic acid 

The general procedure was followed with 12 (50 mg, 0.30 mmol, 1.0 eq.) and 1 (69 mg, 0.33 mmol, 1.1 eq.). 

(36 mg, 58%) 

For purification and characterization purposes, compound 19 was converted to 19-OTBDPS: To a Schlenk 

flask was added DCM (2 mL) and 19 (37 mg, .18 mmol, 1.0 eq.) at 0 °C. Hünig’s base (57 mg, 0.44 mmol, 2.5 

eq.) was added followed by tert-butyl(chloro)diphenylsilane (53 mg, 0.19 mmol, 1.1 eq.). The solution was 

allowed to warm to room temperature overnight. The reaction was quenched with DI H2O (10 mL) and 
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extracted with DCM (10 mL x 3). Purification by chromatography on silica (20:1 to 10:1 Hex:EtOAc) gave 

19-OTBDPS as a clear oil (Rf = 0.68 in 10:1 Hex:EtOAc). 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 7.64 (dd, J = 8.0, 1.2 Hz, 2H), 7.56 (dd, J = 8.0, 1.4 Hz, 2H), 7.45-

7.37 (m, 3H), 7.35-7.27 (m, 2H), 7.25-7.19 (m, 2H), 6.33 (dd, J = 3.2, 1.8 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 

6.24 (d, J = 16.0 Hz, 1H), 6.01 (d, J = 3.3 Hz, 1H), 5.97 (m, 1H), 5.12-5.06 (m, 2H), 2.74 (ddt, J = 14.0, 7.4, 1.0 

Hz, 1H), 2.68 (ddt, J = 13.9, 6.3, 1.5 Hz, 1H)1.04, 1.04 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 170.7, 152.1, 

142.2, 136.2, 135.4, 132.8, 130.0, 129.0, 127.6, 127.0, 119.8, 118.8, 111.2, 108.6, 81.0, 44.0, 26.9, 19.1. 

Compound 20: Benzoylacetic acid 

To a round bottom flask was added ethyl benzoylacetate (1 mL, 5.8 mmol, 1 eq.) and 1 M NaOH (6 mL, 1.0 

eq.) at room temperature. The mixture was allowed to stir overnight, then washed with Et2O (10 mL x 4). 

The aqueous layer was acidified to pH 1 with 1 M HCl. The resulting white solids were collected by filtration. 

(0.92 g, 98%) 

Spectral data matched that reported by Tirpak.45 

Compound 21: (3E)-4-(4-formylphenyl)-2-oxo-3-butenoic acid 

To a Schlenk flask containing MeOH (0.70 mL) at 0 °C was added pyruvic acid (0.40 mL, 5.7 mmol, 1.0 eq.) 

and terephthalaldehyde (1.5 g, 11 mmol, 2.0 eq.). A solution of KOH (0.48 g, 8.5 mmol, 1.5 eq.) in MeOH 

(1.6 mL) was slowly added dropwise. An additional 1 mL MeOH was added for solubility. The solution was 

stirred for 1 h at 0 °C, then refrigerated overnight. The resulting crystals were collected by filtration and 

washed with cold MeOH and Et2O. The crystals were dissolved in 1 M NaOH, and the solution was acidified 

to pH 1 with 10% HCl. The product was extracted with EtOAc (15 mL x 3). The combined organic layers were 

washed with H2O and brine (15 mL x 3), then dried with MgSO4, filtered, and concentrated in vacuo. (0.88 

g, 88%) 
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Spectral data matched that report by Sello.46 

Compound 22: (3E)-2-Allyl-4-(4-formylphenyl)-2-hydroxy-3-butenoic acid 

To a Schlenk flask containing MeCN (2.5 mL) was added 21 (0.10 g, 0.49 mmol, 1.0 eq.) and 1 (0.22 g, 1.1 

mmol, 2.1 eq.). The solution was heated to 80 °C and stirred overnight. The solution was concentrated via 

rotary evaporator to remove MeCN. The resulting product was washed with 1 M NaOH (15 mL x 2), and the 

silane byproducts were removed with Et2O (15 mL x 2). The aqueous layer was acidified to pH 1 with 1 M 

HCl, and extracted with EtOAc (20 mL x 3). The combined organic layers were dried with MgSO4, filtered, 

and concentrated in vacuo. (110 mg, 89%) 

For purification and characterization purposes, compound 22 was converted to 22-OMe. To a Schlenk flask 

containing MeOH/DCM (8.4 mL, 1:1) was added 22 at room temperature. TMSCHN2 (0.51 mL, 1.02 mmol, 

1.2 eq.), was added dropwise over 10 min. After stirring for 20 min, additional TMSCHN2 (0.25 mL, 0.51 

mmol, 0.6 eq.) was added. After stirring an additional 10 min, a third addition of TMSCHN2 (0.13 mL, 0.25 

mmol, 0.3 eq.) was added, and the solution stirred for 5 min. The reaction was quenched with AcOH (0.10 

mL) and diluted with toluene (0.38 mL). The solvent was removed in vacuo. Purification by chromatography 

on silica (10:1 to 4:1 Hex:EtOAc) gave 22-OMe as a pale yellow oil (Rf = 0.28 in 4:1 Hex:EtOAc). 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 9.97 (s, 1H), 7.83 (d, J = 8.7, 2H), 7.53 (d, J = 8.7 Hz, 2H), 6.91 (d, 

J = 15.5 Hz, 1H), 6.49 (d, J = 14.6 Hz, 1H), 5.79 (dddd, J = 14.5, 9.7, 7.7, 6.8 Hz, 1H), 5.19-5.13 (m, 2H) 3.82 

(s, 3H), 2.68 (ddt, J = 13.9, 7.9, 1.1 Hz, 1H), 2.54 (ddt, J = 13.5, 6.9, 1.2 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 

191.7, 174.5, 142.3, 135.6, 132.9, 131.6, 130.1, 129.2, 127.2, 119.7, 53.3, 44.0. 

 

Compound 23:  4-Formyl-α-oxo-benzeneacetic acid 
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Prepared according to He, et. al.47 To a Schlenk flask containing THF (10 mL) was added Mg° (290 mg, 12 

mmol, 2.0 eq.), and a small crystal of I2. An aliquot (0.25 mL) of 4-bromobenzaldehyde dimethyl acetal (1.0 

mL total, 6.0 mmol, 1.0 eq.) was added and the solution was stirred vigorously. At this point the reaction 

flask was heated via heat gun until the solution became lighter in color. The remainder of the bromide was 

added somewhat slowly and the solution was allowed to stir for 30 min. In a separate Schlenk flask 

containing THF (13 mL) was added diethyl oxalate (0.85 mL, 6.3 mmol, 1.1 eq.) at -78 °C. To this solution, 

the Grignard solution was added via syringe at -78 °C. The reaction was allowed to stir at -78 °C for 2 h, 

then 0 °C for an additional 2 h The reaction was quenched with NH4Cl, and extracted with EtOAc (15 mL x 

3). The combined organic layers were additionally washed with brine (15 mL x 3). The organic layer was 

dried with MgSO4, filtered, and concentrated in vacuo in a round bottom. To this round bottom was then 

added KOH (2.5 M, 9.6 mL, 24 mmol, 4.0 eq.). The reaction was tracked by TLC. When complete, the 

solution was acidified to pH 1 with 1 M HCl, and stirred for 30 min. The product was extracted with EtOAc 

(15 mL x 3), dried, filtered, and concentrated in vacuo. Finally, the product recrystallized in DCM, affording 

23 as a yellow solid. 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 10.16 (s, 1H), 8.53 (d, J = 9.6 Hz, 2H), 8.05 (d, J = 10.3 Hz, 2H).  

Compound 24: α-Allyl-4-formyl-α-hydroxy-benzeneacetic acid 

To a Schlenk flask containing MeCN (14 mL) was added 1-iPr (0.11 g, 0.31 mmol, 1.1 eq.) and 23 (50 mg, 

0.28 mmol, 1.0 eq.). The mixture was allow to stir for 5 h at room temperature before being heated to 80 

°C overnight. The solvent was removed by rotary evaporator. The resulting product was redissolved in THF 

(2.8 mL) and TBAF (0.90 mL, 0.90 mmol, 3.0 eq.) was added. The mixture was allowed to stir 1 h at room 

temperature. The reaction was quenched with NH4Cl (10 mL) and extracted with EtOAc (15 m x 2). The 

combined organic layers were dried over MgSO4, and concentrated in vacuo. (41.5 mg, 65%) 
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For purification and characterization purposes, 24 was converted to 24-OMe. To a Schlenk flask was added 

24 in DCM/MeOH (3.0 mL, 1:1) at room temperature. TMSCHN2 (0.56 mL, 0.34 mmol, 1.2 eq.) was added 

dropwise over 10 min. After stirring for 20 min, additional TMSCHN2 (0.28 mL, 0.17 mmol, 0.60 eq.) was 

added. After stirring for an additional 10 min, a third addition of TMSCHN2 (0.17 mL, 0.085 mmol, 0.30 eq.) 

was added, and the solution stirred for 5 min. The reaction was quenched with AcOH (0.03 mL), and diluted 

with toluene (0.01 mL) before concentrating in vacuo. Purification by chromatography on silica (4:1 to 1:1 

Hex:EtOAc) gave 24-OMe as a clear oil (Rf  = 0.6 in 1:1 Hex:EtOAc).  

Spectral data: 1H NMR (500 MHz, CDCl3) δ 10.02 (s, 1H), 7.89-7.86 (m, 2H), 781-7.78 (m, 2H), 5.76 (ddt, J = 

20.5, 7.5, 6.8 Hz, 1H), 5.20-5.13 (m, 2H), 3.8 (s, 3H), 2.98 (dd, J = 14.3, 7.2 Hz, 1H), 2.77 (ddt, J = 11.7, 6.9, 

1.1 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 191.8, 174.3, 147.6, 135.8, 131.6, 129.6, 126.4, 119.9, 78.1, 53.6, 

44.3.   

Compound 25: 2-(1-hydroxybut-3-en-1-yl)phenol 

To a Schlenk flask containing MeCN (1.4 mL) was added salicylaldehyde (50 mg, 0.41 mmol, 1.0 eq.) and 1 

(93 mg, 0.44 mmol, 1.1 eq.). The mixture was stirred and heated to 80 °C overnight. The solvent was 

removed via rotary evaporator, and the resulting product was redissolved in THF (4 mL) in a new Schlenk 

flask. The flask was cooled to 0 °C, and TBAF (2.5 mL, 2.5 mmol, 6.0 eq.) was added slowly. The mixture was 

stirred and warmed to room temperature over 30 min. The reaction was quenched with NH4Cl (10 mL) and 

the product was extracted with EtOAc (15 mL x 2). Purification by chromatography on silica (4:1 to 1:1 

Hex:MTBE) gave 25 as a clear oil. (Rf = 0.26 in 4:1 Hex:MTBE) (29 mg, 43%) 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 7.98 (s,br., 1H), 7.20-7.16 (m, 1H), 6.98 (dd, J = 7.6, 1.6 Hz, 1H), 

6.88 (dd, J = 8.2, 1.0 Hz, 1H), 6.84 (td, J = 7.6, 1.2 Hz, 1H), 5.85 (ddt, J = 21.0, 7.9, 6.4 Hz, 1H), 5.25-5.20 (m, 

2H), 4.88 (dd, J = 8.6, 5.2 Hz, 1H), 2.68-2.55 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 155.5, 133.9, 129.0, 127.1, 

126.3, 119.8, 119.5, 117.3, 74.7, 42.1. 
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Compound 26: 4-Hydroxy-3-(1-hydroxybut-3-en-1-yl)benzaldehyde 

To a Schlenk flask containing MeCN (3.5 mL) was added 4-hydroxyisophthalaldehyde (0.10 g, 0.67 mmol, 

1.0 eq.) and 1 (0.30 g, 1.4 mmol, 2.2 eq.). The mixture was heated to 80 °C and stirred overnight. The 

solution turned from white to yellow to orange, and finally to red. The solvent was removed via rotary 

evaporator. Purification by chromatography on silica (10:1 Hex:MTBE to 0:1 Hex:MTBE) gave 26  as a yellow 

solid. (Rf = 0.33 in 1:1 Hex:MTBE) (75 mg, 58%). 

Spectral data: 1H NMR (500 MHz, CDCl3) δ 9.81 (s, 1H), 7.70 (dd, J = 8.5, 2.2 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 

6.98 (d, J = 8.4 Hz, 1H), 5.84 (ddt, J = 17.0, 10.3, 7.2 Hz, 1H), 5.26-5.20 (m, 2H), 4.99 (t, J = 7.1 Hz, 1H), 2.64-

2.60 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 190.9, 161.7, 133.1, 132.0, 129.0, 128.9, 126.8, 120.1, 17.9, 74.3, 

42.3. 
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