Winter 2024

A Closer Look at Interrogation Strategies: Confabulation, False Memories, and False Confessions due to Interrogator Pressure and Information Exposure

Annika Fiala
A Closer Look at Interrogation Methods: False Confessions due to Confirmatory Feedback and Exposure Effects

Criminal interrogators utilize a variety of tactics to obtain information from a subject of interest. Unfortunately, these tactics can have mixed results, and only sometimes they elicit a truthful confession. In others, they encourage false confessions and confabulation. Confabulation is the belief in a fabricated or false memory and can arise from interrogation dynamics. Most commonly, confabulations arise from confirmatory feedback and exposure to information during interrogations. These confabulations can be explained by source monitoring failure, schema, and the generation effect. This literature review seeks to explain how interrogation strategies can result in false confessions as well as explore its implications in equality and eyewitness testimony.

Exposure to information is a common precipitator of confabulation. To measure exposure effects that arise from interrogation, researchers recreated interrogation scenarios in which unanswerable questions are asked of the subject. During the interrogation, subjects were made aware of information they were previously unaware of. Overwhelmingly, when the subjects were pressured to answer unanswerable questions, they rely on this information to update their schema to create reasonable answers (Gombos et al., 2012; Pezdek et al., 2007; Pezdek et al., 2009). Schema, first defined by Bartlett (1932), are established norms that are used as templates in our memory (Gilboa & Marlatte, 2017). As a result, the subject integrates the additional information into their memory as part of the actual event.

Other studies investigated the effects of exposure to misinformation. It was found that mere exposure to information that falsely implicates the subject also significantly increased chances of confabulation (Kassin & Kiechel, 1996; Pena et al., 2017). When confronted with
information contrary to the real event, individuals attempt to rationalize the information. This increased the incidence of memory contamination and confabulation. Confabulations induced by exposure can be explained predominantly by source monitoring failure and schema.

Source monitoring failure occurs when information is cognitively misaligned with its original source and is therefore remembered inaccurately (Johnson et al., 1993). Most of the time source monitoring occurs without error or conscious acknowledgement, but when something is harder to remember, a more deliberate effort must be made. If the source of information is not remembered, the subject may fill it in with a probable confabulated memory by accessing schema. In addition to schema, post event information can impair the ability to retrieve the original information (Belli et al., 1994). This makes the exposure of information during interrogation especially harmful to subject memory reliability.

An enhancer of confabulation is confirmatory feedback. This feedback from the interrogator encourages the subject’s confidence in responses. It has been observed that those exposed to such tactics have an increased chance of developing false memories. To study the effects of confirmatory feedback, researchers replicated the interrogation setting while comparing feedback methods (neutral versus confirmatory). By giving confirmatory feedback and encouraging digression, the incidence of false confabulations was increased significantly (Frost et al., 2004; Hanba & Zaragoza, 2007; Zaragoza et al., 2001). The same studies also reported confirmatory feedback persistence longitudinally as well as an increased recollection for confabulatory statements. The strength of confirmatory feedback and persistence of belief can be explained primarily by the generation effect.

The generation effect is the tendency for self-generated information to be better remembered than non-self-generated information, resulting in increased belief persistence
An example of this effect is being given a word and then having to generate a similar pair with only the first two letters provided (i.e. rabbit – bu__). When later tested for memory recall, the generated word, bunny, is better remembered than rabbit. This effect can be strengthened when subjects were encouraged by confirmatory feedback (Zaragoza et al., 2001). Confirmation also acts as a form of repetition and strengthens its retrieval. When combined with exposure effects, this can result in incriminating or inaccurate information being recounted.

Differences in subject cognitive development or the presence of impairment are known to covary with susceptibility to interrogation tactics. Developmental deficits or abnormal brain development can have negative effects on memory and retrieval. Regarding brain structure, the ventromedial prefrontal cortex, hippocampus, and temporoparietal junction are integral to the formation and maintenance of schematic information (Gilboa & Marlatte, 2017). These areas are activated during new information acquisition and encoding. The right prefrontal cortex has also been found to activate during episodic memory retrieval, such as with forced recognition tests (Johnson & Raye, 1998). This would suggest that individuals with damage or abnormal development of these brain regions could be more susceptible to interrogation methods.

Individuals under the influence of or experiencing withdrawal from drugs or alcohol can also experience impairment of brain regions by changes in neural activity (Leo, 2009; Rug et al., 1996). Neurological disorders like PTSD, major depression, alzheimer’s, and autism have been found to impair hippocampal and prefrontal regions of the brain (Li et al., 2015). Adolescents, who lack a fully developed prefrontal cortex are at increased risk for memory error and confabulation (Johnson & Raye, 1998). Those within these demographics are disproportionately susceptible to interrogation methods and can have greater rates of incarceration (Leo, 2009).
When considering the potential for false confidence and/or belief during the criminal interrogation process, it is reasonable to apply scrutiny to eyewitness testimony. Eyewitnesses often undergo repeated interrogations, increasing their chance of exposure to information they did not witness. When pressed for information, the subjects likelihood to confabulate increases significantly (Kassin & Kiechel, 1996; Pezdek et al., 2007). When combined with confirmatory feedback, not only is memory reliability decreased, but bias may also be introduced via feedback. The framing of questions and exposure to select information may lead subjects to confabulate according to provided narrative. Therefore, information provided by the interrogator must be controlled during the interrogation to prevent it from being reflected back in responses.

The interrogation process must be conducted carefully to mitigate confabulation and false confessions. Exposure to information must be limited in scope to discourage schematic fill in and source monitoring error, and confirmatory feedback withheld to lessen generation effects. If these effects are unaccounted for, innocent individuals may be wrongly implicated or incarcerated due to the justice system’s reliance on unreliable subject information.
References


