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Abstract 

The synergy of ocean acidification and ocean warming may lead to negative effects in 

marine organism responses that would be absent under single stressors. While adult fish are 

effective acid-base regulators, early life stages may be more susceptible to environmental 

stressors. Pacific herring are ecologically and economically important forage fish native to the 

U.S. Pacific Northwest (PNW), and several herring populations in the PNW have experienced 

reductions in stock abundance. Studies to date have focused on Atlantic herring, and little is 

known about the response of Pacific herring to ocean acidification and warming. Therefore, this 

study focused on the combined effects of ocean acidification and warming on Pacific herring 

early life stages. We incubated Pacific herring embryos under a factorial design of two 

temperature (10°C, 16°C) and two pCO2 (600 µatm, 1200 µatm) treatments from fertilization 

until hatch (11 to 15 days depending on temperature). Elevated pCO2 was associated with a small 

increase in embryo mortality. However, elevated temperature was associated with greater 

embryo mortality, greater embryo heart rates and yolk areas upon hatch, lower percent normal 

hatch, and decreased larval lengths. The interaction of elevated temperature and pCO2 was 

associated greater embryo respiration rates and yolk areas. This study indicates that temperature 

will likely be the primary global change stressor affecting Pacific herring embryology, and 

interactive effects with pCO2 may introduce additional challenges.  
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Introduction 

Developing Pacific herring embryos may be negatively affected by environmental 

change, resulting in decreasing populations (Shelton et al., 2014). Pacific herring in Puget Sound, 

WA are a key prey item to seabirds, marine mammals, and predatory fish (Stick and Lindquist 

2009; Stick et al., 2014). However, herring populations in Washington State have experienced 

decreasing trends in abundance and spawning biomass by as much as 90% since 1973 (Stick and 

Lindquist 2009). As such, additional changes in the natural environmental may increase stress on 

Pacific herring populations. This study was the first to investigate near future levels of ocean 

acidification and warming on Pacific herring early life stages. Findings will help determine their 

susceptibility to several climate change scenarios, and will provide a better understanding for 

management and conservation actions. 

 

Ocean Acidification Variability 

Atmospheric CO2 has increased from roughly 280 ppm to nearly 430 ppm since the 

Industrial Revolution (IPCC, 2014). The oceans have taken roughly a third of this anthropogenic 

CO2 (Sabine et al., 2004). This carbon addition causes seawater chemistry to shift towards a 

decrease in ocean pH and an increase in pCO2 – a process known as ocean acidification. Climate 

scientists predict surface seawater pH will decline an additional 0.4 units from pH 8.1 to pH 7.7 

by 2100 (pCO2 ~ 1,000 μatm) (Caldeira and Wickett 2003; IPCC 2014). These predictions for 

long-term pH changes are primarily modeled for open ocean systems (Duarte et al., 2013). 

Coastal ecosystems, on the other hand, have a broader range of factors that influence pCO2. 

Respiration, eutrophication, and the decomposition of organic matter are interconnected 

processes that further elevate pCO2 in coastal systems (Feely et al., 2010; Sunda and Cai 2012; 
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and Duarte et al., 2013). In addition water entering the Puget Sound via the Juan de Fuca Strait 

carries the signature of deep pCO2-laden seawater upwelled onto Washington coastal shelves 

during April through November (Feely et al., 2008). Conversely, coastal regions in the Pacific 

Northwest contain habitats dominated by marine vegetation, such as eelgrass beds, that lower 

seawater pCO2 through photosynthetic processes (Duarte et al., 2013; Pacella et al., 2018). 

The pCO2 variability present in coastal ecosystems may enhance or reduce vulnerability 

of organisms to OA. When anthropogenic acidification is added to periodic, and naturally 

occurring low pH, the critical pH threshold for organisms’ may be exceeded (Hofmann et al., 

2010). For example, negative effects of elevated pCO2 are found in many calcifying organisms 

(reviewed in Hofmann et al, 2010; Kroeker et al., 2010), where high pCO2/low pH results in 

increased energetic demands for calcification (Venn et al., 2013). Conversely, coastal variability 

may have caused species to adapt to changing conditions, and they may possess enhanced 

resilience compared to species from more stable environments (Hofmann and Todgham 2010).  

 

Ocean Acidification and Marine Fish 

Organisms with high metabolic activity, the ability to regulate internal pH, and a reduced 

presence of calcified structures, are hypothesized to be more tolerant to ocean acidification than 

sessile, calcifying organisms (Pörtner et al., 2005; Wittman and Pörtner 2013). Highly active 

species, like marine fish, generate excess CO2 within their tissues and internal fluids through 

aerobic respiration (Melzner et al., 2009). An accumulation of CO2 products decreases blood pH, 

leading to respiratory acidosis (Melzner et al., 2009). To mitigate excess CO2 in their 

bloodstream and prevent acidosis, adult marine fish evolved effective acid-base regulation 

mechanisms (Perry and Gilmour 2006; Deigweiher et al., 2008; Heuer and Grosell 2014). During 
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acid-base regulation, adult marine fish remove excess H+ ions from their blood plasma through 

Na+/H+ transporters located across gill epithelia (Perry and Gilmour 2006; Deigweiher et al., 

2008). Acid-base regulation may additionally be achieved by importing bicarbonate from the 

environment via epithelial ion transporters to buffer high H+ concentrations (Deigweiher et al., 

2008). Hyperventilation in response to high blood CO2 is also believed to lessen acidosis by 

increasing the diffusion of CO2 across branchial epithelium through greater water flow over their 

gills (Evans et al., 2005).  

Although mechanisms to alleviate acidosis are present in adult fish, fish embryos and 

larvae lack these acid-base regulation mechanisms. Therefore, early life stages are likely more 

vulnerable to environmental change (Kikkawa et al., 2003; Ishimatsu et al., 2008). For example, 

embryos of inland silverside (Menidia beryllina), small schooling fish that reside in estuaries 

along the North American Atlantic coast, were incubated at CO2 concentrations ranging from 

400 µatm to 1100 µatm (representing current ambient conditions to levels predicted for 2100) 

(Baumann et al., 2011). A week after hatching, a consistent decline in larval survival was 

observed in embryos reared at 1100 µatm compared to embryos kept at 400 µatm. Olfactory 

impairment and behavioral changes have been observed in larval orange clownfish (Amphiprion 

percula) at pCO2 levels above current predictions for this century (2000 µatm) (Munday et al., 

2008a). Exposure to ocean acidification conditions hindered larval clownfish from identifying 

and navigating to suitable settlement sites. Munday et al. (2008a) indicate that this may result in 

inbreeding among populations because larvae could no longer distinguish between parents and 

nonparents when choosing settlement sites.  

While research has detected negative CO2 effects in some fish species, other species were 

robust to elevated CO2. For example, Baltic cod (Gadus morhua) embryo and larvae 
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development were not significantly affected by elevated pCO2 of up to 3200 µatm (Frommel et 

al., 2012). Hurst et al. (2014) present similar results no effect on growth and hatch rate in 

embryos of northern rock sole (Lepidopsetta polyxystra) when incubated near 1500 µatm. 

Species-specific responses to ocean acidity are evident rather than a common trend across marine 

fish (Baumann et al., 2011; Hurst et al., 2013, 2014; Frommel et al., 2014; Hamilton et al., 

2017); therefore we cannot predict the response of Pacific herring (Clupea pallasii) early life 

stages.  

Pacific herring are forage fish that range geographically along the west coast of North 

America from Baja California, Mexico to the Bering Sea, and along the coast of Japan (WDFW 

2011). In Puget Sound, WA, a semi-enclosed estuary in the U.S. Pacific Northwest (PNW), adult 

herring spawn in nearshore coastal waters from early spring to mid-summer (Stick and Lindquist 

2009).  

Variable pCO2 levels are present in Puget Sound (Feely et al. 2008; Feely et al., 2010). 

For example, McLaskey et al. (2016) recorded pCO2 levels ranging between 400 µatm (pH 8.0) 

and 1600 µatm (pH 7.5), depending on depth (130 – 180 m) within northern Hood Canal. In 

shallow depths (3 – 5 m) at Friday Harbor, WA, weekly samples from July 2011 to August 2013 

showed that seawater pCO2 was regularly greater than 650 µatm (pH ~ 7.8) (Murray et al., 2015). 

During early spring to mid-summer months, pH can vary from 7.7 to 8.5 in Padilla Bay, WA 

(Baumann and Smith 2018). Consequently, Pacific herring embryos may encounter episodic 

elevation of pCO2 during development.  

Atlantic herring (Clupea harengus) may give an insight into how Pacific herring early 

life stages will respond to ocean acidification. Pacific herring embryos have similar general 

developmental patterns as those observed in Atlantic herring (Kawakami et al., 2011). Atlantic 
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and Pacific herring are morphologically similar, but vary geographically and ecologically 

(Lakkonen et al., 2015). Atlantic herring spawn in North Atlantic waters, where some areas 

already experience acidified waters (> 2300 µatm) (Thomsen et al., 2010). Franke and 

Clemmesen (2011) reared Atlantic herring embryos under projected pCO2 levels by 2100 for the 

Kiel Fjord (~ 4000 µatm), and found no significant malformations or mortality rates compared to 

control pCO2 of 480 µatm. However, newly hatched Atlantic herring larvae had reduced 

RNA/DNA ratios. RNA concentrations increase as protein synthesis increases and is correlated 

to growth, therefore examining RNA/DNA ratios allows for detectable changes at a genetic level 

before noticeable observations occur at higher biological orders. Based on the responses of 

Atlantic herring it is possible that elevated pCO2, as a single stressor, may not affect the early life 

stages of Pacific herring in terms of observable development. 

 

Ocean Warming and Marine Fish 

The global mean sea surface temperatures (SST) are projected to increase 3.7°C to 4.8°C 

by the year 2100 (IPCC 2014). Coastal temperatures for the Pacific Northwest are projected to 

increase at least 0.5°C, with greater projected warming during the summer (1.9°C to 5.2°C) 

(Dalton et al., 2013). Temperature influences a range of physiological traits in marine fish. In 

early developmental stages warmer temperatures accelerate yolk absorption and jaws become 

functional earlier in several tropical fish species (Fukuhara 1990).  

Increased incubation temperature has resulted in shortened embryogenesis and earlier 

hatching in Atlantic herring and coral reef fish larvae (Johnston et al., 1998; Green and Fisher 

2004). In Atlantic herring larvae, the subsequent rate of muscle fiber development was 89% 

greater at 8°C than at 5°C (Johnston et al., 1998). Although warmer temperatures shorten embryo 
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ontogeny and accelerate growth, an increased frequency of physical deformities is also observed 

in these larvae (Vieira and Johnston 1992). Physical abnormalities in the formation of pectoral 

fins and spinal chords may diminish swimming performance, leading to greater mortality from 

an inability to capture prey or avoid predators (Vieira and Johnston 1992; Johnston 1993; 

Johansen et al., 2011; Kawakami et al., 2011).  

The development of Pacific herring larvae also depends on rearing temperature. 

Differences in developmental temperatures may cause irreversible phenotypic changes in early 

life stages that can negatively affect the growth and survival of later stages (Johnston et al., 

1998). Alderdice and Velsen (1971) determined optimal temperature conditions for total hatch, 

viable hatch, and larvae length to range 5-9°C. Purcell et al. (1990) conducted a field study in 

southeastern Vancouver Island, where Pacific herring larvae were sampled from 1-5 m depths. 

They found high densities of abnormal larvae, with vertebral and jaw abnormalities accounting 

for over 20% of anomalies. High water temperatures in Kulleet Bay (~ 18.2°C) likely stressed 

the embryos, which affected the development of larvae. In more recent Pacific herring and 

temperature studies, embryo survival and growth were robust to incubation temperatures 

between 10°C and 12°C (Dinnel et al., 2007; Kawakami et al., 2011). Temperatures greater than 

12°C appear to greatly affect Pacific herring embryo survival. For example, embryo mortality 

was 50% at 14°C compared with 1% embryo mortality at 12°C (Dinnel et al., 2007). Pacific 

herring spawn at depths up to 3 m in Puget Sound estuaries. In the Padilla Bay estuary 

temperatures (from 2002 to 2016) can vary 6.6-16.4°C (Baumann and Smith 2018).  

Warming exacerbates oxygen limitation by increasing organism oxygen demand and 

reducing the solubility of oxygen (Pörtner and Knust 2007). Warmer temperatures may create a 

mismatch between oxygen demand and the capacity of tissues to obtain oxygen, ultimately 



 7 

restricting whole-animal tolerance to thermal differences. An organism’s capacity to maintain a 

sufficient oxygen supply is limited by their thermal window, which is dependent on the species 

and species life stage (Pörtner 2012). From embryo to larval stages, differences in thermal 

tolerance may relate to a physiological shift in oxygen uptake. Circulatory and ventilations 

systems become the dominant forms of oxygen uptake in the larval stage, instead of diffusion 

across the embryo’s chorion (Pörtner 2001; Pörtner and Farrell 2008). Under warmer 

temperatures, greater oxygen demand will likely be observed in Pacific herring embryos.  

 

Stressor Interactions 

Investigating single stressors gives an incomplete picture of organism responses since 

they can be simultaneously exposed to multiple environmental perturbations. Concurrent 

temperature increases with increasing pCO2 may cause an additive (both stressors in combination 

have the same effect as the sum of the single stressor effects), synergistic (combined stressors 

have greater effect than the sum of the single stressors), or antagonistic (combined effects are 

lower than the sum of the single stressors) effect. For example, Antarctic juvenile emerald 

rockcod (Trematomus bernacchii) were exposed to three pCO2 (450, 850, and 1200 μatm) and 

two temperature (-1 or 2°C) treatments (Davis et al., 2017). The combination of elevated pCO2 

with warmer temperature had an additive effect on juvenile hyperventilation, and Davis et al. 

(2017) suggest the effect likely served as an acid-base balance mechanism to expel excess CO2.  

The addition of elevated pCO2 to high temperature also appeared to have a synergistic 

effect on oxygen consumption, as the effect was greater than predicted by the response from the 

single stressors. This additional environmental stressor may reduce the capacity for juveniles to 

acclimate to warmer temperatures (Davis et al., 2017). Embryos of Antarctic dragonfish 
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(Gymnodraco acuticeps), were incubated under interacting pCO2 (420, 650, and 1000 μatm) and 

near-future warming (2°C) conditions (Flynn et al., 2015). Dragonfish embryo mortality was not 

affected when increased pCO2 was the sole stressor. However, embryo survival significantly 

decreased when warming was combined with acidification (420 μatm, 73 ± 4%; 650 μatm, 68 ± 

6%; and 1000 μatm, 63 ± 3%).  

The responses of Atlantic fish species to multiple stressors were similar to those observed 

in Antarctic species. A synergistic effect was found, under interacting pCO2  (~1600 μatm) and 

temperature (22°C) conditions, when 93% of Atlantic flatfish (Solea senegalensis) larvae 

experienced greater skeletal deformities, compared to 2% of affected flatfish larvae in control 

conditions (400 μatm and 18°C) (Pimentel et al., 2014). In Atlantic cod (Gadus morhua), the 

frequency of larvae with deformities increased with temperature (ranging from 6% at 0°C to 22% 

at 12°C), and elevated pCO2 (~1100 μatm) had an additive effect, with deformities consistently 

increasing by as much as 37% at 12°C (Dahlke et al., 2017). In a recent study, Sswat et al. 

(2018a) assessed Atlantic herring larval survival, size and weight in a factorial design of two 

temperature (10 and 12°C) and two CO2 levels (400 μatm and 900 μatm). Under the elevated 

temperature and CO2 treatment, larval survival decreased during the experimental period (Table 

3, Sswat et al., 2018a). These studies show that interacting temperature and pCO2 stressors can 

affect a range of physiological factors depending on life stage and species. Therefore this study 

was designed to investigate the developmental responses of Pacific herring (Clupea pallasii) 

early life stages under interacting pCO2 and temperature stressors.  
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Methods 

Sampling Site and Gonad Collections   

The Washington Department of Fish and Wildlife (WDFW) collected adult Pacific 

herring via gill net in May 2017, from documented spawning grounds in Cherry Point, WA 

(Stick and Lindquist 2009). Gonads from six females and four males were dissected in the field 

and transported on ice to the Shannon Point Marine Center (SPMC) in Anacortes, WA.  

 

Fertilization Protocol 

 

Fertilization occurred at treatment conditions, 7 h after gonad collections. Two female 

gonads contained dry and hardened eggs, indicating poor gamete quality (Dinnel et al., 2010); 

therefore, fertilization occurred with four female gonads, instead of six. Approximately 50 – 100 

eggs were lifted from an ovary using a micro-spatula and dispersed onto groups of four glass 

microscope slides (25 x 75 x 0.1 mm) under temperature and pCO2 treatment combinations. 

Testis samples (~ 1 cm3) from each male were combined and macerated using razor blades in 

one of four 200 mL bowls representing the treatment combinations. A 1 mL aliquot of the 

homogenized sperm suspension was used to fertilize each set of microscope slides. After a ten-

minute period embryos were adhered to the slides, and were gently rinsed with their respective 

treatment water to remove sperm and ovarian remnants.  

This process occurred 3 additional times for the other females (Fig. 1). Individual slides 

were placed inside 200 mL glass bowls and photographed to determine initial counts 

(Stereomicroscope: Olympus SZ40, 6.7x magnification; Camera: Nikon DSLR D3300 55mm 

lens). Five slides were distributed to each respective treatment basin, four slides for embryo 

measurements and one slide was used for the oxygen consumption experiment. To account for 

maternal variability, each treatment basin contained embryos from one of the four females. 
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Figure 1: Groupings of microscope slides based on treatment combinations during the 

fertilization process. Slide lettering pertains to pCO2 (first letter) and temperature (second letter). 

Slide numbering pertains to basin (first number) and female (dashed, second number); R 

signifies the slide designated for the oxygen consumption experiment. One R slide was placed in 

each basin. One slide from each female was distributed into each treatment basin.    

 

 

Experimental Setup  

Embryos were incubated in a triplicated 2 x 2 factorial framework consisting of two 

water temperature (10°C, 16°C), and two pCO2 treatments (600 µatm, pH 7.8; 1200 µatm, pH 

7.5). A header tank (170 L) received filtered seawater drawn from Guemes Channel 7 m below 

mean lower low water. Seawater was aerated with ~10 air stones within the header tank, to 

ensure good oxygenation and bring CO2 to atmospheric equilibrium, before being gravity fed 

into twelve, 40 L mixing tanks at 4 L min-1 (Fig. 2). Within each mixing tank, submersible power 

head pumps (Marineland Maxi-jet 900) circulated water using magnetically driven impellers. Six 

pumps continuously received CO2 gas (40 mL min-1) from an 8 channel Masterflex® L/S Digital 

Drive (model UX-77921-75) peristaltic pump attached to a 20lb food grade CO2 gas cylinder 

with a regulated output of 10 psi. The pumps broke up the CO2 gas into miniscule bubbles, 

which quickly dissolved within the mixing tanks (after Jokiel et al., 2014).  

Clear acrylic sheets (5/8”) covered the 12 treatment basins (n = 3 basins per treatment) to 
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reduce gas exchange. Water flow from the mixing tanks into the treatment basins was gravity fed 

through tubing restricted to 1/16” ID at the lower end. The basin volume (11 L) and water flow 

rate into the basins (3.6 mL s-1) allowed for a residence time (50 min) that permitted the 100 W 

submersible resistance heaters (Aqueon® Submersible Aquarium Heater) to raise the ambient 

seawater temperature (10°C) to 16°C in half of the basins. Each basin housed 200 mL glass 

bowls containing the developing embryos (n = 5 bowls per basin). Bowls were covered with fine 

mesh to allow water to circulate but prevent escapement of hatched larvae. Water circulation 

pumps (Hydor Koralia Nano 240) ensured uniform temperatures within the basins, and 

standpipes within the basins and tanks allowed excess seawater to flow to waste. 

 

                
 

Figure 2: Schematic of facility used to conduct tests on Pacific herring larvae. Seawater was 

continuously pumped from Guemes Channel into the header tank and gravity-fed into 12 mixing 

tanks. Six of the twelve mixing tanks received pure CO2 gas (~ 1200 µatm) from a peristaltic 

pump connected to a CO2 gas tank – while the other six mixing tanks received untreated seawater 

(~ 600 µatm). Seawater from the mixing tanks then flowed into 12 treatment basins (n = 6 basins 

at 10°C, n = 6 basins at 16°C). Factorial combinations are listed below the treatment basins.  
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Carbonate Chemistry 

 

Daily temperature and pH values were recorded using a hand-held, Orion Star™ A329 

pH conductivity meter calibrated with NBS-buffers at 10°C. Basin seawater samples were drawn 

on days 2, 7, and 12 for carbonate chemistry analyses. Samples were passed through a 0.6 µm 

glass fiber filter before filling 20 mL scintillation vials for duplicate pH and duplicate dissolved 

inorganic carbon (DIC) samples. DIC samples were poisoned with 10 µL of mercuric chloride 

(HgCl2), refrigerated at 2°C, and analyzed a week after collection. A DIC analyzer (Apollo 

SciTech AS-C3) extracted 2 – 5, 0.75 mL subsamples from the vials. If the first two subsamples 

were within a 2-μmol kg-1 range of each other, the instrument proceeded to the next sample. If 

the two subsamples were outside the range, up to 3 additional subsamples were extracted. Room 

temperature and sample salinity (measured with refractometer) were used to calculate density 

and convert DIC measurements between µmol L-1 and µmol kg-1. DIC values were calibrated 

against a standard curve, calculated from the area of five varying volumes of certified reference 

material (CRM, Batch 149, Dickson, Scripps Institute of Oceanography). 

Seawater samples for pH measurements were not poisoned, and were analyzed within a 

few hours of collection. A diode array spectrophotometer (Agilent 8453A UV-VIS) was used to 

quantify pH. Basin seawater samples were kept in a 25°C water bath before transferring, via 

syringe, into a jacketed 5 cm cuvette. The samples received one 30-µL aliquot of m-cresol 

indicator dye to determine the absorbance at three wavelengths (730 nm, 578 nm, and 434 nm) 

(Dickson et al., 2007). Both DIC and pH measurements were used to calculate pCO2, pH (total 

scale), and aragonite saturation states (Ω) using CO2SYS (Lewis and Wallace 1998) with K1 and 

K2 equilibrium constants refit by Dickson and Millero (1987). Mixing tank salinity was 

measured during carbonate chemistry sampling, using a hand-held YSI instrument (Model 85).  
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Data Collection  

Fertilization Success and Normal Hatch 

The presence of a raised membrane around the embryo indicated successful fertilization 

(Fig. 3a, 3b, Dinnel et al., 2010). Dead embryos post-fertilization (Fig. 3c) were recorded from 

the slides every 24 hours until all individuals had hatched or died. Dead embryos were removed 

from the slide when not attached to a live embryo (Fig. 3d). When hatching commenced, daily 

counts of abnormal, dead, and live larvae were recorded (Fig. 4). Live, non-malformed larvae 

were collected and immersed in a 10 mL bath of tricaine methanesulfonate (MS-222) at a 

concentration of 250 mg L-1 of seawater. Anesthetized larvae – unresponsive to physical stimuli 

– were euthanized in a 5% formalin solution and preserved with 15 mL of 200-proof ethyl 

alcohol in high-density polyethylene vials. Percent normal hatch was determined by counting the 

number of live, non-malformed larvae versus the initial number of fertilized embryos.  

 

                            

Figure 3: Examples of a. fertilized (clear membrane around the egg) and b. unfertilized embryos 

(left panel) (Dinnel et al. 2010), c. dead embryos (middle panel), and d. live embryos (right 

panel). 
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Figure 4: Examples of Pacific herring larvae with no vertebral deformities (top) and larvae with 

bent vertebral deformities (bottom). 

 

 

Development, Yolk Areas, Oxygen Demand, and Heart Rate 

 

 Beginning on day 2, three embryos from each slide were haphazardly chosen by marking 

the underside of the slide to observe development. Chosen embryos were photographed daily 

using identical camera and microscope settings from fertilization. Embryo yolk areas were 

measured from two days of digital photographs taken before the developing embryo obscured the 

yolk sac (days 9-10 at 10°C and days 3-4 at 16°C). Yolk areas were measured using the oval tool 

in ImageJ. Heart visibility depended on embryo development stage and position. Video 

recordings of embryo heart rates occurred on day 4 and days 5-6 for the 16°C and 10°C 

treatment, respectively. One-minute videos from haphazardly selected embryos from each slide 

in the basins (n = 62 videos at 16°C, and 143 videos at 10°C), by angling a 55mm Nikon D3300 

lens into an Olympus SZ40 Stereomicroscope viewfinder (6.7x). Embryos at 16°C were further 

along in development than embryos at 10°C (Appendix A, Fig. A3) when videos were recorded. 

Therefore a direct comparison across all treatments cannot be made, so heart rate data were 

analyzed separately by temperature groupings. Heart rates were visually counted during video 

analysis. 
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In addition to video recordings, we measured embryo oxygen consumption rates using a 

Microx TX3 oxygen meter (PreSens GmbH, Germany) connected to a polymer optical fiber. We 

placed 10 haphazardly chosen embryos from one slide into glass vials (2 mL) with micro-optode 

sensor spots (n = 2 vials per basin, 6 vials per treatment). Vials were overflowed with treatment 

water to eliminate headspace, capped, and aligned in holders floating inside a 10°C or 16°C 

basin. Recordings were taken every 30 minutes, until vials experienced a ~20% drawdown in 

oxygen saturation, for a total of 3 hours. Vials were carefully inverted by hand every fifteen 

minutes, and right before measurements, to disperse oxygen gradients that may have formed 

around the embryos. For blank measurements, vials were only filled with treatment water and 

recorded simultaneously as the embryo filled vials (n = 1 blank vial per basin, 3 per treatment).  

Measurements beginning 30 min after vials were filled were used to calculate rates. 

Oxygen consumption rates were calculated as the slope of the regression line between O2 

concentration (mg L-1) and time (min). Embryo oxygen rates were corrected for background 

oxygen consumption by subtracting the regression slope of the corresponding blank vial, and 

data were normalized by the number of embryos (n = 10) in each vial. 

For six vials in the 600 µatm +16°C treatment, only raw data (phase angle) were 

recorded. A 2nd order polynomial equation (r2 = 0.99) was derived from the other calibrated, 

16°C vials relating phase angle (deg.) and oxygen (mg/L) values. The equation was then used to 

derive oxygen concentrations using the phase angle values from the six vials.  

 

Larval Morphology at Hatch  

The number of larvae per sample varied depending on daily hatch numbers, but only 

samples with ≥ 10 larvae were analyzed for dry weight measurements because the scale precision 
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was not sufficient for smaller samples. We placed larvae samples on aluminum boats (2 in x 1 in) 

for drying and weighing. Empty weigh boats (n = 58 total) were desiccated in a 70°C drying 

oven for at least 24 hours, and weighed on a Mettlier Toledo™ AB135-S/Fact analytical scale to 

the nearest 0.01 mg. Larvae were drawn from the vials, placed on a Petri dish, and rinsed with 

deionized water. Excess liquid was removed and larvae were carefully transferred to a labeled 

aluminum dish. Larvae were photographed with the Nikon D3300 DSLR 55m lens that was 

positioned on a custom platform 11 cm above the dish. Larvae were dried at 70°C for 24 hours 

minimum, and reweighed on the analytical scale to determine dry weight. Initial boat weights 

were subtracted from the final weights, and divided by the number of larvae on the boat, yielding 

mean dry weight (DW) per fish larva. Digital photographs were analyzed using the segment tool 

in ImageJ to measure larval standard length (from the tip of the snout to the last vertebrae) to the 

nearest 0.1 mm, by placing a ruler adjacent to the weight boat.  

 

Statistical Analysis 

 Fertilization success, yolk area, percent normal hatch, embryo heart rates, and larval 

morphology (average length and dry weight) data were expressed as means ± standard 

deviations. All of the above mentioned data were tested for equal variance and normality using 

Levene’s and Shapiro-Wilk methods, respectively, before using a multifactorial analysis of 

variance (two-way ANOVA) to evaluate the effects of temperature and pCO2 (fixed factors), or 

the interaction of factors. Fisher’s LSD post hoc comparisons were used to detect significant 

differences between the means. Statistical significance was determined by p ≤ 0.05. All statistical 

testing was conducted using R software (R Developmental Core Team, version 3.1.2, 2014).  
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Results 

Incubation Conditions 

Ambient (600 µatm) pCO2 conditions remained fairly constant over time (Fig. 5). The 

ambient pCO2 was slightly higher than the “current-day” ~ 400 µatm of pCO2 used in recent 

studies (Miller et al., 2015; Dahlke et al., 2016; Davis et al., 2017). The high (~1200 µatm) pCO2 

treatments showed greater variability between and within days (Table 1), but the total DICs for 

the two high pCO2 treatments were not statistically different from each other (F1,15 = 0.6, p > 

0.05, η
2

p = 0.03).  

This implies outgassing of CO2 was not an issue at 16°C. The pCO2 and pH differences 

between the 1200 µatm + 10°C and 1200 µatm + 16°C occurred from the warmer temperature 

shifting the chemical equilibrium towards an increase in H+ ions. The higher pCO2 at 16°C is 

also due to the solubility of CO2 decreasing with increasing temperature. Although both elevated 

pCO2 treatments have the same total DIC, the 16°C basin was in equilibrium with a higher 

atmospheric pCO2 because of the lower solubility. Temperature values averaged to 10.4°C in the 

ambient basins and 16.2°C in the high basins. Salinity remained stable across basins (Table 1).  

 
Figure 5: Averaged pCO2 values during experiment. Labels within the boxes refer to treatment. 

Each box represents duplicate samples from each of the three basins per treatment. Whiskers 

extending from the boxplots indicate standard deviation (SD) from the median (solid black line). 

Unfilled circles outside the plots indicate outlying data points from the SD.  
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Table 1: Average in-situ seawater parameters (Orion Star™ A329 pH conductivity meter) and 

calculated discrete carbonate chemistry values at incubation conditions. Treatments represented 

by ambient (600 µatm) or high (1200 µatm) pCO2 cross-factored with ambient (10°C) or high 

(16°C) temperature with mean ± 1 SD of (n) measurements.  

 

Fertilization, Development, and Normal Hatch  

 Embryo yolk area, percent normal hatch, and embryo mortality changed under elevated 

temperature and/or pCO2, while fertilization success was greater than 80% in all dishes and was 

not affected by the treatments (Fig. 6). Higher temperature was associated with increased embryo 

yolk areas by 14% between the 10°C to 16°C treatment (Fig. 7). The stressor interactions had an 

additional effect on embryo yolk areas with 26% larger areas in the 1200 µatm +16°C treatment 

than in the ambient 600 µatm +10°C treatment (Fig. 7). The warmer temperature treatment 

reduced the average percent normal hatch from 66% at 10°C to 32% at 16°C (Table 2). 

Therefore increased temperature decreased normal hatch by an average of 34% (Fig. 8A). The 

proportion of larvae hatched with abnormalities did not differ among any of the treatments and 

averaged 17% overall (Table 2, Fig. 8B). Embryo mortality post-fertilization significantly 

increased from 16% at 600 µatm +10°C to 42% at 600 µatm +16°C, increasing mortality by 

26%. The pCO2 had a significant effect on embryo mortality, which increased from 16% at 600 

µatm +16°C to 58% at 1200 µatm +16°C (Fig. 8C, Table 2).   

 
                   In-Situ Measurements Discrete Samples 

Test pCO2 pH Temperature Salinity pCO2 DIC pH 

(µatm + °C) (NBS Scale)           (°C) (PSU) (µatm) (µmol kg-1) (Total Scale) 

600 +10 7.92 ± 0.03 (47) 10.4 ± 0.03 (47) 28.9 ± 0.05 (3) 572 ± 17 (18) 1946 ± 13 (18) 7.87 ± 0.01 (18) 

600 +16 7.87 ± 0.03 (42) 16.1 ± 1.5 (42) 28.8 ± 0.15 (3) 666 ± 18 (18) 1942 ± 12 (18) 7.81 ± 0.01 (18) 

    1200 +10 7.60 ± 0.06 (48) 10.4 ± 0.03 (48) 28.3 ± 1.0 (3) 1034 ± 145 (17) 2004 ± 20 (17) 7.63 ± 0.06 (17) 

    1200 +16 7.58 ± 0.04 (42) 16.4 ± 1.0 (42) 27.3 ± 0.60 (3) 1221 ± 138 (17) 2000 ± 12 (17) 7.57 ± 0.05 (17) 
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Figure 6: Effects of increased pCO2 and temperature on Pacific herring fertilization success with 

mean ± 1 SD of 12 measurements. Two-way ANOVA analyses indicate fertilization was not 

significantly affected by pCO2 (F1,44 < 0.01, p = 0.96, η
2

p < 0.01), temperature (F1,44 = 0.01, p = 

0.90, η
2

p < 0.01), or the interaction (F1,44 < 0.01, p = 0.98, η
2

p < 0.01). 

 

 

     
Figure 7: Pacific herring embryo yolk area for each treatment combination. Data are from images 

collected over two days before the developing embryo obscured the yolk sac (days 9-10 at 10°C, 

and 3-4 at 16°C). Data are based on the mean ± 1 SD of (n) measurements: 600:10 (n = 60), 

1200:10 (n = 54), 600:16 (n = 49), and 1200:16 (n = 43). Two-way ANOVA analyses indicate 

yolk area was significantly affected by increased temperature (F1,202 = 62.9, p < 0.0, η
2

p = 2.3) 

and the interaction of 1200 µatm +16°C (F1,202 = 7.6, p = 0.00, η
2

p = 0.03).  
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Table 2: Two-way ANOVA results for average Pacific herring percent normal hatch (% of live 

non-malformed larvae/initial embryos), abnormal larvae upon hatch (% malformed larvae/initial 

embryos), and embryo mortality post-fertilization (% of dead embryos/initial embryos). Data are 

represented by the mean ± 1 SD of 12 measurements. * Indicates significance.  

 
Percent Normal Hatch Df Sum Sq Mean Sq F value Pr(>F) η2

p 

     pCO2 1 503.1 503.1 1.96 0.16 0.04 

    Temperature 1 14145.3 14145.3 55.1 <0.01* 0.55 

    pCO2:Temperature 1 26.1 26.1 0.10 0.75 0.002 

    Error 44 11291.7 256.6    

Abnormal Hatch       

     pCO2 1 255.8 255.7 2.14 0.15 0.04 

    Temperature 1 85.3 85.3 0.71 0.40 0.01 

    pCO2:Temperature 1 86.9 86.9 0.72 0.39 0.01 

    Error 44 5255.1 119.4    

Embryo Mortality       

     pCO2 1 1297.9 1297.9 4.57 0.03* 0.09 

    Temperature 1 11322.2 11322.2 39.8 <0.01* 0.47 

    pCO2:Temperature 1 283.2 283.2 0.99 0.32 0.02 

    Error 44 12491.7 283.9    

 

 

 

 

 

 

 



 21 

           

                     

             

Figure 8: Effects of increased pCO2 and temperature on Pacific herring normal hatch (A), 

abnormal larvae (B), and embryo mortality (C). Data represent the mean ± 1 SD of the 

percentage per slide, where there were 12 slides in the three basins for each treatment. Lower-

case letters indicate statistically different treatments based on a Fisher’s LSD post hoc 

comparison. 
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Oxygen Consumption 

 

A two-way ANOVA, with temperature and pCO2 as fixed factors, showed a significant 

interaction effect on oxygen consumption (Table 4). However, significance may have resulted 

from the magnitude of corrections for blanks, which varied widely between treatments in 

magnitude and sign (Table 3). Therefore, oxygen consumption data were re-analyzed without the 

blank correction. When the blank corrections were removed, neither temperature, pCO2, nor their 

interaction significantly affected embryo oxygen consumption (Table 4, Fig. 9). Overall, the 

oxygen consumption rates were highly variable between and within treatments, rendering the 

data difficult to interpret, particularly given the difficulty with reliable blank corrections. 

Heart rate measurements, another way to estimate oxygen consumption, were not subject 

to these difficulties. Due to the different embryo developmental stages in the two temperature 

treatments, data were evaluated separately for 10°C and 16°C, and heart rates were compared at 

ambient and elevated pCO2. Heart rates were not statistically different between the two pCO2 

treatments under ambient temperature and averaged 46 bpm overall (Table 5, Fig. 10A). Under 

the warmer temperature, elevated pCO2 embryos had a significantly greater heart rate (Table 5, 

Fig. 10B). Average heart rates increased from 78 bpm at the ambient pCO2 (600 µatm +16°C), to 

86 bpm at the elevated pCO2 (1200 µatm +16°C). This represents a 9% increase in heart rate 

associated with the elevated pCO2. 

 

Table 3: Averaged oxygen consumption rates in the blank vials with ± 1 SD of (n) 

measurements. 

 

Blank Treatment 

 

Blank O2 consumption rates  

(mg/L O2 *min-1) 

 600 µatm  +10°C -5.34 ± 2.86 (3) 

 600 µatm  +16°C -0.33 ± 0.02 (2) 

1200 µatm +10°C  2.54 ± 2.71 (3) 

1200 µatm +16°C -1.31 ± 1.27 (3) 
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Figure 9: Boxplot depicting embryo oxygen consumption measurements between treatments with 

and without blank corrections. Each box represents the average rates from six measurements, 

two vials from each of three basins. Rates are shown as positive values for interpretation.  
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Table 4: Two-way ANOVA results from the embryo O2 consumption experiment with and 

without blank vial corrections. Significance observed in the blank corrected data is likely caused 

by the variable O2 consumption rates calculated in the blank vials, and not a treatment effect. 
With Blank Corrections Df Sum Sq Mean Sq F value Pr(>F) η2

p 

     pCO2 1 0.21 0.21 0.48 0.49 0.02 

    Temperature 1 0.91 0.91 2.08 0.16 0.09 

    pCO2:Temperature 1 2.61 2.61 5.94 0.02* 0.22 

    Error 20 8.81 0.44    

Without Blank Corrections       

     pCO2 1 0.45 0.45 1.03 0.32 0.04 

    Temperature 1 0.31 0.31 0.70 0.41 0.03 

    pCO2:Temperature 1 1.51 1.51 3.43 0.07 0.14 

    Error 20 8.81 0.44    

 

 

 

 

 

Table 5: One-way ANOVA results from the embryo heart rate video recordings for both 

temperature treatments. * Indicates significance. 

 
Ambient Temperature Df Sum Sq Mean Sq F value Pr(>F) η2

p 

     pCO2 1 39.6 39.6 0.53 0.46 0.00 

    Error 141 1037 73.5    

High Temperature       

     pCO2 1 921 921 8.21 0.00* 0.12 

    Error 60 6729 112    
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Figure 10: Plots of ambient temperature with pCO2 (A), and high temperature with pCO2 (B), on 

Pacific herring embryo heart rates recorded during one-minute intervals. Recordings occurred on 

either on day 4 (16°C), or day 5 and 6 (10°C). Data are based on the mean ± 1 SD of (n) 

measurements; 600:10 (n = 72), 1200:10 (n = 71), 600:16 (n = 32), and 1200:16 (n = 30). 

 

 

 

 



 26 

Larval Morphology 

 

 Body lengths of recently hatched larvae were significantly affected by temperature (F1,41 

= 75.5, p < 0.01, η
2

p = 0.34), but not by pCO2 (F1,141 = 0.0, p > 0.05, η
2
p = 0.00). Larvae reared at 

low temperature (600 µatm +10°C) had an average length of 6.4 mm, compared to an average 

length of 5.6 mm for larvae reared at the high temperature (600 µatm +16°C), indicating a 12% 

shorter length with increasing temperature (Fig. 11A). Lengths were also shorter by an average 

of 16% between the low and high temperature treatments at high pCO2 (1200 µatm +10°C to 

1200 µatm +16°C), indicating that the magnitude of the temperature effect did not change with 

pCO2 treatment. This relationship is further supported by the lack of a significant interaction 

effect of temperature and pCO2 (F1,141 = 1.1, p > 0.05, η
2

p = 0.00). Larval lengths were also 

significantly affected by temperature as a function of hatch date (Fig. 12, Table 6). Within the 

ambient temperature, day’s post-fertilization was a stronger indicator for larval size upon hatch 

(R2 = 0.82, Fig. 12), than in the warmer temperature treatment (R2 = 0.37, Fig. 12).  

Average dry weights did not significantly differ among treatments, averaging 0.08 mg per 

larvae (p > 0.05) (Fig. 11B). Larval dry weights were further examined by comparing weights at 

both temperatures during the maximum hatch date (14 days post-fertilization at 10°C; 9 days 

post-fertilization at 16°C). Dry weights during max hatch appeared to be greater in the warmer 

temperature treatment (Fig. 13), however the differences were not statistically different (F1,26 = 

2.2, p > 0.05, η
2

p = 0.08). 
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Figure 11: Effects of increased pCO2 and temperature on the average length (A) and dry weight 

(B) of Pacific herring larvae. Length data are represented by the mean ± 1 SD (n) of larvae 

measurements for 600:12 (n = 414), 600:16 (n = 338), 1200:10 (n = 425), and 1200:16 (n = 271). 

Weight data are represented by the mean ± 1 SD (n) of larvae measurements for 600:12 (n = 

313), 600:16 (n = 240), 1200:10 (n = 302), and 1200:16 (n = 181). Lower-case letters indicate 

statistically different treatments based on a Fisher’s LSD post hoc comparison.
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Figure 12: Average Pacific herring larvae lengths (mm) upon hatch as a function of hatch date 

and temperature treatment; with pCO2 pooled within temperature. Blue colored boxplots (10°C 

treatment) and red colored boxplots (16°C treatment) are separated by the black vertical line, 

which signifies the time axis for 16°C. The black asterisk indicates the date with the maximum 

number of live, hatched larvae for both temperature treatments. Regression statistics in the upper 

plot corners are based on the averaged larval length values for each day. 

 

 

 

 

Table 6: Two-way ANOVA results for larvae lengths (mm) as a function of hatch date and 

temperature treatment. * Indicates significance 

 

Factor Df Sum Sq Mean Sq F value Pr(>F) η2
p 

Date 1 29.6 29.6 69.4 <0.01* 0.32 

Temperature 1 3.19 3.19 7.47 <0.01* 0.05 

Date:Temperature 1 1.71 1.71 4.02   0.04* 0.02 

Error 141 60.1 0.42    
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Figure 13: Average Pacific herring larvae dry weights from the max hatch date for both 

temperature treatments. Data represent values from weigh boats containing 10 or more larvae. 

Differences between average dry weights were not statistically different (F1,26 = 2.2, p > 0.05, η
2
p 

= 0.08). 
 

 

 

Discussion 

 

Effects of pCO2 

Pacific herring embryos appear largely unaffected by pCO2 levels up to 1200 µatm. 

Elevated pCO2, as a single stressor, did not impair Pacific herring fertilization, percent normal 

hatch, embryo heart rates, or larval morphology. These findings indicate embryos and larvae 

upon hatch may be robust to 600-1200 µatm of pCO2, however, elevated pCO2 was associated 

with an increase in embryo mortality. Pacific herring embryos may already be periodically or 

episodically exposed to near future acidification levels during development and may be 

accustomed to fluctuating CO2 levels. Herring embryos may have developed genetic adaptation 

and phenotypic plasticity resulting from the natural pCO2 variability in their habitat.  

For example, while present mean surface ocean pCO2 values average around 400 μatm, 

greater values occur in intertidal regions, estuaries, and upwelling coastal zones (Wotton et al., 
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2008; Feely et al., 2008, 2010; Melzner et al., 2009). Along the eastern boundary current of 

North America, elevated pCO2 values nearing 1000 μatm have been documented off the 

Californian coast (Feely et al., 2008). Upwelled water, and estuarine circulation is another 

mechanism for high pCO2 intrusion along the outer Washington coast, where Feely et al. (2010) 

documented pH values of 7.71 to 8.05 within the Juan de Fuca Canyon and Juan de Fuca Strait.  

Estuaries and intertidal regions experience short-term fluctuations in pCO2 due to 

photosynthetic and respiration activity, where pCO2 values can approach 3500 μatm (Truchot 

and Duhamel-Jouve, 1980). In Puget Sound, nutrients from terrestrial runoff can trigger high 

organic matter production that is ultimately respired to CO2 (Feely et al., 2010). The average 

daily pH can range from 7.7 to 8.4 in the Padilla Bay estuary (Baumann and Smith 2018). Time 

series water quality data (September 2011 to July 2013) from Friday Harbor Laboratories dock 

(~ 3 m depth) showed consistent average pCO2 concentrations of ~ 650 μatm (pH 7.8) (Murray 

et al., 2015), which was the average ambient pH during Pacific herring embryo incubation. 

Surface pCO2/pH seawater away from shore, east of the San Juan Islands, show similar 

conditions during the fall of 2011 (pCO2 ~ 711–1081; pH 7.67–7.80) (Sullivan 2013).  

Ocean acidification research on other North Pacific fish species indicates resiliency 

parallel to Pacific herring early life stages. For example, Hurst et al. (2014) reared Northern rock 

sole (Lepidopsetta polyxystra) early life stages under a range of experimental CO2 values 

(reaching up to 1500 µatm). They found no significant effects of CO2 on embryo survival or 

larval growth. Northern rock sole inhabit regions within the Gulf of Alaska where adults spawn 

in shallow water. Larvae settle into inner coastal areas where they are more likely subjected to 

periodic CO2 fluctuations (Hurst et al., 2014).  

Walleye pollock (Theragra chalcogramma) larvae seize metrics were not affected at 
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pCO2 levels up to 2000 µatm (Hurst et al., 2013). Walleye pollock also reside in the Gulf of 

Alaska but have differing life history traits than the Northern rock sole. Walleye pollock spawn 

at depths of 50 m and larvae drift at depths down to 200 m in the Gulf of Alaska (Hurst et al., 

2013). These midwater pelagic areas experience less short-term variation in CO2 levels than 

shallow coastal waters (Hofmann et al., 2011; Busch, 2012), and pollock may be adapted to this 

relatively stable CO2 environment, suggesting a possibly greater sensitivity to changes in pCO2.  

For experiments, Hurst et al. (2013) used offspring from a laboratory-maintained 

broodstock of fish caught from Puget Sound, WA where some areas currently experience pH 

levels below 7.7 (Feely et al., 2010). Walleye pollock embryos from a Puget Sound population 

may have preconditioned to high CO2 levels, and the embryos were therefore resilient to the 

elevated pCO2 conditions (Hurst et al., 2013). The effects of pCO2 on different fish species show 

high response variability, and evidence suggests the disparity may be related to the local 

variability in pCO2 dynamics.  

While it is difficult to compare ocean acidification responses across different species, 

investigating the responses of related fish species within a single study allows a closer 

comparison. Along the California current ecosystem, the life history of two congener rockfish 

species, the blue rockfish (Sebastes mystinus) and copper rockfish (S. caurinus) appears to have 

shaped their tolerance to elevated pCO2 (Hamilton et al., 2017). Both rockfish species reside in 

kelp forests along the U.S. West Coast, and although these two congener species are closely 

related evolutionarily, they differ by spatial distribution within kelp forests and timing of spawn 

(Lenarz et al., 1991). Copper rockfish spawn in spring and for several months larvae develop 

close to the surface, with juveniles settling near the kelp canopy where pCO2 is locally variable 

due to kelp photosynthesis and respiration (Hamilton et al., 2017).  
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Blue rockfish spawn in winter and larvae develop deeper in the water column. Blue 

rockfish juveniles settle near the benthos where pCO2 is locally elevated due to respiration and 

upwelling plumes (Hamilton et al., 2017). Thus, blue rockfish larvae are likely better adapted to 

future, elevated pCO2 conditions than copper rockfish larvae. When juvenile stages of both 

rockfish species were chronically reared in elevated pCO2 (~2800 µatm), copper rockfish 

showed greater impairment in neurological functions, swimming speed, and aerobic scope 

compared to blue rockfish, which showed no significant changes (Hamilton et al., 2017). These 

species-specific differences in physiological tolerances to pCO2 exposure may be explained by 

genetic adaption, from long-term exposure of the population, or acclimatization from individual 

responses during experimentation (Hamilton et al., 2017). 

While studies on pCO2 effects have not been conducted on Pacific herring, there are 

several studies on Atlantic herring, a closely related species. Atlantic herring embryogenesis was 

found to be resilient to pCO2 levels up to 4300 µatm (Franke and Clemmesen 2011). However, 

in the larval stages of Atlantic herring, larvae somatic growth is reduced under elevated pCO2 (> 

1800 µatm) compared to the larvae from control pCO2 levels (~ 370 – 400 µatm) (Maneja et al., 

2014; Frommel et al., 2014). Larval survival was also significantly reduced under pCO2 

concentrations of 900 µatm compared to 400 µatm (Sswat et al., 2018a). However, the negative 

pCO2 effects on Atlantic herring larvae may be countered by the presence of an abundant food 

supply (Sswat et al., 2018b). In a recent study using Atlantic herring embryos incubated under 

two pCO2 (~380 and 760 µatm), the hatched larvae were fed similar prey abundances found in 

their natural nursery areas (Sswat et al., 2018b). The results showed that the larvae experienced 

significantly greater survival under the high pCO2 (3.2%) compared with the control (1.2%), 

indicating the high pCO2 conditions improved the food supply for herring larvae and contributed 
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to greater survival.  

Hypercapnia in the embryo membrane may be normal part of development, however, 

high environmental CO2 can increase, and potentially contribute to, embryo mortality. In this 

study, Pacific herring embryo mortality increased by 7% from the ambient to the elevated pCO2 

when at ambient temperature (10°C). During embryo gestation, the egg case may slow CO2 and 

O2 diffusion, creating hypercapnic and hypoxic conditions within the membrane as the embryo 

develops (Melzner et al., 2009). This occurred within the cephalopod’s, Sepia officinalis, egg 

casing (~2 cm diameter) where pCO2 increased from 1300 to 4000 μatm for several weeks during 

development (Gutowska and Melzner, 2009). This finding indicates that hypercapnia is a regular 

part of the life cycle of S. officinalis and hypercapnia may also exist as a natural influence for 

Pacific herring during ontogeny.  

However, Pacific herring embryos are smaller in diameter (~1.5 mm: Lassuy 1989), 

increasing the surface area to volume ratio and allowing a more effective rate of CO2 diffusion 

across the egg casing than S. officinalis. The diffusion rate depends on the gradient across the 

membrane, and if external pCO2 is high, then diffusion may slow, resulting in more elevated 

internal pCO2. Because there was no difference in embryo size across treatments (Appendix A, 

Fig. A2), the surface area to volume aspect on the pCO2 effects on embryo development was not 

relevant in this study. The decreased diffusion rate given higher external pCO2 is one potential 

factor in the increased heart rates observed in the high temperature, high CO2 embryos. Greater 

CO2 concentrations within a teleost’s bloodstream hinder the ability of oxygen to effectively 

bind to oxygen transporting cells (Bohr effect). Therefore, when external pCO2 is high, diffusion 

out of the bloodstream is low, internal pCO2 is increased, and oxygen binding is decreased.  

Increased heart rates in Pacific herring embryos, within the warmer temperature and interaction 
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treatment, may have been an adaptive mechanism to obtain more oxygen from their environment 

and overcome the limitations of oxygen solubility (associated with increased temperature), and 

limited oxygen binding capacity (associated with increased pCO2).  

Adult Pacific herring primarily deposit embryos on marine vegetation, such as eelgrasses 

(Lassuy 1989). Seagrasses potentially buffer the effects of ocean acidification by removing 

dissolved inorganic carbon (DIC) from seawater during photosynthesis, and lowering pCO2 

levels within the surrounding environment (Beer and Rehnberg 1997; Unsworth et al., 2012). 

Miller et al. (2017) measured CO2 uptake by both native (Zostera marina) and non-native 

(Zostera japonica) species of eelgrass from Padilla Bay, WA. Both species showed rates that 

were sufficient to alter local seawater carbonate chemistry, depending on water depth, light 

conditions, shoot density, epiphyte communities, tidal change, and other factors affecting 

carbonate chemistry. Eelgrass carbon uptake rates may not fully lessen the severity of episodic 

acidification, but future work can focus rearing Pacific herring embryos on eelgrass and under a 

range of pCO2 conditions. This will more precisely determine how Pacific herring early life 

stages will be affected by acidification in its environment – including localized pCO2 decreases, 

and increased variability in carbonate chemistry conditions from dense marine vegetated areas 

(Pacell et al., 2018).  

 

Effects of Temperature 

Across a range of marine organisms, temperature is a key factor in determining 

developmental time (Harley et al., 2006; Doney et al., 2012). The warmer temperature treatment 

contributed to the significant differences found in Pacific herring embryo mortality, heart rates, 

percent normal hatch, and larval lengths in this study. Warmer temperatures can affect embryo 
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survival by two mechanisms. First, as seawater temperatures rise, dissolved oxygen decreases 

due to decreased solubility, resulting in lower oxygen availability. Some marine embryos depend 

on diffusion to supply oxygen for metabolism. For Nudibranch embryos, when metabolic rates 

are high, diffusion can become an insufficient process for delivering enough oxygen to meet the 

embryos demand (Moran and Woods 2010). Second, thermal windows can be narrow in fish 

embryos, and as temperatures rise, the demand for oxygen becomes greater while the available 

supply may be diminishing (Rombough 1997; Pörtner 2001; Pörtner 2012). For example, Dahlke 

et al. (2016) showed that for Atlantic cod, whole-embryo oxygen consumption rates increased by 

an average change of 11% over the 0 to 9°C temperature range.  

Pacific herring embryos exhibited a 14% increase in heart rates from the ambient to high 

temperature treatments (600 µatm ± 10°C to 600 µatm ± 16°).  Because the embryos were at 

different developmental stages in the two treatments when this measurement was taken, this 

comparison should be interpreted cautiously. However, this potential increase in embryo heart 

rates could suggest an oxygen deficit within the basins at the warmer temperature, and may be 

linked to Pacific herring embryo mortality. Warmer temperatures contribute to a mismatch 

between oxygen solubility, embryo oxygen demand, and the ability for embryos to take up 

oxygen.  

Greater oxygen demands under warmer temperatures may be the determining factor 

affecting Pacific herring embryo survival and possibly compromising larval morphology. 

Increased Pacific herring embryo heart rates may also reflect an attempt to meet a greater energy 

demand, as its development is accelerated under warmer temperatures. Our oxygen consumption 

data were difficult to interpret because of the high variability and cannot be used to confirm the 

suggestion of higher metabolic rates under the warmer temperature in this study.  
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Q10, a measure of how a ten degree temperature change influences a system, varies from 

about 1.5-4.9 for metabolic rates in marine fish species (Peck and Moyano 2016). Although 

Pacific herring Q10 values have yet to be evaluated, the Q10 for Atlantic herring larvae oxygen 

consumption is reported as 1.5 (Peck and Moyano 2016). Given this Q10, an increase in oxygen 

consumption rate of 27% would be predicted for the 6°C difference in this study. Our oxygen 

consumption data for Pacific herring embryos were variable, however this predicted Q10 may fall 

within the range of our measurements. Our oxygen consumption data do not show a strong effect 

of temperature, however, the variability within each treatment is much higher than this expected 

effect and may have obscured detection. Our heart rate, data however can provide another 

measure of metabolic rate.   

Heart rate patterns vary in teleost species during development, but heart rate Q10 values 

are typically greater during larval life stages (Mirkovic and Rombough 1997; Barrionuevo and 

Burggren 1999; Peck and Buckley 2008). Previous research on Atlantic cod, Gadus morhua, 

indicate that temperature had a greater influence on larvae than in juveniles, with respiration rate 

Q10 values decreasing with increasing dry body mass (Fig. 2, Peck and Buckley 2008). The Q10 

for heart rate also varies depending on temperature, with lower Q10 values at greater 

temperatures. For the zebrafish, Danio rerio, heart rate Q10 values were ~2 at the embryo stage, 

peaked at ~2.5 on day 40 under the 25-28°C treatment, and then decreased with development 

(Barrionuevo and Burggren 1999). When measured closer to the upper end of the temperature 

range (28-31°C), zebrafish Q10 values were below 2 as an embryo, peaked at ~2 on day 60, and 

decreased to ~1.5 on day 100.  

Based on our Pacific herring embryo heart rate data, a 6°C difference yields a Q10 of 1.4. 

This Q10 value for Pacific herring embryo heart rate is similar to the Q10 value of 1.5 for oxygen 
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consumption in Atlantic Herring. It is necessary however to determine how closely the Q10 

values would be expected to match for these two different measures.  Rainbow trout, 

Oncorhynchus mykiss, larvae show a similar pattern with heart rate Q10 ~3.06 similar to oxygen 

consumption Q10 ~2.99 (Mirkovic and Rombough 1997).   Therefore, it seems that the metabolic 

response of Pacific herring to temperature change is similar to that of Atlantic Herring, however 

tests were not done at the same temperature range or developmental stage.  Furthermore, 

differences in heart rate and oxygen consumption Q10 values change as teleost species mature 

and their primary method of obtaining oxygen evolves from diffusive gas exchange to more 

developed respiratory structures, such as gills. Heart rate and oxygen consumption then become 

more tightly coupled as teleost larvae develop (Fig. 6, Mirkovic and Rombough 1997).  

Overall, our calculated Q10 of 1.4 for Pacific herring is on the lower end for the average 

Q10 values reported by Peck and Moyano (2016). This could indicate that this species is less 

sensitive to increases in temperature than others which may be adapted for more stable 

temperature conditions, whereas the nearshore and coastal habitats of Pacific herring do 

experience natural variability in temperature.  However, this low value may also be partially due 

to testing conditions.  Pacific herring oxygen consumption and heart rate data were recorded 

during the embryo stage when the Q10 is typically lower, and may increase at the larval stage. 

Additionally, an upper temperature of 16°C may have been near the upper range for Pacific 

herring development and further contributed to a lower Q10. Establishing this Q10 baseline for 

Pacific herring will provide an additional resource for understanding environmental constraints 

on their early growth and survival.  

Under warmer temperatures, Atlantic cod cumulative embryo survival progressively 

decreased (63% at 6°C, 42% at 9°C, and 25% at 12°C), suggesting embryo survival was 
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dependent on its capacity to meet the above-mentioned oxygen and energy demand (Dahlke et 

al., 2016). Our study showed that embryo mortality increased by an average of 26% from the low 

to high temperature treatments at ambient pCO2 (600 µatm ± 10°C to 600 µatm ± 16°C), and 

percent normal hatch decreased significantly by 29% from 10°C to 16°C, regardless of pCO2.  

Pacific herring larvae post-hatch were significantly shorter in length when reared at 16°C 

(Fig. 10A, Fig. 11). A change in energy demand at the embryo stage potentially allocates energy 

away from other developmental processes, such as muscle development (Baumann et al., 2011). 

Differences in larval lengths between the two temperature treatments may be attributed to 

embryo incubation time. In the present study, Pacific herring embryos began hatching five days 

sooner in the 16°C treatment than at 10°C (Appendix A, Fig. A1). Embryo development is 

assumed to continue throughout the entire incubation period and that hatching is an age-related 

event (Geffen 2002). Geffen (2002) showed that later hatching Atlantic herring larvae were 

longer because they continued to grow within the embryo membrane. This study did not initially 

detect differences in embryo diameters, which may indicate larval size upon hatch, across 

treatments (Appendix A, Fig. A2).  

Under warmer temperatures, reduced larval size at hatch for Atlantic cod was associated 

with greater energy demands and higher oxygen consumption rates (Dahlke et al. 2016). Overall, 

it is possible that Pacific herring larvae that hatched sooner at 16°C were shorter in length due to 

a shortened incubation period, and that energy is being allocated differently to meet a greater 

energy demand, leaving less energy available for growth. It may also be an adaptive response 

under warmer temperatures to hatch sooner. For example, faster growing embryos would 

experience greater O2 demand, and growth may not be favored if O2 is limited, due to the 

warmer temperature reducing O2 solubility. Therefore, larvae may emerge from the embryo 
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casing sooner to remove the diffusion barrier.   

Larval dry weights did not statistically differ between treatments or during the maximum 

hatching period between both temperatures: an examination of larvae yolk sacs in prematurely 

hatched larvae may provide an explanation. Yolk conversion efficiency reaches a maximum 

within the thermal tolerance range of a given species and tends to decrease near the upper and 

lower boundaries of tolerated temperatures (Galloway et al., 1998). For example, Atlantic cod 

embryos incubated at a low temperature (1°C) produced smaller larvae with larger yolk sacs, 

than embryos incubated at 5 or 8°C (Galloway et al. 1998). They suggest that the reduced larval 

size obtained at the low temperatures may be a sub-lethal response to an unfavorable 

environment.  

On the other hand, under increased temperature (12°C) and pCO2 (1100 µatm), Atlantic 

cod embryo energy demand was shown through higher metabolic rates and reduced larval size at 

hatch, while the consumption of yolk reserves remained unaffected, indicating embryos were not 

able to convert yolk energy to other physiological functions (Dahlke et al., 2016). In this study, 

Pacific herring larvae reared within the 1200 µatm +16°C treatment had the largest yolk area. 

Greater yolk areas indicate less yolk was used for other developmental processes, such as 

growth. This may explain why no differences were detected in larval dry weights, because mass 

either remained within the yolk sac for larvae that hatched sooner under the warmer temperature 

treatment or was converted into growth for larvae in the ambient temperature treatment.  

Although warmer rearing temperatures lead to faster Pacific herring embryo 

development, an earlier hatch time is not necessarily advantageous. Accelerated growth can also 

lead to abnormal muscle development, which may increase the probability of larvae hatching 

with jaw, spinal, or pectoral malformations – hindering a larvae’s ability to avoid predators and 
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capture prey (Vieira and Johnston 1992; Green and Fisher 2004).  Shorter larval lengths at hatch 

may have an indirect effect on swimming performance. For example, shorter lengths (~ 7 mm 

total length difference) decreased swimming velocity (m s-1) by 24% of Atlantic herring larvae 

(Johnston et al. 2001). Sswat et al. (2018a) found significantly greater swimming activity in the 

longer Atlantic herring larvae with increasing temperature (12°C), compared to shorter larvae 

from the lower temperature (10°C).  

Under the ‘bigger is better’ hypothesis shorter larvae would be at an disadvantage, in that 

bigger larvae are more likely to survive given its ability to outcompete smaller and slower larvae 

(Green and Fisher 2004). Reduced swimming velocity may also alter larvae distribution in the 

water column and affect the survival of juvenile and adult life stages by failing to settle in 

preferred habitats (Johnston et al. 1998). This study did not measure the swimming or feeding 

performance of Pacific herring larvae, but the percentages of abnormally hatched Pacific herring 

larvae were not significantly different between treatments.  

In Pacific herring early life stages, increased temperature was the primary driver affecting 

embryo and larval responses. These observations occurred at an experimental temperature of 

16°C. In the Puget Sound, the average temperature vary 6.6°C to 16.4°C in nearshore areas 

depending on the season (Baumann and Smith 2018). During early spring Pacific herring spawn 

months, seawater temperatures are near 9 to 13°C, depending on depth (WDFW herring trawl 

surveys). Our experimental temperature of 16°C was above the typical spawning temperature 

that Pacific herring experience stressing the embryos and contributing to greater embryo 

mortality, oxygen demand, lower percent normal hatch, and shorter larval lengths. 

Organisms have evolved to function efficiently under specific habitat temperatures 

(Hofmann and Todgham 2010; Doney et al., 2012). When environmental temperatures begin 
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approaching an organism’s thermal limit, survival will depend on the capacity of organisms to 

maintain physiological processes under thermal stress (Hofmann and Todgham 2010). In 

response to warming, Pacific herring embryos may have spent more energy on oxygen processes 

and less energy towards growth. Changes in energetic demands may diminish the ability of 

Pacific herring early life stages to cope with other interacting, and challenging, conditions found 

in its environment. 

 

Effects of pCO2 and Temperature 

While Pacific herring inhabit coastal regions with variable pCO2 and may be adapted to 

acidification, warming temperatures may exacerbate the effects of pCO2. Ocean warming 

appears to increase total energy expenditure for metabolism (Sswat et al., 2018a). Effects on 

embryonic herring metrics were primarily temperature driven in this study, as seen by the 

temperature responses in percent normal hatch embryo mortality, heart rates, and larval lengths. 

Where direct effects of pCO2 were observed, they were small compared to the temperature 

effects (i.e. embryo mortality). We observed a significant increase of Pacific herring embryo 

heart rates, by an average of 9% between 600 µatm +16°C to 1200 µatm +16°C. The effect of 

pCO2 on embryo heart rate was only observed under temperature stress (Table 5). The pCO2 

levels at ambient temperature had no effect on heart rates. Interacting stressors also affected 

embryo yolk area, with more area present in the 1200 µatm +16°C treatment.  

This finding demonstrates how the effect of temperature can increase the susceptibility of 

Pacific herring embryos to high pCO2. Heart rates and yolk area were significantly affected by 

the 1200 µatm +16°C treatment in this study, which demonstrates the importance of testing 
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multiple stressors concurrently. Studies investigating single stressors effects of pCO2 and 

warming may miss detecting significant interaction effects.  

Other studies investigating multiple stressor effects on teleost embryos have detected 

significant findings on percent normal hatch and oxygen consumption. Elevated pCO2 caused a 

significant decrease in hatching success of Atlantic cod larvae with temperature changes (47% at 

0°C, 11% at 9°C, and 42% at 12°C) (Dahlke et al., 2016). In the temperature range of 0 to 9°C, 

embryo oxygen consumption overall increased by 11% under elevated pCO2 (1100 μatm) 

(Dahlke et al., 2016). Di Santo (2014) investigated how interactions of pCO2 (~ 400 and 1100 

μatm) and temperature (15, 18, or 20°C) affected little skate (Leucoraja erinacea) embryos. 

They found increased embryo oxygen consumption under the interaction of high pCO2 and high 

temperature combination for a Georges Bank population of little skate. As thermal tolerance 

windows are related to oxygen supply and energy demand (Pörtner and Knust 2007), the added 

stress of elevated pCO2 may further constrain thermal windows and affect the survival of fish 

early life stages. The greater heart rates in Pacific herring embryos may have been a glimpse into 

the beginning threshold of thermal tolerance brought on by elevated pCO2. 

 

Conclusion 

Surface seawater temperatures in the PNW are expected to increase 1.9 to 5.2°C by 2041-

2070 (Dalton et al., 2013), which will raise the current temperature for Pacific herring spawning 

in Cherry Point, WA, from 9-13°C to 11-18°C (surpassing the high temperature treatment in this 

experiment in some cases).  Elevated temperature was the primary stressor that increased embryo 

mortality, reduced normal hatch, contributed to shorter larval lengths, and increased embryo 
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heart rates in this study.  Therefore, the temperatures predicted in PNW waters could have 

profound effects on herring embryos and populations.   

These effects of increasing temperature will be compounded with increasing pCO2. Our 

results showed that Pacific herring fertilization success, embryo heart rates, normal hatch, and 

larval morphology are robust to pCO2 levels between 600 - 1200 μatm as a single stressor. 

Therefore, Pacific herring embryo development is not expected to be significantly impaired 

under current pCO2 conditions in the Pacific Northwest (PNW). However, the interaction of 

elevated temperature (16°C) and pCO2 (1200 μatm) conditions further increased embryo heart 

rates by 9%, and embryo mortality increased by 15%, from the ambient to high pCO2 treatments 

at high temperature (600 µatm ± 16°C to 1200 µatm ± 16°C). Increased heart rates signify 

potential changes in developmental and metabolic processes that may ultimately hinder Pacific 

herring early life stages growth and survival. Both environmental changes will occur 

simultaneously and the above-mentioned negative effects on Pacific herring early life stages will 

likely be more common.  

Our study provides the beginning groundwork for understanding direct ocean 

acidification and warming effects, but further research into how different food levels (indirect 

effects) affect marine fish larvae during early life stages are needed. Limited energy uptake due 

to low prey availability, combined with an increased energy demand, may result in less energy 

available for growth (Sswat et al., 2018b). However, future conditions could alter for planktonic 

food webs and supply high food quantity and quality. Examining how food abundance may 

counteract negative effects in developing Pacific herring larvae will provide further insight into 

consequences on adult populations. Further research into a broader scope of conditions and 

multi-generational studies are needed to investigate how this species will respond to varying 
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environmental stressors over time. Given that Pacific herring spawn among eelgrass in the PNW, 

understanding how eelgrass may mitigate the effects of ocean acidification will be another 

critical area of research in determining Pacific herring embryo and larval sensitivity.  

Pacific herring are a critical fish species in the Salish Sea ecosystem, with distinct 

connections throughout the food web. In the Salish Sea, herring are an important prey item sea 

birds, salmon, and marine mammals (Stick and Lindquist 2009). Pacific herring are not only 

ecologically important, but they are also a culturally significant species for native Tribes and 

First Nations in the region (Lassuy et al., 1989).  At present, no specific strategies exist for 

managing the recovery of Puget Sound Pacific herring (Francis and Lowry 2017). Results from 

this study can aid the Recovery and Assessment Team, which is comprised of representatives 

from herring management agencies from Washington and BC, university affiliates, First Nations, 

and Tribes. These research findings will provide an additional source to identify actions, and 

uncertainties, in order to advance herring conservation and recovery. 
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Appendix A 

 

        
Figure A1: Mean live-hatched Pacific herring larvae during each hatching day for 600:12 (n = 

313), 600:16 (n = 240), 1200:10 (n = 302), and 1200:16 (n = 181). Whiskers extending from the 

boxplots indicate standard deviation (SD) from the median (solid black line). Unfilled circles 

outside the plots indicate outlying data points from the SD Treatments are indicated in the upper 

left corner. 
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Figure A2: The average Pacific herring embryo diameters as a function of treatment groups were 

measured from development photos taken during the incubation period. 

 

                      
Figure A3: Pacific herring embryo development during incubation. Photos are from 2, 4, 6, and 8 

days post-fertilization (dpf). 
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