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ABSTRACT 
 
Understanding the diseases that plague marine organisms is essential to the management and 

conservation of coastal ecosystems, especially in the face of a possible sixth mass extinction. An 

increase in mass-mortality events, often caused by epizootics, is modifying intertidal ecosystems. 

When predators that have disproportionately large trophic impacts on their community and 

maintain community structure (i.e., keystone predators) suffer from widespread population 

declines	it destabilizes population dynamics ecosystem-wide, and can have long-term or 

sometimes permanent effects. This thesis is comprised of two studies that examined two 

maladies affecting a keystone predator, the ochre star Pisaster ochraceus, in Eastern Pacific 

intertidal zones. A recent massive die-off event affecting sea stars, referred to as sea star wasting 

disease (SSWD), devastated populations of P. ochraceus along the West Coast of North 

America. Pisaster ochraceous	also hosts a ciliate parasite, Orchitophyra stellarum, that partially 

castrates males and occupies the epidermis of both sexes, presumably in a commensal 

association with the sea star.	I was interested in using whole-arm removal as a tool for 

diagnosing O. stellarum infections, but whether it had a negative impact on sea star health in 

concurrence with SSWD needed to be confirmed. I asked whether P. ochraceus subjected to 

surgical arm removal were more susceptible to SSWD and to death from that disease, and 

designed a three-part experiment to answer that question.	I also wanted to understand the 

potential impact of O. stellarum on P. ochraceus populations, and needed to start by determining 

its distribution and prevalence throughout its host range. I surveyed P. ochraceus populations for	

O. stellarum, both in the gonads and on the epidermis of its host, along the West Coast of the 

United States.	I explored several factors that could explain variation in the prevalence of this 

parasite. I also attempted to understand if SSWD contributed to a shift in host-parasite dynamics 
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by comparing current prevalence to historical reports.	Pisaster ochraceus does not appear to 

suffer or die from SSWD after having an arm surgically removed, increasing my confidence in 

the use of this methodology for this and future studies, although due to my small sample size, I 

conclude that the potential negative effects of surgical arm removal	require	further examination. 

Prevalence of O. stellarum infections in the gonads of P. ochraceus was very low, but the ciliate 

was present on the epidermis of 51% of sea stars.  I compared current percent prevalence of 

epidermal association with O. stellarum with data from Stickle & Kozloff (2008) and found that, 

at the three sites they surveyed, percent prevalence has not changed significantly. I did find that 

smaller P. ochraceus populations had a higher prevalence of ciliates. Although this result	

contradicted my hypothesis and widely accepted epidemiological models, it could be due to 

parasite-mediated mortality or (more likely) reductions in reproductive output due to castration 

by O. stellarum. I also found that populations with higher percentages of males had a higher	

prevalence of ciliate association, which is to be expected because O. stellarum primarily 

parasitizes testes. There is high geographic variation in epidermal ciliate prevalence, but there is 

no clear pattern linking variation in prevalence to sampling region or latitude. This agrees with 

previous research that reported high variability in both space and time for ciliate infections, 

although this study is the first to provide information on epidermal O. stellarum association at a 

fine spatial resolution (previous studies focused on infection, or only sampled a few 

geographically separate sites).		
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A recent increase in the incidence and extent of marine disease has destabilized 

community dynamics in some marine populations (Burge et al., 2014).	Host-pathogen 

relationships in marine environments are prone to change as a result of even small shifts in biotic 

and abiotic conditions and the cascading effects of such shifts. When disease disrupts trophic 

interactions, it can change the structure of the entire ecosystem, especially in intertidal and 

nearshore subtidal communities, where trophic interactions regulate population dynamics 

(Steneck et al., 2004).	Trophic regulation by some predatory organisms has	a top-down effect on 

prey communities that is disproportionate to predator population size; these are	referred to as 

keystone predators (Paine, 1966; Power & Mills, 1995; Power et al., 1996).	Understanding how 

diseases can affect the populations of intertidal and subtidal organisms, especially keystone 

predators, helps researchers predict the stability of marine communities in response to potentially 

increasing diseases in the ocean	(Collinge et al., 2008).		

On the whole, infectious diseases are predicted to increase in ocean communities, but the 

fate of parasites specifically is less clear (Lafferty, 2003). The parasite communities of intertidal 

and sub-tidal zones of the ocean have recently received attention, especially in the case of 

parasitic castrators and infectious diseases that regulate host abundance (Mouritsen & Poulin, 

2002). Parasite abundance, intensity, and prevalence can also be regulated by host population 

size (Anderson & May, 1979; 1981), so investigations of intertidal parasite communities should 

take into account potential changes in host-population dynamics. For example, highly host-

specific parasites are likely to go extinct if their host population does (Dobson et al., 2008; 

Hechinger & Lafferty, 2005). However, we have little understanding of how parasitism changes 

in host populations that have been greatly reduced, but not driven extinct, due to the 

inadvisability of experimental tests of such questions. Mass die-off events are increasing in 
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frequency, contributing to the reduction of many marine populations, and also providing an 

opportunity to study the ecological consequences of sudden and substantial population declines. 

Some models have predicted that increasing mortality is due to an increase in infectious diseases, 

but other research suggests that parasite species richness will decrease as ocean temperature 

increases; essentially, response of diseases to climate change will depend on existing host-

pathogen and host-parasite relationships (Lafferty, 2003; 2009).  

 

Mass-mortality Events	

One consequence of both climate change and shifting marine diseases is the recent surge of 

mass-mortality events (Fey et al., 2015).	Mass die-offs usually occur in a short time-span relative 

to the generation time of the organism, indiscriminately affecting relatively large proportions of 

affected populations, regardless of age, sex, or size class. Many of these events are attributed to 

climate change (Coma et al., 2009; Garrabou et al., 2009), both because rising temperature and 

anthropogenic input are known stressors	(Harley et al., 2006a; Harvell et al., 2002; Harvell et al., 

2001; Lafferty et al., 2004), and because changing climate	can shift the geographical and host 

range of infectious agents (Harvell et al., 2009; Secord & Kareiva, 1996).	Because mass die-offs 

of marine organisms have intensified in frequency and scope in recent years (Fey et al., 2015; 

Jurgens et al., 2015), understanding how sudden and catastrophic declines affect host-parasite 

relationships is essential to address conservation and management techniques for marine 

populations after mass mortality events. 

Mass mortality can further impact host populations by changing host-pathogen dynamics. 

Often, widespread disease and death result in feedback loops, either facilitating an increase or 

decrease in future epizootics, depending on host and disease ecology (Collinge et al., 2008). For 
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example, bleaching in corals often leads to opportunistic secondary infections by bacteria, 

furthering the extent of mortality (Harvell et al., 1999; Harvell et al., 2001). A change in host 

density can directly produce positive or negative responses in parasite or pathogen abundance 

(Lafferty et al., 2004). Depending on the host-specificity of the pathogen in question, host 

population reductions can lead to reduced opportunity for disease transmission or disrupt parasite 

life cycles. Alternatively, top-down effects of keystone predator mortality often include 

population explosions at lower trophic levels, resulting in increased potential for disease 

outbreaks in prey species (Lafferty, 2004; Lafferty & Kuris, 1993). Additionally, sufficient 

population reduction limits the genetic diversity of a population, potentially leaving the 

remaining individuals more susceptible to diseases, but it can also have the opposite effect of	

selecting for pathogen resistance (Altizer et al., 2003; Collinge et al., 2008).	

	

Sea Star Wasting Disease	

On the West Coast of North America, a recent mass-mortality event of stellate echinoderms 

represents the largest die off of a non-commercially important marine species in recent history 

(Eisenlord et al., 2016; Miner et al., 2018). This die-off has been attributed to a syndrome known 

as sea star wasting disease (SSWD). The mortality event began in summer 2013, and quickly 

devastated multiple	species of sea stars on the West Coast, including both subtidal and intertidal 

taxa. Unprecedented numbers of dead and dying sea stars were first noticed during long-term 

monitoring surveys in Olympic National Park in Washington. The majority of sea stars with 

symptoms were Pisaster ochraceus and Pycnopodia helianthoides, and other species affected 

included Orthasterias koehleri, Pisaster brevispinus, Pisaster giganteus, Evasterias troschelii, 

Solaster spp., Dermasterias imbricata, Mediaster aequalis, Leptasterias spp, and Patiria miniata 
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(MARINe, 2013). Recovery has been slow and intermittent, resulting in abundances that are still 

as low as 25% of pre-wasting numbers (Eisenlord et al., 2016; Menge et al., 2016; Miner et al., 

2018).	Currently, many sea star populations are still exhibiting signs of being afflicted with 

SSWD, although prevalence is much lower than during the initial outbreak (Moritsch & 

Raimondi, 2018).		

The appearance of SSWD is characterized by a suite of pathologies that usually result in 

the death of the afflicted individual. The first signs of the disease can include small  

(<	0.5 cm) lesions indicating loss of epidermal tissue, turgor loss or "deflation" of the sea star, 

and the twisting or entwining of rays. These "symptoms" are also indicative of thermal stress and 

other health issues in sea stars, and some sea stars recover from these afflictions, especially if 

maintained at lower temperatures (Kohl et al., 2016). However, if sea stars develop any of the 

later signs of SSWD, including multiple larger lesions, tissue or arm	loss, and body 

fragmentation (often described as "melting"), they rarely recover and death shortly follows 

(Eckert et al., 2000). In fact, onset of SSWD in an individual usually results in the death of the 

sea star in a matter of days, which is presumably why it has had such rapid and devastating 

effects on wild populations. 	

Despite the predictable progression of symptoms associated with SSWD, the etiology of	

the disease	is unclear. The pattern and timing of SSWD emergence across the West Coast does 

not mimic that of an infectious disease epidemic "spreading" from population to population. 

Recent research suggests that the SSWD epizootic onset occurred in conjunction with pulses of 

higher-than-average ocean temperatures, in combination with potential changes in existing 

microbial communities (Eisenlord et al., 2016; Hewson et al., 2018; Hewson et al., 2014).	

However, in some locations in Oregon, SSWD occurred in concert with decreases in ocean 
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temperature (Menge et al., 2016).	Immediately following the outbreak, Hewson et al. (2014) 

implicated a virus termed Sea Star Associated Densovirus (SSaDV). Hewson et al. (2014) 

reported results from a series of experimental infections in which SSWD-associated pathology 

was most often initiated by injection with virus-sized material from symptomatic sea stars, which 

was then meta-genomically identified as a densovirus. However, the same researchers found the 

same densovirus present in tissues of apparently healthy sea stars, as well as sea stars in museum 

collections from before the discovery of SSWD (Hewson et al., 2014).		

Population declines due to echinoderm "wasting" are not a new phenomenon. Since 1970, 

there have been reports of sea stars developing signs similar to SSWD and dying in large 

numbers. Echinoderms as a whole have been called a "boom-bust" phylum, and some 

echinoderm taxa consistently experience cyclical, potentially density-dependent population 

fluctuations (Uthicke et al., 2009). However, the ability of echinoderm populations to recover 

after a die-off is inconsistent. Ten sea star species (as well as other echinoderm taxa) at the 

Channel Islands in California experienced a significant wasting event in 1997, and populations of 

Pisaster giganteus and Patiria miniata stayed low throughout the next year (Eckert, 2000). 

Long-term monitoring data for Pisaster ochraceus populations presented by Miner et al. (2018) 

indicates that, in the Channel Islands, low numbers in the early 2000s were followed by steady 

increases in abundance until the abrupt population crash in 2013. Heliaster kubinjii in the Gulf of 

California suffered massive population reductions in the 1980s, and while populations stayed 

low for several decades, there is evidence that, recently, some populations have recovered 

(Dungan et al., 1982; Eckert et al., 2000). Considering that even dramatic population fluctuations 

are relatively normal, and that potential etiological agents (i.e. SSaDV) are found on healthy sea 

stars, it is likely that SSWD is a phenomenon that is intrinsic to sea star populations. However, 
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the recent epizootic occurred across a wider geographical, taxonomic, and temporal scale than 

ever recorded for previous wasting events	(Miner et al., 2018).		

Wasting related mortality of sea stars is likely to have long-lasting effects on the 

populations of both sea stars and other intertidal species. The recent wasting event was followed 

by a large increase in the density of juvenile (< 30 mm) sea stars (Miner et al., 2018). However, 

estimated juvenile mortality was 90% higher post-SSWD, suggesting that either SSWD or some 

other variable was impacting survivorship of post-SSWD recruits. Many sea star species affected 

by SSWD are keystone predators and have a regulatory impact on lower trophic levels that is 

disproportionate to sea star abundance. In the aftermath of SSWD, intertidal communities have 

already experienced changes in trophic structure and interspecific competition due to the 

reduction in these ecologically important taxa. For example, the reduction in Pycnopodia 

helianthoides in British Columbia resulted in increases in many of its prey species, including a 

grazing sea urchin, and subsequent declines in kelp cover (Schultz et al., 2016).	Tegula sp. 

populations shifted their vertical size distribution and intertidal foraging patterns in response to 

the disappearance of Leptasterias spp. from the deeper intertidal zones, and their population also 

nearly doubled (Gravem & Morgan, 2017). Furthermore, predation pressure by keystone species 

is often directly related to their population. Because sea star larval and juvenile recruitment	was 

high following SSWD, sea star populations are now skewed towards smaller size classes. For 

Pisaster ochraceus especially, less adult biomass equates to lower predation pressure. Because 

smaller sea stars are not as effective at consuming their mussel prey, and because they take years 

to reach adult sizes,	a high proportion of juveniles in the population changes	the ecological 

function of P. ochraceus on a larger time-scale (Moritsch & Raimondi, 2018).		
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Pisaster ochraceus	

The ochre star, Pisaster ochraceus, was one of several species of Asteriid sea stars that were 

previously very common until heavily impacted by SSWD, and much of the research on SSWD 

has focused on this sea star's recovery and the effects of its decline on intertidal ecosystems. The 

ochre star lives in the intertidal and, less commonly, the subtidal zones on the West Coast of 

North America from Alaska to Baja California. This sea star is easily recognizable because it is a 

charismatic tide pool animal that was the original "keystone predator". Paine (1966) conducted a 

series of experiments removing P. ochraceus from rocky intertidal areas in Washington state and 

determined that this predator exerted disproportionate pressure on its community. When the sea 

stars were removed, their competitively dominant prey, Mytilus californianus, would colonize 

the bare rock in lower intertidal areas normally occupied by P. ochraceus. Left unchecked by the 

predatory sea stars, mussels outcompeted other sessile intertidal invertebrates, often 

homogenizing the tide pool community. It is easy to see the effect of this keystone predator 

without conducting experiments as well; in most intertidal areas observers can see a distinct line 

where P. ochraceus meet M. californianus on the rocks, preventing the mussels from using lower 

levels of the intertidal zone. Predation pressure by P. ochraceus varies spatially (Menge et al., 

1994), with temperature (Sanford, 1999), and in response to prey composition (Robles et al., 

1995; Robles et al., 2009).	Regardless,	declines in this sea star due to SSWD will likely have 

consistent effects on the structure of Eastern Pacific intertidal communities.		

 Initially, SSWD reduced populations of P. ochraceus dramatically. Some populations 

completely disappeared, and declines were the most severe in Southern California and the 

Channel Islands, where over half of surveyed populations decreased by greater than 99%, and in 

inland water bodies (the Salish Sea and San Francisco Bay) (Miner et al., 2018). Generally, north 
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of Point Conception, population crashes were slightly less intense, but still resulted in a greater 

than 75% reduction in sea stars at majority of sites (Miner et al., 2018). As of 2017, Moritsch 

and Raimondi (2018) estimated	that 55% of P. ochraceus populations are in recovery, but level 

of recovery varies depending on the region, and does not necessarily mean that adult sea star 

density has returned to pre-SSWD levels.	Northern Californian populations seem to be 

recovering, and even exceeding pre-SSWD abundances, but further south some populations are 

still 0% of pre-SSWD numbers	(Moritsch & Raimondi, 2018). Considering it takes an individual 

P. ochraceus 3-5 years to reach adult size under ideal conditions (Feder, 1970), these sea stars 

are not currently filling their historical ecological role in the intertidal community. Any further 

constraints on P. ochraceus population recovery, reproduction, and survival should be examined 

in order to adequately predict the long-term effect on this species and on other intertidal 

organisms. 

	

Orchitophyra stellarum	

Pisaster ochraceus have few true parasites, but they do host an opportunistically parasitic 

scuticociliate, Orchitophyra stellarum.	Orchitophyra stellarum	(Scuticociliata) was first 

identified in 1907, when it was found in extremely low numbers in Asterias rubens in France 

(Cepede, 1907). Since then, it has been reported in many species of asteriid sea stars, including 

Asterias forbesi (Burrows, 1936; Galtsoff & Loosanoff, 1939), Asterias rubens (Cepede, 1907; 

Lowe, 1978; Smith, 1936; Vevers, 1951), Asterias amurensis (Byrne et al., 1997; Kuris et al., 

1996), Pisaster ochraceus (Boom, 1988), Leptasterias spp. (Stickle, 2001), Evasterias troschelii 

(Stickle & Kozloff, 2008), and Sclerasterias richardi (Febvre et al, 1981). Researchers have also 

found it in Patiria miniata (Sunday et al., 2008), which is in another clade of asteroid 
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(Asterinidae). Outside Echinodermata, researchers have observed O. stellarum infecting several 

tissues in crabs and lobsters, and, while prevalence of infection is low, it is consistently highly 

pathogenic compared to infections in sea stars (Miller et al., 2013; Small, 2004; Small et al., 

2005b). Discovery of O. stellarum parasitism outside of asteriid sea stars has been reported fairly 

recently, suggesting that the host range of this ciliate might be changing (Sunday et al., 2008). 

However, O. stellarum might simply be a fairly ubiquitous opportunistic parasite. Isolates found 

on different species of sea stars from Japan, British Columbia, Prince Edward Island, and the 

Netherlands were all genetically identical, according to nucleotide sequencing of the internal 

transcribed spacers, ITS1 and ITS2, and the 5.8S rRNA gene (Goggin & Murphy, 2000). 

Sequences from O. stellarum found in blue crabs (Callinectes sapidus) were also identical, even 

though those ciliates were morphologically more similar to another parasitic scuticociliate, 

Mesanophrys chesapeakensis (Small et al., 2013). Either this ciliate has a very cosmopolitan 

distribution, or more refined genetic markers are needed to determine species of scuticociliates.  

Orchitophyra stellarum negatively impacts its host in various ways, but it is most 

commonly a parasitic castrator (Bouland, 1988; Goggin, 1997; Leighton et al., 1991; Vevers, 

1951). The ciliate actively consumes host sperm-cells through phagocytosis. In species of the 

genus Asterias, the parasite also disrupts the germinal epithelium by inserting itself between 

spermatocyte columns, causing them to separate (Bouland, 1988; Byrne 1997). The host mounts 

an immune response, increasing the number of amoebocytes in the presence of O. stellarum, but 

this has little effect (Coteur et al., 2004). In fact, presence of the ciliate is associated with milky 

haemolymph and increased destructive auto-immune activity by the host; the sea star 

amoebocytes should recognize the ciliates as foreign and target them, but they destroy host 

sperm cells instead (Byrne et al., 1997). Presence of the ciliate in the gonads is nearly 100% 
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associated with failure of host amoebocytes to clump properly, suggesting further that O. 

stellarum disrupts immune function (Bang, 1982; Childs, 1970; Taylor & Bang, 1978). 

Observations of amoebocyte activity in an ammonia solution suggests that ammonia waste 

secretion from O. stellarum contributes to this phenomenon (Taylor & Bang, 1978).  Small et al. 

(2005a) found also that in in vitro culture (in lobster haemolymph added to culture media), O. 

stellarum secretes metalloproteases, which were found selectively degrading muscular structural 

proteins (i.e., myosin heavy chain). Those enzymes were isolated from infections in lobsters, but 

it is likely that O. stellarum uses similar mechanisms to break down tissues in sea star hosts. 

While infecting male sea stars, ciliates multiply within the testes, causing them to harden, shrink, 

and discolor. Sperm cells lose motility (Vevers, 1951) and, in severe infections, are all consumed 

by the ciliates, to the point where ciliate abundance eventually decreases (Burrows, 1936). In a 

series of experiments done by Leighton et al. (1991), male P. ochraceus infected with O. 

stellarum also showed signs of decreased overall health (e.g., discoloration). Byrne et al. (1997) 

also found evidence of pathology associated with O. stellarum, reporting that infected male 

Asterias amurensis were more likely to autotomize arms and die in captivity.  

 In addition to parasitizing sea star gonads, O. stellarum colonize the epidermis of their 

host, congregating near the gonopores, and can also be free-living. When off-host, O. stellarum 

can survive by feeding on bacteria and detritus found in the marine environment, and are 

considered facultative, opportunistic parasites (Stickle et al., 2007a). When not in the gonads of 

male sea stars, O. stellarum undergo morphological shifts, most notably a reduction in size and a 

repositioning of the buccal cavity from the anterior end of the ciliate to the middle of the body 

(Stickle et al., 2007a; Stickle et al., 2007b). The mechanism of transmission between sea stars is 

unclear, but the ciliate can exist and replicate in a free-living state for an undetermined period of 
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time, suggesting that it could move among individual stars and might enter through the gonopore 

when its host’s gonads are full of sperm (Stickle et al., 2007a).  

Incidence and pathogenicity of O. stellarum are positively associated with water 

temperature (Bates et al., 2010). In laboratory experiments, mean doubling time is three times 

faster at 15° Celsius than at 10°, and sea stars in warmer treatments had more heavily infected 

testes. In the wild, O. stellarum appears to occur on the West Coast of North America until it 

reaches Alaska, where the temperature is presumably too cold for the parasite to survive (Bates 

et al., 2010; Stickle & Kozloff, 2008). The southern boundary of the range of O. stellarum on the 

West Coast is unknown. Some sea star species, especially P. ochraceus, experience more intense 

ciliate infections than others. Bates et al. (2010) found that shallower living P. ochraceus are 

more burdened by O. stellarum than the sub-tidal Asterias miniata, and hypothesized that the 

discrepancy in infection intensity was due to differences in thermal niches between the two 

species. It is also possible that P. ochraceus are more susceptible to intense O. stellarum 

infections because they spawn in the spring and summer, when the ocean is warmer (Stickle et 

al., 2001a).  

 

Research Summary 

The recent mass mortality due to SSWD led me to ask how	wasting and other disease	

processes are synergistically affecting sea stars. Echinoderms are common victims of die-off 

events (Uthicke et al., 2009), so the	recent wasting phenomenon provides researchers with an 

opportunity to understand how other diseases might respond to population fluctuations. 

Specifically, I was interested in O.	stellarum infections in populations of P. ochraceus on the 

west coast of the United States, and the potential of parasite prevalence to shift in response to 
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smaller host populations. There was a small amount of data on O. stellarum infections and 

associations in P. ochraceus populations in this area that had been collected just over a decade 

before the most recent SSWD event, published in Stickle and Kozloff (2008) and Stickle et al. 

(2001a). This allowed me to make comparisons between pre- and post-SSWD prevalence. My 

initial goal was to understand if the recent mass mortality event due to SSWD	had any effect on 

this host-parasite relationship. I also wanted to create a comprehensive picture of the distribution 

and prevalence of O. stellarum throughout the West Coast of the United States, since previous 

studies had only sampled a few geographically isolated sites in that range. I designed a study that 

compared three distinct regions within the range of P. ochraceus, to understand if there were 

spatial differences in O. stellarum prevalence. Because the ciliate parasite lives inside the gonads 

of sea stars and requires extracting and inspecting gonads to determine whether an individual is 

infected, I explored several methods of diagnosing individual sea stars with O. stellarum 

infections. It became obvious after my first field season that the most efficient way to do this 

would be to remove one arm from each P. ochraceus	sampled. However, mutilation of these 

charismatic tide pool animals caused concern, especially because the causative agent behind the 

development of SSWD is as yet unknown. What if injuring the sea star in this way exposed the 

animal to pathogens, or induced stress to the point that the sea star was less resilient when 

confronted with disease? In my experience with dissecting sea stars in laboratory settings, I had 

rarely seen morbidity or mortality in response to arm removal alone, and had always assumed 

that this methodology was low impact due to sea stars' ability to shed arms	naturally. In response 

to this uncertainty, I designed an experiment to test my methods, and confirm if P. ochraceus 

developed SSWD in response to careful, surgical, removal of arms.	Once this experiment 



	
 

14 

validated my methods, I was able to use surgical arm removal to continue to assess the 

prevalence of O. stellarum infection in P. ochraceus throughout my study regions. 	

This study provides important information relating to the potential of P. ochraceus to 

recover from massive population reductions. I aimed to understand the extent to which P. 

ochraceus populations can currently be sampled using arm removal without increasing the 

incidence of SSWD. Concurrently, I determined whether they are being differentially affected by 

O. stellarum since the onset of SSWD, throughout their North American distribution. In Chapter 

2, I present the results of the arm-removal experiment, and discuss the benefits of using this 

method for sampling sea stars. In Chapter 3, I compare my current observations on prevalence of 

O. stellarum in populations of P. ochraceus to previous estimates of prevalence by Stickle & 

Kozloff (2008),	and examine several ecological and geographic drivers behind patterns of ciliate 

prevalence. These two chapters were written with the intention of publishing them in separate 

journals, so there are some redundancies in the information presented.	
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Chapter 2 
Does arm removal from the sea star, Pisaster ochraceus, increase its susceptibility to Sea Star 

Wasting Disease?  
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INTRODUCTION 
 

Intentional limb loss, or autotomy, is common throughout the animal kingdom (reviewed by 

Maginnis (2006)). It is most likely that autotomy evolved convergently several times due to its 

significant adaptive advantage (Bely & Nyberg, 2010; Emberts et al., 2017; Wasson et al., 

2002). Animals intentionally sever limbs when the benefits of autotomy presumably outweigh 

the cost associated with injury and losing a limb (Wasson et al., 2002).  Not surprisingly, 

autotomy is most commonly employed by prey organisms escaping predation (and the benefits 

of this response are large), but is also used to free the animal from a damaged, injured, trapped, 

or infected body part (Byrne, 1985; Emberts et al., 2017; Emberts et al., 2016; Juanes & Smith, 

1995; McVean & Findlay, 1979). Although autotomy has been well-documented in vertebrates, 

such as lizards, skinks, and amphibians (pertaining to tail loss), this phenomenon occurs broadly 

in other phyla, including the phyla Cnidaria, Annelida, Mollusca, Arthropoda, and 

Echinodermata (Fleming et al., 2007).  

Although benefits of autotomy can outweigh the costs, which explains the frequency of 

autotomy in many taxa, the loss of appendages has important repercussions (Lindsay, 2010). 

Most notably, the gaping wounds that immediately follow autotomy expose the animal to a 

variety of pathogens. When an animal is exposed to disease agents and has a wound, the 

combination of stressors can have synergistic effects (Argaez et al., 2018; Davies et al., 2015; 

Gignoux-Wolfsohn et al., 2012; Johnson et al., 2006). Injury has been shown to increase 

susceptibility to disease and pathogenicity, especially when an animal is near infected 

conspecifics (Johnson et al., 2006; Lamb et al., 2015; Mydlarz et al., 2006; Wootton et al., 

2012). Organisms that experience autotomy often have reduced ability to fight off infection after 

limb loss because energy is being allocated to regeneration of lost body parts (Henry & Hart, 
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2005; Lamb et al., 2015; Mydlarz et al., 2006). Organisms that autotomize body parts containing 

digestive tissues, nutrient reserves, feeding implements, or all three, as in some echinoderms, 

experience an even higher degree of energy loss due to autotomy, which has obvious 

implications for disease resistance (Lawrence, 2010). Due to all of the energetic consequences of 

autotomy, many previous researchers have simply assumed that self-induced injury can increase 

an individual's susceptibility to pathogens. On the other hand, repeated self-injury at a specific 

location throughout evolutionary time has provided an opportunity for selection towards more 

rapid wound healing and immune activity at the autotomy site (Emberts et al., 2017). In some 

taxa, autotomy actually increases survival by reducing infection in an otherwise injured body 

part, and relocating the healing process to an area where it is more efficient (Emberts et al., 

2017). Clearly, the relationship between autotomy and risk of bacterial, parasitic, or viral 

infection warrants further examination.  

Echinoderms with appendages (e.g., sea stars and brittle stars) are well known for being 

able to autotomize and successfully regenerate limbs. In echinoderms, this process is facilitated 

by the presence of breakage planes or autotomy zones (Anderson, 1956; Emson & Wilkie, 1980; 

Wilkie et al., 1990), and usually occurs in response to attempted predation or to injury 

(summarized by Lawrence (1991b)). Sub-lethal arm loss in sea stars results in reduction in 

reproductive capacity (Bingham et al., 2000), food storage (Diaz-Guisado et al., 2006; Lawrence 

& Vasquez, 1996), and feeding (Harrold & Pearse, 1980; Harrold & Pearse, 1987), making 

regeneration costlier when food is scarce (Lawrence, 2010).  Arm loss also exposes the internal 

organs in the central disk of sea stars. In Acanthaster planci, the damaged organisms become 

more susceptible to micropredation by a scavenging polychaete worm after losing an arm 

(Glynn, 1981; Glynn, 1984). Bang and Lemma (1962) found that while sea stars normally had 
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bacteria-free coelomic fluid, the coelom became contaminated following trauma or injury. 

Furthermore, when individuals of Asterias rubens were bycatch from trawl-fishing, and 

subsequently lost or autotomized an arm, they were more likely to be infected with bacteria 

(which presents as lesions on the epidermis), lose additional arms, or die (Bergmann & Moore, 

2001). 

Most research on autotomy and other injury in echinoderms has focused on energetic or 

reproductive implications, or on regeneration, and reports of disease or infection are usually 

anecdotal additions. However, a small body of research indicates that echinoderms are adept at 

resisting microbial pathogens when self-wounded, likely due to a complex immune response and 

sophisticated wound healing at the area of injury. Presumably, a long evolutionary history of 

autotomy has also allowed stellate echinoderms to develop methods for reducing fluid loss and 

exposure at the autotomy plane after arm loss (Emberts et al., 2017). Ophiuroids have clear 

adaptations at breakage zones for encouraging healing and preventing haemolymph loss, 

including a flap of epidermis and lateral plate ligaments that recoil after autotomy to cover 

exposed tissue (Wilkie, 1978a; Wilkie, 1978b). In studies on histology of the breakage plane of 

sea stars, researchers found that asteriid sea stars possess a muscular "tourniquet" in the 

integument that is engaged before and during autotomy. This could facilitate rapid wound 

closure and prevent invasion by pathogens (Hotchkiss et al., 1991; Wilkie et al., 1990). If 

pathogens are able to invade after autotomy, they are met with the echinoderm immune response 

(reviewed by Ramirez-Gomez and Garcia-Arraras (2010)). While Bang and Lemma (1962) 

found that Asterias rubens injured by trawling were initially invaded by bacteria, most sea stars 

were able to clear these infections within a couple of days. Other investigations have found no 

signs of bacterial infection in damaged or post-autotomy individuals of the same species 
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(Ramsay et al,. 2001). When subjected to experimental arm-tip removal (to mimic predation) 

and, separately, challenged with bacterial injections, this species briefly increased circulating 

coelomocytes (amoebocytes), which play a role in capturing and clearing of bacterial invaders 

through phagocytosis (Coteur et al., 2002; Pinsino et al., 2007). Little is known, however, about 

the response of autotomized or injured sea stars to diseases already present in wild populations. 

Sea star wasting disease (SSWD) is an epizootic of recent concern because, from summer 

2013 onward, it has caused an ongoing mass-mortality event involving sea stars. Many species of 

sea stars suffer from SSWD, which is widespread on the West Coast of North America, often 

fatal, and of unknown origin (Bates et al., 2009; DelSesto, 2015).  The cascade of symptoms 

seen in affected sea stars (loss of turgor, lesions, arm loss, disintegration, and death) is likely 

caused by a combination of factors, including environmental shifts, pathogens, or stressors on the 

level of the individual. One sign of SSWD is the appearance of lesions similar to those seen in 

the studies of Asterias rubens that were injured and autotomized arms (as in Bergmann & Moore 

2001; Eckert et al., 2000). Hence, if arm loss in an individual sea star somehow exposes that 

animal to the causative agents of SSWD, an otherwise relatively benign injury could result in the 

mortality of the animal. As already mentioned, arm loss increases stress due to injury and 

decreases energetic resource availability, so it is important to clarify whether autotomy is a 

potential risk factor for developing SSWD. 

The sea star Pisaster ochraceus, devastated by SSWD in the recent mass die-off event, 

undergoes autotomy like other asteroids, but there has been limited research on how P. 

ochraceus responds to arm loss and regeneration. Adult P. ochraceus are keystone predators, 

maintaining trophic structure and species diversity in temperate intertidal ecosystems, but have 

few consistent natural predators (Harley et al., 2006b). They are structurally protected against 
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predation, and employ other defensive mechanisms in addition to autotomy (Lawrence, 1991a; 

Van Veldhuizen & Oakes, 1981). As a result, autotomy occurs in P. ochraceus only when the 

risk of death is very high. According to the literature, individuals missing limbs are very rare in 

nature (O’Donoghue, 1926), and it has been hypothesized that this rarity is due to a high cost of 

regeneration, and potentially food resource limitations (Lawrence, 1991a). However, I have 

personally observed P. ochraceus with missing arms (sometimes multiple) regularly during my 

fieldwork, and believe that the hypothesis that autotomy is rare for this species needs to be 

reevaluated. Additionally, while collecting sea stars and forcefully pulling them from rocks, I 

noticed that the arm sometimes tears free from the body, though this doesn't necessarily equate 

autotomy. 

When studying the morphometrics and health conditions of asteroid echinoderms, 

researchers often remove arms, assuming the method is low-impact because of the natural 

inclination of these animals to autotomize limbs. However, considering the potential infectious 

disease consequences of autotomy, further research is warranted to explore the connection 

between disease and limb loss in these organisms. Conducting tissue sampling in a way that 

closely mimics autotomy is likely the most ethical way to collect gonadal and pyloric caeca 

samples from P. ochraceus. While studying the gonadal regulation of P. ochraceus, Pearse et al. 

(1986) found that removing the internal organs of P. ochraceus through an incision in the 

epidermis left a persistent wound that took weeks to heal and often resulted in mortality, whereas 

when a single arm was removed near the oral disk, the sea star would seal the wound and 

regenerate the limb. The same location-specific reactions to injury were experimentally 

confirmed by Sanford et al. (2009). Such differential responses to injury are likely due to an 

adaptive response to limb loss near an ancestral autotomy plane—located at the base of the arm, 
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proximal to the oral disk like in other stellate asteroids—that allows P. ochraceus to quickly 

close and heal wounds in this area, but not in other places on the body (Wilkie et al., 1990; 

Lawrence, 2010). These phenomena were reported before the recent onset of SSWD in summer 

2013, and thus did not address the potential for arm removal to affect P. ochraceus susceptibility. 

Notably, the "stress" signs reported by Pearse et al (1986) as a reaction to incision resemble signs 

of SSWD (e.g., loss of turgor). While natural autotomy is not likely playing a significant role in 

the prevalence of SSWD in wild P. ochraceus populations, these sea stars are often subjects of 

intertidal research, so developing non-destructive sampling techniques is necessary to prevent 

pressure on sea star populations. Thus, determining if arm amputation increases the risk of 

inducing SSWD is extremely important. 

In this experiment, I determined whether mimicking autotomy by surgically removing an 

arm near the oral disk in P. ochraceus increases the incidence of SSWD or the associated 

pathology. I was primarily interested in whether removing arms to study sea stars increases an 

individual's risk of dying from SSWD. I was secondarily interested in whether surgical autotomy 

decreases time to death if individuals do in fact develop signs of SSWD. Because autotomy is a 

natural process occasionally used by P. ochraceus to escape predators or entrapment, I 

hypothesized that arm removal would not increase incidence of sea star wasting-related 

symptoms in captive P. ochraceus. However, if individuals developed symptoms when exposed 

to symptomatic sea stars, I hypothesized that individuals who had an arm removed would have a 

shorter time to death than intact individuals. It is important to note that, because the etiology of 

SSWD is still unknown, I could not confirm with certainty that individuals appearing to suffer 

from SSWD actually had the disease. However, because there is good evidence that a specific 
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suite of symptoms consistently leads to death in P. ochraceus, I hereafter assume, within reason, 

that those symptoms indicate infection with SSWD.  
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METHODS 
 
 

Experimental Design 

To understand the role that surgical autotomy plays in the onset of SSWD, I conducted three 

laboratory experiments in which I experimentally removed arms from adult P. ochraceus and 

observed the sea stars for signs of SSWD. In separate experiments, I addressed whether arm 

removal would affect susceptibility to and progression of SSWD in apparently healthy stars, in 

sea stars exposed to infected conspecifics, and in sea stars that were already exhibiting early 

signs of SSWD.  

 

Arm Removal in Healthy Sea Stars 

To address my hypothesis that arm removal did not increase the likelihood of developing SSWD-

like symptoms in seemingly healthy stars, I collected healthy stars, with zero visible lesions, 

turgor loss, or arm-twisting, and did not expose them to any sick sea stars or water contaminated 

by sick sea stars, and then observed their response to arm removal. 

 

Arm Removal in Sick Sea Stars 

In another collection of P. ochraceus, I intended to collect only healthy stars, but once those 

individuals were returned to lab most of the stars, including the individuals intended to replace 

sick ones, were suffering from what appeared to be early stages of SSWD. I continued the 

experiment anyway to test the hypothesis that arm removal would increase incidence of infection 

and decrease time to infection (see definition in "Monitoring of Sea Stars") or death in sea stars 

exhibiting early signs of SSWD.  
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Arm Removal and Exposure to SSWD 

To address the hypothesis that arm removal does not increase the likelihood of becoming 

infected with SSWD, I collected healthy P. ochraceus and exposed them all to wasting 

individuals. In this experiment, individuals were exposed to a “wasting” P. ochraceus 

immediately after arm removal (or handling in control sea stars, see "Arm Removal Procedure") 

by placing a sick individual in each tank for 24 hours. 

 

Sea Star Collection 

Each experiment required a separate collection of sea stars, and collection methods were 

standardized between the three experiments. I collected adult P. ochraceus (≥ 20 cm diameter 

from arm tip to arm tip) from Post Point in Bellingham, WA, immediately prior to each 

experiment. Sea stars were held for one week prior to the start of each experiment to assess 

whether they were suffering from SSWD. If any sea stars showed signs of illness (loss of turgor, 

limb curling, lesions, limb loss) before the beginning of the experiment, they were replaced with 

other P. ochraceus I had collected at the same time. In this case, the wasting individual's tank 

was also scrubbed and sanitized with a 5% bleach solution, and then rinsed with DI water before 

being put back into use. Sea stars were held in individual 40 liter tanks with flowing sea water at 

10 °C for the entire experiment. To reduce non-experimental stressors, I performed 50% water 

changes in the tanks once a week. Each tank was filled with sea water from the same source, to 

control for potential non-experimental exposure to SSWD. 
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Arm Removal Procedure 

During each experiment, the ten sea stars were randomly divided into Arm Removal and Control 

groups (n = 5 each), and their respective tanks were randomly arranged. I assigned sea stars an 

identification number before placing them in their tanks. I removed one randomly chosen arm 

from each sea star in the Arm Removal group using a scalpel and scissors as necessary. Two 

incisions were made on the aboral side following indentations on the animal’s surface that 

indicate the division between arms, forming a V-shape (Figure 1.1). The arm was then gently 

pulled until it broke free. This method was chosen after I observed P. ochraceus occasionally, 

but consistently, tearing free from their arms in that location while I was forcefully removing 

them from rocks, and autotomizing their arms along that "plane" in laboratory studies. Any 

gonads or pyloric caeca that were still connected were removed from the inside of the oral disk 

using scissors. Individuals in the control group were removed from their tanks and handled for 

one minute to control for handling stress. After the sea stars had been subjected to the arm 

removal treatment, they were returned to their individual tanks and monitored daily for seventeen 

days.  

 

Monitoring of Sea Stars 

Notes were taken on sea star activity level, any signs of healing around the incision, and any 

signs of SSWD that appeared. Signs of SSWD were classified into four categories, as shown in 

Table 1.1. Very early afflictions that could indicate SSWD, including singular small lesions, loss 

of turgor, and twisting of limbs, were recorded as the first potential signs of SSWD, even though 

I could not determine the exact moment of infection. If multiple small lesions appeared, 

monitoring was increased to twice a day. Affected individuals were classified as “infected” with 
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SSWD once they displayed 1-2 small white lesions (Category 1), even though they often 

recovered from these. I could not determine the exact moment of death in sea stars, so I assumed 

that in the event of multiple limb loss, the animal was unlikely to recover. If an individual 

suffered multiple limb loss or showed any signs of SSWD in Category Four, they were 

euthanized within 24 hours, and were recorded as "dead". 
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Figure 1.1. Schematic of P. ochraceus arm removal, illustrating the surgical autotomy of one arm 
by making two incisions at the base of the arm where it connects to the oral disk, from above (A) 
and what the sea star should look like immediately post dissection, side view (B).  
 
  

	

A. 

B. 

body wall 
cardiac stomach 
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Table 1.1. Categorization of signs of SSWD, adapted from the MARINe Pisaster ochraceus 
Symptoms Guide. 
Category Sign Description 

1 Lesions on one arm or body Tissue degradation limited to one location on arm 
or body 

2 Multiple lesions Lesions on two arms or arm and body and/or 
deteriorating arms 

3 Lesions on most of body Lesions on most of body and/or 1-2 missing arms 

4 Severe tissue deterioration Severe tissue loss and/or multiple missing arms 
and/or death 
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Statistics 

 To assess changes in time to death or time to “infection”, I conducted a survival analysis 

by creating right-censored Kaplan-Meier survival curves for each experiment. I analyzed time to 

two distinct events: "infection," and "death". I compared time to infection between sea stars with 

limbs removed and those without using a log-rank Mantel-Haenszel test. This test is appropriate 

for comparing survival curves in which the ratio of hazard functions (events/time) is the same at 

all time points, and gives equal weight to all time points. All statistics were performed in R, 

version 3.5.0.  
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RESULTS 

Within all three experiments, P. ochraceus subjected to arm removal did not experience faster or 

slower time to infection compared to control P. ochraceus. Overall, mortality was very low; only 

two sea stars died throughout the entire study, and both were in the same experiment, showing 

potential early signs of wasting before the experiment began. Arm removal did not decrease the 

time to death or increase the incidence of death due to SSWD. It is important to note that all 

previously healthy-seeming P. ochraceus subjected to surgical arm removal were able to at least 

partially close the wound within 24 hours. On occasion, part of the stomach would remain 

partially outside of the body cavity while the wound healed.  

 

Arm Removal in Healthy Sea Stars 

There was no statistical evidence that previously healthy sea stars subjected to arm removal 

experienced faster times to infection than intact sea stars (Figure 1.2A). On average, sea stars 

with arms removed showed signs of infection 30.7% faster than control sea stars, but this 

difference was not significant (Table 1.2). All of the sea stars that had an arm removed showed 

signs of SSWD, and 90% of control sea stars had signs of SSWD. Only one intact individual 

remained without signs of SSWD throughout the experiment. None of the sea stars died during 

the course of the experiment. 

 

Arm Removal in Sick Sea Stars 

There was no statistical evidence that sea stars subjected to arm removal developed SSWD 

infection faster than intact sea stars, even when sea stars had already shown early potential signs 

of SSWD (Figure 1.2B). After arm removal, sea stars with arms removed showed signs of 
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SSWD 26.2% sooner than control sea stars on average, but this difference was not significant 

(Table 1.2). Incidence of infection was the same in both control and experimental treatments; 

80% of sea stars showed signs of more advanced SSWD in each treatment. Two sea stars died 

from SSWD, including one sea star from each treatment. The control sea star died after one day 

and the experimental sea star died after seven days.  

 

Arm Removal and Exposure to SSWD 

There was no statistical evidence that when exposed to infected individuals, sea stars subjected 

to arm removal showed signs of SSWD faster than control sea stars that were also exposed 

(Figure 1.2C). On average, control sea stars showed signs of SSWD 10.9% faster than sea stars 

with their arms removed, but this difference was not significant (Table 1.2). Incidence of 

infection with SSWD was exactly the same in both treatments; 60% of sea stars showed signs of 

SSWD in both the arm removal and control treatment. None of the sea stars died during the 

course of this experiment, but one individual did succumb to SSWD and die shortly after I ended 

the experiment. 

 

Power Analysis 

Because of my small sample size, I presumed that β error might be high in my statistical 

analyses. I performed a power analysis on the log-rank tests comparing mean time to infection 

between sea stars with arms removed and intact sea stars (Table 1.3). For all three experiments, 

the power of these tests were likely not high enough to detect a meaningful difference in time to 

infection between the two experimental groups. With my sample size, I would have had less than 
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a 20% chance of even detecting a 50% difference, and less than a 30% chance of detecting a 

90% difference, in all three experiments (Table 1.3). 
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Table 1.2. Mean time to event (infection or death) for Pisaster ochraceus after being subjected to 
arm removal (experimental) or one minute of handling time (control). Means were back-
calculated from right censored Kaplan-Meier survival curves, and compared using log-rank 
Mantel-Haenszel tests (X2). Significant differences in time to event are denoted by *. Time to 
death is not shown for Experiments 2 and 3 because no sea stars died during those experiments. 

Experiment Event Mean time to event (days) X2 p-value 
  Control Arms Removed   

Healthy Sea Stars death 1 7 N/A N/A 
infection 8.4 6.2 0.2 0.6 

Sea Stars With Early 
Signs of SSWD infection 7.5 5.2 

0.6 
0.4 

Sea Stars Exposed to 
SSWD infection 9.8 11.0 0.3 0.6 
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Table 1.3. Results of a power analysis of the three Mantel-Haenszel log-rank tests, performed to 
determine differences between mean survival time for control sea stars and sea stars with arms 
removed. Power is the probability of detecting a statistically significant difference at the given 
effect size. 

Experiment Number of Events Effect Size (% difference) Power 

1 8 
50 0.145 

90 0.204 

2 9 
50 0.158 

90 0.224 

3 6 50 0.119 
90 0.164 
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Figure 1.2. Right-censored Kaplan-Meier survival curve estimates, depicting time to infection for 
sea stars with arms removed and without arms removed (Control) in (A) previously healthy sea 
stars, (B) sea stars previously showing early signs of SSWD, and (C) healthy sea stars exposed to 
wasting sea stars. N=10 for each experiment. 
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DISCUSSION 
 

Although injury typically increases susceptibility to disease in many other, non-asteroid taxa, I 

found no evidence for this in P. ochraceus exposed to SSWD. My results suggest that for P. 

ochraceus, arm loss, which is arguably a stress-inducing condition, has little or no impact on 

their disease status. In all three experiments, surgical removal of arms along the autotomy plane 

did not increase the incidence of SSWD, even when individuals were exposed to other infected 

stars, or when individuals were showing signs of SSWD before the experiment started.  

This finding is consistent with previous research that demonstrates that, in both P. 

ochraceus and other species of asteroids, injury does not necessarily initiate infection or invasion 

by pathogens. In Asterias rubens injured by trawling, sea stars with damaged arms showed no 

signs of bacterial infection, even after autotomizing those arms (Ramsay et al., 2001). In 

addition, P. ochraceus show no signs of morbidity when an arm is removed at the junction with 

the oral disk, but experience pathology similar to SSWD in response to more distal injuries 

(Pearse et al., 1986; Sanford et al., 2009). Presumably this has to do with the ability of the sea 

star to close wounds due to entire arm loss, perhaps as part of an evolved response to autotomy 

(Wilkie et al., 1990). Although P. ochraceus reportedly don't readily autotomize in natural 

settings, and have almost no predators that would necessitate this response, I noticed individuals 

missing arms regularly in the field. This suggests that P. ochraceus could be utilizing autotomy 

more frequently than previously assumed. Regardless, they seem to be able to heal after an 

autotomy-like injury. I found that P. ochraceus individuals appear to heal best following a 

removal of tissue that extends into the oral disk slightly (Figure 1.1), instead of at the base of the 

arm in the previously defined autotomy zone for asteroid taxa that autotomize frequently 

(Lawrence, 2010; Wilkie et al., 1990). In my experiment, all sea stars closed the wound left by 
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surgical arm removal by squeezing the two arms adjacent to the wound together, and this process 

happened fairly quickly (within 24 hours). This could be evidence for a new location for the 

autotomy zone or breakage plane in stellate echinoderms, and at the very least is a new 

observation regarding wound healing in sea stars. Understanding wound healing and disease 

susceptibility in echinoderms is especially important because the frequency of both injury and 

pathogenic infection are likely to increase as climate change contributes to increased storm 

action and disease prevalence (Burge et al., 2014; Harley et al., 2006a; Lafferty et al., 2004). 

Arm removal seemed to have no effect on the time to death of sea stars that were already 

showing signs of SSWD. However, I only observed death due to SSWD in two individuals, one 

in each treatment, and the intact sea star died before the individual that had an arm removed. 

This could have simply been because the intact sea star was experiencing SSWD that had 

progressed further than the other sea stars before the experiment began. It is also possible that, 

once afflicted by SSWD, disease progression is so swift that additional injury has no effect on 

the eventual mortality of the sea star. In fact, arm autotomy is one of the commonly noted 

symptoms of late stage SSWD (Hewson et al., 2014).  

Individual susceptibility to SSWD and eventual death does not seem related to prior arm 

loss, but because this was a laboratory-based experiment, whether sea stars survive arm removal 

in the field is still in question. Temperature and water quality were very tightly controlled, so the 

sea stars in this experiment had no exposure to temperature stressors that would likely affect 

their ability to resist infection in a more natural setting (Bates et al., 2009; Eisenlord et al., 

2016). Almost all of my the sea stars in the three experiments developed lesions indicating 

SSWD infections, but arm removal had no effect on the incidence of these lesions. The lesions 

could have appeared due to stress from being in aquaria, however, as most of the sea stars did not 
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progress to more advanced stages of SSWD. Additionally, because all three of my experiments 

had very low power, it is unlikely that I would have detected a statistically significant difference 

in time to infection or time to death between intact sea stars and those with arms removed. 

Regardless, based on the low observed incidence of mortality associated with removing arms 

along the autotomy plane of these sea stars, I would recommend use of this methodology for 

research on both sick and healthy P. ochraceus populations, especially over whole-animal 

sampling or removal of organs by opening a "flap" in the epidermis, supporting the conclusions 

of Sanford et al. (2009). Pisaster ochraceus have evolved to respond better to whole-arm loss, 

originating as close to the oral disk as possible, than to other types of injuries, even in the face of 

population-wide disease. My results support the hypothesis that arm removal closely mimicking 

autotomy does not increase P. ochraceus susceptibility to SSWD, but future research should test 

this hypothesis more rigorously in the laboratory, and determine if sea stars survive in the field 

following arm removal.
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Chapter 3 
Prevalence of the sperm-feeding ciliate, Orchitophyra stellarum, in Pisaster ochraceus 

populations on the west coast of North America 
  



	
 

40 

INTRODUCTION 
 

Mass die-offs of marine organisms have intensified in frequency and scope in recent years (Fey 

et al., 2015; Jurgens et al., 2015), presumably due to climate change and anthropogenic impacts 

(Harley et al., 2006a). Most research concerning the cascading effects of die-offs has focused on 

free-living taxa, but mass-mortality events also represent a real threat to parasite biodiversity 

(Dunn et al., 2009). Disease mediated mass-mortality events are problematic for highly host-

specific parasites that are more likely to go extinct if their host population is greatly reduced 

(Dobson et al., 2008; Hechinger & Lafferty, 2005), but the effect of extreme host-population 

reduction on multi-host pathogens is less clear (Dobson, 2004; Woolhouse et al., 2001). 

Understanding how sudden and catastrophic declines affect host-parasite relationships is 

essential to address conservation in the face of such phenomena.  

A recent marine mass-mortality event caused by sea star wasting disease (SSWD) has 

dramatically reduced the numbers of sea stars along the west coast of North America. Several 

species of sea stars have been affected, and populations have been reduced by up to 100% in 

some locations (Moritsch & Raimondi, 2018). Researchers are still uncovering the exact cause of 

SSWD, but signs of the disease are associated with increases in water temperature (Bates et al., 

2009; Eisenlord et al., 2016; Hewson et al., 2014; Staehli et al., 2009) and the presence of a 

densovirus (Hewson et al., 2014), although neither are causally linked. Because sea star species 

are charismatic tide pool animals, as well as important keystone predators in many intertidal 

ecosystems (Paine, 1966; 1969), there has been much concern about the ability of sea star 

populations to recover. 

In addition to suffering from SSWD, several species of sea stars host a sperm-feeding 

ciliate, Orchitophyra stellarum, Subclass Scuticociliata, that is a generalist parasitic castrator of 
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sea stars (Cepede, 1907; Lowe, 1978; Smith, 1936; Vevers, 1951). This ciliate parasite was first 

noted in sea stars in the eastern Pacific in 1988 (Boom, 1988). Orchitophyra stellarum castrates 

its host in various ways, most notably by actively consuming host sperm cells through 

phagocytosis, degenerating germinal epithelium, and disrupting host immune function (Byrne et 

al., 1997; Bang, 1982; Childs, 1970; Taylor & Bang, 1978; Bouland, 1988; Goggin, 1997; 

Leighton et al., 1991; Vevers, 1951). As the disease progresses, the testes harden and discolor, 

becoming completely devoid of sperm, but packed with ciliates. Eventually, as the supply of 

germ cells dwindles, so do the ciliates (Burrows, 1936; Vevers, 1951). Incidence, infection 

intensity, and pathogenicity of O. stellarum are positively associated with temperature increases, 

according to laboratory experiments (Bates et al., 2010). On the West Coast, the range of O. 

stellarum extends to Alaska, beyond which the temperature is presumably too cold for the 

parasite to survive (Bates et al., 2010; Stickle & Kozloff, 2008).  

Infection by O. stellarum facilitates such a profound impact on host health and fecundity 

that researchers have suggested it for use in biological control of invasive and destructive sea 

stars in other parts of the world (Galtsoff & Loosanoff, 1939; Kuris et al., 1996). The presence of 

O. stellarum is associated with significant reductions in male:female ratios of adult sea stars 

(Claereboudt & Bouland, 1994; Leighton et al., 1991). Furthermore, Byrne (1997) showed that 

populations of Asterias amurensis that had equal (1:1) male:female ratios at the beginning of the 

breeding season were heavily female biased by the time spawning had ended. Anecdotal 

evidence shows that the parasite is associated with decreased overall health of male Pisaster 

ochraceus (Leighton et al., 1991). Infected male sea stars in aquaria were more likely to 

autotomize arms and eventually die (Byrne 1997). If the two aforementioned patterns are 
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widespread, that could indicate that the ciliate is somehow facilitating the death of infected male 

sea stars.   

Orchitophyra stellarum is a facultative parasite that survives commensally on the 

epidermis of sea stars and as a free-living organism, suggesting that it could move among 

individual stars (Stickle et al., 2007a). However, this parasite's response to changes in host 

population is unstudied. Stickle & Kozloff (2008) found that, in one ciliate-associated population 

of P. ochraceus, males were rare, indicating male mortality. However, only 10% of those 

remaining were infected with O. stellarum, suggesting that a large reduction in host population 

could be associated with reduced parasite prevalence, potentially because the parasite consumes 

host reproductive resources and then leaves the population. However, to date, there has been no 

research on how O. stellarum responds to changes in its host population. Anderson and May 

(1981) suggest that microbial pathogens should increase in prevalence in denser host 

populations, but very little is known about the population dynamics of generalist, non-obligate 

parasites (Woolhouse, 2001). My study aimed, in part, to address whether the prevalence of O. 

stellarum has increased or decreased in declining populations of the ochre sea star, Pisaster 

ochraceus.  

 Pisaster ochraceus has the highest incidence of O. stellarum, compared to other Eastern 

Pacific sea stars, and experiences the most pathogenicity associated with O. stellarum (Leighton 

et al, 1991, Stickle & Kozloff, 2008). Intensity and pathogenicity of O. stellarum infections 

increase with temperature; because P. ochraceus lives in the shallower, warmer part of the 

intertidal zone, and has fully developed gonads in warm spring and summer months, it is an ideal 

host for this ciliate (Bates et al., 2010; Stickle & Kozloff, 2008). Additionally, wasting disease 
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has negatively impacted P. ochraceus populations, which provides an opportunity to study the 

impacts of a mass die-off event on this host-parasite relationship. 

In this study, I quantified the current prevalence of O. stellarum, both infecting the 

gonads and associated with the epidermis of P. ochraceus between Puget Sound, WA, and Santa 

Cruz, CA, comparing prevalence of O. stellarum to available pre-SSWD data. Stickle and 

Kozloff (2008) presented prevalence estimates for O. stellarum epidermal associations from 

several sites in the Eastern Pacific, sampled while sea stars were reproductive between 1999 and 

2001, and I used data from their three sites within the United States as my pre-SSWD baseline 

(Figure 2.1). I tested whether current P. ochraceus populations have a higher or lower prevalence 

of O. stellarum than in the past. I hypothesized that variability in O. stellarum prevalence would 

be be significantly different between three regions I studied because of abiotic differences in the 

intertidal ecosystems in those regions. To address a potential mechanism behind the previous 

hypothesis, I also examined the relationship between latitude and O. stellarum prevalence. I 

predicted that as latitude decreased, prevalence of the ciliate would increase, and that P. 

ochraceus populations in Puget Sound would be more heavily infected because latitude can be 

used as a proxy for temperature (De Frenne et al., 2013). Furthermore, I hypothesized that 

increases in parasite prevalence would be explained by increases in host population density. I 

also hypothesized that populations with higher prevalence of O. stellarum would have lower 

male:female ratios. Finally, I hypothesized that there would be a difference in prevalence of O. 

stellarum epidermal association when sea stars were reproductive (spring and summer) and when 

they were not (winter). However, I was unsure if prevalence would be higher due to gonad 

infections resulting in more ciliates in the host population, or if all the ciliates would move off of 

host epidermal tissues and into host gonads, reducing epidermal association prevalence. 



	
 

44 

METHODS 
 

Site Selection 

To understand the prevalence, distribution, and host-parasite relationship of P. ochraceus and O. 

stellarum, I surveyed P. ochraceus populations on the West Coast of the United States in search 

of this ciliate parasite. To address my hypothesis about regional variability in parasite 

prevalence, I collected sea stars from three regions. I sampled P. ochraceus from Washington 

State (including Washington Outer Coast, Salish Sea, and Puget Sound), the Oregon Outer 

Coast, and Northern California (Figure 2.1). I hypothesized that O. stellarum infection and 

epidermal association prevalence had changed in response to SSWD-related host population 

declines, so I selected sites that had demonstrated declines in P. ochraceus populations since the 

onset of SSWD, using survey data from MARINe (presented in Miner et al. (2018)). I also 

included sites that were surveyed by Stickle and Kozloff (2008) in the same regions for 

associations between sea stars and O. stellarum before the most recent mass mortality event. I 

selected sites that were relatively evenly spaced throughout each region to ensure adequate 

spatial coverage. I sampled five sites in Northern California, five sites in Oregon, and six sites in 

Washington State to account for the Salish Sea and Puget Sound (Figure 2.1).  

 

Field Survey Protocol 

Sea star collection followed the same protocol at every site. I collected my samples by hand 

during negative low tides. I arrived at each site at least three hours prior to low tide, and 

generally worked about 1-2 hours after low tide. I haphazardly selected three 30 by 30-meter 

plots that spanned upper and lower intertidal zones. If there was insufficient habitat for P. 

ochraceus to make a 30 by 30-meter square, plot dimensions were adjusted as necessary. I then 
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searched the plot for all P. ochraceus individuals, and marked each sea star's position with a flag, 

while assigning each individual a number. I randomly chose five of the sea stars to examine for 

ciliate association and infection. If three plots were not sufficient to find fifteen sea stars, I 

searched the area bordered by my first and last plots, flagged and numbered all sea stars in that 

area, and randomly selected the remainder of my sample. Rarely, there were fewer than fifteen 

sea stars present at a site, in which case I examined all available individuals for ciliates. I was 

testing hypotheses about the relationship between population density of sea stars and prevalence 

of ciliate association, so I recorded the density of sea stars (individuals/meter2) in each plot. 

 

Gonadal Infections 

To understand the prevalence of O. stellarum infections in the gonads, I needed to collect 

samples when sea stars had fully ripe gonads and were ready to spawn. The annual spawning 

cycle for P. ochraceus begins in early March and ends between late May and late June, 

depending on location (Table 2.1). This sea star undergoes slightly differential reproductive 

cycles depending on whether they live in northern or southern regions (Mauzey, 1966), but 

generally gametogenesis starts in September, and gonadal indices increase steadily until 

spawning in the late spring or early summer, when they drop dramatically after spawning occurs 

(Farmanfarmaian et al., 1958; Giese, 1959; Sanford & Menge, 2007).  

I obtained gonadal material one of two ways: by inducing spawning or surgical autotomy. 

I only induced spawning during my first field season, during which I surveyed the Washington 

State region. I induced spawning in collected sea stars by injecting each arm and the central disk 

near the base of the arms with at least one milliliter of 100 micromolar 1-methyladenine (Fraser 

et al., 1981). The chemical 1-methyladenine is naturally produced and isolated from sea stars, 
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and its injection induces both males and females to spawn (Kanatani, 1969; Strathmann, 1987). 

Sea stars were then placed in individual watch-glasses with filtered sea water for 1.5 hours to 

collect sperm and eggs. If this method failed to induce spawning, I surgically removed arms to 

reach the gonads. Because 1-methyladenine injection was unreliable, and because experimental 

data suggested that surgical autotomy was a low impact alternative, I switched to solely using 

this method while sampling Northern California and Oregon. Surgical autotomy of one arm from 

each sea star was completed by making two incisions on the aboral side of the individual in a V-

shape, following indentations on the central disk that indicate separations between arms. The arm 

was then gently pulled until it broke free. The gonads were then excised from the body cavity 

wall, placed in labeled bags, and stored on ice for later examination. Infection prevalence of O. 

stellarum was determined by examining the spawn or the gonads of the male sea stars under a 

dissecting microscope. Presence or absence of ciliates was recorded. I hypothesized that low 

male:female ratios would be associated with higher prevalence of ciliate infection, so I recorded 

the sex of each sea star that I collected. In several cases, sea stars were either already spawned 

out or otherwise missing sexually dimorphic gonads, and their sex was recorded as unknown. 

 

Epidermal Ciliate Association 

Each collected individual was analyzed for epidermal association of the ciliate parasite in 

accordance with Stickle and Kozloff (2008). To address the association of ciliates with the 

epidermis of the sea star, the aboral central disk of each individual was flushed with filtered sea-

water, the water was carefully collected, and then stored at 8° C for later analysis. Within one 

week, I examined the flush fluid for the presence of O. stellarum using a compound microscope. 

Early observations confirmed that, when kept refrigerated, ciliates stayed alive in the tubes for up 
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to two weeks. I determined an association of O. stellarum with the outer tissues of P. ochraceus 

by emptying the flush fluid into a glass petri dish and examining it under a dissecting scope for 

the presence of ciliates. If ciliates were found, they were pipetted onto a slide, and examined 

under a compound scope at 400x magnification to confirm that they were O. stellarum. I 

recorded presence or absence of O. stellarum.  

 

Seasonality 

To test my hypothesis that the relationship between P. ochraceus and epidermal O. stellarum 

changes depending on the reproductive cycle of the host, I collected sea stars from sites while 

sea stars were reproductive and while they were not. I conducted “Spawning Season” surveys 

throughout the spring and summer, completing surveys of Washington State in June and July of 

2016, surveys of Northern California in April of 2017, and surveys of the Oregon Coast in May 

of 2017. In Washington State, I did not find any evidence of parasitism during spawning season, 

so I elected not to return for a second survey. I was unable to sample sites in Oregon during the 

winter months. I surveyed sites in Northern California during the “Non-Spawning Season” in 

December 2016.  

 

Ciliate Identification and PCR-RFLP 

I visually inspected all fluid, spawn, and gonad samples for ciliates, identifying them as O. 

stellarum using a series of morphological characteristics. Individual O. stellarum are 

morphologically plastic, depending on their location on the host, or whether they are free living. 

They have been reported to be between 15 and 65 µm in length and 5-17 µm wide, but ciliates on 

the lower end of that range are usually only found when starving (Stickle et al 2007a). Ciliates 
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have an oblate spheroid shape with one pointed end, and have 10-20 somatic kineties, 3 oral 

polykinetids, and one oral dikinetid. They also have an easily distinguishable macronucleus and 

micronucleus. Usually, several food vacuoles and a prominent contractile vacuole are visible. 

Typically, if ciliates found in samples were oblate in shape, fell within the aforementioned size 

range, and had between 10 and 20 kineties and a visible contractile vacuole, macronucleus, and 

micronucleus, I recorded a positive presence of O. stellarum (Figure 2.2). However, after 

observing morphological variability in my samples, I wanted to further confirm that the ciliates I 

was seeing were indeed O. stellarum and not another ubiquitous marine scuticociliate. 

I elected to confirm my morphological identification of O. stellarum using molecular methods. 

Ideally, I would have extracted DNA from all of my samples to confirm that each one with 

ciliates contained O. stellarum specifically. However, I did not originally plan to do molecular 

work, so my samples were not appropriately preserved and I was not able to analyze each sample 

of ciliates molecularly. I used a sample of fresh ciliates isolated from the epidermis of a 

captive P. ochraceus that I visually identified as O. stellarum using the methods described 

above. The ciliates were immediately centrifuged at 1000 x g for 5 minutes at 4°C.  

I extracted DNA from each sample of ciliates using a Quick gDNA Blood MiniPrep Kit 

(Zymo Research) according to manufacturer instructions. I used a PCR-RFLP (polymerase chain 

reaction-restriction fragment length polymorphism) assay developed by Small et al. (2013) to 

rule out other ciliate species. I used forward and reverse primers designed by Small et. al. (2013) 

to amplify the ITS1 region of rRNA in O. stellarum and three other scuticociliate species 

(Mesanophrys chesapeakensis, Mesanophrys pugettensis, and Uronema marinum), which 

resulted in a 238 base pair reaction product. Each 50 µl reaction contained 34 ng of DNA, 200 

µm of each primer, 800 µm of dNTPs, 2.5 mM MgCl2, 1x Gold PCR Buffer (ThermoFisher 
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Scientific), and 1.25 units of AmpliTaq Gold (ThermoFisher Scientific). To determine that 

amplified rDNA fragments were from O. stellarum and not another marine scuticociliate, the 

PCR product was digested using both HpyCH4III and HpyCH4IV restriction enzymes, 

separately. HpyCH411 would have cut the gene fragment if it belonged to U. marinum, and 

HpyCH4IV would have cut the fragment if it belonged to M. chesapeakensis or M. 

pugettensis, but both enzymes would have left the O. stellarum rDNA amplicon intact. Each 

digestion reaction using HpyCh4III included 10 µl amplified DNA, 10 units HpyCH4III, and 1x 

Tango Buffer (10 mM Tris-HCl, pH 8.5, 10 mM MgCl2, 100 mM KCl, 0.1 mg/mL bovine serum 

albumin) for a total of 20 µl, which was incubated at 65°C for one hour.	Each digestion reaction 

using HpyCH4IV included 10 µl amplified DNA, 10 units HpyCH4IV, and 1x Buffer R (33 mM 

Tris-acetate, pH 7.9, 10 mM magnesium acetate, 66 mM potassium acetate, 0.1 mg/mL bovine 

serum albumin) was incubated at 65°C for 1 hour. Gel electrophoresis (2% agarose gel stained 

with ethidium bromide to a 0.5 µl/ml final concentration) allowed me to use the products of the 

PCR-RFLP analysis to confirm that the ciliates were in fact O. stellarum, and not one of the 

other three species. if bands were shorter than 238 base pairs, then the sample would have been 

one of the other closely related and morphologically similar scuticociliates. The sample of 

ciliates contained only O. stellarum, indicating good agreement between morphological and 

molecular identification methods (see Chapter 1 -Orchitophyra stellarum).	
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Statistics 

All statistical analyses were completed in R, version 3.5.0. To address the hypothesis that 

prevalence of O. stellarum infections and epidermal associations had changed since SSWD, I 

graphically compared current prevalence estimates with historical estimates published by Stickle 

and Kozloff (2008). However, I was unable to obtain the raw historical data needed to calculate 

confidence intervals on the percent association estimates. Instead, I calculated 95% confidence 

intervals on my prevalence estimates, and if the estimate from Stickle and Kozloff (2008) fell 

within those intervals, the two estimates were not considered statistically different. To determine 

whether there was a difference in O. stellarum prevalence between the three regions I sampled, I 

ran a generalized linear mixed model, with binomial error structure and a logit link function, 

including region as a predictor variable and site as a random variable, and compared that to a null 

model with just site as a random variable. I used Akaike information criterion (AIC) comparison 

to determine relative model quality. When testing my hypotheses about variance in O. stellarum 

association or infection prevalence, I intended to run a single full model including all of my 

predictor variables, but did not have adequate degrees of freedom to address each factor. Instead, 

I ran separate generalized linear models. I used a binomial error distribution with a logit link 

function because I collected binary presence/absence data for ciliate infection and association 

(i.e., prevalence). In all of the following analyses, the response variable was blocked by sampling 

site, and all of the factors were fixed variables. To address the hypothesis that O. stellarum 

prevalence would increase with latitude, I ran a logistic regression testing for a significant 

relationship. To address the hypothesis that host density would explain variation in O. stellarum 

prevalence, I ran a logistic regression testing for a significant relationship between O. stellarum 

prevalence and host population density. To test the hypothesis that male:female ratios would 
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have a positive relationship with O. stellarum prevalence, I ran a logistic regression. Finally, to 

determine if prevalence of external ciliates was different when sea stars were reproductive or not, 

I ran a logistic regression testing for a significant relationship between epidermal O. stellarum 

prevalence and sampling season. 

 Although not included as one of my original hypotheses, the position of sampling site 

within region (southness) could influence the prevalence of epidermal O. stellarum. To address 

this relationship, I gave each site in a region a ranking between 1 and 6, with 1 being the 

southernmost site and six being the northernmost. This gave me a continuous scale of 

"southness" that was standardized between regions to use as a predictor variable. I then ran and 

compared a series of generalized linear models including southness, region, and the interaction 

between the two as predictor variables for O. stellarum prevalence, using AIC to determine 

relative model quality. 
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Figure 2.1. Map of the three regions surveyed by this study and individual study sites within 
those regions. The northernmost sites are in the Pacific Northwest region, the Oregon Coast 
region extends from Ecola, OR, to Burnt Hill, OR, and the Northern California region extends 
from Cape Mendocino, CA, to Pigeon Point, CA. Sites indicated with a "*" were sampled from 
1999-2001 by Stickle and Kozloff (2008).  
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Figure 2.2. Morphology of O. stellarum and diagnostic characteristics used to identify the ciliate 
in gonad, spawn, and fluid samples. Scale bar = 10 µm.  
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Table 2.1. Annual spawning dates for some P. ochraceus populations in California, Oregon, and 
Washington State, reported from the literature. 

 

  

State County Location 
Spawning 

begins 
Spawning 

ends Paper 

CA Marin Duxbury Reef 
May 1965. 

March and June 
1966 

June (Nimitz, 1971) 

OR Lane/ 
Lincoln 

Strawberry Hill 
& South Jetty, 

Newport 
early May mid 

June (Sanford & Menge, 2007) 

WA San 
Juan Lonesome Cove early May and 

mid June late June (Mauzey, 1966) 

CA Santa 
Cruz Santa Cruz March late June  (Pearse & Eernisse, 1982) 
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RESULTS 
 
Pisaster ochraceus were rarely infected by Orchitophyra stellarum in the three regions I 

sampled. Across all sites, I found 2.8% of individuals infected with O. stellarum. Only six sea 

stars from three sites (two in Oregon and one in Puget Sound) showed evidence of the ciliate in 

their gonads, out of a total of 212 sea stars collected. By contrast, 51.4% of P. ochraceus 

sampled had O. stellarum on their epidermal tissues. Every site had sea stars associated with 

epidermal ciliates, including 47 individuals in Washington (n = 92), 45 individuals in Oregon (n 

= 76), and 17 individuals in California (n = 44). Infected sea stars were all male, while sea stars 

with epidermal associations with O. stellarum included males, females, and sea stars of unknown 

sex. The following results pertain only to prevalence of epidermal association with O. stellarum, 

since there were not enough infected P. ochraceus for statistical analyses. 

Differences in Association Prevalence Since SSWD 

Rates of association with O. stellarum have not shifted since the onset of SSWD on the west 

coast.  At the three sites previously sampled by Stickle and Kozloff (2008) between 1999 and 

2000, I found that there has not been a consistent directional shift in the percent of P. ochraceus 

associated with O. stellarum since SSWD related die offs. My sample sizes for each gender of P. 

ochraceus at these three sites were likely lower than those used historically; we sampled fifteen 

stars from each site, while Stickle and Kozloff collected all sea stars present at a site. However, 

the estimates of historical percent prevalence fell well within the 95% confidence intervals for 

the estimates of current percent prevalence at all three sites. The one exception was that females 

at Pigeon Point, CA, experience significantly higher epidermal association rates now than they 

did before SSWD. However, overall, there was not a significant difference between the past and 

present prevalence of association with O. stellarum (Figure 2.3). 
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Spatial Variation in Association Prevalence 

Variance of O. stellarum did not follow clear spatial patterns. I found that variation in O. 

stellarum prevalence was low between the three regions sampled, but was high amongst sites 

(Figure 2.4). The generalized linear mixed model including region as a predictor did not perform 

better than the null model when comparing Akaike information criterion (AIC) values (Table 

2.2), indicating that region does not explain the variance in O. stellarum association prevalence. I 

did not find a significant relationship between latitude and the prevalence of individuals 

associated with O. stellarum (P = 0.139, n = 15, z = 1.478). My original hypotheses did not 

address the correlation between site position within a region and parasite prevalence. However, 

because I found little variation between regions, but high variation within them, I elected to 

follow up by exploring this relationship. I ran several generalized linear models explaining the 

relationship between southness within a region and prevalence of association (Table 2.3). The 

model with the lowest AIC included southness within a region as an important variable affecting 

the prevalence of association, though this effect differed among regions (Figure 2.5). In Northern 

California and Washington, I found that the prevalence of association with O. stellarum 

increased from south to north, which was the opposite of what I predicted, but in Oregon the 

prevalence of association decreased from south to north (Figure 2.5). 

 

Host-Related Variation in Association Prevalence 

Generally, host population characteristics affected the association with O. stellarum. Increases in 

host population density (sea stars per square meter) was associated with a reduction in the 

prevalence of O. stellarum on host epidermal tissues, which is the opposite of what I predicted (P 

= 0.039, n = 15, z = -2.064) (Figure 2.6). Two sites had relatively large mean host densities (0.37 
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sea stars per m2 at Starfish Beach, WA, and 0.29 sea stars per m2 at Bob Creek, OR) and low 

prevalence of epidermal ciliates, which resulted in high leverage and a large effect on the model's 

estimation of this relationship (see Discussion). Additionally, prevalence of O. stellarum was 

positively associated with the percentage of males in a population (P = 0.039, n = 15, z = 2.602) 

(Figure 2.7). Association of O. stellarum with P. ochraceus did not differ between the two 

seasons I sampled.  At sites sampled twice in California, I found that the season sampled (spring, 

when host sea stars are reproductive, versus winter) had no significant effect on the prevalence of 

P. ochraceus associated with the ciliate (P = 0.202, n = 3, z = -1.275).  
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Table 2.2. Generalized linear mixed models, with binomial error distribution and logit link-
function, explaining the geographical variability in prevalence of association with O. stellarum in 
populations of P. ochraceus by the three coastal regions. Akaike information criterion (AIC) is 
included for relative comparison of model fit. 
 

Formula Degrees of Freedom AIC 
Ciliates ~ (1 | Site) 2 80.13 

Ciliates ~ Region + (1 | Site) 4 82.42 
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Table 2.3. Generalized linear models, with binomial error distribution with a logit link-function, 
explaining the relationship between southness of a site within one of three coastal regions and 
the prevalence of individual P. ochraceus associated with O. stellarum. Sites in each region were 
ranked between 1 and 6, with 1 being the southernmost site. Akaike information criterion (AIC) 
is included for relative comparison of model fit. 
 

Formula Degrees of Freedom AIC 
Ciliates ~ Southness * Region 6 87.069 
Ciliates ~ Southness + Region 4 96.005 

Ciliates ~ Southness 2 96.979 
Ciliates ~ -1 15 102.38 
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Figure 2.3. Current and historical percent prevalence of P. ochraceus associated with O. 
stellarum, as reported by Stickle and Kozloff (2008). Historical percentages were calculated 
from data collected from 1999-2000, and the sample size is unknown for these estimates. Current 
estimates are accompanied by 95% confidence intervals. 
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A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4. The proportion of the population of P. ochraceus associated with O. stellarum by (A) 
region sampled and (B) site sampled, with 95% confidence intervals. Regions and sites on the 
vertical axis run North to South.  
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Figure 2.5. Generalized linear model-predicted relationship between southness of a site within a 
region and prevalence of P. ochraceus epidermally associated with O. stellarum, with 95% 
confidence interval. Sites in each region were ranked on a continuous scale between 1 and 6, 
with 1 being the furthest South in a region. 
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Figure 2.6. Generalized linear model-predicted relationship between P. ochraceus population 
density and the prevalence of P. ochraceus epidermally associated with O. stellarum, with 95% 
confidence interval. Points represent actual proportion of association by the mean population 
density at each site sampled. 
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Figure 2.7. Generalized linear model-predicted relationship between the percentage of males in 
P. ochraceus populations and the prevalence of individuals of either sex epidermally associated 
with O. stellarum, with 95% confidence interval. Points represent actual prevalence of infection 
by the percent of males at each site sampled. 
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DISCUSSION 

 

Temporal Changes in parasite distribution 

There is evidence that temporal variation is common in the host-parasite dynamics of O. 

stellarum and P. ochraceus. Male gonad infection by O. stellarum was only present in three 

populations of P. ochraceus surveyed in this study, and prevalence was very low in these 

populations. Frequent infections were first noted in P. ochraceus in 1987, but previous 

examination of the same population in 1985 showed no signs of O. stellarum or associated 

pathogenicity (Boom, 1988). At Manchester Research Station in Puget Sound, WA, in 2001, 

32% of males were infected with O. stellarum (Stickle & Kozloff, 2008), but in 1999, no 

individuals were infected (Stickle et al., 2001a). Similarly, 100% of males in Clallam Bay were 

infected in June 1999, but prevalence was only 17% the previous month (Stickle et al., 2001a). 

In June 2016 when I resampled these sites, I found no infected individuals in either the 

Manchester or Clallam Bay populations. In addition, previous studies on O. stellarum in other 

sea star species have reported vastly different rates of infection, but the first time the parasite was 

discovered in Asterias rubens in 1907, infection rates were extremely low as well (Cepede, 

1907). Infection prevalence in ochre stars seems to vary greatly among host populations, 

locations, years, months, and seasons (Bates et al., 2010; Leighton et al., 1991; Stickle & 

Kozloff, 2008; Stickle et al., 2001a), so I could have sampled during a period of low infection. 

However, it is interesting that infections were low across so much of the host's range, because 

most other studies have found high spatial variability in infection rates (e.g. Bates et al 2010). 

Temporal variation in rates of parasitism could be driven by the population of the parasite 

itself fluctuating in time due to inherent seasonal variation. Additionally, in the case of non-host-
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specific facultative parasites like O. stellarum, the parasites could simply be somewhere else 

(another host, free living, etc.). Evidence shows that generalist pathogens have an inherent ability 

to capitalize on new host taxa, and often the parasites with the widest host range are the most 

likely to expand this range (Dobson & Foufopoulos, 2001; Poisot et al., 2013; Woolhouse & 

Gowtage-Sequeria, 2005). In the past two decades, two surveys of decapod crustaceans 

(Nephrops norvegicus (Small, 2004; Small et al., 2005b), Callinectus sapidus, and Uca minax, 

(Miller et al., 2013)) revealed low, but notable and highly pathogenic O. stellarum infections. 

Often, host encounter rate determines rate of alternative host use for generalist parasites (Cooper, 

2012; Kuris et al., 2007; Loot, 2006), so if sea star populations are low but other compatible 

hosts are present, O. stellarum could exhibit preferential parasitism for other host species 

(Lootvoet et al., 2013). Additionally, O. stellarum can and will migrate from the gonads to the 

epidermal tissues of its sea star host if conditions there are more favorable, although the specific 

drivers behind this transition are currently unclear (Stickle et al., 2007a; Stickle et al., 2007b). 

Furthermore, seasonal progression of O. stellarum infections, as the ciliate enters the gonads, 

consumes host sperm, and leaves once the host is spawned out, or partially or fully castrated, 

could result in different estimations of parasitism from week to week. The inherent variability in 

ciliate prevalence could have resulted in my very low observations of infection (in my limited 

sampling, I could have simply missed infected sea stars) and justifies a more comprehensive look 

at this host parasite system. 

Temperature plays a role in the biology of O. stellarum, and could contribute to temporal 

variation in ciliate prevalence. Doubling time of O. stellarum populations, and corresponding 

pathogenicity in male P. ochraceus, decreases with increasing temperature, which could further 

explain seasonal variability (Bates et al., 2010), but would also imply that ciliate infections 
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should be increasing with rising ocean temperatures. Some species of parasitic ciliates exhibit 

seasonal changes in host preference and specificity, presumably due to temperature changes as 

well as both the hosts' and parasite's reproductive cycle (Ohtsuka et al., 2004). Stickle et al. 

(2001b) proposed that O. stellarum favors winter brooding Leptasterias sp. in the colder winter 

months, and spring spawning P. ochraceus in the spring and summer, which could indicate a 

response of gonadal infection intensity to seasonal temperature changes. I could have sampled 

before or after the gonads of P. ochraceus were invaded by O. stellarum, resulting in low 

estimates of infection prevalence. Because of the fluid nature of this parasite, I propose that 

multiple mechanisms are interacting to influence the population dynamics of O. stellarum. 

My sampling design yielded fewer males than expected (mean percentage of males: 

30.8%), so it is also possible that I missed infections or that infected males had already suffered 

mortality, as is suggested by several previous studies (Byrne et al., 1997; Byrne et al., 1998; 

Leighton et al., 1991). I found low percent association with O. stellarum (ciliates on the 

epidermis) in conjunction with low percentages of male P. ochraceus. Previous studies have 

reported the opposite relationship when true infections were concerned; typically, a high 

prevalence of infection is found in conjunction with low numbers of male sea stars.  Ciliates 

could either be preferentially selecting against populations with a previously low number of 

males, or the parasite could be facilitating male mortality and then leaving the population once 

its supply of sperm-rich hosts has dwindled. However, if males were negatively impacted by O. 

stellarum outside of castration, I would expect to have seen more males with evidence of 

castration, and I did not. Furthermore, the only males I found with deformed or shrunken testes 

still had ciliates in their body cavity and gonads. At this time, it is unclear if populations of P. 
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ochraceus recovering from sea star wasting-related declines are reproductively constrained by 

this parasite. 

Despite the low incidence of true infection by O. stellarum, the ciliate was still present on 

the epidermis of sea stars along the west coast. Roughly half of the P. ochraceus between Birch 

Bay, WA, and Pigeon Point, CA, were associated with epidermal O. stellarum, and every 

population that I surveyed had sea stars with the ciliates on their epidermis. It was previously 

assumed that epidermal ciliates were diagnostic of a gonadal infection (e.g., Stickle and Kozloff 

(2008)), but as I found extremely low rates of actual infection, it is now clear that epidermal 

association is not necessarily linked to pathogenicity, although it could be a precursor to 

infection (Stickle et al., 2007a). Whether epidermal association represents a functional 

relationship with the host is still unclear; O. stellarum could be commensal, or simply an 

opportunistic part of the epibiota of the sea star. However, the three populations with the largest 

proportion of ciliate-associated sea stars were the only populations I found to have infected 

individuals, suggesting that high rates of epidermal association might increase the probability of 

individual sea stars becoming invaded by these facultative parasites. Bates et al., (2010) 

experimentally demonstrated that when ciliate densities are high in a host, the probability of 

infection in nearby testes of both the same and different sea stars increases. 

Of the three populations that were previously examined for epidermal association with O. 

stellarum in 2001, only female sea stars from Pigeon Point, CA, experienced significant change 

in epidermal association prevalence as of spring 2016. This suggests that, unlike infection rates, 

epidermal association with this ciliate is relatively stable over time. Ciliate association 

prevalence was also consistent on a more acute time scale, considering that O. stellarum 

prevalence on external tissues did not change significantly between the winter of 2016 and the 
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following spring, which contradicted my hypothesis. It is unclear why O. stellarum association 

with females' epidermis would increase, but because this study did not include equal sample 

sizes of males and females, further research is warranted to explore the relationship between 

epidermal association with ciliates and host sex. 

I found that epidermal ciliate prevalence decreases with increases in host population 

density, although estimation of this relationship was primarily driven by two very high density 

populations with correspondingly low O. stellarum associations. This result is contrary to both 

my hypothesis and most accepted epidemiological models, which state that disease transmission 

and prevalence is positively linked to host density (Anderson & May, 1981). Further research on 

O. stellarum should sample host populations in a range of host densities, to test whether or not 

high host density truly leads to reduced O. stellarum association. However, there are a number of 

potential explanations for a negative correlation between O. stellarum prevalence and population 

size. First, the P. ochraceus populations with the highest prevalence of O. stellarum could be 

small because of mortality due to potential pathogenic impacts of O. stellarum. Anderson & May 

(1979) suggest that in host species with a high influx of new individuals susceptible to infection 

(high birth rate, for example), parasites will persist and cause severe reductions in host 

populations. In my study, evidence for O. stellarum-related deaths is weak because no morbidity 

was observed in infected or associated P. ochraceus while sampling in the field. Unpublished 

data referred to by Vevers (1951) lead him to hypothesize that O. stellarum reproductively 

constrains host populations, resulting in smaller future generations. Initially, in 1947, a dense 

population of Asterias rubens in Plymouth Sound, England, was over 20% infected with O. 

stellarum, and the host population decreased in the three subsequent years. However, P. 

ochraceus broadcast spawn, and their planktonic larvae disperse widely from their source 



	
 

70 

populations (Strathmann, 1974; Strathmann, 1978). While reductions in male sperm output could 

be a consequence of O. stellarum association, it is unlikely that a population with a high 

prevalence of ciliate association would experience declines due to reproductive constraint; 

recruitment of juveniles is likely influx from other P. ochraceus populations. Regardless, future 

studies should explore the degree to which O. stellarum presence in a population is related to 

host reproductive output, especially because SSWD consistently reduced populations of P. 

ochraceus along the West Coast, and reduction in reproductive success would impact recovery 

coast-wide.  Future research on O. stellarum should also consider that low host density might be 

a good predictor for high parasite prevalence simply because it correlates with an unknown 

abiotic variable that determines O. stellarum intensity. Finally, if there are density-dependent 

changes in O. stellarum prevalence, and if the three populations that I compared over time have 

recovered to pre-SSWD densities, that would explain why I have not seen any changes in 

association from the estimates presented in Stickle & Kozloff (2008). 

 

Spatial changes in parasite distribution 

The distribution of O. stellarum in P. ochraceus populations is generally consistent along the 

west coast of North America. Prevalence of epidermal O. stellarum association did not change 

from region to region, but prevalence did vary significantly from site to site, within regions. 

Stickle and Kozloff (2008) found that rates of association varied between coastal Washington, 

Oregon, and especially Northern California, but only sampled one site in each of those areas. 

Because I found that prevalence varies significantly on a smaller scale, they most likely missed 

intraregional variation due to their limited sampling regime. Although not one of my original 

questions, I elected to further determine if southness within regions, and potentially a relative 
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change in mean seawater temperature, impacted ciliate prevalence. I included sampling region as 

a covariate in this analysis because in Washington state the relationship is muddled by the 

presence of the warmer, highly tidal, Puget Sound. There was no clear relationship between 

latitude and prevalence across the entire sampling range, but in Oregon, association increased in 

southern P. ochraceus populations, initially leading me to believe that abiotic variables in lower 

latitudes in Oregon might play some role in host-ciliate interactions. In California and 

Washington State, association prevalence increased in populations that were further North. I 

hypothesize that, due to the convergence of high ciliate prevalence on the border between 

California and Oregon, that there might be hotspots where O. stellarum growth is maximized. 

Additionally, the pattern observed in Washington state suggests that the Puget Sound, because of 

its low wave action and warmer mean seawater temperatures, could also be a hotspot for this 

ciliate.  For ectoparasites, other support has been found for a "center of abundance" hypothesis, 

which states that species are the most abundant in the locality with the most favorable conditions 

for that species, and abundance decreases proportionally with the distance from that locality 

(Krasnov & Poulin, 2010; Krasnov et al., 2008). When the ciliate is externally associated with P. 

ochraceus, it is exposed to the environment in the same way ectoparasites are, so distribution of 

O. stellarum ecto-association likely follows similar rules. 

Orchitophyra stellarum can withstand temperatures between 3°C and 27°C, and its 

growth is positively correlated with water temperature within these limits (Bates et al., 2010; 

Stickle et al., 2001a). While the seasonal temperature fluctuations in the area I sampled fall well 

within this range, small-scale differences in intertidal water temperature due to the topography or 

substrate composition of a specific location could influence transmission and proliferation of this 

ciliate within host populations. However, differences in intertidal ecosystems between regions do 
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not seem to play a role in the ecology of this ciliate. Bates (2010) reported high prevalence of 

infection in populations of P. ochraceus, and postulated that high prevalence of O. stellarum was 

found because the thermal niche of P. ochraceus, which forages intertidally, was warmer than 

that of Asterias miniata. He further supported this conclusion by reporting lower rates of 

infection in A. miniata. There is a clear relationship between ciliate populations and ambient sea 

water temperature, with O. stellarum increasing in association, infection, and pathogenicity with 

an increase in temperature (Bates et al., 2010, Stickle et al., 2001a). In addition, P. ochraceus 

(and other asteroid sea stars') overall health tends to decline with an increase in temperature, 

which caused researchers to hypothesize that rising ocean temperature might play a role in the 

appearance of SSWD (Eisenlord et al., 2016; Kohl et al., 2016; Staehli et al., 2009). The 

relationship between ciliate intensity and temperature, as well as wasting disease and 

temperature, in P. ochraceus could be linked to reduced host immune performance (Mydlarz et 

al., 2006). Regardless of micro-thermal regime, the whole ocean is projected to warm due to 

climate change, which will inevitably change the dynamics of this parasite. To fully understand 

spatial changes in this host-parasite relationship, future studies should examine the relationship 

between intertidal habitat temperature and association with epidermal O. stellarum. 

 

Conclusion 

In the last two decades, P. ochraceus infection by O. stellarum has declined, while seemingly 

non-pathogenic epidermal association with the ciliate has stayed relatively stable over time and 

throughout the host range. Shifts in host-parasite dynamics seem to be more due to inherent 

stochasticity in the system than because of SSWD-mediated die-offs. That being said, there is 

weak evidence for O. stellarum-mediated population reductions, due to the presence of small 
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populations of P. ochraceus with high rates of ciliate association. The mechanism behind the link 

between small populations and high prevalence of ciliates needs to be clarified, especially 

because in the summers after the initial SSWD outbreak, P. ochraceus populations continue to be 

seasonally plagued by wasting (Benjamin Miner, pers. communication). The questions raised by 

this study reinforce the notion that we understand very little about the population dynamics of 

multi-host parasites like O. stellarum (Woolhouse et al., 2001); generalist parasites like these can 

sometimes be the most pathogenic because their survival is not necessarily linked to that of their 

host (Leggett et al., 2013). Further research on this host-parasite system should include 

investigation of the abiotic site-specific drivers behind both infection and association rates, for 

example, small scale temperature fluctuations, wave exposure, and substrata composition.  

 



	
 

74 

Works Cited 
 

Altizer, S., Harvell, D. and Friedle, E. (2003). Rapid evolutionary dynamics and disease threats 
to biodiversity. Trends in Ecology & Evolution, 18, 589-596. doi: 
10.1016/j.tree.2003.08.013. 

Anderson, J. M. (1956). Observations on autotomy in the starfish, Asterias forbesi. Biological 
Bulletin, 111, 297. 

Anderson, R. M. and May, R. M. (1979). Population biology of infectious diseases: Part I. 
Nature, 280, 361. 

Anderson, R. M. and May, R. M. (1981). The population dynamics of microparasites and their 
invertebrate hosts. Phil. Trans. R. Soc. Lond. B, 291, 451-524. 

Argaez, V., Solano-Zavaleta, I. and Zuniga-Vega, J. J. (2018). Another potential cost of tail 
autotomy: tail loss may result in high ectoparasite loads in Sceloporus lizards. Amphibia-
Reptilia, 39, 191-202. doi: 10.1163/15685381-17000156. 

Bang, F. and Lemma, A. (1962). Bacterial infection and reaction to injury in some 
echinoderms. Journal of Insect Pathology, 4, 401-414. 

Bang, F. B. (1982). Disease Processes in Seastars - a Metchnikovian Challenge. Biological 
Bulletin, 162, 135-148. doi: Doi 10.2307/1540809. 

Bates, A. E., Hilton, B. J. and Harley, C. D. G. (2009). Effects of temperature, season and 
locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. 
Diseases of Aquatic Organisms, 86, 245-251. doi: 10.3354/dao02125. 

Bates, A. E., Stickle, W. B. and Harley, C. D. G. (2010). Impact of temperature on an 
emerging parasitic association between a sperm-feeding scuticociliate and Northeast 
Pacific sea stars. Journal of Experimental Marine Biology and Ecology, 384, 44-50. doi: 
10.1016/j.jembe.2009.12.001. 

Bely, A. E. and Nyberg, K. G. (2010). Evolution of animal regeneration: re-emergence of a 
field. Trends in Ecology & Evolution, 25, 161-170. doi: 10.1016/j.tree.2009.08.005. 

Bergmann, M. and Moore, P. G. (2001). Mortality of Asterias rubens and Ophiura ophiura 
discarded in the Nephrops fishery of the Clyde Sea area, Scotland. ICES Journal of 
Marine Science, 58, 531-542. doi: DOI 10.1006/jmsc.2001.1046. 

Bingham, B. L., Burr, J. and Head, H. W. (2000). Causes and consequences of arm damage in 
the sea star Leptasterias hexactis. Canadian Journal of Zoology, 78, 596-605. 

Boom, J. D. G. (1988). Actin gene transcription during spermatogenesis in the sea star Pisaster 
ochraceus (Brandt). Doctoral Dissertation. Simon Fraser University, Burnaby, British 
Columbia. 

Burge, C. A., Eakin, C. M., Friedman, C. S., Froelich, B., Hershberger, P. K., Hofmann, E. 
E., Petes, L. E., Prager, K. C., Weil, E., Willis, B. L., Ford, S. E. and Harvell, C. D. 
(2014). Climate Change Influences on Marine Infectious Diseases: Implications for 
Management and Society. Annual Review of Marine Science, Vol 6, 6, 249-277. doi: 
10.1146/annurev-marine-010213-135029. 

Burrows, R. B. (1936). Further oberservations on parasitism in the starfish. Science, 84, 329. 
Byrne, M. (1985). The life history of the gastropod Thyonicola americana Tikasingh, 

endoparasitic in a seasonally eviscerating holothurian host. Ophelia, 24, 91-101. 
Byrne, M., Cerra, A., Nishigaki, T. and Hoshi, M. (1997). Infestation of the testes of the 

Japanese sea star Asterias amurensis by the ciliate Orchitophyra stellarum: a caution 



	
 

75 

against the use of this ciliate for biological control. Diseases of Aquatic Organisms, 28, 
235-239. doi: 10.3354/dao028235. 

Byrne, M., Cerra, A., Nishigaki, T. and Hoshi, M. (1998). Male infertility in Asterias 
amurensis: a new phenomenon resulting from introduction of the parasitic ciliate 
Orchitophrya stellarum into Japan. In Echinoderms (ed. M. Telford., R. Mooi),  
Balkema, Rotterdam, the Netherlands. 203-207. 

C. Bouland, M. J. (1988). Infestation of Asterias rubens (Echinodermata) by the ciliate 
Orchitophrya stellarum: effect on gonads and host reaction. Diseases of Aquatic 
Organisms, 5, 239-242. 

C. Louise Goggin, C. B. (1997). The ciliate Orchitophyra c.f. stellarum and other parasites and 
commensals of the northern Pacific seastar Asterias amurensis from Japan. International 
Journal for Parasitology, 27, 1415-1418. 

Cepede, C. (1907). La castration parasitaire des etoiles de mer males par un nouvel infusoire 
astome: Orchitophrya stellarum, n. g., n. sp. Comptes Rendus de l'Academie des 
Sciences, 145, 1305-1306. 

Childs, J. N. (1970). Failure of coelomocytes of some Asterias forbesi to clump on glass. 
Biological Bulletin, 139, 418-&. 

Claereboudt, M. R. and Bouland, C. (1994). The effect of parasitic castration by a ciliate on a 
population of Asterias vulgaris. Journal of Invertebrate Pathology, 63, 172-177. doi: 
DOI 10.1006/jipa.1994.1032. 

Collinge, S. K., Ray, C. and Cully Jr, J. F. (2008). Effects of disease on keystone species, 
dominant species, and their communities. Infectious Disease Ecology, 129-144. 

Coma, R., Ribes, M., Serrano, E., Jimenez, E., Salat, J. and Pascual, J. (2009). Global 
warming-enhanced stratification and mass mortality events in the Mediterranean. 
Proceedings of the National Academy of Sciences of the United States of America, 106, 
6176-6181. doi: 10.1073/pnas.0805801106. 

Cooper, N., Griffin, R., Franz, M., Omotayo, M., Nunn, C. L. and Fryxell, J. (2012). 
Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett, 
15, 1370-1377. doi: 10.1111/j.1461-0248.2012.01858.x. 

Coteur, G., Corriere, N. and Dubois, P. (2004). Environmental factors influencing the immune 
responses of the common European starfish (Asterias rubens). Fish & Shellfish 
Immunology, 16, 51-63. 

Coteur, G., DeBecker, G., Warnau, M., Jangoux, M. and Dubois, P. (2002). Differentiation 
of immune cells challenged by bacteria in the common European starfish, Asterias rubens 
(Echinodermata). European Journal of Cell Biology, 81, 413. 

Davies, C. E., Johnson, A., Wootton, E. C., Greenwood, S. J., Clark, K. F., Vogan, C. L. 
and Rowley, A. F. (2015). Effects of population density and body size on disease 
ecology of the European lobster in a temperate marine conservation zone. ICES Journal 
of Marine Science, 72, 128-138. doi: 10.1093/icesjms/fsu237. 

De Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., De 
Kort, H., De Schrijver, A., Diekmann, M., Eriksson, O., Gruwez, R., Hermy, M., 
Lenoir, J., Plue, J., Coomes, D. A., Verheyen, K. and Gilliam, F. (2013). Latitudinal 
gradients as natural laboratories to infer species' responses to temperature. Journal of 
Ecology, 101, 784-795. doi: 10.1111/1365-2745.12074. 



	
 

76 

DelSesto, C. J. (2015). Assessing the Pathogenic Cause of Sea Star Wasting Disease in Asterias 
forbesi along the east coast of the United States. Masters Thesis. University of Rhode 
Island. 

Diaz-Guisado, D., Gaymer, C. F., Brokordt, K. B. and Lawrence, J. M. (2006). Autotomy 
reduces feeding, energy storage and growth of the sea star Stichaster striatus. Journal of 
Experimental Marine Biology and Ecology, 338, 73-80. doi: 
10.1016/j.jembe.2006.06.037. 

Dobson, A. (2004). Population Dynamics of Pathogens with Multiple Host Species. The 
American Naturalist, 164, S64-S78. 

Dobson, A. and Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 1001-1012. 

Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. and Jetz, W. (2008). Homage to 
Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy 
of Sciences of the United States of America, 105, 11482-11489. doi: 
10.1073/pnas.0803232105. 

Dungan, M. L., Miller, T. E. and Thomson, D. A. (1982). Catastrophic decline of a top 
carnivore in the Gulf of California rocky intertidal zone. Science, 216, 989-991. 

Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. and Sodhi, N. S. (2009). The sixth mass 
coextinction: are most endangered species parasites and mutualists? Proceedings of the 
Royal Society B-Biological Sciences, 276, 3037-3045. doi: 10.1098/rspb.2009.0413. 

Eckert, G. L., Engle, J. M. and Kushner, D. J. (2000). Sea star disease and population declines 
at the Channel Islands. In Proceedings of the Fifth California Islands Symposium pp. 
390-393. 

Eisenlord, M. E., Groner, M. L., Yoshioka, R. M., Elliott, J., Maynard, J., Fradkin, S., 
Turner, M., Pyne, K., Rivlin, N., van Hooidonk, R. and Harvell, C. D. (2016). Ochre 
star mortality during the 2014 wasting disease epizootic: role of population size structure 
and temperature. Philosophical Transactions of the Royal Society B-Biological Sciences, 
371. doi: 10.1098/rstb.2015.0212. 

Emberts, Z., Miller, C. W., Kiehl, D. and St Mary, C. M. (2017). Cut your losses: self-
amputation of injured limbs increases survival. Behavioral Ecology, 28, 1047-1054. doi: 
10.1093/beheco/arx063. 

Emberts, Z., St. Mary, C. M. and Miller, C. W. (2016). Coreidae (Insecta: Hemiptera) Limb 
Loss and Autotomy. Annals of the Entomological Society of America, 109, 678-683. doi: 
10.1093/aesa/saw037. 

Emson, R. and Wilkie, I. C. (1980). Fission and autotomy in echinoderms. Oceanography and 
Marine Biology, Annual Review, 18, 155-250. 

Farmanfarmaian, A., Giese, A., Boolootian, R. and Bennett, J. (1958). Annual reproductive 
cycles in four species of west coast starfishes. Journal of Experimental Zoology, 138, 
355-367. 

Feder, H. M. (1970). Growth and predation by the ochre sea star, Pisaster ochraceus (Brandt), 
in Monterey Bay, California. Ophelia, 8, 161-185. doi: 
10.1080/00785326.1970.10429557. 

Febvre, M., Fredj-Reygrobellet, D. and Fredj, G. (1981). Reproduction sexuee d'une Asterie 
fissipare, Sclerasterias richardi (Perrier, 1982). International Journal of Invertebrate 
Reproduction, 3, 193-208. 



	
 

77 

Fey, S. B., Siepielski, A. M., Nussle, S., Cervantes-Yoshida, K., Hwan, J. L., Huber, E. R., 
Fey, M. J., Catenazzi, A. and Carlson, S. M. (2015). Recent shifts in the occurrence, 
cause, and magnitude of animal mass mortality events. Proceedings of the National 
Academy of Sciences of the United States of America, 112, 1083-1088. doi: 
10.1073/pnas.1414894112. 

Fleming, P. A., Muller, D. and Bateman, P. W. (2007). Leave it all behind: a taxonomic 
perspective of autotomy in invertebrates. Biological Reviews, 82, 481-510. doi: 
10.1111/j.1469-185X.2007.00020.x. 

Fraser, A., Gomez, J., Hartwick, E. B. and Smith, M. J. (1981). Observations on the 
Reproduction and Development of Pisaster ochraceus (Brandt). Canadian Journal of 
Zoology, 59, 1700-1707. 

Galtsoff, P. S. and Loosanoff, V. L. (1939). Natural history and method of controlling the 
starfish (Asterias forbesi, Desor). Bulletin of the Bureau of Fisheries, 31, 75-132. 

Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonne, P., Cigliano, M., Diaz, D., 
Harmelin, J. G., Gambi, M. C., Kersting, D. K., Ledoux, J. B., Lejeusne, C., Linares, 
C., Marschal, C., Perez, T., Ribes, M., Romano, J. C., Serrano, E., Teixido, N., 
Torrents, O., Zabala, M., Zuberer, F. and Cerrano, C. (2009). Mass mortality in 
Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. 
Global Change Biology, 15, 1090-1103. doi: 10.1111/j.1365-2486.2008.01823.x. 

Giese, A. C. (1959). Comparative physiology: annual reproductive cycles of marine 
invertebrates. Annual Review of Physiology, 21, 547-576. 

Gignoux-Wolfsohn, S. A., Marks, C. J. and Vollmer, S. V. (2012). White Band Disease 
transmission in the threatened coral, Acropora cervicornis. Scientific Reports, 2. doi: 
ARTN 804 10.1038/srep00804. 

Glynn, P. (1981). Acanthaster population regulation by a shrimp and a worm. In International 
Coral Reef Symposium Manilla, Philippines. 

Glynn, P. W. (1984). An amphinomid worm predator of the crown-of-thorns sea star and 
general predation on asteroids in eastern and western Pacific coral reefs. Bulletin of 
Marine Science, 35, 54-71. 

Goggin, C. L. and Murphy, N. E. (2000). Conservation of sequence in the internal transcribed 
spacers and 5.8S ribosomal RNA among geographically separated isolates of parasitic 
scuticociliates (Ciliophora, Orchitophryidae). Diseases of Aquatic Organisms, 40, 79-83. 
doi: 10.3354/dao040079. 

Gravem, S. A. and Morgan, S. G. (2017). Shifts in intertidal zonation and refuge use by prey 
after mass mortalities of two predators. Ecology, 98, 1006-1015. doi: 10.1002/ecy.1672. 

Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, 
C. S., Rodriguez, L. F., Tomanek, L. and Williams, S. L. (2006a). The impacts of 
climate change in coastal marine systems. Ecology Letters, 9, 228-241. doi: 
10.1111/j.1461-0248.2005.00871.x. 

Harley, C. D. G., Pankey, M. S., Wares, J. P., Grosberg, R. K. and Wonham, M. J. (2006b). 
Color Polymorphism and Genetic Structure in the Sea Star Pisaster ochraceus. Biologial 
Bulletin, 211, 248-262. 

Harrold, C. and Pearse, J. S. (1980). Allocation of pyloric caecum reserves in fed and starved 
sea stars, Pisaster giganteus (Stimpson): somatic maintenance comes before 
reproduction. Journal of Experimental Marine Biology and Ecology, 48, 169-183. 



	
 

78 

Harrold, C. and Pearse, J. S. (1987). The ecological role of echinoderms in kelp forests. 
Echinoderm Studies, 2, 137-233. 

Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J., 
Hofmann, E. E., Lipp, E. K., Osterhaus, A. D. M. E., Overstreet, R. M., Porter, J. 
W., Smith, G. W. and Vasta, G. R. (1999). Emerging marine diseases - Climate links 
and anthropogenic factors. Science, 285, 1505-1510. doi: DOI 
10.1126/science.285.5433.1505. 

Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. and 
Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine 
biota. Science, 296, 2158-2162. doi: DOI 10.1126/science.1063699. 

Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. and Weil, E. (2009). Climate change 
and wildlife diseases: When does the host matter the most? Ecology, 90, 912-920. doi: 
Doi 10.1890/08-0616.1. 

Harvell, D., Kim, K., Quirolo, C., Weir, J. and Smith, G. (2001). Coral bleaching and disease: 
contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). 
Hydrobiologia, 460, 97-104. 

Hechinger, R. F. and Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final 
hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B-
Biological Sciences, 272, 1059-1066. doi: 10.1098/rspb.2005.3070. 

Henry, L.-A. and Hart, M. (2005). Regeneration from Injury and Resource Allocation in 
Sponges and Corals - a Review. International Review of Hydrobiology, 90, 125-158. doi: 
10.1002/iroh.200410759. 

Hewson, I., Bistolas, K. S. I., Quijano Cardé, E. M., Button, J. B., Foster, P. J., 
Flanzenbaum, J. M., Kocian, J. and Lewis, C. K. (2018). Investigating the Complex 
Association Between Viral Ecology, Environment, and Northeast Pacific Sea Star 
Wasting. Frontiers in Marine Science, 5. doi: 10.3389/fmars.2018.00077. 

Hewson, I., Button, J. B., Gudenkauf, B. M., Miner, B., Newton, A. L., Gaydos, J. K., 
Wynne, J., Groves, C. L., Hendler, G., Murray, M., Fradkin, S., Breitbart, M., 
Fahsbender, E., Lafferty, K. D., Kilpatrick, A. M., Miner, C. M., Raimondi, P., 
Lahner, L., Friedman, C. S., Daniels, S., Haulena, M., Marliave, J., Burge, C. A., 
Eisenlord, M. E. and Harvell, C. D. (2014). Densovirus associated with sea-star 
wasting disease and mass mortality. Proceedings of the National Academy of Sciences of 
the United States of America, 111, 17278-17283. doi: 10.1073/pnas.1416625111. 

Hotchkiss, F., Churchill, S., Gelormini, R., Hepp, W., Rentler, R. and Tummarello, M. 
(1991). Events of autotomy in the starfish Asterias forbesi and A. vulgaris. Biology of 
Echinodermata. Balkema, Rotterdam, the Netherlands. 537-541. 

Johnson, P. T., Preu, E. R., Sutherland, D. R., Romansic, J. M., Han, B. and Blaustein, A. 
R. (2006). Adding infection to injury: synergistic effects of predation and parasitism on 
amphibian malformations. Ecology, 87, 2227-2235. 

Juanes, F. and Smith, L. D. (1995). The ecological consequences of limb damage and loss in 
decapod crustaceans: a review and prospectus. Journal of Experimental Marine Biology 
and Ecology, 193, 197-223. 

Jurgens, L. J., Rogers-Bennett, L., Raimondi, P. T., Schiebelhut, L. M., Dawson, M. N., 
Grosberg, R. K. and Gaylord, B. (2015). Patterns of Mass Mortality among Rocky 
Shore Invertebrates across 100 km of Northeastern Pacific Coastline. PLoS One, 10, 
e0126280. doi: 10.1371/journal.pone.0126280. 



	
 

79 

Kanatani, H. (1969). Induction of spawning and oocyte maturation by L-methyladenine in 
starfishes. Experimental Cell Research, 57, 333-337. 

Kohl, W. T., McClure, T. I. and Miner, B. G. (2016). Decreased Temperature Facilitates 
Short-Term Sea Star Wasting Disease Survival in the Keystone Intertidal Sea Star 
Pisaster ochraceus. PLoS One, 11. doi: ARTN e0153670 10.1371/journal.pone.0153670. 

Krasnov, B. R. and Poulin, R. (2010). Ecological properties of a parasite: species-specific 
stability and geographical variation. The Biogeography of Host–Parasite Interactions, 99. 

Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M., Korallo-Vinarskaya, N. and 
Poulin, R. (2008). Geographical patterns of abundance: testing expectations of the 
‘abundance optimum’ model in two taxa of ectoparasitic arthropods. Journal of 
Biogeography, 35, 2187-2194. doi: 10.1111/j.1365-2699.2008.01978.x. 

Kuris, A., Lafferty, K. D. and Grygier, M. J. (1996). Detection and preliminary evaluation of  
 natural enemies for possible biological control of the northern Pacific seastar, Asterias 

amurensis. No. 3. Centre for Research on Introduced Marine Pests. 
Kuris, A. M., Goddard, J. H., Torchin, M. E., Murphy, N., Gurney, R. and Lafferty, K. D. 

(2007). An experimental evaluation of host specificity: the role of encounter and 
compatibility filters for a rhizocephalan parasite of crabs. International Journal for 
Parasitology, 37, 539-545. 

Lafferty, K. D. (2003). Is disease increasing or decreasing, and does it maintain or impact 
biodiversity? Journal of Parasitology, 89, S101- S105. 

Lafferty, K. D. (2004). Fishing for lobsters indirectly increases epidemics in sea urchins. 
Ecological Applications, 14, 1566-1573. doi: 10.1890/03-5088. 

Lafferty, K. D. (2009). Calling for an ecological approach to studying climate change and 
infectious diseases. Ecology, 90, 932-933. doi: 10.1890/08-1767.1. 

Lafferty, K. D. and Kuris, A. M. (1993). Mass mortality of abalone Haliotis cracherodii on the 
California Channel Islands: tests of epidemiological hypotheses. Marine Ecology 
Progress Series, 239-248. 

Lafferty, K. D., Porter, J. W. and Ford, S. E. (2004). Are diseases increasing in the ocean? 
Annual Review of Ecology Evolution and Systematics, 35, 31-54. doi: 
10.1146/annurev.ecolsys.35.021103.105704. 

Lamb, J. B., Williamson, D. H., Russ, G. R. and Willis, B. L. (2015). Protected areas mitigate 
diseases of reef-building corals by reducing damage from fishing. Ecology, 96, 2555-
2567. 

Lawrence, J. M. (1991a). Analysis of characteristics of echinoderms associated with stress and 
disturbance. Biology of Echinodermata, 11, 26. 

Lawrence, J. M. (1991b). Arm loss and regeneration in Asteroidea (Echinodermata). 
Echinoderm Research, 1992, 39-52. 

Lawrence, J. M. (2010). Energetic costs of loss and regeneration of arms in stellate 
echinoderms. Integrative and Comparative Biology, 50, 506-514. doi: 
10.1093/icb/icq027. 

Lawrence, J. M. and Vasquez, J. (1996). The effect of sublethal predation on the biology of 
echinoderms. Oceanologica Acta, 19, 431-440. 

Leggett, H. C., Buckling, A., Long, G. H. and Boots, M. (2013). Generalism and the evolution 
of parasite virulence. Trends in Ecology & Evolution, 28, 592-596. doi: 
10.1016/j.tree.2013.07.002. 



	
 

80 

Leighton, B. J., Boom, J. D. G., Bouland, C., Hartwick, E. B. and Smith, M. J. (1991). 
Castration and mortality in Pisaster ochraceus parasitized by Orchitophrya stellarum 
(Ciliophora). Diseases of Aquatic Organisms, 10, 71-73. 

Lindsay, S. M. (2010). Frequency of injury and the ecology of regeneration in marine benthic 
invertebrates. Integrative and Comparative Biology, 50, 479-493. doi: 
10.1093/icb/icq099. 

Loot, G., Park, Y.-S., Lek, S. and Brosse, S. (2006). Encounter rate between local populations 
shapes host selection in complex parasite life cycle. Biological Journal of the Linnean 
Society, 89, 99-106. 

Lootvoet, A., Blanchet, S., Gevrey, M., Buisson, L., Tudesque, L., Loot, G. and Mayhew, P. 
(2013). Patterns and processes of alternative host use in a generalist parasite: insights 
from a natural host-parasite interaction. Functional Ecology, 27, 1403-1414. doi: 
10.1111/1365-2435.12140. 

Lowe, E. F. (1978). Relationships between biochemical and caloric composition and 
reproductive cycle in Asterias vulgaris (Echinodermata: Asteroidea) from the Gulf of 
Maine. Doctoral Dissertation. University of Maine. 

Maginnis, T. L. (2006). The costs of autotomy and regeneration in animals: a review and 
framework for future research. Behavioral Ecology, 17, 857-872. doi: 
10.1093/beheco/arl010. 

MARINe (2013). Unprecedented Sea Star Mass Mortality along the West Coast of North 
America due to Wasting Syndrome. Press release.  

Mauzey, K. P. (1966). Feeding behavior and reproductive cycles in Pisaster ochraceus. 
Biological Bulletin, 131, 127-144. 

May, R. M. and Anderson, R. M. (1978). Regulation and stability of host-parasite population 
interactions: II. Destabilizing processes. The Journal of Animal Ecology, 249-267. 

McVean, A. and Findlay, I. (1979). The incidence of autotomy in an estuarine population of the 
crab Carcinus maenas. Journal of the Marine Biological Association of the United 
Kingdom, 59, 341-354. 

Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. and Yamada, S. B. (1994). 
The keystone species concept: variation in interaction strength in a rocky intertidal 
habitat. Ecological Monographs, 64, 249-286. 

Menge, B. A., Cerny-Chipman, E. B., Johnson, A., Sullivan, J., Gravem, S. and Chan, F. 
(2016). Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in 
Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and 
Temperature Effects from Long-Term Research. PLoS One, 11. doi: ARTN e0157302 
10.1371/journal.pone.0157302. 

Miller, T. L., Small, H. J., Peemoeller, B. J., Gibbs, D. A. and Shields, J. D. (2013). 
Experimental infections of Orchitophrya stellarum (Scuticociliata) in American blue 
crabs (Callinectes sapidus) and fiddler crabs (Uca minax). Journal of Invertebrate 
Pathology, 114, 346-355. doi: 10.1016/j.jip.2013.08.009. 

Miner, C. M., Burnaford, J. L., Ambrose, R. F., Antrim, L., Bohlmann, H., Blanchette, C. 
A., Engle, J. M., Fradkin, S. C., Gaddam, R., Harley, C. D. G., Miner, B. G., 
Murray, S. N., Smith, J. R., Whitaker, S. G. and Raimondi, P. T. (2018). Large-scale 
impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for 
recovery. PLoS One, 13, e0192870. doi: 10.1371/journal.pone.0192870. 



	
 

81 

Moritsch, M. M. and Raimondi, P. T. (2018). Reduction and recovery of keystone predation 
pressure after disease-related mass mortality. Ecology and Evolution, 8, 3952-3964. doi: 
10.1002/ece3.3953. 

Mouritsen, K. N. and Poulin, R. (2002). Parasitism, community structure and biodiversity in 
intertidal ecosystems. Parasitology, 124, 101-117. 

Mydlarz, L. D., Jones, L. E. and Harvell, C. D. (2006). Innate immunity environmental drivers 
and disease ecology of marine and freshwater invertebrates. Annual Review of Ecology 
Evolution and Systematics, 37, 251-288. doi: 
10.1146/annurev.ecolsys.37.091305.110103. 

Nimitz, S. M. A. O. P. (1971). Histochemical study of gut nutrient reserves in relation to 
reproduction and nutrition in the sea stars, Pisaster ochraceus and Patira miniata. 
Biological Bulletin, 140, 461-481. 

O’Donoghue, C. (1926). On the summer migration of certain starfish in Departure Bay. BC 
Fisheries Research Board of Canada, Contributions to Canadian Biology, 1, 455-472. 

Ohtsuka, S., Hora, M., Suzaki, T., Arikawa, M., Omura, G. and Yamada, K. (2004). 
Morphology and host-specificity of the apostome ciliate Vampyrophrya pelagica 
infecting pelagic copepods in the Seto Inland Sea, Japan. Marine Ecology Progress 
Series, 282, 129-142. 

Paine, R. T. (1966). Food Web Complexity and Species Diversity. The American Naturalist, 
100, 65-75. 

Paine, R. T. (1969). A note on trophic complexity and community stability. The American 
Naturalist, 103, 91-93. 

Pearse, J. S. and Eernisse, D. J. (1982). Photoperiodic regulation of gametogenesis and gonadal 
growth in the sea star Pisaster ochraceus. Marine Biology, 67, 121-125. doi: Doi 
10.1007/Bf00401277. 

Pearse, J. S., Eernisse, D. J., Pearse, V. B. and Beauchamp, K. A. (1986). Photoperiodic 
regulation of gametogenesis in sea stars, with evidence for an annual calendar 
independent of fixed daylength. American Zoologist, 26, 417-431. 

Pinsino, A., Thorndyke, M. C. and Matranga, V. (2007). Coelomocytes and post-traumatic 
response in the common sea star Asterias rubens. Cell Stress & Chaperones, 12, 331. 

Poisot, T., Stanko, M., Miklisova, D. and Morand, S. (2013). Facultative and obligate parasite 
communities exhibit different network properties. Parasitology, 140, 1340-1345. doi: 
10.1017/S0031182013000851. 

Power, M. E. and Mills, L. S. (1995). The keystone cops meet in Hilo. Trends in Ecology & 
Evolution, 10, 182-184. 

Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., 
Castilla, J. C., Lubchenco, J. and Paine, R. T. (1996). Challenges in the quest for 
keystones. BioScience, 46, 609-620. 

Ramirez-Gomez, F. and Garcia-Arraras, J. E. (2010). Echinoderm immunity. Invertebrate 
Survival Journal, 7, 211-220. 

Ramsay, K., Bergmann, M., Veale, L. O., Richardson, C. A., Kaiser, M. J., Vize, S. J. and 
Feist, S. W. (2001). Damage, autotomy and arm regeneration in starfish caught by towed 
demersal fishing gears. Marine Biology, 138, 527-536. doi: 10.1007/s002270000487. 

Robles, C., Sherwood-Stephens, R. and Alvarado, M. (1995). Responses of a key intertidal 
predator to varying recruitment of its prey. Ecology, 76, 565-579. 



	
 

82 

Robles, C. D., Desharnais, R. A., Garza, C., Donahue, M. J. and Martinez, C. A. (2009). 
Complex equilibria in the maintenance of boundaries: experiments with mussel beds. 
Ecology, 90, 985-995. 

Sanford, E. (1999). Regulation of keystone predation by small changes in ocean temperature. 
Science, 283, 2095-2097. 

Sanford, E. and Menge, B. A. (2007). Reproductive output and consistency of source 
populations in the sea star Pisaster ochraceus. Marine Ecology Progress Series, 349, 1-
12. doi: 10.3354/meps07166. 

Sanford, E., Wood, M. E. and Nielsen, K. J. (2009). A non-lethal method for estimation of 
gonad and pyloric caecum indices in sea stars. Invertebrate Biology, 128, 372-380. doi: 
10.1111/j.1744-7410.2009.00182.x. 

Schultz, J. A., Cloutier, R. N. and Cote, I. M. (2016). Evidence for a trophic cascade on rocky 
reefs following sea star mass mortality in British Columbia. Peerj, 4. doi: ARTN e1980 
10.7717/peerj.1980. 

Secord, D. and Kareiva, P. (1996). Perils and pitfalls in the host specificity paradigm. 
BioScience, 46, 448-453. 

Small, H., Neil, D., Taylor, A. and Coombs, G. (2005a). Identification and partial 
characterisation of metalloproteases secreted by a Mesanophrys-like ciliate parasite of the 
Norway lobster Nephrops norvegicus. Diseases of Aquatic Organisms, 67, 225-231. 

Small, H. J. (2004). Infections of the Norway lobster, Nephrops norvegicus (L.) by 
dinoflagellate and ciliate parasites. Doctoral Dissertation. University of Glasgow. 

Small, H. J., Miller, T. L., Coffey, A. H., Delaney, K. L., Schott, E. and Shields, J. D. (2013). 
Discovery of an opportunistic starfish pathogen, Orchitophrya stellarum, in captive blue 
crabs, Callinectes sapidus. Journal of Invertebrate Pathology, 114, 178-185. doi: 
10.1016/j.jip.2013.07.008. 

Small, H. J., Neil, D. M., Taylor, A. C., Bateman, K. and Coombs, G. H. (2005b). A parasitic 
scuticociliate infection in the Norway lobster (Nephrops norvegicus). Journal of 
Invertebrate Pathology, 90, 108-117. doi: 10.1016/j.jip.2005.08.008. 

Smith, G. F. M. (1936). A gonad parasite of the starfish. Science, 84, 157. 
Staehli, A., Schaerer, R., Hoelzle, K. and Ribi, G. (2009). Temperature induced disease in the 

starfish Astropecten jonstoni. Marine Biodiversity Records, 2. doi: 
10.1017/s1755267209000633. 

Steneck, R. S., Vavrinec, J. and Leland, A. V. (2004). Accelerating Trophic-level Dysfunction 
in Kelp Forest Ecosystems of the Western North Atlantic. Ecosystems, 7. doi: 
10.1007/s10021-004-0240-6. 

Stickle, W. B. and Kozloff, E. N. (2008). Association and distribution of the ciliate 
Orchitophrya stellarum with asteriid sea stars on the west coast of North America. 
Diseases of Aquatic Organisms, 80, 37-43. doi: 10.3354/dao01917. 

Stickle, W. B., Kozloff, E. N. and Henk, M. C. (2007a). The ciliate Orchitophrya stellarum 
viewed as a facultative ciliate parasite of asteriid sea stars. Cahiers de Biologie Marine, 
48, 9-16. 

Stickle, W. B., Kozloff, E. N. and Story, S. (2007b). Physiology of the ciliate Orchitophrya 
stellarum and its experimental infection of Leptasterias spp. Canadian Journal of 
Zoology, 85, 201-206. doi: 10.1139/z06-211. 



	
 

83 

Stickle, W. B., Rathbone, E. N. and Story, S. (2001a). Parasitism of sea stars from Puget 
Sound, Washington, by Orchitophyra stellarum. In Echinoderms 2000 (ed. Barker, M.), 
pp. 221–226. 

Stickle, W. B., Weidner, E. H. and Kozloff, E. N. (2001b). Parasitism of Leptasterias spp. 
(Echinodermata: Asteroidea) by the Ciliated Protozoan Orchitophrya stellarum 
(Scuticociliata). Invertebrate Biology, 120, 88-95. 

Strathmann, M. F. (1987). Reproduction and development of marine invertebrates of the 
northern Pacific coast: data and methods for the study of eggs, embryos, and larvae, 
University of Washington Press, Seattle, WA. 

Strathmann, R. (1974). The spread of sibling larvae of sedentary marine invertebrates. The 
American Naturalist, 108, 29-44. 

Strathmann, R. (1978). Length of pelagic period in echinoderms with feeding larvae from the 
Northeast Pacific. Journal of Experimental Marine Biology and Ecology, 34, 23-27. 

Sunday, J., Raeburn, L. and Hart, M. W. (2008). Emerging infectious disease in sea stars: 
castrating ciliate parasites in Patiria miniata. Diseases of Aquatic Organisms, 81, 173-
176. doi: 10.3354/dao01949. 

Taylor, C. E. and Bang, F. B. (1978). Alteration of Blood-Clotting in Asterias forbesi 
Associated with a Ciliate Infection. Biological Bulletin, 155, 468-469. 

Uthicke, S., Schaffelke, B. and Byrne, M. (2009). A boom-bust phylum? Ecological and 
evolutionary consequences of density variations in echinoderms. Ecological 
Monographs, 79, 3-24. doi: 10.1890/07-2136.1. 

Van Veldhuizen, H. and Oakes, V. (1981). Behavioral responses of seven species of asteroids 
to the asteroid predator, Solaster dawsoni. Oecologia, 48, 214-220. 

Vevers, H. G. (1951). The biology of Asterias rubens L. II. Parasitization of the gonads by the 
ciliate Orchitophrya stellarum Cépède. Journal of the Marine Biological Association of 
the United Kingdom, 29, 619-625. 

Wasson, K., Lyon, B. E. and Knope, M. (2002). Hair-trigger autotomy in porcelain crabs is a 
highly effective escape strategy. Behavioral Ecology, 13, 481-486. 

Wilkie, I. (1978a). Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). Journal of 
Zoology, 186, 311-330. 

Wilkie, I., Griffiths, G. and Glennie, S. (1990). Morphological and physiological aspects of the 
autotomy plane in the aboral integument of Asterias rubens L.(Echinodermata). 
Echinoderm Research, 301-313. 

Wilkie, I. C. (1978b). Functional morphology of the autotomy plane of the brittlestar 
Ophiocomina nigra (Abildgaard) (Ophiuroidea, Echinodermata). Zoomorphologie, 91, 
289-305. doi: Doi 10.1007/Bf00999817. 

Woolhouse, M. E. and Gowtage-Sequeria, S. (2005). Host range and emerging and reemerging 
pathogens. Emerging Infectious Diseases, 11, 1842. 

Woolhouse, M. E. J., Taylor, L. H. and Haydon, D. T. (2001). Population biology of multihost 
pathogens. Science, 292, 1109-1112. doi: DOI 10.1126/science.1059026. 

Wootton, E. C., Woolmer, A. P., Vogan, C. L., Pope, E. C., Hamilton, K. M. and Rowley, A. 
F. (2012). Increased disease calls for a cost-benefits review of marine reserves. PLoS 
One, 7. doi: ARTN e51615 10.1371/journal.pone.0051615. 

 
 



	 84 

 
Table S1. Summary data on the number of male and female P. ochraceus, and sea stars of unknown sex, presenting with epidermal 
association with O. stellarum in each region and sampling season. Numbers of male sea stars with O. stellarum infections in their 
gonads are also included. Non-reproductive sampling in California occurred in the winter, when it was impossible to determine sea 
star sex, and when there were no gonad infections. Sample size refers to the number of sea stars collected for that sex in that region or 
sampling season. 

 

 Washington Oregon California California (non-
reproductive sampling) 

 Males Females Unknown 
sex Males Females Unknown 

sex Males Females Unknown 
sex Unknown sex 

Infected with 
O. stellarum 

in gonads 
1 N/A N/A 2 N/A N/A 0 N/A N/A N/A 

Associated 
with O. 

stellarum on 
epidermis 

4 11 32 12 21 12 6 5 6 39 

Sample size 10 27 55 27 30 19 16 14 14 81 
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