Feed the Earth: An Exploration of Regenerative Agriculture Programs in Washington State

Lily Storbeck

Follow this and additional works at: https://cedar.wwu.edu/wwu_honors

Part of the Agriculture Commons, and the Environmental Studies Commons

Recommended Citation
Storbeck, Lily. "Feed the Earth: An Exploration of Regenerative Agriculture Programs in Washington State" (2024). WWU Honors College Senior Projects. 820.
https://cedar.wwu.edu/wwu_honors/820

This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Honors College Senior Projects by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Feed the Earth: An Exploration of Regenerative Agriculture Programs in Washington State

Lily Storbeck, 6/12/24

Abstract

Regenerative agriculture centers soil health as the solution to the environmental and economic problems caused by conventional agriculture. By using regenerative practices agricultural operations become more cost-effective and supportive of the environment. The transition to regenerative techniques can be complex and expensive, but government financial and technical assistance programs have the potential to lower risk for individual farmers. Washington state supports the use of regenerative agriculture through Conservation Districts, the Sustainable Farms and Fields grant, and the Soil Roadmap report. These programs benefit from an administrative framework linking local, state, and federal resources, but capacity is generally limited by financial support for the programs.

Keywords

Regenerative agriculture, government, incentive programs, agriculture, Washington, conservation districts.
Introduction

“To feed the world, we need to double food production by 2050,” (Foley, 2014).

I read this tagline on the cover of a National Geographic magazine when I was 16 years old. I was shocked that a resource we all need to survive and that many of us take for granted could be in such danger. I couldn’t get agriculture out of my head and the need to do something to fix our problem is the reason why I pursued an Environmental Science education and why I chose this project.

In recent years, this prediction has come under criticism for exaggeration, but value still lies in the attention that such a shocking statement can bring to our very critical problem. Decades of intense and damaging conventional agriculture, risks and unpredictability caused by climate change, and increasing demand from a growing population have contributed to industry-wide instability for producers, consumers, and the environment.

The size and influence of the agricultural industry is a significant barrier to its improvement. Agriculture is connected with numerous human rights and environmental issues, including natural resource conservation, farmer livelihoods and worker rights, economic stability and rural development, indigenous land rights, consumer health, and equitable access to nutritious food. Many groups with conflicting priorities make up the agricultural industry, including farmers and

1 Global production likely needs a 60% instead of a 100% increase, if we are to achieve greater efficiency on already existing farmland and reduce waste across all production and consumption levels. Foley’s 2014 has since been updated and included in a National Geographic series, “The Future of Food.”
ranchers, consumers, governmental agencies, industry coalitions, and community organizations (USDA About Us, n.d.).

Food production must transition away from causing ecological destruction and economic instability towards being an efficient, equitable, and stable system that benefits ourselves and generations to come. Complex and contradictory solutions are required to do this, and with so many moving parts that must be worked with, this project only has the capacity to explore one pathway of our way forward.

The foundation for a productive and economically viable agricultural system is the ecological health of the soil that system uses. Regenerative agriculture provides the industry with a set of practices that rebuild soil health without sacrificing economic productivity. The transition to regenerative practices can be expensive, but state government has the existing administrative frameworks and financial and technical resources needed to facilitate this transition. I will use the accomplishments and capacities of state and local government programs to answer the question:

What is Washington State doing to support regenerative agriculture?
Agriculture Basics

Washington Agriculture

Agriculture is an economic cornerstone of Washington state, providing over 160,000 jobs and totaling $9.49 billion in sales annually (WSDA, n.d.). As of 2019, over 35,000 farms cultivate 14.6 million acres of land (NASS Washington, n.d.). A majority of these operations are small in size, with 67% of farms managing less than 50 acres and 89% of farms making less than $250,000 per year. 96% of Washington farms are family-owned or operated, but the state sees major international export markets in Canada, Japan, China, Mexico, and South Korea.

Due to the state’s diverse microclimates, over 300 different crops are grown in Washington. The top ten commodities in the state are apples, milk, potatoes, wheat, cattle, hops, hay, cherries, grapes, and onions (WaSHI, 2021). Apples alone account for 23% of all state agricultural value and over 100,000 acres are used for organic tree fruit, producing 93% of the nation’s organic apples, along with 91% of organic cherries and 81% of organic pears. The Columbia Basin, one of the most productive agricultural regions worldwide, grows 20% of the nation’s processing-potatoes, mainly used for frozen French fries and seeds, and holds the highest yield rate in the world at over 30 tons per acre (WaSHI, 2021). Wheat dominates east of the Cascades, covering over 2.2 million acres, the largest area of dryland and irrigated land for any crop in the state. Washington is also the second-leading wine grape producer and the number one producer of aquaculture in the United States (WaSHI, 2021).
Agriculture Terminology

Traditional, or conventional, agriculture is considered by many as the best management practice (BMP) in the industry as it has decades of precedent behind it (USDA Conventional, 2015). Conventional agriculture relies on heavy inputs of fertilizers and pesticides, intense tillage of cropland, and continuous livestock grazing. Monocultures, the cultivation of a single crop in a given area, are common on conventionally managed land and often lack biodiversity, organic matter, and complex microbiomes. Soil health, ecosystem services, and natural resource availability decline in these environments. The effects of traditional agriculture can reduce the overall fertility of the land, requiring farmers to increase the use of expensive fertilizers to keep up rates of production. With less profitable operations, farmer livelihoods and communities become economically unstable.

Sustainable agriculture is often positioned as the opposite of traditional agriculture, as the focus is not solely on today’s production, but centers practices that meet human production needs while also leaving resources for future generations (UCSUSA, 2017). To be considered sustainable, a practice must meet the needs of its community and support economic vitality, efficient use of natural resources, and a high quality of life for farmers and consumers. Some general examples of these practices include cutting back on synthetic pesticides and fertilizers to reduce pollution and planting diverse crops to develop a strong microbiome.

Organic agriculture is not the same as sustainable agriculture (USDA Conventional, 2015). Both have similar goals to foster resource cycling, promote ecological balance, and conserve biodiversity. Organic production requires an annual certification process to confirm the operation
is following strict standards for an approved list of synthetic amendments. Synthetic fertilizers, sewage sludge, irradiation, and genetic engineering may not be used. The certification process is expensive and time intensive, so while many farms follow some organic practices purely for the benefits to their operation, they do not engage with the certification process.

Regenerative Agriculture

Regenerative agriculture is an ecologically focused methodology that centers soil health as the solution to the many issues presented by conventional practices (NRI, n.d.). Healthy soils build a resilient ecological foundation for farmers to reliably produce the food our communities need and weather the storm of a changing climate.

Soil health is “the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans,” (WaSHI, 2021). Considered a nonrenewable resource, soil requires a high level of organic matter, plant and microbe biodiversity, and a strong soil structure to function at a healthy level. Improving the energy, water, and nutrient cycles in soil directly results in greater natural fertility, drought and flood resistance, lower rates of soil erosion, less need for pesticides and synthetic amendments, cleaner air and water, enhanced wildlife habitat, and greater capacity for carbon sequestration.

Restoring degraded soil requires a continual commitment to a measured and specific set of practices. The three main priorities of regenerative agriculture are to cover the soil, minimize soil disturbance, and diversify what is planted. Regenerative practices are intended to mimic the environmental processes unique to the land, a technique that has centuries of indigenous origins.
behind it (Heim, 2020). With no one-size-fits-all approach, landowners and stewards utilize many different combinations of these practices for what best suits the context of their land.

<table>
<thead>
<tr>
<th>Regenerative Practice</th>
<th>Description and Examples of Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Grazing</td>
<td>A livestock rotation method that allows land necessary recovery time after use by animals. Rotating grazing times results in nutrient recycling, reduces plant selectivity, and increases plant biodiversity. An example of how to implement adaptive grazing is taking a large pasture and dividing it into two smaller paddocks, where animals are intentionally moved from one to the other after appropriate regeneration time has been achieved.</td>
</tr>
<tr>
<td>Cover Crops</td>
<td>Planting cover crops between seasons creates a barrier between the sun and soil, reducing high temperatures that can otherwise damage microbiomes. Root systems from leftover cover crops protect the soil from erosion and build up organic matter. Common cover crops include clover, rye, or hairy vetch (UCSUSA, 2017).</td>
</tr>
<tr>
<td>Diverse Plantings</td>
<td>The greater the number of different kinds of plant in an area, the more complex that microbiome becomes. Reducing monocultures by planting filler crops like grasses, legumes, and forbs, increases the health of the soil with minimal inputs.</td>
</tr>
<tr>
<td>Regenerative Practice</td>
<td>Description and Examples of Practice</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Limit Synthetic Amendments</td>
<td>Synthetic pesticides and fertilizers are limited or avoided all together. Rebuilding natural fertility of the soil reduces the need for synthetics that can otherwise run off into nearby waterways. Replacements include mulch, plant extracts, and companion planting.</td>
</tr>
<tr>
<td>Low- or No-till Planting</td>
<td>Specialized equipment is used to plant new crops without tilling. Tillage alters soil structure by disturbing organic matter and microbe activity. By minimizing soil disturbance, root systems can get more complex, and the soil biology works continuously throughout the year, becoming more stable overall.</td>
</tr>
</tbody>
</table>

Regenerative agriculture is similar to sustainable agriculture, but the terms are not interchangeable. Regenerative agriculture is a set of named practices that are easier to explain and promote within the industry, when compared to the broader goals that make up sustainable agriculture. Sustainability is a common world that most people can associate with supporting the earth, but it can get lost in colloquial discourse and has also gained a political meaning that could hinder the circulation of its ideas within the agricultural community. Regenerative agriculture also has a greater capacity for long-term change than sustainable agriculture, as regenerative agriculture focuses on reversing ecological degradation and re-building soil health, whereas sustainable agriculture maintains existing processes with the aim to stop further degradation.
Long term, regenerative agriculture is cost-effective because it requires fewer inputs like synthetic fertilizers, pesticides, and extra feed, while resulting in healthier livestock and crops. However, the equipment and expertise needed for the transition to regenerative agriculture can be expensive and inaccessible. Support frameworks are needed to make the transition as easy and profitable as possible for farmers to reinvest in their land (WaSHI, 2021).

Washington Soils

Soils in Washington State are extremely varied. Parent material, temperature and precipitation, and time since ancient geologic disturbances all contribute to how these significantly different soil types are formed between the Columbia Plateau, the Cascades, and the Puget Sound (WaSHI, 2021). Ecologic and economic complexities of soil health issues are regionally dependent, but general trends exist statewide (WaSHI, 2021). Ecologically, Washington soils are experiencing fertility loss, soilborne diseases, and severe erosion. Low organic matter levels and poor soil structure has also caused low water- and nutrient-holding capacities and higher rates of compaction and flooding.

Washington producers and agricultural professionals have identified significant information gaps regarding soil health knowledge, including a lack of understanding of soil biology, the relationship between soil health and food quality, how to translate scientific understanding into practical agronomic decisions, and the potential returns on investment into soil health practices (WaSHI, 2021).
Agriculture Governance

Agriculture governance already has many structures in place to promote the industry transition to regenerative agriculture. Resources for financial, technical, and outreach support are available at the federal, state, and local levels, which each have dedicated agencies and programs to facilitate that support. Much of what state governments like Washington can do is reliant on the framework set by federal policies and agencies.

The Farm Bill

The Farm Bill is a massive package of federal legislation that significantly impacts farmers, consumers, and the environment (Farmers, 2024). Originally enacted in the 1930s as a response to the Great Depression and the Dust Bowl, the main goals of the Farm Bill are to keep food prices fair for farmers and consumers, ensure an adequate national food supply, and protect and sustain vital natural resources in the United States (Farmers, 2024). Every five years, the Farm Bill expires and is updated by Congress. The primary goal of the Agriculture Improvement Act 2018 (the full title of the current Farm Bill update) is to support US farmers with financial assistance and conservation promotion (Farmers, 2024).

Programs under the Farm Bill include price/income support, agricultural disaster assistance, natural resource conservation, easement programs, food export subsidy programs, nutrition programs (primarily SNAP), federal loans for farmers, rural development (economic, housing, infrastructure), food research and innovation, forestry conservation, renewable energy systems, horticulture and local food programs, organic certification programs, crop insurance, farmer
training, sustainable farming practices financial assistance, livestock health (FSA Bill, n.d.). Related programs not under jurisdiction of the Farm Bill include farm worker rights and protections, irrigation water rights, FDA food safety, food-related tax issues, WIC program, Clean Air and Water Acts.

Farm Bill programs are funded by federal appropriations (NSAC, n.d.). Distribution of funding across Farm Bill programs is drastically skewed towards nutrition programs. Of the $428 billion awarded over five years under the 2018 Farm Bill, 76% was set aside for nutrition programs. Some programs, such as SNAP, automatically receive funding each year regardless of the appropriations decisions. Crop insurance received 9%, commodities price and income support received 7%, and conservation programs received 7% (NSAC, n.d.). Every other program under the Farm Bill received a combined 1%. Many of these programs are funded through discretionary spending and their budgets (and if they are funded at all) are re-decided on each year. The current Farm Bill expires September 30th, 2024, and estimated funding for the next ten-year period totals $1.5 trillion, with 79% being appropriated to nutrition programs (USSCANF, 2024).

Federal Implementation

Implementation of federal agriculture policy is led by the U.S. Department of Agriculture (USDA). Strategic goals for the 2022-2026 period prioritize combating climate change, fostering an equitable and competitive marketplace, and expanding economic development in rural and tribal communities in order to ensure an equitable, resilient, and prosperous American agricultural system and provide Americans with safe and nutritious food (USDA Strategy, 2022).
29 agencies take part in agriculture governance at the federal level (USDA Agencies, n.d.). The Agricultural Research Service develops innovative agricultural techniques and the Economic Research Service analyzes social sciences and economic trends that are then used by agriculture policymakers. The Farm Service Agency (FSA) is the most prominent of agencies that implement financial assistance programs. FSA administration is overseen by the Secretary of Agriculture and policies are implemented at the state level. The National Institute of Food and Agriculture (NIFA) advances agriculture research and education to support long-term prosperity. Sustainable Agriculture Research and Education (SARE) is a program under NIFA that provides competitive grants and education materials, prioritizing operations that are “profitable, environmentally sound, and good for communities,” (SARE, n.d.). SARE has the benefits of a federal program and the ability to prioritize local needs through its four regional branches: North Central, Northeast, Southern, and Western.

The Natural Resources Conservation Service (NRCS) maintains and improves natural resource management through numerous federal conservation programs. Environmental Quality Incentives Program (EQIP) provides financial and technical assistance to address natural resource concerns on agricultural and forest land (NRCS EQIP, n.d.). EQIP collaborates directly with producers to create a personalized conservation plan for how a farm can implement BMP for issues such as water and air quality, soil health and erosion, wildlife habitat, and drought mitigation. The Conservation Stewardship Program (CSP) is geared toward landowners who are already taking steps in natural resource conservation and whose goal is to be more efficient and creative with their strategies (NRCS CSP, n.d.). CSP provides technical and financial assistance like EQIP and landowners can earn CSP payments for higher conservation performance.
Agricultural Conservation Easement Program (ACEP) helps landowners, land trusts, and other entities restore and protect wetlands, grasslands, and working farms through conservation easements (NRCS ACEP, n.d.). Easements protect agricultural and natural resource land values by legally limiting future nonagricultural uses that could take place on that land.

Over the next five years, the Inflation Reduction Act provides the USDA an additional $19.5 billion to support conservation programs that mitigate climate change (NRCS Climate, n.d.). Funding for NRCS programs is extremely competitive and this extra funding allows the NRCS to expand their programs and reach more farmers across the country.

Washington State Agriculture Governance

The Washington State Department of Agriculture (WSDA) serves agricultural producers and the general public, while supporting the state’s economy, consumer health and environment. WSDA provides technical assistance and education for regulation compliance, as well as political advocacy and partnerships to uplift industry and community interests. Sub-departments at WSDA include agricultural and livestock products, business support and risk management, pests and plant health, and organic certification (WSDA, n.d.).

FSA operates a state office in Spokane, as well as local offices in each county to provide a network of opportunities for farmers and consumers (FSA Washington, n.d.). The Washington State Conservation Commission (WSCC) works to conserve natural resources through voluntary and incentive-based programs in collaboration with other public entities (WSCC CD, n.d.). Washington Soil Health Initiative (WaSHI) is a partnership between WSCC, WSDA, and
Washington State University with the founding principle that healthy soil is the basis for a resilient agricultural industry (WaSHI Vision, n.d.).

Programs

Conservation Districts

Conservation districts (CDs) provide an invaluable network of financial and technical support for farmers and land managers in their pursuit of regenerative agriculture practices (Sweeney, 2024).² Over 3,000 CDs across the country “coordinate assistance from all available sources—public and private, local, state and federal—to develop locally-driven solutions to natural resources concerns,” (WSCC CD, n.d.). CDs operate under a federal program, the National Association of Conservation Districts, and are managed at the state level, with almost every county in the country having its own branch. CDs in Washington were established in 1946 under the belief that the integrity of the land is “among the basic assets of the state and that the preservation of these lands is necessary to protect and promote the health, safety, and general welfare of its people,” (WSCC CD, n.d.).³

Most federal and state conservation funding opportunities require landowners to acquire a “Farm Plan” that outlines structural and managerial recommendations to protect and optimize the use of natural resources on the land (WSCC CD, n.d.). Certified farm planners at CDs provide a free

² Information on Conservation Districts was supplemented by an interview with Aneka Sweeney, the Outreach & Education Manager for Whatcom Conservation District, on May 2nd, 2024. Interview was conducted during a local school field trip to Alluvial Farms.

³ This mission statement is quoted from the preamble of the state legislative bill establishing Conservation Districts (RCW 89.08.010)
consulting service to landowners and create a Farm Plan that is customized based on the size and goals of the production. Farm Plans are not business plans, as natural resource conservation is the foremost priority, but often include suggestions about soil health, animal health, and chore efficiency. Farm planners with the CDs also research what financial opportunities these landowners qualify for and often act as a middle party between individuals and government agencies.

Alluvial Farms of Everson, Washington, worked with the Whatcom County Conservation District (WCD) to navigate the financial opportunities available for establishing regenerative agriculture practices on their 40-acre swine farm (Sweeney, 2024). Alluvial and WCD created a certified nutrient management plan to qualify the operation for the NRCS EQIP grant, which funded the purchase of their livestock housing structure and a forced-air compost system. As air is automatically pumped from vents through the manure, the timeline to spreadable fertilizer is shortened by weeks and doesn’t require someone to manually turn the compost. The EQIP grant also paid for a set of fencing and path barriers to support rotational grazing on the property. WCD and the property owners determined how best to break up the land for the health of the animals and regeneration of the soil. The electric-wire fencing allows the farmers to easily segment the fields by what land needs time for recovery and what land is ready to be used by livestock.

Alluvial was able to originally buy the property with the payout they received from putting a significant area of their land in a conservation easement under the Conservation Reserve Enhancement Program (CREP), a program similar to ACEP (WCD, n.d.). In Washington State,
CREP is focused on restoring and enhancing salmon habitat by transforming CREP land into biodiverse forests of native plants to act as riparian barriers (WCD, n.d.). Alluvial’s property runs along the salmon-bearing Dale Creek and their qualification earns them annual rental payments from the program. WCD acts as the liaison between the landowner and FSA (the agency that funds the rental payments, planting, and maintenance) and provides technical, legal, and outreach expertise for the program.

WSCC provides base funding and grants for Washington CDs (WSCC CD, n.d.). CDs can also apply for specific district programs and contracts from WSDA and their county. CDs are all run differently based on unique priorities and grant opportunities. Day-to-day collaboration between CDs is limited but several state and regional projects and conferences exist. The Puget Sound District Caucus is a space for CDs to share resources and new ideas. The WSCC Center for Technical Development is an inter-district organization that works to provide CD employees with a level of technical knowledge standardization and the tools to best serve landowners with creativity and innovation (WACTD, 2024). Neighboring CDs are also known to partner on localized projects like cost-share equipment or wildfire outreach programs.

Along with funding limitations, lack of public knowledge restricts the work that CDs are capable of. CD leadership elections and long-term planning decisions are open to the public but see very little participation. WCD calls for more community members to involve themselves in conservation events and support local initiatives to demonstrate the value that CDs work brings to the community.
Sustainable Farms and Fields

Sustainable Farms and Fields (SFF) is a conservation grant program under WaSHI. The goal of this program is to make it “affordable for farmers and ranchers to implement climate-smart practices.” In 2023, SFF awarded $1.8 million to CDs and other public entities for projects with a measurable impact on carbon sequestration and CO2 emission reduction generated throughout the farming and ranching processes (WSCC SFF, n.d.). The SFF committee also prioritizes projects that adopt regenerative agriculture practices, like no-till, cover-cropping, and composting, as well as those that use agroforestry as a method for sequestering carbon (WSCC SFF, n.d.). As an avenue for local solution implementation, SFF pursues both economic stability and effective natural resource management across Washington State agriculture (WSCC SFF, n.d.).

Created in 2020, SFF was appropriated funding in 2023. While it is a relatively new program, SFF has already gained widespread support from farming cooperatives and environmental organizations, including the Tilth Alliance, Washington Farm Bureau, Washington Association of Wheat Growers, and 100 other coalition supporters (Audubon, n.d.). SFF anticipates another $1.5 million to be awarded in 2024, a decrease from 2023 numbers which successfully funded around half of applicants over the fiscal year. Limits on funding will likely make the program more competitive as CD and technical staff become more familiar with the opportunities SFF provides.

4 Information on Sustainable Farms and Fields was supplemented by an interview with Karen Hills, the Sustainable Farms and Fields Program Manager, on May 13th, 2024. Interview was conducted virtually.
Funded projects include: technical assistance used to identify carbon storage opportunities; equipment sharing programs for regenerative agriculture practices, like no-till seed drills, manure separators, compost spreaders; and materials and supplies, such as seeds for cover crops, seedlings, and soil amendments (WSCC SFF, n.d.).

With funding from SFF, the Snohomish County CD and San Juan County SD have partnered to develop a carbon farm planning template. Similar to Farm Plans used by CDs for property owners who want to apply for conservation grants, the carbon plan specifically works to recommend practices to increase carbon sequestration and reduce greenhouse gas (GHG) emissions. CD resource planners document a property’s existing practices and conditions, as well as potential opportunities. Carbon dioxide benefits are quantified using either the COMET-Planner, a simplified online USDA GHG model tool, or COMET-Farm, a complex estimation tool. Practices are prioritized based on farm goals and then the resource planner connects the landowner to available resources. The Carbon plan launches at the end of this year and will be available for resource planners for work on applications for SFF and other grant programs. Having such a clear outlined plan of how grant funding is to be used will make it easier for applicants to actually be awarded these grants.

WaSHI Soil Roadmap

In 2021, the WaSHI completed the Washington State Soil Health Roadmap, a 124-page living document outlining current soil health issues and potential solutions (WaSHI, 2021). Recommendations are based on interviews with agricultural stakeholders collected through surveys, listening sessions, and focus groups, with the objective to establish a detailed plan with
clear goals and milestones for the maintenance and improvement of Washington agricultural soil health. The Soil Health Roadmap is available free to the public and as a reference for policymakers and industry stakeholders.

The Roadmap is categorized into eight focus areas, including the environmental community and seven regions: dryland agriculture in Eastern Washington, irrigated Columbia Basin, irrigated potato production in the Columbia Basin, juice and wine grapes, Northwestern Washington annual cropping systems, tree fruit, and Western Washington diversified farming systems (WaSHI, 2021). Nuance of soil health issues are dependent on the context of these regions, but farmers agree that a clear and cohesive plan for BMP is needed.

Surveyed farmers and land-managers also said there are several major social barriers to the adoption of soil health practices (WaSHI, 2021). Some regenerative practices, like crop rotation and no-till, can be complex without technical assistance, especially when soils have already been severely damaged by intensive crops. The crop rotation times that work best for the needs of the land can also come into conflict with economic demand. Lack of capacity at regional and county offices, as well as lack of public information, make it difficult for land-managers to enroll in current incentive programs. Suitable agricultural land is difficult to acquire outside of the Columbia Basin and leased farmland often discourages tenant investment in soil health practices. The regenerative agriculture transition also presents a major sociological barrier for many land-managers, as it requires them to not follow their expertise in conventional methods and take a risk on a new methodology.
Specific goals identified in the Soil Roadmap include the preservation of existing soil organic matter and a rise for future levels, an increase in soil capacity for water retention and carbon sequestration, and a reduction in rates of soil erosion (WaSHI, 2021). Additional milestones included the development of a universal low-cost soil health measurement tool, improved knowledge of soil health through an expansion of agency and university capacity for public outreach and targeted education, and a 30% increase of landowner enrollments in soil health incentive programs.

Conclusion

Washington State supports regenerative agriculture through programs like Conservation Districts, Sustainable Farms & Fields, and the Soil Roadmap. These technical and financial assistance programs operate within a collaborative network of federal, state, and local agencies to achieve far-reaching impacts. Regenerative agriculture programs share the goals of expanding soil health preservation and public outreach regarding the opportunities these programs provide. Higher rates of landowner-program engagement will benefit both the soil health of Washington State, as well as further economic reliability and prosperity for Washingtonian farmers and landowners.

The capacity of state regenerative agriculture assistance programs is limited by a lack of adequate funding to meet growing demand. Financial priorities in governance must be reassessed, and while a major hurdle, this is an easier obstacle to overcome than if the structure itself was flawed and needed to be started from scratch.
Future research must analyze public outreach methods used by government assistance programs for the promotion of soil health knowledge and program opportunities. Understanding how these ideas are being communicated, what methods are successful and what can be improved or expanded could very likely optimize how quickly assistance programs can increase rates of landowner enrollment. Additional research could compare Washington programs with soil health-promoting resources functioning in other states. Through such analysis, Washington may be able to implement innovations from other state governments or these other states could look to Washington frameworks and repurpose them to meet the specific needs of other regions.

Washington state can always strive to improve how we support our earth and economy, but it’s clear that Washington government assistance programs are an effective structure to promote regenerative agriculture.
References

https://www.nationalgeographic.com/food/feeding-9-billion/

FSA Bill. (n.d.). Farm Bill Home. *Farm Service Agency, USDA.*

https://www.fsa.usda.gov/state-offices/Washington/index

https://nfu.org/2020/10/12/the-indigenous-origins-of-regenerative-agriculture/

Hills, Karen (5/13/24). *Sustainable Farms and Fields Interview* [Personal Communication]

Leeper Girgis, Courtney & Brook Gaskamp. (n.d.). *Nobel Research Institute.*

NSAC. (n.d). What is the Farm Bill? *National Sustainable Agriculture Coalition.*
https://sustainableagriculture.net/our-work/campaigns/fbcampaign/what-is-the-farm-bill/

SARE (n.d.). About Us. Western Sustainable Agriculture Research and Education. https://western.sare.org/about/

Sweeney, Aneka (5/2/24). Conservation Districts Interview [Personal Communication]

