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ABSTRACT 

 

Effective protection, restoration, and mitigation efforts require identification of 

anthropogenic degradation effects on stream functioning and ecosystem services. However, few 

stream assessment protocols aim to evaluate the processes that generate and maintain stream 

ecosystems, integrate multiple disciplines, or combine stream reach assessment with landscape-

level context. To address these shortcomings, the Willamette Partnership collaborated with the 

Oregon Department of State Lands, the US Environmental Protection Agency, and the US Army 

Corps of Engineers to develop the Stream Function Assessment Methodology (SFAM). SFAM 

aims to provide a more comprehensive rapid stream assessment through multimetric ratings for 

hydrological, geomorphological, biological, and water quality stream functions than is currently 

available. During development, Willamette Partnership vetted this protocol against scores 

generated from best professional judgement at 39 streams throughout Oregon, but has not tested 

SFAM against other established protocols. Addionally, some SFAM metrics have no equivalent 

data sources outside of Oregon. To evaluate the feasibility and accuracy of SFAM to determine 

stream degradation, I conducted SFAM (November 2015 draft version) on 36 stream reaches in 

Water Resource Inventory Area 8 in King and Snohomish Counties, WA. I used correlations to 

assess the final SFAM scores, individually and combined through Principal Components 

Analysis, compared to commensurate data from the King County WRIA 8 Status & Trends 

Monitoring Program and the WA State Department of Ecology Puget Sound Watershed 

Characterization Project. I also evaluated the potential effects of unavailable data inputs using 

simplified sensitivity analyses.  

Overall, SFAM function scores did not correlate with measures of anthropogenic 

degradation or stream condition, while SFAM value scores were generally higher in reaches with 

more watershed-level anthropogenic degradation. SFAM function scores rarely correlated with 

the Benthic Macroinvertebrate Index of Biotic Integrity, percent watershed imperviousness, and 

Status & Trends metrics. The high proportion of SFAM function metrics measuring physical 

structures in the riparian area may have caused the general lack of correlation. SFAM value 

scores generally indicated higher hydrology, geomorphology, and biology value in reaches with 

more developed watersheds, reflecting sensitivity to watershed-level anthropogenic degradation 

but not necessarily functioning of stream processes. In contrast, SFAM generally indicated 

higher water quality value in less disturbed reaches, but only outside of Urban Growth Areas. 

The sensitivity analyses revealed small, predictable changes in SFAM outputs when unknown 

metric inputs were varied, suggesting that SFAM is fairly robust to unknown data when 

comparing across streams. However, the changes were not consistent across metrics.  

A rapid assessment of stream functions like SFAM could help quantify mitigation efforts. 

A final version of SFAM was released in June 2018; however, many of the potential concerns 

identified through these analyses remain relevant. Future studies of SFAM should focus on 

verification of scores through comparison with direct measures of stream function and across a 

broader spectrum of stream condition and location. Additionally, further evaluation should assess 

SFAM’s ability to differentiate between pre- and post-management actions on the same reach, as 

would occur with mitigation credit and debit calculations.  
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INTRODUCTION 

 

Overview 

 

The effects of increased development on stream ecosystems have led to policies and 

management strategies aimed to protect, restore, and mitigate anthropogenic damage to stream 

ecosystem services. Section 404 of the Clean Water Act, the primary policy regulating surface 

waters in the United States, mandates that development must limit impacts on the processes that 

create and maintain aquatic ecosystems (functions) and mitigate unavoidable impacts (Kimbrell 

2016). As a consequence of unavoidable impacts, compensatory mitigation costs nearly $3 

billion annually in the United States (Environmental Law Institute 2007, Bronner et al. 2013). 

Additionally, river and stream restoration has been conservatively estimated to cost over $1 

billion annually (in 2005 dollars) in the United States (Bernhardt et al. 2005). However, 

mitigation and restoration projects frequently remain unevaluated for effectiveness at improving 

impaired stream functions (Bender and Ahn 2011, Jähnig et al. 2011, Doyle and Shields 2012, 

Palmer et al. 2014, Barnas et al. 2015). The deficit of adequate evaluation has contributed to 

projects failing to restore lost aquatic functions, insufficient information to determine effective 

strategies, and inefficient site selection for projects (Bronner et al. 2013, Mathon et al. 2013, 

Railsback et al. 2013, Habberfield et al. 2014). 

The Puget Sound region is no exception to the above issues. Approximately four million 

people live in the region with one million more expected by 2040 (Puget Sound Regional 

Council 2016). Growing human populations and subsequent development drive multiple 

mechanisms that cause stream degradation including increased impervious land cover, increased
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water conveyance through piping, removal of native vegetation, and increased agricultural 

intensity (e.g., Allan and Castillo 2009, Bierman and Montgomery 2014). Additionally, the 

listing of Puget Sound Chinook salmon as a federally threatened species spurred the 

collaborative creation of the Puget Sound Chinook Recovery Plan, which established adaptive 

management plans for Chinook conservation in Puget Sound watersheds (King County 2005, 

NOAA Fisheries West Coast Region 2017). Within the Puget Sound region, agencies have spent 

hundreds of millions of dollars on salmon conservation and restoration projects (Barnas et al. 

2015). Most of these restoration efforts focus on stream habitat structure (e.g., adding boulders or 

woody debris, planting native riparian vegetation, removal of bank armoring) and are rarely 

evaluated for biological effectiveness (Morley and Karr 2002, O’Neal et al. 2016). Having an 

assessment protocol to rapidly quantify the effects of mitigation and restoration on stream 

functions could inform management strategies and greatly improve compliance with regulations.  

 

 

Considerations for an assessment of stream functions 

 

 While existing stream assessment methodologies aim to measure stream processes, none 

of them includes all of the attributes required for mitigation (e.g., rapid, easily quantifiable and 

interpretable, and reflecting multiple spatial and temporal scales of stream processes). This may 

be, in part, due to the difficulty of obtaining direct measurements of functions coupled with the 

complex interactions of stream attributes. Measurable components of stream functions can span 

long time frames, may have a delayed response to management actions, and can require 

specialized and potentially costly equipment (Doyle and Shields 2012, Yeung et al. 2017). For 
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example, detecting changes in streamflow can require decades of continuous flow data using a 

stream gauge to generate representative measurements (Gordon et al. 2004). Without previously 

existing data, a rapid assessment would need to use surrogate metrics to capture important 

components of the less accessible processes. Surrogate metrics can provide rapid, effective, and 

repeatable snapshots of stream condition when validated (Ward et al. 2003, Kilroy et al. 2013, 

Habberfield et al. 2014, Lisle et al. 2015). However, insufficient knowledge of potential 

surrogates can lead to ineffective proxies due to confounding variables (Kemp 2014), lack of 

defined connections between the proxy and the function of interest (Wilhere et al. 2013, 

Nicholson et al. 2013, Palmer et al. 2014, Bodinof Jachowski et al. 2016), or a lower level of 

precision (Nichols et al. 2006). 

Methodologies can incorporate several approaches to account for the various contributing 

metrics and the multiple spatial scales that affect stream reaches. Stream functions can affect and 

be affected by multiple stream- and landscape-scale attributes (Máčka et al. 2010, Dahm et al. 

2013, Lisle et al. 2015, Fellman et al. 2015). For example, sediment continuity1 in a stream reach 

is driven by the ability of stream flow to transport the material to and out of the reach, the 

availability of material from upstream and upland sources, and biotic influences like plant roots 

that can trap sediment (Bierman and Montgomery 2014). In turn, sediment continuity affects 

bank erosion, channel forms, hydraulic diversity, and habitat availability (Allan and Castillo 

2009). One method to capture the information from multiple attributes is through integrating 

multiple metrics into a single multimetric score representing the overall condition of a stream 

(Morley and Karr 2002, Blocksom 2003, Schoolmaster et al. 2013). However, interpretation of 

                                                 

1 “The balance between transport and deposition of sediment such that there is no net erosion or deposition 

(aggradation or degradation) within the channel” (Willamette Partnership 2013). 
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multimetric scores requires understanding the ecological roles of the input metrics and how the 

metrics are combined to create the score (Morley and Karr 2002, Blocksom 2003). Another 

approach is pairing reach-level assessments with watershed-level data (e.g., coarse-scale 

evaluation of the basin) to gain insight into overall stream or basin condition, such as potential 

causes of degradation (Bender and Ahn 2011, Lisle et al. 2015, Kuehne et al. 2017). 

 

 

Stream Function Assessment Methodology (SFAM) 

 

To improve compliance with Section 404 of the Clean Water Act2 and the Oregon 

Removal-Fill Law3 in Oregon, the Willamette Partnership developed the Stream Function 

Assessment Methodology (SFAM; Willamette Partnership 2013). This effort was in 

collaboration with Oregon Department of State Lands, Region 10 of the U.S. Environmental 

Protection Agency, and the Portland District of the U.S. Army Corps of Engineers (Willamette 

Partnership 2013). SFAM aims to combine a variety of stream attributes from different spatial 

scales to provide a more comprehensive and rapid stream assessment than is currently available 

(Willamette Partnership 2013). SFAM combines metrics observed in the field or gleaned through 

office work (e.g., communicating with land managers, GIS analyses) and then integrates the 

metrics in an Excel spreadsheet that calculates two types of subscores, one for “functions” and 

one for “values.” SFAM defines functions as “the processes that create and support a stream 

ecosystem” and values as “the ecological and societal benefits that riverine systems provide” 

                                                 

2 Department of Defense, Department of the Army, Corps of Engineers and Environmental Protection Agency 2008 
3 Oregon Department of State Lands 1967 
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(Willamette Partnership 2013, pg. 6). SFAM calculates the function and value scores in four 

different stream function categories, hydrology, geomorphology, biology, and water quality, 

meant to capture different dimensions of stream processes.  As an example, hydrology functions 

entail the movement of water from the watershed to the stream channel, the movement of water 

through the stream channel, storage of surface water, and the transfer of water between surface 

water and groundwater. Hydrology values, in contrast, consider the ability of the reach to 

provide the hydrology functions in the context of how rare those abilities are in the watershed 

and if they benefit existing infrastructure. As such, a reach that can store water during a flood, 

for example, has higher societal value than either a reach that cannot store floodwater or a reach 

that can store floodwater but has no downstream infrastructure that would be protected.  

A final version of SFAM was released in June 2018 and has undergone limited testing in 

Oregon. The developers used expert opinion for initial development of metrics and for feedback 

regarding draft usability. Subsequently, two evaluators conducted SFAM at 39 reaches 

throughout Oregon. The SFAM scores from the field testing were compared to ratings of the 11 

SFAM functions as determined by best professional judgement conducted by the same two 

evaluators. SFAM has yet to be evaluated against existing quantitative stream and watershed 

metrics in Oregon or Washington State. This study used a previous draft (completed in 

November 2015) and aimed to evaluate the response and potential usability of SFAM in Puget 

Sound streams. The stream condition data collected by agencies in the Puget Sound region in 

support of watershed management provided an opportunity to test SFAM against existing data 

sets that encompassed a broad range of sites, used standard techniques, and assessed both reach 

and watershed-scale characteristics. 

 



6 

 

 

Current stream assessments in the Puget Sound Region 

 

In the Puget Sound region, several government agencies are working to provide data and 

tools to improve watershed management and policy decisions. These include King County’s 

WRIA 8 Status & Trends Monitoring Program and the Washington Department of Ecology’s 

Puget Sound Watershed Characterization Tool, the two primary data sets used for comparison 

with SFAM in this study.  

 

 

1. King County Status & Trends Monitoring Program (S&T) 

 

 From 2010 to 2013, King County conducted the Water Resource Inventory Area (WRIA) 

8 Status & Trends Monitoring Program to inform adaptive management about the effects of 

anthropogenic development in WRIA 8, as part of the Chinook Conservation Plan (King County 

2005). Using a modified U.S. Environmental Protection Agency Environmental Monitoring and 

Assessment Program (EMAP) protocol (Peck et al. 2006, King County 2015), the Status & 

Trends Monitoring Program assessed and characterized stream and riparian habitat condition of 

wadeable salmon streams. The assessments consisted of repeated annual collection of hydrology, 

geomorphology, habitat, and biotic data at each reach in the study (King County 2005, 2015, 

Berge 2010). EMAP is a previously validated, but relatively time intensive, national Status & 

Trends ecological monitoring program (Hughes and Peck 2008, Paul and Munns 2011). The 

stream assessment data from the Status & Trends Monitoring provided a reach-scale approach 

against which to test the stream reach attributes assessed by SFAM function scores. King County 



7 

 

 

also measured a variety of other common metrics used to assess potential stream degradation, 

including percent watershed imperviousness and the Puget Lowland Benthic Macroinvertebrate 

Index of Biotic Integrity (B-IBI). 

 

Percent impervious. Watershed imperviousness is a widely used proxy for watershed 

degradation, making it a useful metric against which to test new methodologies. Percent 

watershed impervious cover is easily and reliably quantified and is generally a good indicator of 

anthropogenically degraded or at-risk streams (Schueler et al. 2009), making it a good variable 

against which to test methodologies. Impervious surfaces alter stream hydrology by decreasing 

local infiltration rates and increasing runoff (Booth and Jackson 1997, Alberti et al. 2007, Chen 

et al. 2017, Han et al. 2017), increasing winter peak flows while decreasing winter base flows 

(DeGasperi et al. 2009), and increasing stream flashiness (DeGasperi et al. 2009, Rosburg et al. 

2017, Booth and Konrad 2017). Alterations to both watershed and stream hydrology generally 

increase the transport of fine sediment to streams (Booth and Jackson 1997, Russell et al. 2017) 

and increase the potential for erosion and degradation of channels (Booth and Jackson 1997, 

Bledsoe et al. 2012), which simplifies, widens, and deepens channel morphology (Booth and 

Jackson 1997). The higher runoff and increased fine sediment, in turn, can increase turbidity 

(Russell et al. 2017) and increase the input of nutrients and other chemical contaminants 

(DeGasperi et al. 2009, Feist et al. 2011). Additionally, the loss of riparian woody vegetation 

generally associated with increased imperviousness can also decrease bank stability, increase 

stream temperatures, reduce leaf litter inputs, and decrease woody debris (Booth and Jackson 

1997, Swanson et al. 2017). All of these hydrologic, geomorphic, and water quality alterations, 
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in turn, impair biotic processes and stream biota, including benthic macroinvertebrates (Morley 

and Karr 2002, DeGasperi et al. 2009) and salmonids (Feist et al. 2011).  

Even so, a number of studies have also shown that watershed imperviousness is not a 

perfect proxy for stream degradation. Watershed imperviousness does not directly measure any 

aspect of the stream, instead relying on well-established correlations between watershed 

imperviousness and indicators of stream condition (Wissmar et al. 2004, Allan and Castillo 2009, 

Harman et al. 2012, Rhea et al. 2015, Beck et al. 2016). Percent impervious does not account for 

impervious surface connectivity, distance from the stream, or nearly-impervious land cover 

(Morley and Karr 2002, Alberti et al. 2007, DeGasperi et al. 2009, Schueler et al. 2009, Beck et 

al. 2016, Kuehne et al. 2017). Other studies have identified percent urban land cover or percent 

effective imperviousness in the contributing basin as better predictors of stream degradation 

(Morley and Karr 2002, DeGasperi et al. 2009, Vietz et al. 2014). This study used percent 

impervious land cover as the proxy for watershed development because it has a longer history in 

the literature, is more easily understood, is highly correlated with percent urban area in WRIA 8 

(tau = 0.883, p << 0.001), and was readily available from the Status & Trends Monitoring data. I 

did not have data for effective imperviousness in the contributing basins.  

 

Benthic Macroinvertebrate Index of Biotic Integrity (B-IBI). The B-IBI is a well-established and 

reliable multimetric index that provides an extended snapshot of stream condition (Carter et al. 

2017), making it a good variable against which to test new assessment methodologies. Benthic 

macroinvertebrate populations reflect stream conditions because insect nymphs and larvae, the 

most common life stages collected in streams, are fairly stationary and constantly immersed in 

the stream (Harman et al. 2012, Parr et al. 2016). Every SFAM stream function category can 
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affect B-IBI scores. B-IBI responds to several measures of streamflow in the Puget Sound 

region, including higher B-IBI scores in reaches with higher average annual flow and less flashy 

flows (Booth et al. 2001, Morley and Karr 2002, DeGasperi et al. 2009). Increased prevalence of 

small-sized sediment and embeddedness contribute to lower B-IBI scores in the Puget Sound 

region (Morley and Karr 2002, King County 2014a). Available food sources can drive the 

composition of invertebrate species and functional feeding groups within a stream (Allan and 

Castillo 2009).  B-IBI scores in Puget Sound streams also respond to some water quality 

variables, with lower B-IBI scores in reaches with higher total phosphorus, lower dissolved 

oxygen, higher turbidity, and, to a lesser degree, highly acidic or alkaline pH (King County 

2014a). While B-IBI is widely used and accepted, the use of B-IBI for rapid stream assessment is 

limited because B-IBI is relatively costly, requires specialized knowledge, and is 

methodologically intensive (Parr et al. 2016, Carter et al. 2017). While B-IBI has drawbacks as a 

rapid assessment, this study considered B-IBI to be the best metric against which to test SFAM 

function scores, for the above reasons, and it was readily available from the Status & Trends 

Monitoring data. 

 

 

2. Puget Sound Watershed Characterization Project (PSC) 

 

The Washington State Department of Ecology released the Puget Sound Watershed 

Characterization Project, currently in the beta-stage, as a landscape-scale decision-support tool 

for regional and local government planning (Stanley et al. 2015c). The Puget Sound Watershed 

Characterization Project uses GIS layers to assess the suitability and value of watershed sub-
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basins for protection, restoration, conservation, or development relative to the other sub-basins 

within the greater Puget Sound basin (Stanley et al. 2015c). The Puget Sound Watershed 

Characterization separates the importance and potential of the assessment area to perform 

ecological functions from human degradation of that potential (Stanley et al. 2015c). The Puget 

Sound Watershed Characterization Project assesses the relative importance and degradation of 

water flow processes4, relative export potential and export degradation of water quality 

processes5, and relative conservation value of fish and wildlife habitats (Washington Department 

of Ecology 2013a). The sub-basins, called assessment units, are determined by the total size of 

the analysis area, landform types, available sources of data, and planning issues within associated 

jurisdictions (Stanley et al. 2015c). Within WRIA 8, the average assessment unit size was 1,036 

ha but ranged from 26 ha to 3,885 ha. The watershed modeling used by the Puget Sound 

Watershed Characterization Project provided a larger-scale, process-oriented approach against 

which to test the watershed attributes assessed by SFAM value scores. 

 

 

Water Resource Inventory Area (WRIA) 8 stream condition 

 

 I used the existing assessments of stream condition in WRIA 8 to test SFAM. WRIA 8 is 

the most populous WRIA in Washington State, with distinct gradients in urbanization and 

                                                 

4 Water flow importance evaluates the potential for each assessment unit to contribute to water-flow processes. 

Water flow degradation considers human impacts from current land use on the water flow processes (Stanley et al. 

2015a). 
5 Water quality export potential refers to the assessment unit’s ability to generate and transport contaminants 

downstream if the system is disturbed. Water quality degradation refers to the levels of pollutants generated by 

existing land uses in the assessment unit (Stanley et al. 2015b). 
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elevation (Figures 1-3). The western end of WRIA 8 is low elevation with high levels of 

development, and includes the cities of Seattle and Bellevue (Berge 2010). The eastern end is 

higher elevation with limited development and includes the protected Cedar River Municipal 

Watershed in the western foothills of the Cascade Mountains. WRIA 8 stream condition tends to 

reflect the overarching urban lowland to rural upland watershed gradient, with degraded streams 

in the west and healthier streams generally in the east, as indicated by B-IBI scores (King County 

2014b, Figure 3). Additionally, the designation of urban growth areas6 further drives the WRIA 8 

development gradient. In this study, reaches with more than 14.2% watershed imperviousness in 

the contributing basin were all within urban growth areas, while reaches with less than 3.6% 

watershed imperviousness were exclusively outside of urban growth areas; reaches with 3.6-

14.1% watershed imperviousness could be either within or outside of urban growth areas 

(Figures 2 & 3). WRIA 8 reaches in urban growth areas generally had very poor to fair biological 

condition, as indicated by B-IBI, while non-urban growth area reaches had good to excellent 

biological condition7 (Figure 3). 

 

                                                 

6 Urban growth areas are areas designated for current and future urban growth and development as part of 

Washington State’s population growth management act (Washington State 2010). 
7 The Puget Lowland B-IBI uses five categories of biological condition: very poor (0 to < 20), poor (20 to < 40), fair 

(40 to < 60), good (60 to < 80), and excellent (80 to 100) (King County 2014). 
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Figure 1. Map of Water Resource Inventory Area (WRIA) 8, including the urban areas in the 

western lowlands and the protected Cedar River Municipal Watershed in the eastern highlands. 
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Figure 2. Landscape gradients in Water Resource Inventory Area (WRIA) 8 from King County’s 

WRIA 8 Status & Trends Monitoring Program as reflected by 34 stream reaches throughout the 

watershed. Metric definitions are in Table S1. UGA refers to designated urban growth areas. 
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Figure 3. Average Puget Lowland Benthic Macroinvertebrate Index of Biotic Integrity (B-IBI) 

scores compared to landscape gradients for 34 stream reaches in Water Resource Inventory Area 

(WRIA) 8. B-IBI scores were collected annually at each reach by King County for the WRIA 8 

Status & Trends Monitoring Program (S&T) from 2009-2013 (King County 2015) and were then 

averaged together by reach. UGA refers to designated urban growth areas. 
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Unavailable SFAM data 

 

Not all data used in SFAM are available in other states, which could limit the model’s 

broader applicability. For example, SFAM uses the US Geological Survey StreamStats program 

(U.S. Geological Survey and U.S. Department of the Interior 2016) and the Oregon Rapid 

Wetland Assessment Protocol (ORWAP; Rempel et al. 2009, Adamus et al. 2010) to derive 

mean daily streamflow and rare species occurrence data, respectively. However, only some 

Washington streams have daily flow calculations in StreamStats (personal communication, Ryan 

Thompson, U.S. Geological Survey) and there are no equivalent, readily available resources for 

ORWAP in Washington (personal communication, Paul Adamus, Adamus Resource 

Assessment, Inc.). There are also insufficient data in Washington to assess the occurrence of 

annual and sub-annual flooding downstream of the reach (personal communication, Robert 

Mitchell, Western Washington University). In addition, the pre-set answers for “ecoregion type” 

are all EPA level IV ecoregions found in Oregon, which do not include ecoregions unique to 

other areas such as the Central Puget Lowland ecoregion, and are not readily transferable to other 

regions (personal communication, Glenn Griffith, U.S. Geological Survey). To accommodate 

unknown measures, SFAM allows the user to not enter scores (i.e., leave the data entry blank in 

the calculator), but it was unclear how blank entries would affect SFAM outputs. 
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Experimental overview 

 

The goal of this project was to test SFAM for potential use in water resource 

management of wadeable streams in western Washington. I used the draft version of SFAM 

released in November 2015 for this study; a final version 1.0 of SFAM was released in June 

2018. I completed SFAM field surveys for 36 stream sites in WRIA 8 during summer 2015 and 

finished gathering background data in spring 2016. I revisited 11 sites during summer 2016 after 

the November 2015 SFAM update. I compared the outputs of the SFAM assessments to two 

existing WRIA 8 data sets: Status & Trends Monitoring Program and the Puget Sound 

Watershed Characterization Project. I expected higher SFAM function scores in reaches the 

Status & Trends Monitoring Program indicated to be in better condition and higher SFAM value 

scores in reaches the Puget Sound Watershed Characterization Project indicated to be in better 

condition (higher importance and lower degradation). I also assessed the potential influence of 

several unavailable metrics on SFAM scores through simplified sensitivity analyses of both 

simulated and field data because not all of the data used by SFAM are available in Washington 

State. I expected the absence of data for the Richards-Baker Flashiness Index (which is no longer 

included in the 2018 version of SFAM), rare species occurrence (as modelled by ORWAP), 

downstream flooding, and ecoregion types to decrease their associated SFAM final scores 

(hydrology function, hydrology value, biology value, and water quality value, respectively).  
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METHODS 

 

Study system 

 

For this study, I selected 36 stream reaches in WRIA 8 that were previously used for the 

King County Status & Trends Monitoring Program. All 36 reaches were wadeable, perennial, 

accessible to anadromous salmon, contained at least one riffle in the 150 m reach, and were 

publicly accessible. King County sampled 57 reaches for the Status & Trends Monitoring 

Program, which were selected from the statewide Ecology Master Sample using a generalized 

random tessellation stratified sample design (King County 2015). This created a spatially 

balanced, probabilistic study design, which increased the ability to extrapolate from the subset of 

streams to the larger population (King County 2015). Of the original 57 reaches, I excluded the 

EPA Sentinel8 sites that are not in WRIA 8 (n=5) and the erroneously surveyed WRIA 8 ERR 

Sites (n=2) (King County 2015). Any sites missing data from 2013, other than hydrology data, 

were also excluded (n=5). Of the remaining 45 sites, nine were not publicly accessible (empty 

symbols in Figure 4). The removal of the 21 reaches was not randomized, which will limit 

extrapolation of any findings from this study to the broader watershed condition in WRIA 8. 

I used Principal Components Analysis (PCA) to determine if the 36 accessible reaches 

were representative of the variation across the 45 potential study sites. Specifically, I used a 

singular value decomposition of the data matrix (prcomp in R; R Core Team 2014) with a 

scaled/centered correlation matrix and no rotations to analyze site landscape metrics collected by 

                                                 

8 EPA and state-designated Puget Sound Sentinel sites are stream reaches selected as relatively undisturbed 

reference condition for current and future monitoring efforts (King County 2015). 
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King County (Table S1). I excluded the metric for total road crossings as it was redundant with 

and more sensitive to watershed size than the metric for road crossings per km. I used Kaiser’s 

criterion (eigenvalue ≥ 1, Kaiser 1960) to identify significant principal components (PCs) and the 

guidelines established by Mardia (weighting value ≥ 0.7*max weighting; 1979) to identify 

driving metrics for each PC. Consistent with the previously mentioned WRIA 8 gradients, 

positive values of PC1 reflected rural, forested, upland stream reaches while negative values 

reflected urban lowland reaches (Table S1). Negative values of PC2 reflected reaches in 

watersheds with more agricultural, undeveloped open area9, and fragmented forest cover. PCA 

has had mixed results when determining environmental condition (e.g., Fore et al. 1996, Primpas 

et al. 2010). However, PCA was the best option for this project as it provided a quick and 

interpretable way to combine individual stream attributes. 

Overall, the stream reaches selected for this study covered the range of available site 

conditions in WRIA 8, although coverage was not balanced (Figure 4). Most of the lowland 

reaches were in urban watersheds (top left), and included several reaches in forested urban parks 

(e.g., Pipers and Venema Creeks in Carkeek Park in Seattle, Lunds Gulch Creek in Meadowdale 

Beach Park in Edmonds). There were very few lowland creeks in open/agricultural watersheds 

(bottom left), with only Bear Creek (WAM06600-057527) and Bear Creek tributary 

(WAM06600-111639) included in this study. Most of the upland, rural reaches were in forested 

watersheds (top right), including all five of the stream reaches in the Cedar River Municipal 

Watershed and other nearby stream reaches (e.g., East Fork Issaquah Creek, Carey Creek) 

(Figure 4). There were no upland sites with high percentages of agriculture, open area, or forest  

                                                 

9 Areas dominated by bare land, non-cultivated grasses/forbs, or shrubs (King County 2015). 
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Figure 4. Ordination of 45 stream reaches in WRIA 8 using principal components (PCs) of 

landscape metrics from King County’s Status & Trends Monitoring Program. Black coloration 

indicates the 36 publicly accessible stream reaches surveyed for this project. Open symbol 

reaches were eliminated for reasons described in the text. Circles indicate reaches in urban 

growth areas (UGAs). PC descriptions are in Table S1. 
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patches in this study or the potential WRIA 8 reaches (bottom right); the group of four reaches 

closest to the bottom right corner includes all four of the reaches along Issaquah Creek.  

 

 

Stream Function Assessment Methodology 

 

I evaluated the draft version of SFAM released in November 2015 for this study. A final 

version of SFAM was released in June 2018. The two versions share many metrics and formulas 

used to calculate scores. However, there are several notable differences. Eight metrics were 

removed in the final version: Richards-Baker Flashiness Index, non-native aquatic species, B-

IBI, temperature exceedance, native coniferous tree presence, geomorphic successional stage, 

vegetation on bars, and beaver presence/absence. Additionally, several of the calculations, in 

particular for metrics of vegetation, now include modifications based on ecoregions and stream 

size. For example, in the 2015 draft version of SFAM, all streams needed more than 75% canopy 

cover to receive the highest possible measure score (1.0). In the 2018 version of SFAM, on the 

other hand, a small stream (≤ 50 feet wide) needs over 95% cover to receive the highest possible 

measure score (1.0) while a large stream (>50 feet wide) needs over 70% cover to receive the 

same score. Because of these differences, scores produced by the 2018 version of SFAM likely 

differ somewhat from the 2015 draft version I assessed in this study. Further evaluation of the 

newest version is warranted but quantitative assessment of the differences in scores between the 

two versions was beyond the scope of this study due to the very recent release of the final SFAM 

version. However, wherever possible, I discuss specific differences between the two versions 

throughout the manuscript.  
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I conducted SFAM field assessments initially using the April 2014 draft SFAM protocol 

at the selected Status & Trends stream reaches during summer 2015. David Hooper, Ph.D., 

conducted training for a research assistant and me in spring 2015 with permission from the 

Willamette Partnership (personal communication, Nicole Manness, Ecosystem Services Project 

Manager, Willamette Partnership). Each assessment comprised a 150 m longitudinal stream 

reach, matching the Status & Trends Monitoring reach length10, with a 15.2 m lateral boundary 

on each bank11. In November 2015, the Willamette Partnership updated the SFAM calculator, 

which included a significant change in recording the presence of wetland indicator plant 

species12. I was able to update scores for all revised metrics at 25 sites through a combination of 

spatial analyses, field notes, and site photos. I revisited the remaining 11 sites in summer 2016 to 

collect additional data for the modified metrics. I substituted Washington-specific data sources 

where necessary (e.g., streamflow data from King County’s Hydrologic Information Center). An 

overview of the November 2015 draft SFAM protocol is in Appendix C. 

I did not include B-IBI scores in the SFAM calculations because the B-IBI scoring 

systems were different between SFAM and the Puget Lowland B-IBI. Additionally, B-IBI was 

removed from the 2018 version of SFAM due to the general dearth of B-IBI data in Oregon, and 

the substantial time and resources required to obtain B-IBI scores (Nadeau et al. 2018b). 

                                                 

10 King County standardized all sample reach lengths to 150 m  (King County 2015) to match the minimum reach 

length required by the Washington Department of Ecology Quality Assurance Monitoring Plan (Cusimano et al. 

2006) which matched the Environmental Monitoring and Assessment Program protocol developed by the 

Environmental Protection Agency (Peck et al. 2003). 
11 Lateral boundaries of the Proximal Assessment Area are two times the active channel width or 50 feet (15.2 m), 

whichever is greater (Czarnomski et al. 2015). Most reaches used for the Status & Trends Monitoring Program were 

less than 8 m bankfull width (~26 ft) (King County 2015), which is wider than the active channel width. Therefore, I 

standardized all streams to the minimum lateral boundary. 
12 The Dominant Vegetation metric changed from “is the dominant vegetation in the riparian area an obligate, 

facultative wet, or facultative wetland indicator species” to “are plants with wetland indicator status absent from or 

present along the stream banks and floodplain of the Proximal Assessment Area?” 
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I created three SFAM data sets, as not all data sources were available for every stream 

reach. The first and second data sets used all available data sources (“All Available Data”) and 

included all 36 stream reaches surveyed. Within All Available Data, I used two methods to 

determine floodplains: field assessments and GIS. For the field-determined floodplains, I looked 

for evidence of past flood events (e.g., debris pushed up against the upstream side of vegetation) 

and deposition of streambed materials outside of the stream during field surveys, as per the 

SFAM instructions. For the GIS-determined floodplains, I accessed the FEMA regulatory 100-

year floodplain layer from King County, the lowest flooding level available, and determined if 

the reach was within the floodplain. Unlike the 2015 draft version of SFAM, the 2018 version of 

SFAM specifies the use of the same 100-year regulatory floodplain GIS layer for stream 

assessments. The third data set used only data sources available to all included stream reaches 

and GIS-determined floodplains (“Matched Data”), excluding context data that did not contribute 

to score calculations, and included 34 of the surveyed stream reaches13. Additionally, within each 

data set, I also created a subset of reaches that had streamflow data for assessment of the 

hydrology function scores (n=14) for comparison with the Status & Trends hydrology data. The 

2018 version of SFAM does not require daily streamflow data. For the results, I only describe the 

Matched Data with GIS-determined floodplains because the data sets had qualitatively similar 

results (Figures S5 & S6).  

I chose to use the SFAM function scores for the analyses and not the SFAM function 

scores with context, an SFAM calculator addition in the 2015 update, for several reasons. First, 

the geomorphology (Figure S7b) and water quality scores (Figure S7d) were unaffected by 

                                                 

13 Data set excluded Pipers (WAM06600-063831) and Venema (WAM06600-057739) creeks as both were missing 

soil survey data. 
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landscape context in this study, either because the SFAM calculator did not include landscape 

context qualifiers to weight the function score14 or because the qualifier was derived from the 

unavailable ecoregion data15. Second, using the original biology function scores as opposed to 

the biology function scores with landscape context was more consistent with WRIA 8 context 

(Figure S7c). The default ecoregion type in the SFAM calculator was non-forested when 

ecoregion was left blank. This artificially inflated some biology measure scores in WRIA 8, 

which was historically forested16 (Pater et al. 1998). For example, the raw measure subscore for 

large woody debris increased from either 0% (n=31) or 25% (n=3) to 50% in the biology 

function context score calculation when ecoregion was left blank. As such, using the original 

biology function scores, which would have resulted in the same scores as the biology function 

with landscape context scores in forest-dominated ecoregions, was appropriate for WRIA 8. 

Third, stream order affected the hydrology function context scores by halving the flow variation 

subscore if the stream order was 1 (Figure S7a). However, some of the reaches did not have 

stream order data (n=7) but were included in the Matched Data set because stream order did not 

affect score calculations before the 2015 update. While I could have derived stream order from 

maps, I decided to have all of the stream order classifications from the same publicly-accessible 

source. In hindsight, completing the stream order assignment for all reaches would have been the 

ideal approach for this study. However, due to resource and time constraints this did not occur. 

                                                 

14 Neither of the geomorphology subscores nor the chemical regulation subscore in the water quality function score 

had landscape qualifiers for weighting the score (Willamette Partnership 2015). 
15 The cover scores in the water quality function landscape context subscores were modified by ecoregion. Heavily 

forested (type 1) or heavily and moderately forested ecoregions (type 2) resulted in no change to the subscore. Non-

woody dominated ecoregions (type 7) removed the cover score from the function with context score. Any other 

ecoregion input resulted in canopy cover scores less than or equal to 50% being reassigned a score of 50%, and any 

canopy cover score above 50% being reassigned a score of 100% (Willamette Partnership 2015). 
16 WRIA 8 includes the 2e (Eastern Puget Lowlands), 2f (Central Puget Lowlands), and 4a (Western Cascades 

Lowlands and Valleys) level IV ecoregions. 
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In the end, this was a moot point because the context scores were removed from the 2018 version 

of SFAM. 

 

 

Question 1: How does SFAM compare to other stream assessment protocols for rating 

stream functions and values? 

 

I used Kendall tau ranked correlations (R Core Team 2014b) to compare SFAM scores to 

commensurate data in WRIA 8 (Figure 5, Table 1). I compared all SFAM scores to the WRIA 8 

geographic and development gradients. Furthermore, I compared SFAM function scores to 

principal components derived from relevant Status & Trends reach-scale data and SFAM value 

scores to relevant Puget Sound Watershed Characterization Project variables. These comparisons 

are described in more detail below. 

 

 

SFAM variables 

 

I ran correlations separately for individual SFAM hydrology, geomorphology, biology 

and water quality function and value final scores (Figure 5, Table 1). I also combined all four 

SFAM final function scores using Principal Components Analysis (PCA) to evaluate SFAM’s 

overall functional rating of stream reaches. I did a similar, but separate, analysis for the SFAM 

value scores. I used the same PCA methodology as described previously in the Study system 

section. For all correlations, I tested both the whole SFAM data set and subsets of reaches   
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Figure 5. Overview flow chart of the statistical approaches used to evaluate the Stream Function Assessment Methodology (SFAM). 

Function comparisons in bold italic font; value comparisons in bold underlined font. PCs are principal components.



26 

 

 

Table 1. Variables for correlations to assess the ability of SFAM to determine stream function 

compared to outputs from the WRIA 8 Status & Trends Monitoring Program (S&T) and from the 

Puget Sound Watershed Characterization Project (PSC). Principal Components Analysis (PCA) 

was used to combine multiple metrics into more concise principal components. Variable 

definitions are in Tables S2, S3, and S4, respectively. The Richards-Baker Flashiness Index 

(RB.Index) was only included in PCAs for the assessment of SFAM function scores when 

streamflow data were included. 

SFAM function 

S&T variable(s) to compare with SFAM 

function scores 

PSC variable(s) to compare 

with SFAM value cores 

Hydrology PCA (Flow.Reversals, 

High.Pulse.Count, High.Pulse.Duration, 

High.Pulse.Range, Low.Pulse.Count, 

Low.Pulse.Duration, RB.Index, 

X30.day.summer.low.flow, 

X7.day.summer.minimum.flow) 

Water flow importance scores, 

water flow degradation scores 

Geomorphology PCA1 (BFWidth_BFDepth, D50, 

PCT.Cobble, PCT.Fines, PWP.All, 

RBS, ResPoolArea100, X.BFDepth, 

X.BFWidth, X.Embed, X.TWDepth) 

PCA2 (LWDSiteVolume100m, 

PWP.All, X.DensioBank, X.Embed 

Sediment export potential 

scores, sediment degradation 

scores 

Biology B-IBI scores Aquatic ecological integrity 

score 

Water quality B-IBI scores PCA (export potential and 

degradation of metals, nitrogen, 

phosphorus, and sediment) 

PCA (Hydrology, 

geomorphology, 

biology, and 

water quality 

scores) 

PCA (X.7DMax, X.DensioBank, 

LWDSiteVolume100m, PWP.All, 

X.Embed, RB.Index) 

PCA (Water flow importance 

and degradation; aquatic 

ecological integrity; export 

potential and degradation of 

sediment, phosphorus, nitrogen, 

and metals) 
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separated into urban growth area or non-urban growth area designated groups. Due to multiple 

correlation analyses, I used Holm’s sequential Bonferroni procedure to determine the critical 

alpha for each correlation (Abdi 2010). I used this correction for all of my correlation tests using 

the SFAM data because several raw measure subscores contributed to multiple SFAM scores. All 

corrected critical alphas ranged from 0.0002 to 0.0003. To balance the conservative correction, I 

described “potential correlations” as those with a p-value equal to or less than 0.01 but larger 

than the Holm’s corrected p-value.  

 

 

Comparison with WRIA 8 Gradients 

 

I compared individual SFAM function and value scores to several overarching gradients 

in WRIA 8 to assess SFAM’s ability to differentiate sites based on reach location within the 

watershed and common measures for anthropogenic degradation (Figure 5, Table 1). I used both 

elevation and longitude to test whether SFAM was sensitive to the reach location in the 

watershed; these metrics also reflect the population density gradients from low density in the 

eastern uplands to high density in the western lowlands (Figures 2 & 3). I used percent watershed 

imperviousness to represent watershed-scale anthropogenic degradation in WRIA 8. I used the 

average Puget Lowland Benthic Macroinvertebrate Index of Biotic Integrity (B-IBI) score from 

the Status & Trends Monitoring Program to represent stream biological condition. Each average 

score comprised of 4-7 B-IBI scores per reach as King County collected B-IBI annually at each 

reach from 2009 to 2013 during the Status & Trends Monitoring. The variation in the number of 

B-IBI scores per reach resulted from data collection beginning in 2010 for half of the 36 reaches 
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and 11 reaches having replicate samples collected throughout 2010-2013. All four of the WRIA 

8 gradients strongly correlated with each other across the study sites (Figures 2 & 3). I also 

compared SFAM function PCA scores and value PCA scores to the averaged B-IBI scores.  

 

 

 Additional SFAM function comparisons 

 

The King County WRIA 8 Status & Trends Monitoring Program data were spatially 

comparable to SFAM reach-level data for stream functions (Figure 5, Table 1). King County 

collected data on aquatic communities and stream habitat characteristics during annual site visits 

from 2009-2013 at each stream reach to determine changes in WRIA 8 Status & Trends with a 

focus on Chinook salmon habitat (Table S3). I averaged all five years of data together, by site, to 

reduce the effect of inter-annual variation. In addition to the field-collected data, King County 

developed landscape metrics for each site using geospatial data (King County 2015). With the 

exception of the indexes of biotic integrity, the Status & Trends Monitoring Program did not 

create multimetric indices for rating overall stream condition from these data. No multimetric 

index using variables from the EPA’s Environmental Monitoring & Assessment Program 

currently exists and creating and validating such an index was outside the scope of this project. 

All of the Washington State Status & Trends data, including the King County data, are available 

online at the Washington Department of Ecology Environmental Information Management 

System website (Washington Department of Ecology 2015).  

I compared SFAM hydrology function scores to significant principal components derived 

from the Status & Trends hydrology metrics (Table 1). Only 14 stream reaches had flow gauges 
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that were reasonably near the reach and did not have substantial gaps in flow data collection 

during the Status & Trends Monitoring. I used PCA to combine all nine relevant Status & Trends 

hydrology metrics for the 14 reaches (Table S5).  

I compared SFAM geomorphology function scores to significant principal components 

derived from Status & Trends habitat data (Table 1). I used PCA to combine 11 Status & Trends 

geomorphological habitat metrics that King County identified as important to stream Status & 

Trends17 while also reducing the correlation among variables (Table S6). However, most of these 

principal components reflected stream structure and shape associated with stream reach location 

in the watershed (e.g., wider streams with higher amounts of fine sediment and embeddedness 

are found lower in watersheds) rather than stream function and are not discussed further in this 

paper. For an improved geomorphology function PCA, I combined four Status & Trends habitat 

variables (Tables 1 & S7) that most closely matched the metrics that contribute to the SFAM 

geomorphology function scores (Table S2). 

Due to a lack of appropriate comparable data, the SFAM biology and water quality 

function scores were only compared to the previously mentioned WRIA 8 gradient data (Table 

1). I initially compared SFAM biology and water quality function scores to averaged Fish Index 

of Biotic Integrity (F-IBI, Matzen and Berge 2008) scores. However, despite the F-IBI being 

designed for use in Puget lowland streams, King County found that F-IBI scores were 

confounded by contributing basin area and suggested further work to improve F-IBI (King 

County 2015), so I do not report those results here. The Status & Trends Monitoring Program 

                                                 

17 The metrics identified as stressors for benthic macroinvertebrate and/or fish communities through boosted 

regression tree models (King County 2015). 
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had no direct measures of water quality against which to test SFAM function scores other than 

seasonal water temperature, which I did not use in these analyses.  

For comparison with the significant principal components of the four final SFAM 

function scores (Tables S8 and S9), I used the significant principal components of five Status & 

Trends metrics (six metrics when Richards-Baker Flashiness Index was included for the 

hydrology subset of reaches) (Table 1). I chose a subset of Status & Trends metrics that were 

ecologically relevant, did not correlate with each other, King County identified as important, and 

were associated with at least one of the SFAM function groups. The reduction in metrics was 

necessary because using all of the non-redundant Status & Trends variables (n=110 metrics) or 

all of the metrics used in the individual correlations (n=14 metrics18) would have been unwieldy, 

risked unfocused comparisons, and could obscure underlying mechanisms. The PCA results were 

qualitatively similar with or without including the Richards-Baker Flashiness Index (Tables S10 

& S11).  

 

 

Additional SFAM value comparisons 

 

 The Puget Sound Watershed Characterization Project data were spatially comparable to 

the basin-level assessment of SFAM value scores for each reach (Figure 5, Table 1). In the 

analysis of a larger watershed (i.e., WRIA 8), the Puget Sound Watershed Characterization 

Project created multimetric scores for water flow importance and degradation, water quality 

                                                 

18 Not including the first Status & Trends geomorphology PCA (n=9 additional metrics). 
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export potential and export degradation, and relative conservation value of habitats for sub-

watersheds referred to as assessment units (Table S4). As mentioned in the Introduction, the 

Puget Sound Watershed Characterization Project removed anthropogenic degradation from the 

importance and export potential scores of an assessment unit by evaluating the underlying 

processes available in each assessment unit. This approach differed substantially from the 

combination of importance and opportunity subscores in SFAM value scores. The Puget Sound 

Watershed Characterization Project data are publicly available online as an interactive map and 

as downloadable data layers at the Washington Department of Ecology Puget Sound Watershed 

Characterization Project website (Washington Department of Ecology 2013b). 

 I compared SFAM hydrology value scores to the Puget Sound Watershed 

Characterization Project water flow importance and degradation scores (Table 1). Water flow 

importance evaluated the potential for each assessment unit to contribute to surface water storage 

(depressional wetlands and lakes as well as unconfined or moderately confined floodplains) and 

water recharge/discharge (permeability of deposits and floodplains, as well as the presence of 

slope wetlands) (Stanley et al. 2015a). Water flow degradation considered human impacts from 

current land use on water delivery (e.g., percent impervious area, percent of non-forest 

vegetation area), surface storage (e.g., loss of wetlands and floodplains), recharge/discharge 

(e.g., percent urban land cover, loss of floodplains and wetlands), and loss (e.g., loss of 

transpiration due to increased impervious cover) (Stanley et al. 2015a).  

 I compared SFAM geomorphology value scores to the Puget Sound Watershed 

Characterization Project sediment export potential and degradation scores (Stanley et al. 2015b) 

(Table 1). The Puget Sound Watershed Characterization Project sediment export potential 

assessed the relative ability of the assessment unit to generate and transport sediment to 
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downstream aquatic areas if disturbed. Specifically, the sediment export potential score 

determined the assessment unit’s ability to deliver sediment at higher levels than natural 

quantities (surface erosion, mass wasting, and channel erosion) against the assessment unit’s 

ability to retain sediment in sinks (depressional wetlands, lakes, and unconfined or moderately 

confined floodplains). The degradation score used the Non-Point Source Pollution and Erosion 

Control Tool (N-SPECT, National Oceanic and Atmospheric Administration 2004) erosion 

model to estimate the sediment yield from the assessment unit during a single storm-event, as 

functions of storm runoff volume, peak runoff rate, soil erodibility, land cover classes, slope 

length, and gradient.  

 I compared SFAM biology value scores to the Puget Sound Watershed Characterization 

Project aquatic ecological integrity scores, which measured of the relative conservation value of 

freshwater habitats (Wilhere et al. 2013) (Table 1). The aquatic ecological integrity score was 

based on in-stream structural measures and the status of the assessment unit. The aquatic 

ecological integrity score focused on the presence, stock status, and habitat requirements of 

salmonids, chosen as umbrella taxa because salmonid habitat encompasses the needs of many 

other species as well. The aquatic ecological integrity scores also included hydrogeomorphic 

features (wetland and undeveloped floodplain density), habitats in the assessment unit (salmonid 

habitat amount and quality), and availability of downstream habitats affected by, but outside of, 

the assessment unit (Wilhere et al. 2013). 

 I compared SFAM water quality value scores to significant principal components derived 

from eight Puget Sound Watershed Characterization Project water quality export potential and 

export degradation scores (Tables 1 & S12). I did not include the Puget Sound Watershed 

Characterization Project scores for pathogens in the PCA because SFAM did not assess 
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pathogens and had no equivalent input or output. The Puget Sound Watershed Characterization 

Project determined the export potential of an assessment unit through its ability to deliver a given 

contaminant (sediment, phosphorus, nitrogen, or metals) at higher levels than background 

quantities (i.e., surface erosion, mass wasting, and channel erosion) minus the assessment unit’s 

ability to retain contaminants in sinks. The Puget Sound Watershed Characterization Project used 

the sediment export potential model as a base for the export potential models of the other 

contaminants. The phosphorus export potential model added local phosphorous enrichment to 

sediment export potential sources and added soil clay content as a phosphorus contaminant sink. 

The Puget Sound Watershed Characterization Project did not include sources of nitrogen and 

metals for the export potential model as these were not considered significant across assessment 

units, but the model combined sediment sinks with denitrification for nitrogen (wetland/lake 

water storage and riparian area denitrification potential) and soil retention of metals (cation 

exchange capacity). The Puget Sound Watershed Characterization Project generated assessment 

unit degradation scores using N-SPECT to estimate pollutant loading from the assessment unit 

during a single storm-event. For all pollutants other than sediment, described previously in this 

subsection, N-SPECT estimated the pollutant load for each land use pixel in the assessment unit 

using pixel area, runoff, and concentration of the pollutant of interest (Stanley et al. 2015b). 

 I compared the significant principal components of the combined SFAM value scores to 

the significant principal components of the combined Puget Sound Watershed Characterization 

Project scores (Tables 1, S13, & S14). I included all of the Puget Sound Watershed 

Characterization Project scores used in the individual metric assessments, described above, in the 

Puget Sound Watershed Characterization Project PCA (Table 1). 
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Question 2: How do unavailable data affect SFAM output scores?  

 

I performed targeted sensitivity analyses of missing SFAM metrics: Richards-Baker 

Flashiness Index, downstream flooding, rare species, and ecoregion type. To do so, I used two 

different data sets, virtual stream reach data and field-collected stream reach data, to investigate 

the influence of background stream condition on effects of the different missing metrics (Figure 

5). In both analyses, I used all pre-determined bins of unavailable metric inputs and compared 

the resulting SFAM final scores (Table 2). Because each of the unavailable metrics contributed 

to different SFAM output calculations, they acted independently of each other in the calculator 

and I assessed them without testing for interactions among unavailable metrics. 

 

 

Virtual stream conditions 

 

For each run of the unavailable data, I tested for interactions of the unavailable metric 

data with stream condition by creating three levels of virtual background stream condition: high, 

low, and blank. High stream condition had all available SFAM metrics set to the highest possible 

score (generally 100%) to create a hypothetical best condition stream. I set the context data for 

high stream condition as moderately erodible (100% measure subscore) with high aquifer and 

soil permeability (100% for both), perennial flow (100%), and left all other context data blank. 

Low stream condition had all metrics set to the lowest possible score (generally 0%) to create a 

hypothetical worst condition stream. I set the context data for low stream condition as easily 

erodible (25% measure subscore) with low aquifer and soil permeability (0% for both), perennial   



35 

 

 

Table 2. Pre-determined input bins for SFAM metrics that are generally unavailable in 

Washington and, in parentheses, the final score to which the unavailable metric contributed. The 

SFAM calculator combines ecoregion with canopy cover to create the subscore for cover 

context, used in the water quality value final score. The SFAM calculator uses the same response 

bins for ecoregions dominated by wet dense forest, wet dense and moderate forest, or dryland 

vegetation (ecoregions 1, 2, and 7, respectively). Ecoregions 3-6 include areas dominated by 

moderately dry or patchy vegetation (e.g., dense riparian area surrounded by woodlands and 

open meadows).  “NA” is a measure subscore assigned by the SFAM calculator and is 

functionally the same as no measure subscore. Both “NA” and “No measure subscore” remove 

the metric from SFAM score calculations. 

Unavailable metric 

(Associated output) 

Potential input Measure subscore 

Richards-Baker 

Flashiness Index 

(Hydrology function) 

Blank (no input) No measure subscore 

Stable/Flashy 50% 

Mean 100% 

Downstream flooding Blank (no input) No measure subscore 

(Hydrology value) None (no downstream flooding) 0% 

 Low (only large, infrequent flooding events) 30% 

 Moderate (infrequent flooding) 60% 

  Regular (flooding several times a year) 100% 

Rare species 

occurrence 

(Biology value) 

  

Blank (no input) 0% 

Not Known No measure subscore 

None 0% 

Low 25% 

Intermediate 50% 

High 100% 

Ecoregion type Blank (no input); 0 - 50% canopy cover 50% 

(Water quality value) Blank (no input); > 50% canopy cover 100% 

 Ecoregions 3 - 6; 0 - 50% canopy cover 50% 

 Ecoregions 3 - 6; > 50% canopy cover 100% 

 Ecoregions 1, 2, or 7; 0 - 50% canopy cover NA 

  Ecoregions 1, 2, or 7; > 50% canopy cover NA 
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flow (100%, but consistent with my stream reaches), and left all other context data blank. Blank 

stream condition had all available metrics set to unanswered (blank or “no input”), including the 

context data, to determine how the unavailable or non-applicable data affected the scores 

independent of other SFAM metrics. I only evaluated high and low virtual stream conditions for 

downstream flooding, rare species, and ecoregion because blank stream condition did not 

produce final scores for their associated outputs. I ran each assessment in factorial combinations 

of background stream condition (high, low, blank) and floodplain presence or absence to assess 

if floodplain determination, which could easily be misidentified, influenced how unavailable 

metrics affected SFAM outputs. Only downstream flooding was excluded from the factorial 

procedure because it did not contribute to the calculation of hydrology value scores when 

floodplains were absent. Additionally, ecoregion was combined with canopy cover to create the 

cover context measure in the water quality value scores, so ecoregion inputs were also evaluated 

in a factorial combination with high (100%) and low (50%) canopy cover. 

 

 

WRIA 8 stream condition  

 

I assessed how the SFAM scores of the 34 surveyed stream reaches (Matched Data) 

responded to variations in the unavailable data inputs. I varied the inputs of each unavailable 

metric within the SFAM calculator for each surveyed stream. I only conducted the downstream 

flooding variation on the subset of stream reaches with floodplains (n=20). I used analysis of 

covariance (ANCOVA) to determine statistically significant (α = 0.05) differences among levels 

of scores generated from the different unavailable data inputs. I used baseline scores (unavailable 
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data input as blank) as the covariate. Specifically, I used ANOVA with type III sum of squares 

(aov in R) and evaluated the covariate-adjusted means (effects from the “effects” package in R) 

for normally distributed, homoscedastic data (R Core Team 2014b) and a nonparametric analysis 

of covariance (comparison of nonparametric regression curves using sm.ancova from the “sm” 

package in R) for non-normally distributed, homoscedastic data (Bowman and Azzalini 2014). 

Normality of data was determined by the Shapiro-Wilk normality test (R Core Team 2014c). All 

of the data used in the WRIA 8 stream condition sensitivity analyses were homoscedastic, as 

determined by either the Bartlett test of homogeneity of variance for data that were normally 

distributed (R Core Team 2014d) or the Fligner-Killeen test of homogeneity of variance for data 

that were not normally distributed (R Core Team 2014e). 
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RESULTS 

 

Unless otherwise specified, all results used the SFAM draft completed in November 2015. 

 

 

SFAM scores 

 

SFAM produced relatively restricted ranges of function and value scores for the WRIA 8 

stream reaches used in this study, despite sites from a broad spectrum of geographic and land-use 

settings as indicated by percent impervious and B-IBI (Figures 2 & 3). Overall, the stream 

reaches received moderate to high function and value scores, though ranges typically covered 

less than half of the total possible SFAM score range (Figure 6). As an example, hydrology 

function scores ranged from 5.2 to 7.9, a span of 2.7 points. Overall, function ranges spanned 2.4 

– 4.2 points and most value ranges spanned 1.6 – 3.6 points, except for the 6.0 hydrology value 

point spread. Additionally, all reaches fell into the middle part of the condition spectrum: none 

had function scores below 3.8 and only one value score (in hydrology) was below 2.5. Neither 

hydrology nor biology functions had scores above 7.9, and no value score was above 8.3. 
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Figure 6. Histograms of the Stream Function Assessment Methodology function and value scores 

in 34 stream reaches in Water Resource Inventory Area 8. The gray distribution shows the subset 

of 14 reaches that had stream gauge-generated flow data. 
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Question 1: Comparing SFAM stream ratings to other stream assessments 

 

SFAM function scores 

 

Surprisingly, SFAM function scores rarely correlated with major WRIA 8 geographical 

or land use gradients or with commensurate Status & Trends data. SFAM hydrology function 

scores did not correlate with metrics reflecting WRIA 8 development gradients, metrics of 

watershed condition, or principal components reflecting anthropogenic alterations in streamflow 

(Figure 7, Table S5). SFAM geomorphology function scores did not correlate with longitude, 

percent impervious, or B-IBI (Figure 8). However, higher geomorphology function scores 

generally occurred in higher elevation reaches and in reaches with less anthropogenic 

degradation of the stream bank and nearby uplands (Figure 8a & f; Table S7). SFAM biology 

function scores did not respond to the physical gradients in WRIA 8 (Figure 9) but did suggest, 

outside of urban growth areas only, higher biology function in reaches with better biotic 

condition (higher B-IBI scores; Figure 9d). SFAM water quality function scores did not correlate 

with any comparable data (Figure 10). Furthermore, none of the SFAM function scores visibly 

differentiated among reaches within or outside of urban growth areas, unlike the WRIA 8 

gradients. 

The SFAM function scores combined using principal components were not substantially 

different from the assessment of the individual SFAM function scores except for hydrology 

function. SFAM function PC1, which largely reflected geomorphology, biology, and water 

quality function scores, did not correlate with B-IBI scores or the Status & Trends data that 

reflected anthropogenic degradation of the reach (Figure 11, Tables S8 & S10). On the other 
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hand, SFAM function PC2, which largely reflected hydrology, suggested higher hydrology 

function in reaches with lower B-IBI (Figure 11d) and more adjacent anthropogenic degradation, 

in contrast to my original hypotheses (Figure 11e). SFAM function PC2 did not correlate with 

changes in bank canopy cover as reflected in the Status & Trends PC2 (Figure 11f). There were 

no relationships among SFAM function PCs and the Status & Trends PCs when only reaches 

with hydrology data were assessed (results not shown; Tables S9 & S11). 
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Figure 7. SFAM hydrology function scores against WRIA 8 gradients and commensurate data 

from the WRIA 8 Status & Trends Monitoring Program (S&T; n=34). The correlations against 

the S&T hydrology principal components (PCs) had 14 reaches. S&T hydrology PC descriptions 

are in Table S5. Correlation results refer to all reaches. Separating stream reaches by urban 

growth area (UGA) designation did not result in significant correlations. 
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Figure 8. SFAM geomorphology function scores against WRIA 8 gradients and commensurate 

data from the WRIA 8 Status & Trends Monitoring Program (S&T; n=34). S&T geomorphology 

principal component (PC) descriptions are in Table S7. The correlation results shown refer to all 

reaches. The trend lines indicate a potential correlation using all stream reaches based on a non-

corrected critical α of 0.01. Separating stream reaches by urban growth area (UGA) designation 

did not result in significant correlations. LWD refers to the metric quantifying large woody 

debris in the stream, embed refers to streambed embeddedness, and human pres. refers to human 

alterations in and around the reach (PWP.All). 
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Figure 9. SFAM biology function scores against WRIA 8 gradients and the averaged Benthic 

Macroinvertebrate Index of Biotic Integrity (B-IBI) scores from WRIA 8 Status & Trends 

Monitoring Program (S&T; n=34). Unless otherwise specified, correlation results refer to all 

reaches. The dashed trend line in panel d indicates a potential correlation using stream reaches 

that are outside of urban growth areas (UGAs), based on an uncorrected critical α of 0.01. 
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Figure 10. SFAM water quality function scores against WRIA 8 gradients and the averaged 

Benthic Macroinvertebrate Index of Biotic Integrity (B-IBI) scores from the WRIA 8 Status & 

Trends Monitoring Program (S&T; n=34). Correlation results refer to all reaches. Separating 

stream reaches by urban growth area (UGA) designation did not result in significant correlations.
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Figure 11. Comparisons of principal components (PCs) from SFAM function scores against the averaged Benthic Macroinvertebrate 

Index of Biotic Integrity (B-IBI) scores from the WRIA 8 Status & Trends Monitoring Program (S&T) and S&T PCs. Trend lines 

indicate potential trends based on a non-corrected critical α of 0.01. All correlation results refer to all reaches. Panel e includes a 

potential correlation in reaches outside of urban growth areas (UGAs; tau= - 0.533, p = 0.0033). SFAM assessed hydrology (H), 

geomorphology (G), biology (B), and water quality (W) functions. PWP is the S&T metric for proximity-weighted anthropogenic 

alterations (e.g., bank armoring) in the assessment area. LWD refers to large woody debris in the stream PC descriptions are in Table 

S8-Table S11.
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SFAM value scores 

 

 SFAM value scores generally suggested higher hydrology, geomorphology, and biology 

value in more urban, low elevation, western stream reaches. SFAM hydrology value was higher 

in reaches with more anthropogenic degradation, as indicated by all of the WRIA 8 gradients and 

B-IBI (Figure 12). Likewise, SFAM indicated higher hydrology value in reaches with higher 

water flow importance (Figure 12e) and with more water flow degradation (Figure 12f). The 

separate hydrology value opportunity and significance subscores were also higher in reaches 

with more anthropogenic degradation (Figure S10). Inside of urban growth areas, SFAM 

geomorphology value was generally higher in higher elevation, western reaches with more 

developed watersheds (Figure 13). The geomorphology value scores did not correlate with 

changes in B-IBI scores or sediment export potential (Figure 13d & e). Interestingly, the 

geomorphology opportunity subscores were higher in reaches with higher percent impervious 

and lower B-IBI scores while the geomorphology significance subscore did not correlate with 

either (Figure S11). In contrast to the other patterns, SFAM geomorphology value was higher in 

reaches with less sediment export degradation (Figure 13f), but the direction of this relationship 

likely resulted from the N-SPECT model not including metrics for erosion-control practices 

especially in areas with industrial logging19. The reaches also generally had higher SFAM 

geomorphology significance subscores in reaches with lower Puget Sounds Watershed 

Characterization sediment export degradation scores (Figure S11). Despite a small overall range, 

                                                 

19 The N-SPECT model did not account for erosion control measures, especially in industrial forestry zones, which 

lead to higher modeled erosion in higher elevation areas with steeper slopes and commercial logging (Stanley et al. 

2015b). This likely over-estimated the degradation from higher elevation assessment units and resulted in lower 

relative sediment export degradation ratings for more urbanized assessment units.  
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SFAM biology value scores were generally higher in western reaches with more watershed 

imperviousness (Figure 14). Biology value did not correlate with reach elevation (Figure 14a) 

nor, surprisingly, with either B-IBI scores (Figure 14d) or the aquatic ecological integrity scores 

(Figure 14e). However, the SFAM biology opportunity subscores were generally higher and the 

SFAM biology significance subscores were generally lower in less degraded reaches, as 

indicated by lower watershed imperviousness and higher biotic condition (Figure S12). The 

directions of the biology opportunity and significance scores were opposite my expectations. 

Overall, the biology opportunity and significance subscores were negatively correlated to each 

other, which likely contributed to the narrow range of overall values. In contrast to the other 

value scores, SFAM water quality value was generally higher in rural, high elevation, eastern 

stream reaches, but only in reaches outside of urban growth areas (Figure 15). Two groups of 

sites appeared to have a large influence on the potential trends between water quality value 

scores and elevation, longitude, and percent impervious (Figure 15a, b, and c, respectively). The 

first group comprised two relatively high elevation agricultural sites, Bear Creek (WAM06600-

057527) and Bear Creek tributary (WAM06600-111639)20, while the second and less consistent 

group comprised of relatively high elevation forested sites including reaches in the Cedar River 

Municipal Watershed. Water quality value scores did not correlate with B-IBI scores nor with 

commensurate Puget Sound Watershed Characterization Project water quality data (Figure 15d, 

e, & f, Table S12). Separating the water quality value scores into water quality opportunity and 

significance subscores also did not result in correlations with commensurate data (Figure S13). 

                                                 

20 Neither Bear Creek nor Bear Creek tributary were statistical outliers for SFAM water quality value, longitude, 

elevation, or B-IBI. However, they were statistical outliers for percent impervious (when only considering reaches 

outside of urban growth areas). 
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The SFAM value PCs were somewhat consistent with the negative correlations seen 

when the value scores were assessed independently. SFAM value PC1, which largely reflected 

hydrology, geomorphology, and biology value scores (Table S13), were higher in reaches with 

lower B-IBI scores (Figure 16a) and in reaches with higher sediment export degradation as 

reflected in the Puget Sound Characterization PC3 (Figure 16d, Table S14). However, the 

potential negative correlation between SFAM value PC1 and PC1 of the Puget Sound 

Characterization, which primarily reflected sediment export degradation, was primarily driven by 

Issaquah Creek (mouth; WAM06600-123207). This site had the highest sediment export score of 

all the reaches21. The SFAM value PC1 did not correlate with the Puget Sound Characterization 

PC1, which largely reflected a gradient between aquatic ecological integrity and water flow 

degradation, water quality contaminant export degradation, and export potential (Figure 16b). 

SFAM value PC1 also did not correlate with the Puget Sound Characterization PC2, which 

largely reflected sediment and metals export potential (Figure 16c, Table S14). The SFAM value 

PC2, which largely reflected water quality value scores, did not correlate with any commensurate 

data (Figure 16e-h). 

  

                                                 

21 Issaquah Creek (mouth) was not a statistical outlier in terms of sediment export. 
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Figure 12. SFAM hydrology value scores against WRIA 8 gradients and commensurate data 

from the Puget Sound Watershed Characterization Project (PSC; n=34). Potential correlations 

were based on a non-corrected critical α of 0.01. Unless otherwise specified, correlation results 

refer to all reaches. UGA refers to designated urban growth areas. 

500 1000 1500 2000 2500

0
2

4
6

8
1

0

H
y
d

ro
lo

g
y
 v

a
lu

e

Elevation (mean ft)

a All reaches

In UGA

Out UGA

tau = - 0.459

p < 0.001

-122.3 -122.2 -122.1 -122.0 -121.9

 

Longitude

b Correlations

Significant

Potential

tau = - 0.543

p < 0.001

0 10 20 30 40 50

0
2

4
6

8
1

0

H
y
d

ro
lo

g
y
 v

a
lu

e

Percent impervious

c

tau = 0.519

p < 0.001

20 40 60 80

 

S&T B-IBI

d

tau = - 0.513

p < 0.001

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

PSC water flow importance

H
y
d

ro
lo

g
y
 v

a
lu

e

e

tau = 0.319

p = 0.0092

0.0 0.2 0.4 0.6 0.8 1.0

PSC water flow degradation

f

All reaches

tau = 0.469

p = 0.0001

Non-UGA

tau = 0.548

p = 0.0054



51 

 

 

 

 

Figure 13. SFAM geomorphology value scores against WRIA 8 gradients and commensurate 

data from the Puget Sound Watershed Characterization Project (PSC; n=34). Potential 

correlations were based on a non-corrected critical α of 0.01. Unless otherwise specified, 

correlation results refer to all reaches. UGA refers to designated urban growth areas.
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Figure 14. SFAM biology value scores against WRIA 8 gradients and commensurate data from 

the Puget Sound Watershed Characterization Project (PSC; n=34). The trend lines indicate a 

potential correlation using all stream reaches based on a non-corrected critical α of 0.01. 

Separating stream reaches by urban growth area (UGA) designation did not result in significant 

correlations. 
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Figure 15. SFAM water quality value scores against WRIA 8 gradients and commensurate data 

from the Puget Sound Watershed Characterization Project (PSC; n=34). Positive values of PSC 

PC1 reflected higher levels of metals export degradation, nitrogen export potential and 

degradation, and phosphorus export potential and degradation. Positive values of PSC PC2 

reflected higher levels of sediment and metals export potential (Table S12). Potential correlations 

were based on a non-corrected critical α of 0.01. Unless otherwise specified, correlation results 

refer to all reaches. UGA refers to designated urban growth areas. 
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Figure 16. Comparisons of principal components (PCs) from the SFAM value scores against averaged Benthic Macroinvertebrate 

Index of Biotic Integrity scores from the WRIA 8 Status & Trends Monitoring Program (S&T B-IBI) and the Puget Sound Watershed 

Characterization Project (PSC; n=34). SFAM assessed hydrology (H), geomorphology (G), biology (B), and water quality (W) values. 

Negative values of PSC PC1 reflected higher aquatic ecological integrity (AEI) while positive values reflected more human 

degradation (higher water flow degradation, phosphorus export degradation, nitrogen export potential and degradation, and metals 

export degradation). Negative values of PSC PC2 reflected higher water flow importance while positive values reflected higher 

sediment and metals export potential. Positive values of PSC PC3 reflected higher levels of sediment export degradation. Trend lines 

indicate potential trends based on a non-corrected critical α of 0.01. UGA refers to designated urban growth areas. PC descriptions are 

in Tables S13 & S14.  
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Question 2: Effects of unavailable data on SFAM outputs  

 

Virtual stream conditions 

  

 As expected, unavailable metrics generated small, generally predictable changes in their 

associated SFAM outputs, although the changes were not consistent among the metrics. Within 

each virtual stream condition in the November 2015 draft version of SFAM, the change in 

associated SFAM outputs from modifying the unknown metric input ranged from 0 - 1.7 points 

(Figure 17). Changes in associated SFAM outputs generally corresponded to the raw measure 

subscores of the inputs when background condition and floodplain designation were held 

constant. For example, changing the rare species occurrence inputs from none (raw measure 

subscore of 0%) to low (25%) to intermediate (50%) increased the biology value score by +0.1 

points for each change, while changing the input from intermediate to high (100%) increased the 

biology value score by +0.2 points, a commensurate 2x increase (Figure 17c).  

The inclusion or exclusion of floodplain-dependent metrics in the SFAM calculator 

created interactions between floodplain designation and both Richards-Baker Flashiness Index 

and rare species inputs (Figure 17a & c, respectively). In the blank background stream condition, 

the unanswered metric for stream entrenchment received a raw measure subscore of 100% when 

floodplains were present and no raw measure subscore when floodplains were absent22. This 

                                                 

22 The measure subscore calculation for entrenchment specifies that, for a perennial stream with a floodplain, 

“IF(H30="A",0,IF(H30="B",0.25, IF(H30="C",0.5,IF(H30="D",0.75,1))))” with H30 being the cell in which the 

user selects the appropriate category classification for their entrenchment data. The intent behind the code is that 
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change in the entrenchment measure score resulted in the Richards-Baker Flashiness Index score 

being averaged either with another scored metric when floodplains were present or or with no 

other scored metrics when floodpains were absent to create the hydrology function score. 

Outside of blank background condition, floodplain presence/absence did not affect how 

Richards-Baker Flashiness Index scores influenced the hydrology function score. In the biology 

value score, the metric for floodplain exclusion is removed from the calculation when 

floodplains were absent. The removal of the exclusion metric from both the “create and maintain 

biodiversity” and “sustain trophic structure” subscores resulted in the rare species occurrence 

scores and other metrics having more influence on the biology value score because fewer metrics 

contributed to the calculation of the final biology value score. 

The effects of blank inputs on SFAM outputs were not consistent across unknown 

metrics (Figure 17). Leaving the input blank for both the Richards-Baker Flashiness Index and 

downstream flooding resulted in that metric not contributing to the calculation of the associated 

SFAM output, which resulted in an interaction between metric inputs and background condition. 

In blank background condition, changing the Richards-Baker Flashiness Index input from blank 

(no raw measure subscore) to stable/flashy (50%) to mean (100%) resulted in a consistent, small 

increase in hydrology function score (+0.83 points for each change, Figure 17a). In low 

background condition, a blank Richards-Baker Flashiness Index input resulted in the same 

hydrology function score as a stable/flashy input; however, changing the Richards-Baker 

Flashiness Index from blank or stable/flashy to mean increased the hydrology function score 

                                                 

“E,” the only data entry option left, should receive a score of 1. However, because this code indicates that any value 

in H30 other than A, B, C, or D receives a score of 1, leaving H30 blank also results in a measure subscore of 1.  
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(+0.56 points). In high background condition, changing the Richards-Baker Flashiness Index 

from blank to stable/flashy slightly decreased the hydrology function score (-0.14 points) while 

blank to mean increased the hydrology function score (+0.42 points). For downstream flooding, 

the absence of the downstream flooding raw measure score resulted in the hydrology value score 

reflecting the background condition (Figure 17b). In other words, a blank downstream flooding 

input resulted in the same hydrology value score as a no flooding input (0%) in low background 

condition or as a regular flooding input (100%) in high background condition. However, leaving 

rare species occurrence and ecoregion inputs blank resulted in these measures contributing to 

their associated outputs, but in an equivalent manner to a known data input. For rare species 

occurrence, blank inputs (no entry in the SFAM calculator) generated the same biology value 

score as entering the rare species occurrence inputs of none and not known in the calculator 

(Figure 17c). For ecoregion, blank input generated the same water quality value score as 

moderately dry or vegetatively patchy ecoregions (types 3-6; Figure 17d). 

Ecoregion inputs interacted with both background condition and canopy cover to affect 

water quality value scores (Figure 17d). Canopy cover was excluded from the water quality 

value score calculation for ecoregions with wet densely forested (type 1), wet densely and 

moderately forested (type 2), and dryland vegetation (type 7). The exclusion of these ecoregion 

types led to no difference in water quality value score from changes in canopy cover. However, 

when ecoregion was unknown or entered as moderately dry or patchy vegetation (types 3-6), 

higher canopy cover resulted in a slight increase in water quality value score (+0.28 points) 

compared to lower canopy cover, regardless of background condition.  
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Figure 17. SFAM scores with variation in four metrics that are unavailable in Washington State: a) Richards-Baker Flashiness Index 

(R-B Index), b) downstream flooding, c) rare species occurrence as modelled by the Oregon Rapid Wetland Assessment Protocol 

(ORWAP), and d) ecoregion type. Each metric was assessed using high and low virtual stream background conditions, with the R-B 

Index also using blank background (no data inputs entered). Grey percentages under each input are the assigned raw measure subscore 

for the input; no percentage indicates that no subscore was assigned. For panel d, floodplain presence/absence did not affect ecoregion 

influence on water quality value.
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WRIA 8 Stream Condition 

 

 The results of the sensitivity analyses using WRIA 8 stream condition were consistent 

with the sensitivity analyses using virtual stream condition. Changing unknown metric inputs in 

WRIA 8 stream reaches produced the same changes in their associated SFAM outputs as in the 

virtual stream condition. All modified SFAM scores were significantly positively correlated with 

their equivalent baseline SFAM scores (p-value <<0.001), had regression line slopes near one, 

and all R2 values were ≥ 0.988. The small variation seen when changing Richards-Baker 

Flashiness Index, downstream flooding, and rare species occurrence inputs from blank to a 

scored input were caused by the variation in the raw measure subscores with which the unknown 

metrics were averaged (e.g., not all other metrics had raw measure subscores of 100%) (Figure 

18a, b & c). Unlike the other unknown metrics, changing the ecoregion input from blank to 

scored inputs revealed a significant interaction (p << 0.001) between ecoregion inputs (Figure 

18d). Consistent with the virtual stream condition analysis, moderately dry or vegetatively 

patchy ecoregions (types 3-6) and blank inputs produced the same water quality value scores. 

However, changing the ecoregion input from blank to wet densely forested, wet densely and 

moderately forested, and dryland vegetation ecoregions (types 1, 2, and 7, respectively) generally 

resulted in lower water quality value scores when the baseline water quality value scores were 

less than 7. The same input change generated equal or higher water quality value scores when the 

baseline water quality value scores were 7 or higher. Also consistent with the sensitivity analysis 

under virtual stream conditions, floodplain absence or presence did not influence how the 
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changes in SFAM inputs for Richards-Baker Flashiness Index and rare species occurrence 

affected the modified SFAM scores (Figure 17a & c). 
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Figure 18. Baseline SFAM scores (scores created with all unavailable data left as “blank”) 

compared to SFAM scores for all potential inputs of four metrics that are unavailable in 

Washington State: a) Richards-Baker Flashiness Index (R-B Index), b) downstream (DS) 

flooding, c) rare species occurrence as modelled by the Oregon Rapid Wetland Assessment 

Protocol (ORWAP), and d) ecoregion type. N=34 except for panel b with n=20 (only included 

streams with floodplains). In panel d, the shapes representing canopy cover are used regardless 

of ecoregion type. Only 3 reaches had canopy cover ≤ 50%. 
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DISCUSSION 

 

Overview 

 

This study found a general lack of agreement between SFAM (November 2015 draft 

version) and the other measures of stream condition in Puget Sound lowland watersheds. None 

of the SFAM function scores consistently captured the established gradients in watershed 

development or stream biotic condition, as represented by percent watershed imperviousness and 

B-IBI scores, respectively. Previous studies have associated higher percent watershed 

imperviousness and lower B-IBI with the degradation of stream processes (e.g., Alberti 2008, 

Rosburg et al. 2017, Russell et al. 2017), suggesting either that the comparison metrics and 

SFAM are capturing different aspects of stream function or that SFAM is not effectively 

quantifying stream functions. If the latter, the SFAM function results were likely influenced by 

the high proportion of contributing metrics measuring structural components in the adjacent 

riparian area. Riparian conditions, especially forested buffers, can protect or improve stream 

processes (e.g., Tabacchi et al. 2000, Sweeney and Newbold 2014, Cristan et al. 2016, Warren et 

al. 2016, Keeton et al. 2017, Mondal and Patel 2018). However, the effectiveness of riparian 

areas to provide or support functions can vary greatly based on buffer width (Sweeney and 

Newbold 2014), watershed land use (Wahl et al. 2013, Covarrubia et al. 2016), and other 

influences. Not capturing that watershed context could result in the relatively narrow range of 

SFAM function scores and the lack of correlation with more established metrics of watershed 
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condition. This over-reliance on riparian condition to represent stream function appears to also 

apply to the 2018 version of SFAM. 

In contrast to my expectations, SFAM generally indicated higher hydrology, 

geomorphology, and biology value in reaches with higher levels of anthropogenic degradation in 

the basin. These results indicate that the SFAM hydrology, geomorphology, and biology value 

scores assign higher value to reaches with rarer stream functions. While assigning higher value 

to reaches that provide rare functions can reflect the relative importance of those processes, such 

a scoring method could skew project prioritization. Land managers may focus their resources on 

reaches in degraded watersheds because SFAM value scores designate the reaches as more 

valuable. However, attempts to restore or re-create stream functions in degraded areas are 

generally less successful than protecting existing watershed functions (Roni et al. 2002, Bates 

2012). Additionally, SFAM value scores were likely influenced by combining the opportunity 

and significance subscores. Combining these different components of “value” can potentially 

hide trends when the two subscores do not correlate with commensurate data in the same way, 

such as occurred with the geomorphology and biology value scores (Figures S11 & S12). 

Previous studies have also noted the potential loss of data from combining metrics to produce 

multimetric scores (e.g., Reynoldson et al. 1997, McCune and Grace 2002, Herman and 

Nejadhashemi 2015). The potential masking of trends from combining opportunity and 

significance subscores in the final value scores may also apply to the 2018 version of SFAM. 

The sensitivity analyses revealed relatively small and predictable changes in SFAM 

outputs when unavailable metric inputs were varied, suggesting that the November 2015 draft 

version of SFAM is fairly robust to unknown data when comparing across streams. However, the 
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sensitivity analyses found small potential issues at a highly detailed level of evaluation. These 

concerns include the high repetition of metrics within final scores, several metrics not being 

readily available both before and after a management action, and several context metrics in the 

SFAM calculator not contributing to scores. Differences in how the SFAM calculator accounted 

for unknown metrics suggest that further evaluation and clarification regarding how metrics 

influence the SFAM scores is needed. Additionally, more information on how to interpret SFAM 

scores, especially in the context of generating mitigation credits and debits, could benefit future 

SFAM users.  

A future study comparing the 2018 version of SFAM to quantitative data, as I did here 

for the draft version, could help validate SFAM in a more transparent and defensible way. The 

2018 version of SFAM was validated in 39 reaches throughout Oregon using best professional 

judgement to represent stream processes. While best professional judgement methodologies can 

be an effective tool (e.g., Proper Functioning Condition; Prichard et al. 1998, Stoddard et al. 

2006, Swanson et al. 2017), they also require substantial documentation of the methods and 

results (Stevens et al. 2002, Stoddard et al. 2006). The 2018 release of SFAM included little 

information about the methodology used to create the best professional judgement function 

scores and no data from the correlations used to validate SFAM (Nadeau et al. 2018a, 2018b). 

Future evaluation should determine the extent of these potential issues, especially considering 

that many of these concerns also appear relevant in the 2018 version of SFAM. 
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Correlations of SFAM against other metrics 

 

Correlations of SFAM function scores against WRIA 8 gradients and Status & Trends data 

 

The correlation results suggested that the SFAM function scores did not reflect known 

levels of anthropogenic degradation. The general lack of correlation between SFAM function 

scores and any of the known WRIA 8 gradients – elevation, longitude, percent impervious, and 

B-IBI – or Status & Trends Monitoring data was unexpected. Together, longitude and elevation 

captured an expected gradient of human impacts on stream function in WRIA 8 from rural, 

upland, eastern watersheds to urban, lowland, western watersheds. Longitude and elevation also 

correlated very strongly with percent impervious and B-IBI (Figures 2 & 3). Previous studies 

have found strong correlations among percent imperviousness, B-IBI, and the degradation of 

stream hydrology, geomorphology, biology, and water quality at the reach-level in Puget Sound 

lowland streams (e.g., Booth and Jackson 1997, Morley and Karr 2002, DeGasperi et al. 2009). 

As described in the Introduction, watershed imperviousness can directly and indirectly alter 

stream processes. In particular, increased impervious cover creates more extreme flow regimes 

and increases sediment movement to and within the reach (Booth and Jackson 1997, Alberti 

2008, DeGasperi et al. 2009, Rosburg et al. 2017, Booth and Konrad 2017). These alterations in 

turn affect stream biota and their habitats, as well as stream water quality (Booth and Jackson 

1997, DeGasperi et al. 2009, Feist et al. 2011). The Puget Sound Lowland B-IBI responds to 

anthropogenic degradation and is a primary methodology used to evaluate biological condition of 
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streams in the region (King County 2014a, 2014c). While less widely used, the WRIA 8 Status & 

Trends Monitoring Program was developed to assess stream and riparian habitat condition at the 

reach–level to inform natural resource management of the broader watershed (King County 

2015). Many of the Status & Trends metrics were qualitatively similar to SFAM metrics, making 

the overall lack of correlation surprising.  

Given the individual SFAM score results, it was not surprising that the SFAM function PC1 

(driven by geomorphology, biology, and water quality function scores) did not correlate with 

commensurate data. On the other hand, the SFAM function PC2 suggested higher hydrology 

function scores in reaches with more anthropogenic degradation, including lower B-IBI scores 

(Figure 11), which was not indicated by the individual comparison between hydrology function 

and B-IBI (Figure 7). It is unclear why hydrology function scores only showed potential 

correlations when part of a principal component. 

The prevalence of metrics measuring the adjacent riparian area likely influenced the general 

lack of correlation between SFAM scores and both watershed-level and in-stream influences on 

stream processes. Many of the SFAM function metrics serve as indicators of function presence at 

the reach-level for rapid assessment, including in Washington State (Hruby 2009). However, 

previous studies have found proxies using stream structure to be insufficient to predict stream 

processes or biological condition (e.g., Karr 1991, Riipinen et al. 2009, Bernhardt and Palmer 

2011, Palmer et al. 2014). The SFAM function score calculations heavily utilized measures of 

the assessment area directly adjacent to the stream channel. About two-thirds of the 20 SFAM 

function measures and at least half of the contributing metrics for each SFAM score quantified a 

physical component of the stream banks or riparian area/floodplain (Table S2). This included 
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nine of 11 hydrology metrics, six of eight geomorphology metrics, eight of 14 biology metrics, 

and four of eight water quality metrics. Where potential correlations occurred, they supported the 

apparent influence of the riparian area on SFAM function scores. Most of the geomorphology 

metrics accounted for physical structures outside of the stream channel (e.g., the ratio of bank 

incision, vegetation on stream bars), including direct anthropogenic alterations to the stream 

bank (i.e., bank armoring/erosion, barriers to lateral stream migration). These metrics likely 

drove the potential positive correlations between SFAM geomorphology function scores and the 

Status & Trends principal components that reflect gradients of human disturbance around the 

reach (PWP All23) and streambank canopy cover (Figure 8). The potential correlation indicating 

higher SFAM biological function scores in reaches with higher B-IBI scores outside of urban 

growth areas suggests that the pervasiveness of riparian metrics effectively differentiated stream 

biological condition when basins had less development. The high proportion of structural metrics 

remains in the 2018 version of SFAM, in which all 17 function metrics are measured in the field 

at the reach-scale and 14 quantify a physical component of the stream banks or riparian 

area/floodplain. Additionally, only the flow variation function subscore includes a metric outside 

of the immediate assessment area (upstream impoundments). 

The prevalence of measures quantifying near-stream riparian physical components may have 

led to the SFAM function scores capturing the effects of riparian restoration efforts (Bates 2012, 

Conlon Jensen 2012, King County 2017), but not the degradation occurring outside the 

                                                 

23 PWP All measured anthropogenic disturbance and weighted the disturbance by proximity to the stream in four 

distance classes (Peck et al. 2006, Berge 2010). The distance classes were 1) at least partially within the bankfull 

channel, 2) present within the 10 x 10 m riparian plot area but not on the bank, 3) present outside of the 10 x 10 m 

riparian plot area but within 30 m of bankfull, or 4) absent from the assessment area (Berge 2010). 
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immediate reach-level assessment area. Because of riparian habitat protection and restoration 

efforts in WRIA 8 for salmon habitat, almost all of the reaches in this study were located in 

green spaces or had substantial vegetated riparian buffers. Riparian conditions, especially 

forested buffers, can protect or improve stream condition and functions. These benefits extend to 

stream hydrology (e.g., Tabacchi et al. 2000, Mondal and Patel 2018), geomorphology (e.g., 

Cristan et al. 2016, Keeton et al. 2017, Mondal and Patel 2018), biology, and water quality (e.g., 

Sweeney and Newbold 2014, Warren et al. 2016). Specifically in terms of the potential 

correlations, previous studies have found that vegetated riparian forest buffers can influence 

stream channel geomorphology and biology. Vegetated buffers can reduce bank erosion, increase 

stream channel width, and trap sediment from upland areas (e.g., Sweeney and Newbold 2014, 

Keeton et al. 2017). Natural, vegetated riparian buffers can also maintain or improve stream 

biological condition in basins with low to moderate development, including in Puget Sound 

streams (Morley and Karr 2002, Wahl et al. 2013). 

However, previous studies have also found that riparian buffers alone may be insufficient to 

mitigate widespread disturbance in more developed watersheds. For example, the positive effects 

of buffers can be reduced if the buffers are too narrow, are breached by street or agricultural field 

drainage systems, have highly degraded uplands (e.g., clear-cut forestry practices), or the 

catchment is particularly erosion-prone (e.g., steep slopes) (Morley and Karr 2002, Wahl et al. 

2013, Nigel et al. 2013, Sweeney and Newbold 2014, Cristan et al. 2016, Covarrubia et al. 2016). 

Additionally, the effectiveness of riparian areas to provide or support stream functions can vary 

greatly based on vegetative structure (Tabacchi et al. 2000, Lecerf et al. 2016) and ecoregion 

(Binckley et al. 2010). In WRIA 8, the level of development in contributing basins varied from 



69 

 

 

almost no development (less than 1% urban land cover in and immediately around the Cedar 

River Municipal Watershed) to dense urban land cover (some creeks in Seattle and Bellevue had 

over 80% urban land cover in their contributing watersheds). The overwhelming influence of 

intense watershed development on the effects of riparian buffers on biological stream condition 

may explain why SFAM, with its abundant use of riparian metrics, generally did not correlate 

with B-IBI when reaches within urban growth areas were considered. The 2018 version of 

SFAM added explicit justification for each metric and built more context for metrics of riparian 

structure into the calculator. However, based on the continued high prevalence of function 

metrics that measure riparian and near-stream structure, the recently released final version of 

SFAM needs further evaluation to determine if the scores it produces effectively predict stream 

processes across entire urban to rural gradients. 

 

 

Correlations of SFAM value scores against WRIA 8 gradients and Puget Sound Watershed 

Characterization Project data 

 

SFAM value scores generally reflected anthropogenic degradation of the reach, but in the 

opposite direction of what I expected. SFAM had higher hydrology, geomorphology, and 

biology scores in reaches with higher anthropogenic degradation in the contributing basin 

(Figures 12-14). The higher hydrology, geomorphology, and biology value scores in more 

degraded reaches, while in an unexpected direction, suggests that these SFAM scores prioritize, 

at least in part, the rarity of the functions the reach provides within its watershed. This approach 
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implies that the loss of a few, rare ecosystem processes would be more detrimental to the overall 

watershed than the degradation of a more pristine reach, which is similar to the Endangered 

Species Act (Kimbrell 2016). However, there are several potential problems with this negative 

correlation that need explanation in SFAM. First, highly disturbed reaches like those found in 

urbanized areas may have limited potential for ecological lift of stream functions if their 

watersheds are highly degraded or if there are built barriers to restoration, such as a road limiting 

lateral channel migration (Harman et al. 2012). Second, WRIA 8 reaches that are relatively 

untouched and higher in the watershed received the lowest SFAM hydrology, geomorphology, 

and biology value scores. Protecting intact habitat is much easier and more successful than trying 

to recreate or restore degraded habitat (Roni et al. 2002, Bates 2012), which is why many 

management plans prioritize the protection of high-quality habitat over the restoration of 

degraded habitat (Vanderhoof et al. 2011, Bates 2012, Conlon Jensen 2012). 

While likely not a primary driving factor for the value scores, the combination of 

opportunity and significance subscores likely influenced the strength and, potentially, the 

direction of the correlations (Appendix G; Willamette Partnership 2013). In terms of opportunity 

(the ability of a reach to provide a given function), reaches lower in the watershed generally 

provide multiple functions that do not occur in higher elevation reaches (Wilhere et al. 2013), 

including increased surface water storage, water transfer, geomorphic buffering and resilience, 

and species diversity (Allan and Castillo 2009, Bierman and Montgomery 2014). In terms of 

significance (the local importance of that function), streams with more human development 

generally have reduced stream functioning (Walsh et al. 2005, Allan and Castillo 2009, Kaushal 

and Belt 2012, Bierman and Montgomery 2014), which would increase the relative scarcity and 
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the importance of reaches performing processes in degraded watersheds. Additionally, developed 

watersheds can greatly benefit from intact functions for protection of both infrastructure and the 

environment, including surface water storage for flood mitigation and increased habitat 

availability for at-risk species. The resulting increased opportunity and significance in 

downstream, degraded reaches would reasonably increase the value of those reaches. However, 

combining opportunity and significance of a reach into a single score can obscure the 

contributing components. It is not possible to determine from a single score which components 

have high values or low values unless the reach is extremely poor or extremely high quality (i.e., 

both values are low or both are high, respectively). This problem was most notable in the biology 

value subscores. The inverse correlation between biology opportunity and significance scores 

(Figure S8c) likely drove the very narrow biology value score range (Figure 14). The obscuring 

of score components in multimetric indexes is a previously identified problem for interpretation 

and usefulness of multimetric indexes as a diagnostic tool (Reynoldson et al. 1997, Green and 

Chapman 2011). More guidance on how to interpret SFAM value scores could benefit users and 

land managers, as it is currently unclear how the value scores connect to their associated stream 

processes and potential watershed management goals. Even in the 2018 version of SFAM, there 

is insufficient information on how to interpret value scores that are not extremely high or low 

(Nadeau et al. 2018a). 

In contrast to the other value correlations, SFAM determined higher water quality value 

in reaches with lower anthropogenic degradation in the contributing basin, outside of urban 

growth areas only (Figure 15). The weak correlations between water quality value scores and 

commensurate data, which were in the direction I expected, were highly leveraged by two groups 
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of sites. As noted in the Results, the first group consists of the two most developed sites outside 

of urban growth areas: Bear Creek (WAM06600-057527) and Bear Creek tributary 

(WAM06600-111639). Without these two reaches with high percent watershed imperviousness 

and low SFAM water quality value there was no correlation (tau = - 0.17, p = 0.19). The 

relatively high amount of watershed imperviousness of Bear Creek and Bear Creek tributary 

compared to other non-urban growth area sites may result from their close proximity, less than 

0.2 km, to the Redmond urban growth area boundary (King County 2018). The second group 

consisted of six reaches that included all five of the reaches in the Cedar River Municipal 

Watershed and a segment of Carey Creek (WAM0660-006355) less than 1 km from the 

boundary of the Cedar River Municipal Watershed and within King County’s Taylor Mountain 

Forest. All of these reaches had the highest water quality value score (7.8 points) of the non-

urban growth area reaches. The remaining nine non-urban growth area stream reaches created a 

relatively scattered clump of scores with no apparent pattern (Figure 15).  

Furthermore, the general dearth of state-listed water quality impairment ratings for 

individual stream reaches likely contributed to the lack of correlation between SFAM water 

quality value scores and commensurate Puget Sound Watershed Characterization Project data. 

The SFAM water quality value opportunity subscores quantified the likelihood that the reach is 

impaired by assessing land use, riparian buffers, and 303(d) or other Total Maximum Daily Load 

listings in all three subscores (nutrient cycling, chemical regulation, and thermal regulation). 

SFAM heavily weights water quality impairment designations in the opportunity subscores when 
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the reach is listed as impaired24, which I expected to increase the likelihood of correlation 

between the SFAM water quality value scores and the water quality export degradation scores 

from the Puget Sound Watershed Characterization Project. Water quality export degradation 

scores result from the amount of contaminants that are likely to enter a waterbody due to human 

alterations of the contributing basin. Both the water quality export degradation and 303(d) 

listings in SFAM assessed phosphorus, nitrogen, and metals. However, the use of 303(d) listings 

as the primary indicator of nutrient, chemical, or temperature impairment potentially limits the 

usability of SFAM water quality value scores because many reaches do not have available data. 

The Washington State Department of Ecology estimates that they have data for one or more 

parameters for only 10% of the National Hydrography Data set reaches in the state (personal 

communication, Patrick Lizon, Water Quality Assessment Coordinator at Washington State 

Department of Ecology). As of 2012, five25 of the 36 reaches in this study had 303(d) listings for 

nutrient impairment and two of those reaches also had temperature impairment. The remaining 

reaches either did not have any assessment data (n=25) or had data for water quality metrics not 

used in SFAM (e.g., pH; n=6). This appears to be a problem for the final version of SFAM as 

well. The 2018 SFAM still relies exclusively on 303(d) and other Total Maximum Daily Load 

listings to indicate water quality impairment. However, it is currently unclear what percentage of 

Oregon reaches have applicable data. The Oregon Department of Environmental Quality is 

                                                 

24 When a reach has a 303(d) or other Total Maximum Daily Load listing that affects the specific function (nutrients, 

toxins, or temperature), the impairment is multiplied by 4 and is added to the average of all the other contributing 

raw measures subscores (thus providing up to four-fifths of the opportunity subscore). 
25 Swamp (WAM06600-083131), Kelsey (WAM06600-080407), Issaquah (WAM06600-035623), Lewis 

(WAM06600-020391), and Tibbetts (WAM06600-062567) all had 303(d) listings for nutrient impairment; Lewis 

and Tibbetts were also listed as having temperature impairment. 
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aiming to calculate the percentage of reaches with data for the 2018 Integrated Report (personal 

communication, Becky Anthony, WQ Assessment Program Lead at the OR Dept. of 

Environmental Quality). 

 

 

Sensitivity analyses 

 

Interpreting outputs with missing data 

 

 The sensitivity analyses revealed relatively small and predictable effects of data typically 

missing in Washington, although the effects were not consistent across metrics. The change in 

final SFAM outputs between leaving the input blank and entering a known input varied both 

across and, at times, within the four unavailable metrics. Additionally, there was variation in how 

the unavailable metrics did or did not interact with the background stream condition and 

floodplain presence/absence. As the most extreme example, changing the score between the 

highest known metric (regular flooding) and the unanswered entry (blank) in the assessment of 

downstream flooding in low background condition changed the final hydrology value score up to 

± 0.97 points, covering nearly 10% of the total possible SFAM score range. However, the same 

change in metric scoring for downstream flooding in high background condition resulted in no 

change in the final hydrology value score.  

The various small interactions in the sensitivity analyses resulted from four causes, all of 

which could be important for interpreting SFAM results. First, removal of a metric from an 
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average simultaneously increases the weight of the other metrics and increases the uncertainty of 

the overall score. Most unanswered SFAM metrics are removed from the calculation of their 

associated SFAM final score through the use of the AVERAGE function in Excel (Microsoft 

Corporation 2017a), which is how the Draft SFAM User Manual states it will treat unanswered 

metrics (Willamette Partnership 2013, pgs. 15 & 16). However, the metric for floodplain 

exclusion is removed from the biology value score calculation when floodplains are absent. This 

metric removal caused the interaction between background condition and floodplain designation 

when assessing effects of unknown rare species occurrence scores. Not using the floodplain 

exclusion metric to calculate biology value is appropriate if floodplains are not present to 

exclude. However, the biology value score decreased when floodplain designation changed from 

present to absent in high background condition, but the biology value score increased with the 

same change in floodplain designation in low background condition (Figure 17c). The interaction 

suggests that floodplains are beneficial in high background condition but detrimental in low 

background condition. However, the interaction is more likely the by-product of averaging 

together the remaining high and low scores in the significance subscores for the “create and 

maintain habitats” and the “sustain trophic structure” value subscores.  The interaction could 

complicate the interpretation of SFAM scores when the floodplain designation differs between 

sites. The 2018 version of SFAM does not specify how users should answer the floodplain 

exclusion metric if there is no floodplain (Nadeau et al. 2018a). 

Second, the use of the MAX function in Excel has the potential to artificially lower and 

remove data from the biology value score. The MAX function reports the group’s largest value 

as zero if all of the cells in the group are blank (Microsoft Corporation 2017b). As a result, not 
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knowing the rare species occurrence resulted in the same SFAM biology value score as entering 

the lowest possible known entry (none, 0%) in the SFAM calculator (Figure 17c and Figure 18c), 

artificially decreasing the biology value score by up to 0.42 points. In addition, the use of the 

MAX function could mask biodiversity conditions at the site because the MAX function 

excludes five of the six rare species occurrence scores from the SFAM biology value calculation. 

In other words, improving any of the lower rare species occurrence scores will not affect the 

biology value score if any other rare species occurrence scores were already higher than or equal 

to the improved rare species occurrence score. On one hand, this has the effect of giving a site a 

high-value rating if it has at least one important species. However, it could also have unintended 

implications for mitigation or restoration efforts by encouraging efforts to focus only on 

improving the best biodiversity score. Having all of the rare species occurrence inputs contribute 

to the biology value score, perhaps with a weighting in the calculation, and changing the score 

calculation to exclude unknown metrics, could eliminate these concerns. In the 2018 version of 

SFAM, the MAX function is used in ten separate value subscore calculations. With the 

additional resources provided to SFAM users (including an online mapping tool that produces 

data reports), all of the data should be available (McCune et al. 2017). However, the concern that 

data are being removed from the calculation and that potential management plans may focus on 

only improving the best component are still relevant concerns. 

Third, ecoregion entries also inadvertently included blank inputs into calculations and 

lacked a clear rationale for their use in the SFAM drafts. For both the sensitivity analyses (virtual 

and WRIA 8 stream condition), not entering an ecoregion led to the same raw measure subscores 

for cover context as for moderately dry or vegetatively patchy ecoregions (types 3-6). This score 
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assignment implies that the base ecoregion type in SFAM is a moderately dry or patchy 

ecoregion, which does not reflect many regions. For example, as noted in the Methods, the 

ecoregions in WRIA 8 were historically forested (Pater et al. 1998), so the expected vegetation 

type would not be represented adequately without entering an ecoregion, an issue that was not 

clearly documented in the SFAM drafts. In contrast, wet densely forested (type 1), wet densely 

and moderately forested (type 2), and dryland vegetation (prairie, sagebrush steppe) (type 7) 

were assigned no raw measure subscore for cover context, implying that cover is not an 

important metric for differentiating thermal regulation value among reaches in those ecoregions. 

However, neither the draft SFAM User Guide (2013) nor the draft SFAM Desk Guide (2015) 

provided a rationale or other explanation for the ecoregion types or cover context. This potential 

concern is not relevant for the recently released final SFAM version, which provided much 

clearer and ecologically relevant rationales. The rationales allow users to select the appropriate 

general type of ecoregion even if the assessment is outside of Oregon. For example, the metrics 

quantifying canopy cover and large woody debris in the stream are modified to account for even 

pristine reaches in xeric climates having less expected cover and in-stream wood than western 

reaches (Nadeau et al. 2018b). It is unclear how not answering the ecoregion type would affect 

the 2018 SFAM scores. 

Fourth, variation in known SFAM metrics can influence the effects of unknown metrics. 

For example, in the sensitivity analyses using the WRIA 8 stream condition, some deviations in 

SFAM final scores from the baseline score resulted from variation in known SFAM metrics 

(Figure 18). In the Richards-Baker Flashiness Index sensitivity analysis, four reaches had 

modified hydrology function scores that were above the trend line. The small increases in 
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modified hydrology function scores occurred because each of the four reaches had at least one 

known metric with a raw measure subscore of 50% that also contributed to the flow variation 

function subscore (Figure 18a). For the other 30 reaches in the sensitivity analysis, all of the 

metrics that contributed to the flow variation function subscore other than Richards-Baker 

Flashiness Index had raw measure subscores of 100%. This difference resulted in an increase of 

0.14 points (when one other subscore was 50%, n=3) or 0.28 points (when two other subscores 

were 50%, n=1) in the hydrology function score relative to the other reaches when changing the 

Richards-Baker Flashiness Index score from blank to a known Richards-Baker Flashiness Index 

score. While the Richards-Baker Flashiness Index was removed from the final version of SFAM, 

this potential concern could still occur with other metrics. SFAM users need to be aware that 

variations in other contributing metrics can alter the effects of an intended modification in stream 

management.  

One solution for missing metrics would be to calculate an average SFAM score across the 

potential range of unknown metric values. The user could calculate SFAM outputs for each raw 

measure subscore for the unknown metric, or all combinations of several missing metrics, and 

then use the mean and standard error of the resulting SFAM outputs for the calculation of final 

SFAM scores. This range of potential scores could account for the uncertainty that enters the 

SFAM final score when data are missing.  
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Potential concerns for SFAM use/interpretation 

 

 The correlations and sensitivity analyses identified several SFAM components that could 

use more explanation or justification in future versions of SFAM. First, SFAM has a high 

prevalence of metrics that contribute to multiple subscores, even within a single final score. 

Reuse of metrics for different subscores is a nontransparent way of weighting metrics. Every 

SFAM final score except for geomorphology function includes metrics that contribute to more 

than one subscore in the calculation of the final score (Figure S4, Appendix F). The draft SFAM 

User Guide briefly addresses that a single measure may contribute to multiple functions 

(Willamette Partnership 2013, pg. 9); however, it did not expand the description to the amount of 

repetition within the calculator or potential limitations from the repetition of metrics. The metric 

quantifying channel bed variability (BedVar) was the most repeated metric in the SFAM 

calculator. BedVar was used eight times in the function calculations, including in each of the 

three hydrology function subscores, one of two geomorphology function subscores, two of three 

biology function subscores, and two of three water quality function subscores (Table S16). When 

assessing the final scores, water quality function has the most repetition of metrics with only 

eight unique metrics contributing to the 15 raw measure subscores that comprise the final score 

(Table S16). While no metrics were repeated within an individual water quality subscore26, using 

different combinations of eight original metrics to create 15 subscores creates an unwarranted 

perception that more information is contributing to the assessment than actually is. While this 

                                                 

26 Impervious area appears twice in the list of metrics for the chemical regulation subscore in the water quality value 

score, but only contributes once to each subscore (opportunity and significance) calculation (Table S17). 
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study did not specifically evaluate the effects of repeated metrics, highly correlated subscores, 

which can occur when metrics contribute to multiple subscores, can lead to overall lower 

precision, responsiveness, and sensitivity of assessments (Sickle 2010). The 2018 version of 

SFAM also repeats metrics throughout the calculator. The effects of repeating metrics requires 

further evaluation relative to simpler, more transparent approaches, such as just taking the 

average of all the metrics. 

Second, several metrics are not available both before and after a management action (any 

metric that requires extensive time to respond to changes in the system), which could complicate 

SFAM’s ability to estimate mitigation credits or debits. This study did not evaluate how 

widespread this problem could be within the SFAM calculator or the magnitude of this potential 

issue in terms of SFAM scores. However, metrics that have potentially delayed responses to 

management actions include, but are not limited to, any metric based on streamflow 

measurements (e.g., Richards-Baker Flashiness Index, the occurrence of downstream flooding, 

overbank flow) and those based on biological responses (rare species occurrence, canopy cover, 

and B-IBI). These measurements may be limited by the time required to collect representative 

data or may require time for stream processes to adjust to management changes in the stream or 

basin. Delays in metric response could compromise mitigation credits calculated by assessing 

pre-and post-impact condition (e.g., U.S. Army Corps of Engineers et al. 2013, 2017, U.S. Army 

Corps of Engineers, Omaha District 2013) unless follow-up assessments confirm that the 

expected improvements occur. The Draft SFAM Desk Guide briefly addresses that the period of 

record for the Richards-Baker Flashiness Index, which has been removed from the 2018 version 

of SFAM, may be insufficient for assessing differences between pre- and post-restoration 
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condition (Czarnomski et al. 2015, pg. 14), but does not discuss how to account for this 

uncertainty when interpreting SFAM scores. Additionally, the 2018 version of SFAM briefly 

discusses that SFAM assessments of the predicted state of an impacted reach may be necessary 

for regulatory purposes, but does not include detailed information on how to perform the 

predicted state assessment27 (Nadeau et al. 2018a). While delayed responses in metrics to actions 

are not unique to SFAM, having consistent strategies to estimate or calculate changes in delayed-

response metrics could be a potential solution.  

 Third, some metrics, in particular the Richards-Baker Flashiness Index (which was 

removed from the final version of SFAM) were used in ways not generally seen in the literature 

and need additional validation or justification for users. SFAM used a single Richards-Baker 

Flashiness Index score to represent stream flashiness (Czarnomski et al. 2015). However, the 

Richards-Baker Flashiness Index was designed to characterize changes in flashiness over time by 

calculating Index scores for different timeframes (e.g., water years) within a longer period of 

time (e.g., decades) (Baker et al. 2004, Rosburg et al. 2017). The typical Richards-Baker 

Flashiness Index approach may be less feasible than the SFAM approach within the context of 

annual monitoring for mitigation (U.S. Army Corps of Engineers 2008). However, without the 

context of previous flow data, a single Richards-Baker Flashiness Index score does not 

necessarily indicate more or less flashy flows than occurred historically. The SFAM calculator 

modified Richards-Baker Flashiness Index scores based on whether the watershed area is greater 

                                                 

27 The User Manual for the 2018 version of SFAM suggests “using a reference site, if available, or by assuming the 

site has had time to adjust to a variety of flow conditions and planted vegetation has time to mature” (Nadeau et al. 

2018a, page 79) 
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or less than 78 km2, likely because flashiness tends to decrease with increasing basin size (Baker 

et al. 2004). However, SFAM does not provide justification for the specific basin area cut off. 

Additionally, controlling for the watershed area does not provide adequate context regarding 

deviations from historic flashiness within a single stream reach, such as the reach becoming 

flashier with increased basin imperviousness. To provide the missing context, the SFAM 

calculator could incorporate ecoregion, stream order, and geographical topography such as the 

slope of the stream and surrounding landscape to model a range of expected Richards-Baker 

Flashiness Index scores or use a range of measured scores for undisturbed streams of that 

particular stream order and in that ecoregion. The modeled score could then be compared to the 

user-calculated Richards-Baker Flashiness Index. Although the Richards-Baker Flashiness Index 

was removed from the 2018 version of SFAM because daily flow data are lacking for many 

streams, these concerns should be addressed for future versions of SFAM if the Richards-Baker 

Flashiness Index or similar inputs are used. 

Fourth, SFAM should further address context metrics included in the calculator cover page 

and were identified as important for reviewers but which never contribute to any SFAM scores. 

These included Q2 discharge, grain-size distribution (obtained using a zig-zag pebble count 

protocol), and site history (Czarnomski et al. 2015). For example, grain-size distribution is 

controlled by stream hydrology and geomorphology (e.g., areas with faster flows generally have 

larger sediment, activity of bed and bank erosion) (Gordon et al. 2004, Bierman and 

Montgomery 2014), and describes the availability of important habitat for algae, 

macroinvertebrate, and fish communities (Gordon et al. 2004, Allan and Castillo 2009). For 

example, a stream reach with a bed composed primarily of fine sediment could be a lowland, 
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naturally depositional, healthy stream or it could be a highly disturbed reach with high levels of 

sediment loading from upland alterations like agriculture or clearcutting (Bierman and 

Montgomery 2014, Russell et al. 2017). The inclusion of grain-size distribution could be 

combined with context from slope and ecoregion or stream type to determine how dissimilar the 

reach is from expected natural conditions. While grain-size distribution was removed from the 

2018 version of SFAM, the stream discharge and project area history are still both included in 

the SFAM calculator cover page without directly contributing to any SFAM scores.  

 

 

Conclusions and future research 

 

SFAM is a potentially groundbreaking model for rapid stream function assessment, 

created from extensive background research and effort. The evaluation of stream functions in 

stream assessments is becoming more common in monitoring and management goals (Kollmann 

et al. 2016), but has a much scarcer literature and history than assessment of stream structure 

(Palmer et al. 2014). The metrics and general structure of SFAM (e.g., multimetric, separating 

stream function types within the methodology) overlap with those used in other rapid stream 

function assessment protocols (Harman et al. 2012, Starr et al. 2015). However, the results of this 

study suggested that SFAM function scores do not reflect known gradients in anthropogenic 

degradation of stream condition. The SFAM value scores also did not reliably reflect levels of 

anthropogenic degradation of stream condition, with the exception of hydrology value scores. 

SFAM value scores, when they did correlate with commensurate data, were generally higher in 
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reaches with more watershed and in-stream degradation - the opposite direction from expected. 

While this study used the November 2015 draft version of SFAM, many of the potential 

concerns identified in this study appear to apply to the SFAM version released in June 2018. The 

recently released SFAM still has a high prevalence of function metrics that quantify in- and near-

stream physical structure without additional context regarding overarching watershed condition. 

Additionally, the SFAM value scores still combine the opportunity and significance subscores, 

which can conceal trends and, thus, complicate interpretation of the value scores. Future versions 

of SFAM should also address the removal metrics through the use of the MAX function and the 

repetition of metrics across subscores and within final scores. The results of this study suggest 

that more validation through empirical, quantitative evidence could help determine if the SFAM 

scores can predict levels of stream functions with the precision required for the legal mandates 

set forth for compensatory mitigation by the Clean Water Act.  



85 

 

 

LITERATURE CITED  

Abdi, H. 2010. Holm’s Sequential Bonferroni Procedure. Pages 1–8 in N. Salkind, editor. 

Encyclopedia of Research Design. Sage, Thousand Oaks, CA. 

Adamus, P., J. Morlan, and K. Verble. 2010. Manual for the Oregon Rapid Wetland Assessment 

Protocol (ORWAP). Version 2.0.2. Oregon Department of State Lands, Salem, OR. 

Alberti, M., D. Booth, K. Hill, B. Coburn, C. Avolio, S. Coe, and D. Spirandelli. 2007. The 

impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland 

sub-basins. Landscape and Urban Planning 80:345–361. 

Alberti, M. M. 2008. Advances in urban ecology: integrating humans and ecological processes in 

urban ecosystems. Springer, New York. 

Allan, J. D., and M. M. Castillo. 2009. Stream Ecology: Structure and function of running 

waters. Springer Science & Business Media. 

Baker, D. B., R. P. Richards, T. T. Loftus, and J. W. Kramer. 2004. A new flashiness index: 

Characteristics and applications to midwestern rivers and streams. Journal of the 

American Water Resources Association 40:503–522. 

Barnas, K. A., S. L. Katz, D. E. Hamm, M. C. Diaz, and C. E. Jordan. 2015. Is habitat restoration 

targeting relevant ecological needs for endangered species? Using Pacific Salmon as a 

case study. Ecosphere 6:art110. 

Bates, E. V. 2012. The role of prioritization in funding habitat restoration projects for salmon 

recovery in the Puget Sound basin. Master of Marine Affairs, University of Washington, 

Seattle, WA. 

Beck, S. M., M. R. McHale, and G. R. Hess. 2016. Beyond impervious: Urban land-cover pattern 

variation and implications for watershed management. Environmental Management 

58:15–30. 

Bender, S. M., and C.-W. Ahn. 2011. A review of stream assessment methodologies and 

restoration: The case of Virginia, USA. Environmental Engineering Research 16:69–79. 

Berge, H. B. 2010. Quality assurance project plan for monitoring for adaptive management: 

Status and trends monitoring of aquatic and riparian habitats in the Lake 

Washington/Cedar/Sammamish watershed (WRIA 8). King County. 

Bernhardt, E. S., and M. A. Palmer. 2011. River restoration: the fuzzy logic of repairing reaches 

to reverse catchment scale degradation. Ecological Applications 21:1926–1931. 

Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. 

Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, 

R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, 

L. Pagano, B. Powell, and E. Sudduth. 2005. Synthesizing U.S. River Restoration Efforts. 

Science 308:636–637. 

Bierman, P. R., and D. R. Montgomery. 2014. Key concepts in geomorphology. W.H. Freeman 

and Company Publishers, New York, NY. 

Binckley, C. A., M. S. Wipfli, R. B. Medhurst, K. Polivka, P. Hessburg, R. B. Salter, and J. Y. 

Kill. 2010. Ecoregion and land-use influence invertebrate and detritus transport from 

headwater streams. Freshwater Biology 55:1205–1218. 



86 

 

 

Bledsoe, B. P., E. D. Stein, R. J. Hawley, and D. Booth. 2012. Framework and Tool for Rapid 

Assessment of Stream Susceptibility to Hydromodification. JAWRA Journal of the 

American Water Resources Association 48:788–808. 

Blocksom, K. A. 2003. A performance comparison of metric scoring methods for a multimetric 

index for mid-Atlantic highlands streams. Environmental Management 31:0670–0682. 

Bodinof Jachowski, C. M., J. J. Millspaugh, and W. A. Hopkins. 2016. Current land use is a poor 

predictor of hellbender occurrence: why assumptions matter when predicting 

distributions of data-deficient species. Diversity and Distributions 22:865–880. 

Booth, D. B., and C. R. Jackson. 1997. Urbanization of aquatic systems: Degradation thresholds, 

stormwater detection, and the limits of mitigation. JAWRA Journal of the American 

Water Resources Association 33:1077–1090. 

Booth, D. B., J. R. Karr, S. Schauman, C. P. Konrad, S. A. Morley, M. G. Larson, P. C. 

Henshaw, E. J. Nelson, and S. J. Burges. 2001. Urban stream rehabilitation in the Pacific 

Northwest. EPA Grant, University of Washington, Seattle, WA. 

Booth, D. B., and C. P. Konrad. 2017. Hydrologic metrics for status-and-trends monitoring in 

urban and urbanizing watersheds. Hydrological Processes 31:4507–4519. 

Bowman, A. W., and A. Azzalini. 2014. R package “sm”: nonparametric smoothing methods. 

Bronner, C. E., A. M. Bartlett, S. L. Whiteway, D. C. Lambert, S. J. Bennett, and A. J. Rabideau. 

2013. An assessment of U.S. stream compensatory mitigation policy: Necessary changes 

to protect ecosystem functions and services. JAWRA Journal of the American Water 

Resources Association 49:449–462. 

Carter, J. L., V. H. Resh, and M. J. Hannaford. 2017. Macroinvertebrates as biotic indicators of 

environmental quality. Pages 293–318 in G. A. Lamberti and F. R. Hauer, editors. 

Methods in Stream Ecology. 3rd edition. Academic Press, an imprint of Elsevier, San 

Diego, CA. 

Chen, C., M. O. Gribble, J. Bartroff, S. M. Bay, and L. Goldstein. 2017. The Sequential 

Probability Ratio Test: An efficient alternative to exact binomial testing for Clean Water 

Act 303(d) evaluation. Journal of Environmental Management 192:89–93. 

Conlon Jensen, K. 2012. An evaluation of land cover change from 2006 to 2009 and the 

effectiveness of certain conservation land use tools within Lake 

Washington/Cedar/Sammamish Watershed (WRIA 8) riparian buffers. University of 

Washington, Seattle, WA. 

Covarrubia, J. C., S. Rayburg, and M. Neave. 2016. The influence of local land use on the water 

quality of urban rivers. International Journal of GEOMATE 11:2155–2161. 

Cristan, R., W. M. Aust, M. C. Bolding, S. M. Barrett, J. F. Munsell, and E. Schilling. 2016. 

Effectiveness of forestry best management practices in the United States: Literature 

review. Forest Ecology and Management 360:133–151. 

Cusimano, R., G. Merritt, R. Plotnikoff, C. Wiseman, C. Smith, and Washington Department of 

Fish and Wildlife. 2006. Status and trends monitoring for watershed health and salmon 

recovery: Quality assurance monitoring plan. Washington State Department of Ecology, 

Olympia, WA. 

Czarnomski, N., T. Nadeau, R. Coulombe, and N. Maness. 2015, November. DRAFT Stream 

Function Assessment Method Desk Guide. Willamette Partnership. 



87 

 

 

Dahm, V., D. Hering, D. Nemitz, W. Graf, A. Schmidt-Kloiber, P. Leitner, A. Melcher, and C. 

K. Feld. 2013. Effects of physico-chemistry, land use and hydromorphology on three 

riverine organism groups: a comparative analysis with monitoring data from Germany 

and Austria. Hydrobiologia 704:389–415. 

DeGasperi, C. L., H. B. Berge, K. R. Whiting, J. J. Burkey, J. L. Cassin, and R. R. Fuerstenberg. 

2009. Linking hydrologic alteration to biological impairment in urbanizing streams of the 

Puget Lowland, Washington, USA. Journal of the American Water Resources 

Association 45:512–533. 

Doyle, M. W., and D. F. Shields. 2012. Compensatory Mitigation for Streams Under the Clean 

Water Act: Reassessing Science and Redirecting Policy. JAWRA Journal of the 

American Water Resources Association 48:494–509. 

Environmental Law Institute. 2007. Mitigation of impacts to fish and wildlife habitat: Estimating 

costs and identifying opportunities. Environmental Law Institute, Washington, D.C. 

Feist, B. E., E. R. Buhle, P. Arnold, J. W. Davis, and N. L. Scholz. 2011. Landscape 

ecotoxicology of coho salmon spawner mortality in urban streams. PLoS ONE 6:1–11. 

Fellman, J. B., E. Hood, W. Dryer, and S. Pyare. 2015. Stream physical characteristics impact 

habitat quality for Pacific salmon in two temperate coastal watersheds. PLoS ONE 

10:e0132652. 

Fore, L. S., J. R. Karr, and R. W. Wisseman. 1996. Assessing invertebrate responses to human 

activities: Evaluating alternative approaches. Journal of the North American 

Benthological Society 15:212–231. 

Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel, and R. J. Nathan. 2004. Stream 

hydrology: an introduction for ecologists. 2nd ed. John Wiley & Sons, Inc., Chinchester, 

England; Hoboken, N.J. 

Green, R., and P. M. Chapman. 2011. The problem with indices. Marine Pollution Bulletin 

62:1377–1380. 

Habberfield, M. W., S. S. Blersch, S. J. Bennett, and J. F. Atkinson. 2014. Rapid geomorphic and 

habitat stream assessment techniques inform restoration differently based on levels of 

stream disturbance. JAWRA Journal of the American Water Resources Association 

50:1051–1062. 

Han, D., M. J. Currell, G. Cao, and B. Hall. 2017. Alterations to groundwater recharge due to 

anthropogenic landscape change. Journal of Hydrology 554:545–557. 

Harman, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, and C. Miller. 2012. A 

function-based framework for stream assessment and restoration projects. US 

Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, 

Washington, DC. 

Herman, M. R., and A. P. Nejadhashemi. 2015. A review of macroinvertebrate- and fish-based 

stream health indices. Ecohydrology & Hydrobiology 15:53–67. 

Hruby, T. 2009. Developing rapid methods for analyzing upland riparian functions and values. 

Environmental Management 43:1219–1243. 

Hughes, R. M., and D. V. Peck. 2008. Acquiring data for large aquatic resource surveys: the art 

of compromise among science, logistics, and reality. Journal of the North American 

Benthological Society 27:837–859. 



88 

 

 

Jähnig, S. C., A. W. Lorenz, D. Hering, C. Antons, A. Sundermann, E. Jedicke, and P. Haase. 

2011. River restoration success: a question of perception. Ecological Applications 

21:2007–2015. 

Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and 

Psychological Measurement 20:141–151. 

Karr, J. R. 1991. Biological Integrity: A Long-Neglected Aspect of Water Resource 

Management. Ecological Applications 1:66–84. 

Kaushal, S. S., and K. T. Belt. 2012. The urban watershed continuum: evolving spatial and 

temporal dimensions. Urban Ecosystems 15:409–435. 

Keeton, W. S., E. M. Copeland, S. M. P. Sullivan, and M. C. Watzin. 2017. Riparian forest 

structure and stream geomorphic condition: implications for flood resilience. Canadian 

Journal of Forest Research 47:476–487. 

Kemp, S. 2014. The potential and limitations of linking biological monitoring data and 

restoration needs of urbanized waterways: a case study. Environmental Monitoring and 

Assessment 186:3859–3873. 

Kilroy, C., D. J. Booker, L. Drummond, J. A. Wech, and T. H. Snelder. 2013. Estimating 

periphyton standing crop in streams: a comparison of chlorophyll a sampling and visual 

assessments. New Zealand Journal of Marine and Freshwater Research 47:208–224. 

Kimbrell, T. 2016. Environmental Law for Biologists. The University of Chicago Press, 

Chicago, IL. 

King County. 2005. Chapter 4: Chinook Conservation Strategy for WRIA 8. Page Lake 

Washington/Cedar/Sammamish watershed (WRIA 8) Chinook salmon conservation plan. 

King County, Seattle, WA. 

King County. 2014a. Identifying stressor risk to biological health in streams and small rivers of 

western Washington. King County Water and Land Resources Division, Seattle, WA. 

King County. 2014b. Updating the Benthic Index of Biotic Integrity (B-IBI): Outcomes and Key 

Findings. King County Water and Land Resources Division, Seattle, WA. 

King County. 2014c. Recalibration of the Puget Lowland Benthic Index of Biotic Integrity (B-

IBI). King County Water and Land Resources Division, Seattle, WA. 

King County. 2015. Monitoring for adaptive management: Status and trends of aquatic and 

riparian habitats in the Lake Washington/Cedar/Sammamish Watershed (WRIA 8). King 

County Water and Land Resources Division, Seattle, WA. 

King County. 2017. Lake Washington/Cedar/Sammamish Watershed (WRIA 8) Chinook salmon 

conservation plan 10-year update. King County Department of Natural Resources, 

Seattle, WA. 

King County. 2018. Bear Creek watershed management study - draft. King County Water and 

Land Resources Division, Seattle, WA. 

Kollmann, J., S. T. Meyer, R. Bateman, T. Conradi, M. M. Gossner, M. de Souza Mendonça, G. 

W. Fernandes, J.-M. Hermann, C. Koch, S. C. Müller, Y. Oki, G. E. Overbeck, G. B. 

Paterno, M. F. Rosenfield, T. S. P. Toma, and W. W. Weisser. 2016. Integrating 

ecosystem functions into restoration ecology—recent advances and future directions. 

Restoration Ecology 24:722–730. 



89 

 

 

Kuehne, L. M., J. D. Olden, A. L. Strecker, J. J. Lawler, and D. M. Theobald. 2017. Past, 

present, and future of ecological integrity assessment for fresh waters. Frontiers in 

Ecology and the Environment 15:197–205. 

Lecerf, A., C. Evangelista, J. Cucherousset, and A. Boiche. 2016. Riparian overstory-understory 

interactions and their potential implications for forest-stream linkages. Forest Ecology 

and Management 367:112–119. 

Lisle, T. E., J. M. Buffington, P. R. Wilcock, and K. Bunte. 2015. Can rapid assessment 

protocols be used to judge sediment impairment in gravel-bed streams? A commentary. 

JAWRA Journal of the American Water Resources Association 51:373–387. 

Máčka, Z., L. Krejčí, B. Loučková, and L. Peterková. 2010. A critical review of field techniques 

employed in the survey of large woody debris in river corridors: a central European 

perspective. Environmental Monitoring and Assessment 181:291–316. 

Mardia, K. V. 1979. Multivariate analysis. Academic Press, London ; New York. 

Mathon, B. R., D. M. Rizzo, M. Kline, G. Alexander, S. Fiske, R. Langdon, and L. Stevens. 

2013. Assessing linkages in stream habitat, geomorphic condition, and biological 

integrity using a generalized regression neural network. JAWRA Journal of the American 

Water Resources Association 49:415–430. 

Matzen, D. A., and H. B. Berge. 2008. Assessing small-stream biotic integrity using fish 

assemblages across an urban landscape in the Puget Sound Lowlands of Western 

Washington. Transactions of the American Fisheries Society 137:677–689. 

McCune, B., and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, 

Gleneden Beach, OR. 

McCune, M., M. Rempel, C. Trowbridge, T.-L. Nadeau, D. Hicks, and J. Kagan. 2017. Oregon 

Explorer-Stream Function Assessment Method (SFAM) Map Viewer: an internet tool for 

SFAM support. Oregon State University Library and Institute for Natural Resources, 

Oregon State University, Corvallis, OR. 

http://tools.oregonexplorer.info/OE_HtmlViewer/Index.html?viewer=orwap_sfam. 

Microsoft Corporation. 2017a. AVERAGE function - Office Support. 

https://support.office.com/en-us/article/AVERAGE-function-047bac88-d466-426c-a32b-

8f33eb960cf6. 

Microsoft Corporation. 2017b. MAX function - Office Support. https://support.office.com/en-

us/article/MAX-function-E0012414-9AC8-4B34-9A47-73E662C08098. 

Mondal, S., and P. P. Patel. 2018. Examining the utility of river restoration approaches for flood 

mitigation and channel stability enhancement: a recent review. Environmental Earth 

Sciences 77:195. 

Morley, S. A., and J. R. Karr. 2002. Assessing and restoring the health of urban streams in the 

Puget Sound Basin. Conservation Biology 16:1498–1509. 

Nadeau, T.-L., D. Hicks, C. Trowbridge, N. Maness, R. Coulombe, and N. Czarnomski. 2018a. 

Stream Function Assessment Method for Oregon (SFAM, Version 1.0). Page 95. User 

Manual, Oregon Department of State Lands; U.S. Environmental Protection Agency, 

Region 10, Salem, OR; Seattle, WA. 

Nadeau, T.-L., C. Trowbridge, D. Hicks, and R. Coulombe. 2018b. A Scientific Rationale in 

Support of the Stream Function Assessment Method for Oregon (SFAM, Version 1.0). 



90 

 

 

Page 250. Oregon Department of State Lands; U.S. Environmental Protection Agency, 

Region 10, Salem, OR; Seattle, WA. 

National Oceanic and Atmospheric Administration. 2004. Nonpoint Source Pollution and 

Erosion Comparison Tool (N-SPECT) technical guide. Version 1.0 Release 1. 

Nichols, S. J., W. A. Robinson, and R. H. Norris. 2006. Sample variability influences on the 

precision of predictive bioassessment. Hydrobiologia 572:215–233. 

Nicholson, E., D. B. Lindenmayer, K. Frank, and H. P. Possingham. 2013. Testing the focal 

species approach to making conservation decisions for species persistence. Diversity and 

Distributions 19:530–540. 

Nigel, R., K. Chokmani, J. Novoa, A. N. Rousseau, and P. Dufour. 2013. Recommendations for 

riparian buffer widths based on field surveys of erosion processes on steep cultivated 

slopes. Canadian Water Resources Journal / Revue canadienne des ressources hydriques 

38:263–279. 

NOAA Fisheries West Coast Region. 2017. Puget Sound Chinook Recovery Plan :: NOAA 

Fisheries West Coast Region. 

http://www.westcoast.fisheries.noaa.gov/protected_species/salmon_steelhead/recovery_p

lanning_and_implementation/puget_sound/puget_sound_chinook_recovery_plan.html. 

O’Neal, J. S., P. Roni, B. Crawford, A. Ritchie, and S. Alice. 2016. Comparing stream 

restoration project effectiveness using a programmatic evaluation of salmonid habitat and 

fish response. North American Journal of Fisheries Management 36:681–703. 

Oregon State Legistlature. 1967. Oregon Removal-Fill Law. 

Palmer, M. A., K. L. Hondula, and B. J. Koch. 2014. Ecological restoration of streams and 

rivers: shifting strategies and shifting goals. Annual Review of Ecology, Evolution, and 

Systematics 45:247–269. 

Parr, T. B., C. S. Cronan, T. J. Danielson, L. Tsomides, and K. S. Simon. 2016. Aligning 

indicators of community composition and biogeochemical function in stream monitoring 

and ecological assessments. Ecological Indicators 60:970–979. 

Pater, D. E., S. A. Bryce, T. D. Thorson, J. Kagan, C. Chappell, J. M. Omernik, S. H. Azevedo, 

and A. J. Woods. 1998. Ecoregions of Western Washington and Oregon. 2-sided color 

poster with map, descriptive text, summary tables, and photographs, U.S. Geological 

Survey, Reston, VA. 

Paul, J. F., and W. R. Munns. 2011. Probability surveys, conditional probability, and ecological 

risk assessment. Environmental Toxicology and Chemistry 30:1488–1495. 

Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. 

Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee, and M. R. 

Cappaert. 2006. Environmental monitoring and assessment program- Surface waters, 

western pilot study, field operations manual for wadeable streams. U.S. Envirnomental 

Protection Agency, Washington, DC. 

Peck, D. V., J. M. Lazorchak, and D. J. Klemm. 2003. Environmental Monitoring and 

Assessment Program -Surface Waters: Western Pilot Study field operations manual for 

wadeable streams. Unpublished draft, U.S. Envirnomental Protection Agency, 

Washington, D.C. 



91 

 

 

Prichard, D., J. Anderson, C. Correll, J. Fogg, K. Gebhardt, R. Krapf, S. Leopnard, B. Mitchell, 

and J. Staats. 1998. A user guide to assessing Proper Functioning Condition under the 

supporting sciences for lotic areas. U.S. Department of Interior Bureau of Land 

Management, USDA Fish and Wildlife Service, and USDA Natural Resources 

Conservation Services, Denver, CO. 

Primpas, I., G. Tsirtsis, M. Karydis, and G. D. Kokkoris. 2010. Principal component analysis: 

Development of a multivariate index for assessing eutrophication according to the 

European water framework directive. Ecological Indicators 10:178–183. 

Puget Sound Regional Council. 2016. Regional Planning for a Sustainable Future. 

https://www.psrc.org/our-work/regional-planning. 

R Core Team. 2014a. R: Principal Components Analysis. 

http://127.0.0.1:17685/library/stats/html/prcomp.html. 

R Core Team. 2014b. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. 

R Core Team. 2014c. R: Shapiro-Wilk Normality Test. 

http://127.0.0.1:27139/library/stats/html/shapiro.test.html. 

R Core Team. 2014d. R: Bartlett Test of Homogeneity of Variances. 

http://127.0.0.1:27139/library/stats/html/bartlett.test.html. 

R Core Team. 2014e. R: Fligner-Killeen Test of Homogeneity of Variances. 

http://127.0.0.1:27139/library/stats/html/fligner.test.html. 

Railsback, S. F., M. Gard, B. C. Harvey, J. L. White, and J. K. H. Zimmerman. 2013. Contrast of 

degraded and restored stream habitat using an individual-based salmon model. North 

American Journal of Fisheries Management 33:384–399. 

Rempel, M., P. Adamus, and J. Kagan. 2009. Oregon Wetlands Explorer: an internet tool for 

ORWAP wetland assessment support and data archiving. Oregon State University 

Library and Institute for Natural Resources, Oregon State University, Corvallis, OR. 

Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day, and D. M. Rosenberg. 1997. The 

Reference Condition: A Comparison of Multimetric and Multivariate Approaches to 

Assess Water-Quality Impairment Using Benthic Macroinvertebrates. Journal of the 

North American Benthological Society 16:833–852. 

Rhea, L., T. Jarnagin, D. Hogan, J. V. Loperfido, and W. Shuster. 2015. Effects of urbanization 

and stormwater control measures on streamflows in the vicinity of Clarksburg, Maryland, 

USA. Hydrological Processes 29:4413–4426. 

Riipinen, M. P., J. Davy-Bowker, and M. Dobson. 2009. Comparison of structural and functional 

stream assessment methods to detect changes in riparian vegetation and water pH. 

Freshwater Biology 54:2127–2138. 

Roni, P., T. J. Beechie, R. E. Bilby, F. E. Leonetti, M. M. Pollock, and G. R. Pess. 2002. A 

review of stream restoration techniques and a hierarchical strategy for prioritizing 

restoration in Pacific Northwest watersheds. North American Journal of Fisheries 

Management 22:1–20. 

Rosburg, T. T., P. A. Nelson, and B. P. Bledsoe. 2017. Effects of urbanization on flow duration 

and stream flashiness: A case study of Puget Sound streams, Western Washington, USA. 

JAWRA Journal of the American Water Resources Association 53:493–507. 



92 

 

 

Russell, K. L., G. J. Vietz, and T. D. Fletcher. 2017. Global sediment yields from urban and 

urbanizing watersheds. Earth-Science Reviews 168:73–80. 

Schoolmaster, D. R., J. B. Grace, E. W. Schweiger, G. R. Guntenspergen, B. R. Mitchell, K. M. 

Miller, and A. M. Little. 2013. An algorithmic and information-theoretic approach to 

multimetric index construction. Ecological Indicators 26:14–23. 

Schueler, T. R., L. Fraley-McNeal, and K. Cappiella. 2009. Is impervious cover still important? 

Review of recent research. Journal of Hydrologic Engineering 14:309–315. 

Sickle, J. van. 2010. Correlated metrics yield multimetric indices with inferior performance. 

Transactions of the American Fisheries Society 139:1802–1817. 

Stanley, S., S. Grigsby, D. B. Booth, D. Hartley, R. Horner, T. Hruby, J. Thomas, P. Bissonnette, 

R. Fuerstenberg, J. Lee, P. Olson, and G. Wilhere. 2015a. Puget Sound Watershed 

Characterization Tool Volume 1 Appendix B: Assessing the water process in Puget 

Sound and Western Washington. Washington State Department of Ecology, Olympia, 

WA. 

Stanley, S., S. Grigsby, D. B. Booth, D. Hartley, R. Horner, T. Hruby, J. Thomas, P. Bissonnette, 

R. Fuerstenberg, J. Lee, P. Olson, and G. Wilhere. 2015b. Puget Sound Watershed 

Characterization Tool Volume 1 Appendix C: Assessing water quality. Washington State 

Department of Ecology, Olympia, WA. 

Stanley, S., S. Grigsby, D. Booth, D. Hartley, R. Horner, T. Hruby, J. Thomas, P. Bissonnette, R. 

Fuerstenberg, J. Lee, P. Olson, and G. Wilhere. 2015c. Puget Sound Watershed 

Characterization Tool Volume 1: The water resource assessments (water flow and water 

quality). Washington State Department of Ecology, Olympia, WA. 

Starr, R., W. Harman, and S. Davis. 2015. FINAL DRAFT Function-based rapid stream 

assessment methodology. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 

Annapolis, MD. 

Stevens, L., A. Jones, P. Stacey, D. Duff, C. Gourley, and J. C. Catlin. 2002. Riparian ecosystem 

evaluation: A review and test of BLM’s Proper Functioning Condition assessment 

guidelines. The National Riparian Service Team, US Department of the Interior. 

Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson, and R. H. Norris. 2006. Setting 

expectations for the ecological condition of streams: the concept of reference condition. 

Ecological Applications 16:1267–1276. 

Swanson, S., D. Kozlowski, R. Hall, D. Heggem, and J. Lin. 2017. Riparian proper functioning 

condition assessment to improve watershed management for water quality. Journal of 

Soil and Water Conservation 72:168–182. 

Sweeney, B. W., and J. D. Newbold. 2014. Streamside forest buffer width needed to protect 

stream water quality, habitat, and organisms: A literature review. JAWRA Journal of the 

American Water Resources Association 50:560–584. 

Tabacchi, E., L. Lambs, H. Guilloy, A.-M. Planty-Tabacchi, E. Muller, and H. Décamps. 2000. 

Impacts of riparian vegetation on hydrological processes. Hydrological Processes 

14:2959–2976. 

U.S. Army Corps of Engineers. 2008. Minimum monitoring requirements for compensatory 

mitigation projects involving the restoration, establishment and/or enhancement of 

aquatic resources. Regulatory Guidance Letter. 



93 

 

 

U.S. Army Corps of Engineers, Omaha District. 2013. Montana Stream Mitigaiton Procedure. 

U.S. Army Corps of Engineers. 

U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife 

Service, USDA-Natural Resources Conservation Service, Missouri Department of 

Natural Resources, Missouri Department of Conservation, and Missouri Department of 

Transportation. 2013. State of Missouri Stream Mitigation Method. U.S. Army Corps of 

Engineers. 

U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, USDA-Natural 

Resources Conservation Service, Iowa Department of Natural Resources, Iowa 

Department of Transportation, and U.S. Fish and Wildlife Service. 2017. State of Iowa 

Stream Mitigation Method. U.S. Army Corps of Engineers. 

U.S. Geological Survey, and U.S. Department of the Interior. 2016, May 11. StreamStats 

Version 3.0: WA. http://streamstatsags.cr.usgs.gov/v3_beta/viewer.htm?stabbr=WA. 

Vanderhoof, J., S. Stolnack, K. Rauscher, and K. Higgins. 2011. Lake 

Washington/Cedar/Sammamish watershed (WRIA 8) land cover change analysis. King 

County. 

Vietz, G. J., M. J. Sammonds, C. J. Walsh, T. D. Fletcher, I. D. Rutherfurd, and M. J. 

Stewardson. 2014. Ecologically relevant geomorphic attributes of streams are impaired 

by even low levels of watershed effective imperviousness. Geomorphology 206:67–78. 

Wahl, C. M., A. Neils, and D. Hooper. 2013. Impacts of land use at the catchment scale constrain 

the habitat benefits of stream riparian buffers. Freshwater Biology 58:2310–2324. 

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan. 

2005. The urban stream syndrome: current knowledge and the search for a cure. Journal 

of the North American Benthological Society 24:706–723. 

Ward, T. A., K. W. Tate, E. R. Atwill, D. F. Lile, D. L. Lancaster, N. McDougald, S. Barry, R. S. 

Ingram, H. A. George, W. Jensen, W. E. Frost, R. Phillips, G. G. Markegard, and S. 

Larson. 2003. A comparison of three visual assessments for riparian and stream health. 

Journal of Soil and Water Conservation 58:83–88. 

Warren, D. R., W. S. Keeton, P. M. Kiffney, M. J. Kaylor, H. A. Bechtold, and J. Magee. 2016. 

Changing forests—changing streams: riparian forest stand development and ecosystem 

function in temperate headwaters. Ecosphere 7:e01435. 

Washington Department of Ecology. 2013a. Getting Started. https://test-

fortress.wa.gov/ecy/coastalatlas/wc/GettingStarted.html. 

Washington Department of Ecology. 2013b. Watershed assessment - map. https://test-

fortress.wa.gov/ecy/coastalatlas/wc/LandingPage.html?disclaimer=false. 

Washington Department of Ecology. 2015. EIM STREAM Search. 

https://fortress.wa.gov/ecy/eimreporting/Stream/STREAMSearch.aspx?SearchType=Stre

am&State=newsearch&Section=all. 

Washington State. 2010. RCW 36.70A.110: Comprehensive plans—Urban growth areas. 

http://app.leg.wa.gov/RCW/default.aspx?cite=36.70A.110. 

Wilhere, G. F., T. Quinn, D. Gombert, J. Jacobson, and A. Weiss. 2013. The Puget Sound 

Watershed Characterization Project Volume 2: A coarse-scale assessment of the relative 

value of small drainage areas and marine shorelines for the conservation of fish and 



94 

 

 

wildlife habitats in Puget Sound basin. Washington Department of Fish and WIldlife, 

Habitat Program, Olympia, WA. 

Willamette Partnership. 2013. OR Stream Function Assessment Methodology User Guide, beta 

version. Protocol. 

Willamette Partnership. 2015. Oregon Stream Function Assessment Method_DRAFT calculator. 

Willamette Partnership, Portland, OR. 

Wissmar, R. C., R. K. Timm, and M. G. Logsdon. 2004. Effects of changing forest and 

impervious land covers on discharge characteristics of watersheds changes in forest 

impervious covers, and hydrology. Environmental Management 34:91–98. 

Yeung, A. C. Y., A. Lecerf, and J. S. Richardson. 2017. Assessing the long-term ecological 

effects of riparian management practices on headwater streams in a coastal temperate 

rainforest. Forest Ecology and Management 384:100–109. 

  



95 

 

 

APPENDIX A: WRIA 8 DESCRIPTIONS  

Table S1. Variable weighting of significant principal components (PCs) for landscape metrics of 

45 stream reaches in King County, WA. PC significance was determined using Kaiser’s 

Criterion (eigenvalue ≥ 1; Kaiser 1960). Bolded weightings indicate the driving metrics for the 

PC (weighting value ≥ 0.7*max weighting; Mardia 1979). 

 Weighting Metric definitions (copied from data for King County 

2015) Metric PC1 PC2 

Elev_mean_ft 0.290 0.085 Mean elevation (ft) 

Pct_agriculture -0.191 -0.274 Percent agriculture - cultivated, and pasture/hay (%) 

Pct_barren -0.057 -0.287 Percent barren - bare land (bare earthen material with 

little to no vegetation) (%) 

PCT_EDGE -0.234 -0.149 Percent of land cover in watershed classified as 

forested 'edge'  (100 m perimeter of core areas) 

Pct_forest 0.301 -0.076 Percent forest - deciduous, evergreen and mixed (%) 

Pct_grassland -0.184 -0.321 Percent grasslands - grassland (naturally occurring 

grasses and non-grasses (forbs) that are not regularly 

cultivated) (%) 

Pct_imp -0.273 0.186 Percent developed impervious surface (%) 

PCT_LG_CORE -0.024 -0.386 Percent of land cover in watershed classified as 

forested 'large core' (100 m from the nearest non-

forest pixel). Large core patches have an area greater 

than 500 acres 

PCT_MED_CORE 0.249 -0.099 Percent of land cover in watershed classified as 

forested 'medium core' (100m from the nearest non-

forest pixel). Medium core patches have an area 

between 250-500 acres 

PCT_PATCH 0.021 -0.304 Percent of land cover in watershed classified as 

forested 'patch.' Patch pixels are small forested areas 

that do not contain any core pixels 

PCT_PERF 0.015 -0.234 Percent of land cover in watershed classified as 

forested 'perforated.' Perforated pixels define the 

boundary between core forest and relatively small 

clearings inside forested land cover, or pixels along 

the inside edges of small non-forested gaps in 

forested land cover 

Pct_shrub 0.056 -0.385 Percent shrub - scrub/shrub (areas dominated by 

woody vegetation less than 5 m in height) (%) 

Pct_slope_mean 0.264 0.031 Mean percent watershed slope (%) 

PCT_SM_CORE 0.290 0.107 Percent of land cover in watershed classified as 

forested 'small core' (100m from the nearest non-
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 Weighting Metric definitions (copied from data for King County 

2015) Metric PC1 PC2 

forest pixel). Small core patches have an area less 

than 250 acres 

Pct_urban -0.284 0.160 Percent urban - high intensity, medium intensity, low 

intensity, and open space developed (%) 

Pct_wetland -0.132 -0.211 Percent wetland - palustrine forested, scrub/shrub, 

emergent wetlands (%) 

Pop_dens_persqkm -0.253 0.217 Population density derived from 2010 census  

(#/km2) 

Precip_mean_mm 0.298 0.033 Mean precipitation (mm), 1981-2010 

Rd_dens_persqkm -0.282 0.139 Road density derived from USGS National Map 

transportation data layer (km/km2) 

Rd_xings_perkm 0.042 -0.069 Number of road/stream crossings per kilometer of 

stream in the reporting unit (count) 

Stream_dens_persqkm 0.265 0.013 Stream density derived from 1:24,000-scale National 

Hydrography Data set (km/km2) 

WA_ha 0.019 -0.247 Watershed area (ha ) 

Proportion of variance 0.477 0.222  
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APPENDIX B: METRIC DEFINITIONS 

Table S2. Metrics used to calculate function and value scores for stream functions in the Stream 

Function Assessment Methodology (SFAM) (Willamette Partnership 2013). Metrics obtained 

through office work are italicized, metrics obtained in the field have normal font. 

Specific functions Function metrics Value metrics 

Hydrology functions 

Surface Water Storage Overbank flow, channel 

entrenchment, floodplain 

exclusion, beaver activity, side 

channels 

Impervious area, downstream 

flooding and floodplain presence 

Sub/Surface Water 

Transfer 

Overbank flow, channel 

entrenchment, floodplain 

exclusion, beaver activity, side 

channels, channel flow pattern, 

floodplain dominant vegetation 

Aquifer and soil permeability 

Flow Variation Overbank flow, channel 

entrenchment, RB Flashiness 

Index,  channel flow pattern, 

channel bank stability, channel 

bed variability 

Impervious area, downstream 

flooding and floodplain presence, 

withdrawals and  impoundments, 

proximity to natural areas 

Geomorphology functions 

Sediment Continuity Overbank flow, channel 

entrenchment, vegetation on 

bars, bank armoring, channel 

bank stability 

Impervious area, up- and 

downstream impoundments, land 

use, erodibility, 303(d) sediment 

listing 

Sediment Mobility Channel entrenchment, bank 

armoring, channel bank stability, 

channel bed variability, channel 

constraints 

Impervious area, upstream 

impoundments, bank armoring, 

land use, erodibility, withdrawals 

Biology functions  

Maintain Biodiversity Overbank flow, channel 

entrenchment, floodplain 

exclusion, channel bed 

variability, large woody debris, 

vegetation on bars, beaver 

activity, noxious weeds, native 

woody vegetation, mature tree, 

conifers, in-stream habitat 

complexity, non-native aquatic 

species, side channels, BIBI 

Priority watershed status, 

impervious area, unique habitat 

features, rare species, waterbird 

habitat, fish passage barriers, 

proximity to natural areas 
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Specific functions Function metrics Value metrics 

Create and Maintain 

Habitat 

Channel entrenchment, 

floodplain exclusion, channel 

bed variability, large woody 

debris, vegetation on bars, 

beaver activity, noxious weeds, 

native woody vegetation, mature 

tree, conifers, in-stream habitat 

complexity, fish passage 

barriers, side channels 

Impervious area, impoundments, 

proximity to natural areas, 

unique habitat features, upstream 

and downstream fish passage 

barriers, upstream intact riparian 

area, upstream riparian 

connectivity, floodplain exclusion 

Sustain Trophic 

Structure 

Overbank flow, channel 

entrenchment, floodplain 

exclusion, riparian buffer, beaver 

activity, non-native aquatic 

species, BIBI, canopy cover 

Proximity to natural areas, 

upstream intact riparian area, 

upstream riparian connectivity, 

303(d) nutrient and temperature 

listings, temperature exceedance, 

floodplain exclusion 

Water quality functions 

Nutrient Cycling Overbank flow, channel 

entrenchment, floodplain 

exclusion, beaver activity, 

riparian buffer, BIBI, floodplain 

dominant vegetation 

Land use, 303(d) nutrient and 

sediment listings, upstream intact 

riparian area, upstream riparian 

connectivity, floodplain 

exclusion, overbank flow, 

riparian buffer, proximity to 

natural areas 

Chemical Regulation Channel entrenchment, 

floodplain exclusion, beaver 

activity, riparian buffer, side 

channels, channel bed 

variability, soil permeability 

Impervious area, 303(d) toxic 

listing, upstream intact riparian 

area, upstream riparian 

connectivity, floodplain 

exclusion, overbank flow, 

riparian buffer, proximity to 

natural areas 

Thermal Regulation Canopy cover, temperature 

exceedance, channel flow 

pattern, BIBI 

303(d) temperature listing, 

temperature exceedance, 

proximity to natural areas, 

upstream intact riparian area, 

upstream riparian connectivity, 

canopy cover 
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Table S3. Definitions of metrics used in this study from King County’s Water Resource 

Inventory Area 8 Status & Trends Monitoring Program (S&T) (copied from data for King 

County 2015). 

Metric name Definition 

Habitat metrics  

BFWidth_BFDepth Bankfull width:depth ratio 

D50 Median particle diameter (mm), from size class estimates 

LWDSiteVolume100m Volume of LWD standardized per 100m of site reach (m3/100 m) 

PCT.Cobble Percentage of substrate classified as 'cobble' (>64-250 mm) 

PCT.Fines Percentage of substrate classified as 'fine' (silt, clay, non-gritty) 

PWP All Proximity weighted presence metric, all disturbance classes 

combined 

RBS Relative bed stability (Kaufmann, P.R., J. Faustini, D.P. Larsen, 

and M. Shirazi. 2008. A roughness-corrected index of relative bed 

stability for regional stream surveys. Geomorphology 99:150-170.) 

ResPoolArea100 Vertical residual pool area, standardized m2 per 100 m of site 

reach 

X DensioBank Reach average, densiometer readings at channel center 

X Embed Reach average, substrate embeddedness 

X.BFDepth Reach average, bankfull depth (cm) 

X.BFWidth Reach average, bankfull width (m) 

X.TWDepth Reach average, thalweg depth (cm) 

Temperature metrics  

7DMax Maximum (July-August) 7-Day moving average of the daily 

maximum temperature 

Hydrology metrics  

30-day summer low flow Centered 30-day moving average of the summer (Jul-Oct) 

minimum flow 

7-day summer minimum 

flow 

Centered 7-day moving average of summer (Jul-Oct) minimum 

flow 

Flow Reversals The number of times that the flow rate changed from an increase to 

a decrease or vice versa during a water year. Flow changes of less 

than 2 percent are not considered 

High Pulse Count Number of times each water year that discrete high flow pulses 

occur 

High Pulse Duration Annual average duration of high flow pulses during a water year 

High Pulse Range Range in days between the start of the first high flow pulse and the 

end of the last high flow pulse during a water year 
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Metric name Definition 

Low Pulse Count Number of times each calendar year that discrete low flow pulses 

occurred 

Low Pulse Duration Annual average duration of low flow pulses during a calendar year 

R-B Index Richards-Baker Flashiness Index - A dimensionless index of flow 

oscillations relative to total flow based on daily average discharge 

measured during a water year 
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Table S4. Model variables used in calculating Washington State Department of Ecology Puget Sound Watershed Characterization 

Tool (PSC) scores (copied from data for Wilhere et al. 2013, Stanley et al. 2015a, 2015b). 

Model variable Metric Metric notes 

Water flow importance 

P- Precipitation Average yearly amount of precipitation per unit area that 

falls within an analysis unit 

 

RS- Snow  rain-on-

snow area 

Percent area of rain-on-Snow + Snow Dominated area, per 

area of the analysis unit 

 

WLS- Depressional 

wetlands and lakes 

Percent of depressional wetland area per area of the analysis 

unit + Percent of lake area per area of the analysis unit 

 

STS- Unconfined & 

moderately confined 

floodplains 

Miles of stream in unconfined floodplain in analysis unit/mi2 

per area of analysis unit *(3) + Miles of stream in modified 

confined floodplain in analysis unit/mi2 per area of analysis 

unit *(2) 

The 3 and 2 are importance factors used to 

weight the relative degree of surface 

storage capacity in the assessment unit 

I_R- High 

permeability deposits 

Recharge for coarse grained deposits and recharge for fine 

grained deposits per area in analysis unit 

Recharge is calculated by regression 

equations of water budget components 

from the Hydrogeologic Framework for 

Puget Sound (Vacarro, 1998): equation 6 

for coarse-grained deposits and equation 3 

for fine-grained deposits. 

I_DI- High 

permeability 

floodplains & slope 

wetlands 

Miles of streams & rivers in permeable deposits of 

unconfined floodplains per area of the analysis unit + Percent 

area of potential slope wetlands per area of analysis unit 

 

Water flow degradation 

IMP- Impervious 

Cover 

Percent of impervious area per area of analysis unit 
 

FL- Forest Loss Percent of non-forest vegetation area per area of analysis unit 
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Model variable Metric Metric notes 

D_WS- Depressional 

wetland loss from 

urban & rural cover 

Area of wetlands lost in urban area per area of analysis unit 

*(3) + Area of wetlands lost in agricultural and rural area per 

area of analysis unit * (2) 

The 3 and 2 are importance factors used to 

weight the relative degree of surface 

storage capacity in the assessment 

D_STS- Loss of 

floodplains 

Miles of channelized stream in unconfined floodplain per 

area of analysis unit * (3) + Miles of channelized stream in 

moderately confined floodplain per area of analysis unit * (2) 

The 3 and 2 are importance factors used to 

weight the relative degree of surface 

storage capacity in the assessment 

D_R- Loss of 

recharge from urban 

land cover 

Total recharge * recharge coefficient ([area of land use cover 

type*recharge coefficient] per area of analysis unit) 

The land cover types are from the Coastal 

Change Analysis Program (C-CAP) with 

reduction coefficients based on percent 

impervious (high intensity (80-100% 

impervious)=0.9; medium intensity (51-

79% impervious)=0.7; low intensity (20-

50% impervious)=0.35) 

D_DI- loss of 

discharge from 

floodplains, slope 

wetlands, & 

impactions from 

roads & wells 

-    Road density (miles of roads per area of analysis unit) The 3 and 2 are importance factors used to 

weight the relative degree of surface 

storage capacity in the assessment 
-    Well density (density of class A and class B wells per 

area of analysis unit) 

-    Floodplain discharge loss (miles of urban unconfined 

streams in higher permeability deposits per area of analysis 

unit * (3) + miles of rural unconfined streams in higher 

permeability deposits per area of analysis unit * (2)) 

-    slope wetland discharge degradation (area of slope 

wetlands within urban land use per area of analysis unit * (3) 

+ area of slope wetlands within rural land use per area of 

analysis unit * (2)) 

IMP- Impervious 

Cover 

Percent acres of impervious cover per area of analysis unit 
 

Water quality export potential 
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Model variable Metric Metric notes 

S_SO- Source Surface erosion (rainfall erosivity, soil erodibility, average 

slope) + Mass wasting (landslide hazard, aquatic system 

density) + Channel erosion (erodible streams, average slope) 

Sediment 

S-SI- Sink Surface storage (from Water Flow) Sediment 

P_SO- Source S_SO + Phosphorous enrichment (if local data; rock and soil 

phosphorous content) 

Phosphorus 

P_SI- Sink Surface storage (from Water Flow) + Soil clay content Phosphorus 

M_SO- Source *Not significant Metals 

M_SI- Sink Surface storage (from Water Flow) + Soil cation exchange 

capacity 

Metals 

N_SO- Source *Not significant Nitrogen 

N_SI- Sink Surface storage (from Water Flow) + Riparian denitrification 

(unconfined floodplains in hydric soils) 

Nitrogen 

Aquatic ecological integrity 
 

Aquatic ecological 

integrity 

Hydrogeomorphic features (wetland density, undeveloped 

floodplain density) 

 

Assessment unit habitats (salmonid habitats [habitat amount, 

habitat quality {ecological integrity from upstream and local 

conditions} and IP models], combined with species presence 

and stock status) 

 

Accumulative downstream habitats 
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APPENDIX C: SFAM DESCRIPTION 

Every version of SFAM generates scores from data collected in the field and gleaned 

through office work. Fieldwork primarily involves observing, measuring, and estimating stream 

physical and biological characteristics within a pre-defined assessment area (Table S2, Figures 

S1 & S2). The office component entails compiling watershed-scale contextual data (Table S2) 

and entering data into the SFAM calculator Excel spreadsheet. The SFAM office metrics include 

data from a variety of buffer sizes ranging from 61 m to 3.2 km radius (area = 1.3 to 3,265 ha) 

around the assessment site, plus data from the entire watershed. The SFAM calculator creates 

multimetric function28 (Figure S3) and value29 scores (Figure S4) by integrating field and office 

metrics (Table S2) (Willamette Partnership 2013). In general, the calculator bins metric data into 

pre-determined categories, assigning each data category a percentage score between zero and 

100; more desirable characteristics generally receive higher scores. The calculator groups the 

raw measure scores into subscores for the different stream functions, usually by averaging a pre-

determined set of 2-14 metric scores and then scaling the resulting score to be between zero and 

ten (Willamette Partnership 2013). Several metrics contribute to more than one subscore (e.g., 

percent impervious in Figure S4). The calculator also determines the relevancy of sub-scores at 

the site by adjusting the original sub-score based on the presence or absence of specific stream 

characteristics that have a large impact on functioning (e.g., ecoregion).   

                                                 

28 Function scores aim to represent reach-scale processes (Willamette Partnership 2013). 
29 Value scores aim to capture the importance of that reach to broader watershed-scale benefits (Willamette 

Partnership 2013). 
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Figure S1. Schematic of the pre-defined assessment areas for SFAM fieldwork from the Draft 

SFAM Desk Guide (Czarnomski et al. 2015). ACW is the active channel width30. PA is the 

project area, which extends the length of the direct impact of a project. PAA is the proximal 

assessment area. EAA is the extended project area. OHW is the ordinary high water mark.  

                                                 

30 “The active channel is the portion of the channel that is lower than bankfull and commonly wetted during and 

above winter and spring base flows… the ACW can be identified by a break in bank slope or the ‘line’ on each 

stream bank below which perennial vegetation does not grow and above which it persists” (Czarnomski et al. 2015). 
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Figure S2. A portion of the SFAM field data entry form including field instructions for data collection.   
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Figure S3. The progression of function calculations in the SFAM spreadsheet following the 

measure for overbank flow (OBFlow) from data entry, to function subscore calculation, to final 

function score calculation. Metric definitions are in Table S2. The PAA, or Proximal Assessment 

Area, covers the length of the project area with a lateral boundary extending 2x the active 

channel width or 50 ft, whichever is greater, parallel to the channel edge. The EAA, or Extended 

Assessment Area, includes the PAA and further extends a distance equal to 5x the active channel 

width both up- and downstream of the PAA (Czarnomski et al. 2015).  
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Figure S4. The progression of value calculations in the SFAM spreadsheet following the measure 

for impervious area (ImpArea) from data entry, to function subscore calculation, to final value 

score calculation. Metric definitions are in Table S2. The PA, or Project Area, is the area in or 

along the stream that will be directly impacted by the project. The PAA, or Proximal Assessment 

Area, covers the length of the project area with a lateral boundary extending 2x the active 

channel width or 50 ft, whichever is greater, parallel to the channel edge (Czarnomski et al. 

2015).  
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APPENDIX D: COMPARISON OF SFAM DATA SETS 

 
Figure S5. Comparison of SFAM function scores across three variations of data input. Matched 

data only included data from sources available to all reaches with GIS-determined presence of 

floodplains. All data included all available data for each stream reach, with either GIS-

determined or field-determined presence of floodplains. The diagonal line in each panel is a 1:1 

line, which indicates that the scores were mostly identical among data input variations. 
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Figure S6. Comparison of SFAM value scores across three variations of data input. Matched data 

only included data from sources available to all reaches with GIS-determined presence of 

floodplains. All data included all available data for each stream reach, with either GIS-

determined or field-determined presence of floodplains. The diagonal line in each panel is a 1:1 

line, which indicates that the scores were mostly identical among data input variations. 
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Figure S7. Comparison of SFAM function scores against SFAM function scores with context 

data across 34 stream reaches in Water Resource Inventory Area 8. The context scores were a 

new addition in the fall 2015 update of the SFAM calculator. The diagonal line in each panel is 

1:1 line, which indicates that the scores were similar (panels a & c) to mostly identical (panels b 

& d) between the original function scores and the function scores with context. 
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APPENDIX E: PRINCIPAL COMPONENT WEIGHTINGS FOR CORRELATIONS 

PCAs for assessment of SFAM function scores 

Table S5. Hydrology metrics from King County Status & Trends Monitoring Program for 

comparison with SFAM hydrology function scores. Variable weighting of significant principal 

components (PCs) for 14 stream reaches in King County, WA. PC significance was determined 

using Kaiser’s Criterion (Kaiser 1960). Bolded weightings indicate the driving metrics for the PC 

using the guidelines established by Mardia (1979) (weighting value ≥ 0.7*max weighting). 

Metric definitions are in Table S3. 

 Weightings 

Metric PC1 PC2 

X30.day.summer.low.flow -0.188 0.638 

X7.day.summer.minimum.flow -0.185 0.642 

Flow.Reversals 0.346 0.010 

High.Pulse.Count 0.376 0.198 

High.Pulse.Duration -0.364 -0.282 

High.Pulse.Range 0.277 0.233 

Low.Pulse.Count 0.408 -0.076 

Low.Pulse.Duration -0.373 -0.026 

RB.Index 0.393 0.039 

Cumulative variance 0.600 0.814 
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Table S6. Geomorphology metrics from King County Status & Trends Monitoring Program for 

comparison with SFAM geomorphology function scores. Variable weighting of significant 

principal components (PCs) for 34 stream reaches in King County, WA. Notation as in Table S5. 

Metric definitions are in Table S3. 

 Weightings 

Metric PC1 PC2 PC3 PC4 

BFWidth_BFDepth 0.052 0.310 -0.448 -0.526 

D50 -0.288 0.341 -0.113 0.316 

PCT.Cobble -0.325 0.335 -0.028 0.148 

PCT.Fines 0.217 -0.420 -0.282 -0.094 

PWP.All 0.150 0.026 0.725 0.001 

RBS -0.055 0.207 0.360 -0.709 

ResPoolArea100 0.439 0.158 0.076 0.092 

X.BFDepth 0.396 0.279 0.008 0.202 

X.BFWidth 0.339 0.383 -0.197 -0.071 

X.Embed 0.303 -0.390 -0.081 -0.075 

X.TWDepth 0.424 0.231 0.020 0.175 

Cumulative variance 0.403 0.662 0.786 0.885 
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Table S7. Revised selection of geomorphology metrics from King County Status & Trends 

Monitoring Program for comparison with SFAM geomorphology function scores. Variable 

weighting of significant principal components (PCs) for 34 stream reaches in King County, WA. 

Notation as in Table S5. Metric definitions are in Table S3. 

 Weightings 

Metric PC1 PC2 

LWDSiteVolume100m -0.591 -0.362 

PWP.All 0.503 0.483 

X.DensioBank -0.344 0.675 

X.Embed 0.528 -0.425 

Cumulative Proportion 0.423 0.713 
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Table S8. Combined SFAM function outputs. Variable weighting of significant principal 

components (PCs) for 34 stream reaches in King County, WA. Notation as in Table S5. Metric 

definitions are in Table S2. 

 Weightings 

Metric PC1 PC2 

Hydrology function 0.340 0.728 

Geomorphology function 0.545 -0.348 

Biology function 0.514 -0.485 

Water quality function 0.569 0.337 

Cumulative variance 0.446 0.738 

 

  



116 

 

 

Table S9. Combined SFAM outputs for comparison to the subset of stream reaches with flow 

gauges. Variable weighting of significant principal components (PCs) for 14 stream reaches with 

stream gauges in King County, WA. Notation as in Table S5. Metric definitions are in Table S2. 

 Weightings 

Metrics PC1 PC2 

Hydrology function 0.082 0.632 

Geomorphology function 0.527 -0.446 

Biology function 0.724 -0.122 

Water quality function 0.437 0.622 

Cumulative variance 0.366 0.665 
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Table S10. Combined metrics from King County Status & Trends Monitoring Program for 

comparison with the SFAM. Variable weighting of significant principal components (PCs) for 34 

stream reaches in King County, WA. Notation as in Table S5. Metric definitions are in Table S3. 

 Weightings 

Metric PC1 PC2 

X7DMax_Avg -0.510 -0.072 

X.DensioBank_Avg 0.243 0.688 

LWDSiteVolume100m_Avg 0.467 -0.094 

PWP.All_Avg -0.464 0.347 

X.Embed_Avg -0.324 -0.477 

ST.BIBI_Avg 0.377 -0.406 

Cumulative variance 0.392 0.605 
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Table S11. Combined metrics from King County Status & Trends Monitoring Program from the 

subset of stream reaches with flow gauges for comparison with the SFAM. Variable weighting of 

significant principal components (PCs) for 14 stream reaches with stream gauges in King 

County, WA. Notation as in Table S5. Metric definitions are in Table S3. 

 Weightings 

Metric PC1 PC2 

X7DMax_Avg 0.375 0.037 

RB.Index_Avg 0.405 -0.401 

X.DensioBank_Avg -0.047 -0.714 

LWDSiteVolume100m_Avg -0.430 -0.039 

PWP.All_Avg 0.426 -0.014 

X.Embed_Avg 0.263 0.565 

ST.BIBI_Avg -0.507 0.087 

Cumulative variance 0.471 0.700 

 

  



119 

 

 

PCAs for assessment of SFAM value scores 

Table S12. Water quality metrics from WA. Dept. of Ecology Puget Sound Watershed 

Characterization Tool for comparison with SFAM water quality value scores. Variable weighting 

of significant principal components (PCs) for 34 stream reaches in King County, WA. PC 

significance was determined using Kaiser’s Criterion (Kaiser 1960). Bolded weightings indicate 

the driving metrics for the PC using the guidelines established by Mardia (1979) (weighting 

value ≥ 0.7*max weighting). Metric definitions are in Table S4. 

 Weightings 

Metric PC1 PC2 

MetalsExport.Av_zncuco 0.404 -0.380 

MetalsExport.Potential 0.230 0.496 

NitrogenExport.ntNco 0.459 -0.265 

NitrogenExport.Potential 0.396 0.152 

PhospohrousExport.ntPco 0.453 -0.288 

PhospohrousExport.Potential 0.362 0.286 

SedimentExport.nmusl 0.178 -0.021 

SedimentExport.Potential 0.221 0.593 

Cumulative variance 0.495 0.754 
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Table S13. Combined SFAM value outputs. Variable weighting of significant principal 

components (PCs) for 34 stream reaches in King County, WA. Notation as in Table S12. Metric 

definitions are Table S2. 

 Weightings 

Metric PC1 PC2 

Hydrology value 0.612 -0.230 

Geomorphology value 0.556 0.232 

Biology value 0.554 -0.142 

Water quality value 0.097 0.934 

Cumulative variance 0.481 0.745 
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Table S14. Combined metrics from Washington Department of Ecology Puget Sound Watershed 

Characterization Project for comparison with the SFAM. Variable weighting of significant 

principal components (PCs) for 34 stream reaches in King County, WA. Notation as in Table 

S12. Metric definitions are in Table S4. 

 Weightings 

Metric PC1 PC2 PC3 

WaterFlow.Importance 0.090 -0.435 0.457 

WaterFlow.Degradation 0.380 -0.233 -0.063 

AquaticEcologicalIntegrity.Score -0.383 0.022 0.100 

SedimentExport.Potential 0.089 0.529 0.220 

SedimentExport.nmusl 0.136 0.015 0.751 

PhospohrousExport.Potential 0.271 0.281 0.311 

PhospohrousExport.ntPco 0.415 -0.077 -0.090 

NitrogenExport.Potential 0.306 0.284 -0.110 

NitrogenExport.ntNco 0.415 -0.054 -0.088 

MetalsExport.Potential 0.086 0.527 -0.084 

MetalsExport.Av_zncuco 0.393 -0.171 -0.180 

Cumulative variance 0.488 0.739 0.834 
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APPENDIX F: REPEATED METRICS IN SFAM 

Table S15. Measures from the Cover Page of the SFAM calculator as well as the final SFAM functions and the specific functions to 

which the metrics contribute. Metric and subscore definitions are in Table S2. 

 SFAM functions and specific SFAM functions 

  Hydro F Geo F Bio F WQ F Hydro V Geo V Bio V WQ V 
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Elevation                               

Latitude                               

Longitude                               

StreamType                1  1            

AqPerm                 1              

SoilPerm                 1              

Gradient                               

Stream Order                               

Floodplain                               

Erode                    1 1         

Flow  1 1  1       1                

Ecoregion type                             1 

Q2 discharge                               

Basin area                               

Grain-size 

distribution 
                              

External data                               

History                                             
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Table S16. Measures from the Functions page of the SFAM calculator as well as the final SFAM functions and the specific functions 

to which the metrics contribute. Metric and subscore definitions are in Table S2. 

  SFAM functions and specific SFAM functions 

    Hydro F Geo F Bio F WQ F Hydro V Geo V Bio V WQ V 

# 
Measure 

name S
W

S
 

S
S

T
 

F
V

 

S
C

 

S
M

 

M
B

 

C
M

H
 

S
T

S
 

N
C

 

C
R

 

T
R
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W

S
 

S
S

T
 

F
V

 

S
C

 

S
M

 

M
B

 

C
M

H
 

S
T

S
 

N
C

 

C
R

 

T
R

 

F1 Exclusion 1        1               1 1 1 1   

F2 RB Index   1                           

F3 NNAquSpp        1                       

F4 SideChan 1 1      1 1                      

F5 BIBI            1 1 1                

F6 TempEx              1              1 

F7 Entrench 1    1                          

F8 Cover          1 1  1              1 

F9 InvWeed        1 1 1                    

F9 WoodyVeg        1 1 1                    

F9 MatTree        1 1                      

F9 Conifer        1 1 1                    

F10 DomVeg  1      1  1 1 1                  

F11 GeoSuc     1                          

F12 OBFlow 1 1        1 1 1              1 1   

F13 LatMigr     1                          

F14 RipBuff            1 1              1 1   

F15 Wood 1       1 1                      

F16 BarVeg      1  1                      

F17 Armor     1                1         

F18 BankStab     1                          

F19 BedVar 1 1 1  1 1 1   1 1                  

F20 Beaver 1 1         1                               

  



124 

 

 

Table S17. Measures from the Values page of the SFAM calculator as well as the final SFAM functions and the specific functions to 

which the metrics contribute. Percent impervious (ImpArea) was listed twice for the chemical regulation (CR) subscore in the water 

quality value score. Metric and subscore definitions are in Table S2. 

  SFAM functions and specific SFAM functions 

    Hydro F Geo F Bio F WQ F Hydro V Gro V Bio V WQ V 

# 
Measure 

name S
W

S
 

S
S

T
 

F
V

 

S
C

 

S
M

 

M
B

 

C
M

H
 

S
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S
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S
C
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C
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S
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S
 

N
C

 

C
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R

 

V1 Proximity                  1    1 1 1 1 1 1 

V2 DwnFP                1  1            

V3 DwnFld                1  1            

V4 ImpArea                1  1 1 1 1 1    2   

V5 Withdrwl                  1  1         

V5 Impound   1              1 1 1  1       

V6 LandUse                    1 1     1    

V7 PriorSt                       1        

V8 NonAFish                       1        

V8 RarInvert                       1        

V8 RarAmRep                       1        

V8 Waterbird                       1        

V8 RarBdMm                       1        

V8 RarPlant                       1        

V9 WBHab                       1        

V10 Passage                       1 1       

V11 RipArea                        1 1 1 1 1 

V12 RipCon                        1 1 1 1 1 

V13 SedList                    1       1    

V13 NutrImp                         1 1    

V13 ToxImp                            1   

V13 TempImp                         1   1 

V14 HabFeat                                 1 1         



125 

 

 

APPENDIX G: COMPARISON OF OPPORTUNITY AND SIGNIFICANCE SUBSCORES 

 

Figure S8. Correlations between SFAM opportunity and significance subscores within the four 

SFAM processes. Subscores could be between zero and five, and are then added together to 

create the final SFAM value score for each process. Opportunity aims to reflect the ability of the 

reach to provide a particular function, whereas significance aims to reflect the local importance 

of that function. 
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Figure S9. SFAM value scores against their contributing opportunity and significance subscores. 

Notation as in Figure S8.
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Figure S10. SFAM hydrology value scores and hydrology opportunity significance subscores against percent watershed impervious 

cover, Status & Trends Benthic Macroinvertebrate Index of Biotic Integrity (S&T B-IBI), and the Puget Sound Characterization water 

flow importance and degradation scores. Notation as in Figure S8. 

0
2

4
6

8
1

0

H
y
d

ro
lo

g
y
 v

a
lu

e a

tau = 0.519

p < 0.001

 

b tau = - 0.513

p < 0.001

 

c tau = 0.319

p = 0.0092

d

tau = 0.469

p = 0.0001

0
2

4
6

8
1

0

H
y
d

ro
lo

g
y
 o

p
p

o
rt

u
n

it
y

e

tau = 0.709

p < 0.001

All reaches

In UGA

Out UGA
 

f

tau = - 0.577

p < 0.001

Correlations

Significant

Potential

 

g tau = 0.185

p = 0.1465

h tau = 0.533

p < 0.001

0 10 20 30 40 50

0
2

4
6

8

H
y
d

ro
lo

g
y
 s

ig
n

if
ic

a
n

c
e

Percent impervious

i tau = 0.638

p < 0.001

20 40 60 80

 

j tau = - 0.68

p < 0.001

S&T B-IBI

0.0 0.2 0.4 0.6 0.8 1.0

 

PSC water flow importance

k tau = 0.101

p = 0.4188

0.0 0.2 0.4 0.6 0.8 1.0

l tau = 0.552

p < 0.001

PSC water flow degradation



128 

 

 

 

Figure S11. SFAM geomorphology value scores and geomorphology opportunity significance subscores against percent watershed 

impervious cover, Status & Trends Benthic Macroinvertebrate Index of Biotic Integrity (S&T B-IBI), and the Puget Sound 

Characterization sediment export potential and degradation scores. Notation as in Figure S8.
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Figure S12. SFAM biology value scores and biology opportunity significance subscores against 

percent watershed impervious cover, Status & Trends Benthic Macroinvertebrate Index of Biotic 

Integrity (S&T B-IBI), and the Puget Sound Characterization aquatic ecological integrity scores. 

Notation as in Figure S8. 
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Figure S13. SFAM water quality value scores and water quality opportunity significance subscores against percent watershed 

impervious cover, Status & Trends Benthic Macroinvertebrate Index of Biotic Integrity (S&T B-IBI), and significant principal 

components created from the Puget Sound Characterization water quality export potential and degradation scores. Notation as in 

Figure S8. 
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