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ABSTRACT

The Neoglacial fluctuations of two of Mt. Baker's alpine glaciers 

were studied by tephrochronologic, dendrochronologic, and relative 

dating methods coupled with detailed geologic mapping. The earliest 

recognizable advance of the Deming Glacier occurred prior to deposition 

of Mazama tephra and after the Vashon Stade of Fraser Glaciation. The 

oldest recognizable Holocene advance of the Deming Glacier occurred 

>800 years B.P. and <6000 years B.P. Younger moraines of the Deming

Glacier date to the 16th, 17th, 18th(?), early 19th, late 19th, and 

20th centuries. The Neoglacial record for the Rainbow Glacier is 

poorly preserved due to modification by two historic rock-debris ava­

lanches, but the 20th century moraines of the Rainbow and Deming 

Glaciers disclose a close synchronism in their fluctuations. Glacier 

fluctuations on Mt. Baker during the past 500 years are broadly syn­

chronous with those of glacier fluctuations elsewhere in the Pacific 

Northwest.
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INTRODUCTION

The Deming and Rainbow Glaciers on Mt. Baker, Washington (Fig. 1), 

have experienced numerous expansions and recessions during the past few 

thousand years. Similar advances and retreats of alpine glaciers during 

the Holocene are recognized throughout western North America.

Early work by Matthes (1935, 1939, 1941, 1942, 1945) established 

the existence of a post-Wisconsin "Climatic Optimum" during the time 

which alpine glaciers were greatly reduced in size or disappeared 

altogether. Matthes hypothesized that several alpine readvances 

occurred in the 4000 years following the "Climatic Optimum" and refer­

red to the renewed glacier activity as the "Little Ice Age". Moss (1951) 

suggested the term Neoglaciation as an equivalent to the "Little Ice 

Age".

Neoglaciation was reviewed by Porter and Denton (1967) and they 

consider the boundary between the Hypsithermal interval and Neoglaci- 

tion as time-transgressive. Alpine glacier expansion in the Pacific 

Northwest during Neoglaciation, as suggested by Porter and Denton (1967), 

occurred during two intervals: (1) an early expansion between 2800-2600

years B.P., and (2) the most recent episode of glacier expansion which 

began approximately 800 years B.P. and ended in the mid-20th century.

In many areas the earlier advance is not as extensive as the more recent 

advance.

Evidence for at least two pre-Neoglaciation periods of alpine 

glacier expansion during the Holocene is present in the Pacific North­

west. The earlier period of advance occurred after the Fraser Glacia­

tion, but prior to deposition of Mazama tephra (Beget, 1980; Waitt
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et al., 1980). A younger expansion occurred about 5000 years B.P. 

(Mathews, 1951; Meier, 1964).

This investigation produced further information on the Holocene 

fluctuations of two glaciers on Mt. Baker, and thus provides a more 

complete understanding of Neoglaciation in the Cascade Range.
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Geologic Setting

Mt. Baker (3284 m) is located in the North Cascade Range 24 km 

south of the Canadian border and 53 km east of Bellingham, Washington 

(Fig. 1). The eruptive history of Mt. Baker was first described by 

Smith and Calkins (1904) and later by Coombs (1939), Misch (1952, 1966), 

and others. Mt. Baker is constructed on Jurassic and Cretaceous rocks 

of the Nooksack Group which are exposed in a window of the overthrust 

Shuksan Metamorphic Suite (Misch, 1966).

Mt. Baker is a Quaternary calc-alkaline stratovolcano characterized 

by pyroxene andesite flows. The present cone overlaps older volcanic 

rocks of an earlier eruptive center called the Black Buttes (Coombs, 

1939; Easterbrook and Rahm, 1971; Easterbrook, 1975a; McKeever, 1977). 

Two identical potassium-argon dates of 400,000 ± 100,000 years B.P. were 

obtained from Black Butte flows (Easterbrook and Rahm, 1971).

Postglacial eruptive deposits, numerous postglacial mudflows and 

debris flows (Hyde and Crandell, 1978), and Holocene moraines (Burke, 

1972; Easterbrook and Burke, 1971, 1972; Long, 1953, 1955) are exposed 

in the valleys and on the flanks of Mt. Baker. Mt. Baker shows ongoing 

thermal activity (Easterbrook, 1972a, 1980; Malone and Frank, 1975;

Frank ^ , 1978) and historic glacier fluctuations (Harrison, 1961a,

1961b, 1970; Bengston, 1951, 1956).

The volcano is almost entirely ice covered above 1880 m and the 

flanks have been highly dissected by alpine glaciers (Plate 1). Below 

timberline (1820 m) the densely forested flanks support Douglas Fir 

(Pseudotsuga), Western Hemlock (Tsuga Heterophylla), and Western Red 

Cedar (Thuja Plicata). Forest soils are typically incipient Spodsols



PLATE 1. Aerial view of Mt. Baker, Washington. 
(Photo by D, J. Easterbrook)
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(Inceptisols) (Birkeland, 1964; Bockhiem, 1972) developed beneath thick 

humic mats.

The present study includes the Deming Glacier in the Middle Fork

Nooksack Valley and the Rainbow Glacier in Avalanche Gorge (Fig. 1).

2The Deming Glacier is 4.5 km in area and 5.5 km in length with the

present terminus at 1180 m. The Rainbow Glacier is considerably smaller, 

1.9 km^ in area, 1.2 km in length, and terminates at 1200 m (Post et al., 

1971). Both glaciers are essentially ice aprons with valley tongues.

The upper limit of accumulation for the Rainbow Glacier is at 2290 m and 

3260 m for the Deming Glacier.

Previous Work

Late Pleistocene continental ice of the Vashon Stade of Fraser 

Glaciation inundated the North Cascade Range between 18,000 and 13,500 

years B.P. (Easterbrook, 1969, 1975b) and deposited erratics at elevations 

of 1700 m. Till deposited during the Vashon Stade blankets the flanks 

of Mt. Baker to 1550 m. The final event of the Fraser Glaciation, the 

Sumas Stade, was characterized by an advance of continental ice which 

terminated just south of the international border (Easterbrook, 1963,

1966). The Sumas readvance has been dated between 11,400-10,000 radio­

carbon years B.P. (Armstrong, 1965, 1977; Easterbrook, 1966).

Late Pleistocene and Holocene deposition on Mt. Baker includes many 

debris and rock avalanches, and mudflows, which are confined to the 

valleys flanking the mountain. Two or more major mudflows have been 

described in the following valleys; Sulphur Creek Valley, Middle Fork 

Nooksack Valley, Park Creek Valley, and Avalanche Gorge (Hyde and Crandell, 

1978). Several mudflows, rock avalanches, a pyroclastic flow, and a lava
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flow are reported in the Boulder Valley (Burke, 1972, Hyde and Crandell, 

1978).

Six Holocene tephra layers are exposed in Mt. Baker stratigraphy, 

but their age, distribution, and provenance are imprecisely known 

(Easterbrook, 1975a; Hyde and Crandell, 1978). The oldest tephra con­

sists of grey-brown, fine sand (.25 mm) particles. Wood found in the 

tephra is dated at 10,350 ± 300 years B.P. (W-2972). A scoria layer 

directly overlies the older tephra. It is as much as 100 cm thick and 

contains some bombs 25 cm in diameter. The scoria is in turn overlain 

by a black, sand-size tephra. The scoria and black sand tephra are older 

than Mazama tephra and are thought to have their source from a cinder 

cone in Schriebers Meadow. Mazama tephra on Mt. Baker is bracketed 

between 6,630 ± 130 years B.P. (1-2917) and 5,965 ± 120 years B.P. 

(1-2916) which is slightly younger than the 6,600 year date obtained by 

Powers and Wilcox (1964) (Easterbrook, 1975a). A post-Mazama black 

tephra is exposed in several localities on Mt. Baker and is bracketed 

in age between 6,000-500 years B.P. The most recent tephra consists of 

hydrothermally altered rock fragments and is interpreted as ejecta 

erupted from Mt. Baker in the past 200 years (Easterbrook, 1975a; Hyde 

and Crandell, 1978). Burke (1972) reported three tephra layers in the 

Boulder Valley. Two of the tephra units predate Mazama tephra but their 

age and provenance are unknown.

Neoglacial moraines are exposed beyond the termini of all glaciers 

flanking Mt. Baker. The first investigation of Neoglacial activity on 

Mt. Baker was conducted by Long (1955) in Boulder Valley. Tree-ring 

counts by Long (1955) established dates of stable glacier regimes from 

forested moraines in the late 1700's A.D., 1850 A.D., and 1880 A.D.
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Burke (1972) and Easterbrook and Burke (1972) refined Long's earlier 

work and dated four moraines in the Boulder Valley to the 16th century 

or older, mid-19th, late 19th, and early 20th centuries. Neoglacial 

moraines preserved from advances of the Deming, Easton, and Coleman 

Glaciers were dated by Easterbrook and Burke (1971). Each glacier 

constructed a moraine prior to the 16th century. The Coleman Glacier 

has moraines dating to 1859 and 1903; the Easton Glacier has a moraine 

dating to 1920. All dates are from tree-ring counts.

Investigations of historic glacier fluctuations have been under­

taken on the Deming and Easton Glaciers (Long, 1953), Boulder Glacier 

(Long, 1955), and the Coleman Glacier (Bengston, 1951, 1956; Harrison, 

1961a, 1961b, 1970).

Recent studies on Mt, Baker have focused on the increased thermal 

activity (Easterbrook, 1975a, 1980; Frank et ^., 1978, Frank and 

Krimmel, 1980; Malone and Frank, 1975) and Holocene debris flow and 

eruptive activity (Easterbrook, 1975a; Hyde and Crandell, 1978).

Alpine glaciers in the Cascade Range and elsewhere in the Pacific 

Northwest have responded to climatic influences during the Neoglaciation 

in a broadly synchronous manner. Investigations dealing with fluctua­

tions of these glaciers are used for correlation with glaciers of this 

study.

Neoglacial moraines of Price Glacier on neighboring Mt. Shuksan, 

date to the pre-17th, early and late 19th, and 20th centuries (Leonard, 

1974). Three moraines in the Nooksack cirque on Mt. Shuksan date to 

the late 18th, early 19th, and early 20th centuries (R. Zasoski, personal 

communication). In the Dome Peak area of the North Cascade Range, the 

South Cascade, Le Conte, and Dana Glaciers reached Neoglacial maxima in
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the 16th century and subsequently constructed moraines in the 19th and 

20th centuries (Miller, 1969). The Chickaman Glacier reached a maximum 

downvalley position in the 13th century and deposited several moraines 

between the 16th and early 20th centuries (Miller, 1969). An early 

advance of the South Cascade Glacier about 4,900 years B.P. was reported 

by Meier (1964).

Maximum downvalley extent of alpine glaciers in the Mount Garibaldi 

area, British Columbia, occurred in the 16th century with subsequent 

moraines constructed in the 19th and 20th centuries (Mathews, 1951). An 

early Holocene moraine is also present and is dated at approximately 

5,300 years B.P. (Mathews, 1951; Barendsen ^ , 1957).

Alpine glacier fluctuations during Neoglaciation at Mt. Rainier 

were more diverse. Crandell and Miller (1964) subdivided Neoglacial 

deposits into two stades: the Burrows Mountain Stade, 3,500-2,000 years 

B.P., and the Garda Stade, between the 13th and mid-20th centuries.

Neoglacial maximum positions for different glaciers on Mt. Rainier vary 

considerably relative to Mt. Baker glaciers. The Nisqually Glacier 

reached its maximum stand in 1845 whereas the Winthrop Glacier reached 

its maximum position 3,500-2,000 years B.P.

Variations of the Blue, Hoh, and White Glaciers in the Olympic 

Mountains of Washington reveal an early expansion in the 13th century 

with less extensive moraines deposited in the 19th and 20th centuries 

(Heusser, 1957).

Purpose of Investigation

This study of the Deming and Rainbow Glaciers was designed to aid 

in the development of a Neoglacial chronology of Mt. Baker. The purposes 

of this investigation are: (1) to unravel the chronology of glacier
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fluctuations in Avalanche Gorge and the Middle Fork Nooksack Valley;

(2) to evaluate a variety of relative dating methods for use in inter­

preting the alpine glacial deposits on Mt. Baker; and (3) to correlate 

alpine glaciation on Mt. Baker with glaciation elsewhere in the Cascade 

Range.
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DATING METHODS

A variety of absolute and relative dating methods were used in 

this study. Absolute methods used were dendrochronology and tephro- 

chronology. Relative dating methods included 1ichenometry, soil 

development, rock weathering parameters, relative topographic posi­

tion of moraines, moraine morphology, and degree of post-depositional 

modification.

Absolute Dating

Absolute minimum ages for many of the glacial sediments were 

determined by dendrochronologic methods. Annual tree ring growth 

counts obtained from forested moraines or trees growing in front of 

glaciers provide minimum ages for these deposits (Bray and Struck,

1963; Fritts, 1965; Lawrence, 1950; Sigafoos and Hendrix, 1961, 1969, 

1972; Strok, 1963). Field techniques used in this study are those 

described by Sigafoos and Hendrix (1972). Cores from trees less than 

150 years of age were counted in the field; those from older trees 

were counted in the laboratory with the use of a binocular microscope. 

Radial sections were taken from trees less than five cm in diameter and 

counted in the field. A partial radial section was removed from an 

avalanche damaged tree and returned to the laboratory for analysis.

Only actual tree ages are presented in this report. Several 

factors restrict the dates to minimum ages for the deposits upon which 

they grow. These factors are discussed thoroughly by Sigafoos and
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Hendrix (1969). Despite limitations, dendrochronology has proved to 

be a reliable dating technique for moraines constructed in the past 

500 years.

Mazama tephra exposed in the Middle Fork Nooksack Valley and 

elsewhere on Mt. Baker (Burke, 1972; Easterbrook, 1975; Hyde and 

Crandell, 1978) provides an excellent time-stratigraphic marker for 

post-Hypsithermal deposition (Wilcox, 1965; Rigg and Gould, 1957).

Mazama tephra has been radiocarbon dated as approximately 6600 years 

B.P. (Powers and Wilcox, 1964) at Crater Lake, Oregon.

Relative Dating

Relative dating (RD) has produced excellent results in differen­

tiating glacial deposits of varying ages (Blackwelder, 1931; Birkeland 

ejt al., 1976, 1979; Birman, 1964; Sharp and Birman, 1963).

The application of lichenometry (Beschel, 1961, 1973; Benedict, 

1967, 1968; Denton and Karlen, 1973; Burbank, 1979) as a RD technique 

was restricted to use on moraines in Avalanche Gorge. Sampling tech­

niques were modified from Burbank (1979). Measurement of lichens was 

restricted to Rhizocarpon genera, a green crustose lichen. For a 

thorough discussion of the factors which limit the use of lichenometry 

to a relative dating method see Webber and Andrews (1973). Individual 

lichen thalli were measured across the shortest diameter to the nearest 

millimeter. A minimum of 100 lichens were measured at each sampling 

site. The minimum number of sampling sites, for a single moraine, was 

three.

Soil weathering profiles proved useful in the downvalley corre­

lation of buried moraines and as an indicator of relative age. The 

thicknesses of B^ weathering horizons were measured in excavated soil
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pits, stream bank exposures and exposures provided by blowdowns. Soil 

colors were named by comparison with a f^unsell soil color chart.

Time-dependent rock weathering properties (Porter, 1976; Scott, 

1977; Crandell and Miller, 1975) are extremely useful for determining 

relative ages. Weathering rinds to the nearest tenth of a millimeter 

were measured on andesite clasts. Birkeland ^ al_. (1979) report this 

technique to be applicable to deposits ranging in age from 10,000 to 

100,000 years B.P.

Field observations of the relative topographic position, morphology 

and degree of post-depositional modification of moraines were made in 

both valleys. The position of these moraines were mapped on aerial 

photographs at a scale of 1:15,000.
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STRATIGRAPHY

Middle Fork Nooksack Valley

A nearly complete record of Neoglacial activity is preserved in 

the Middle Fork Nooksack Valley (Fig. 2). Pre-Neoglacial Holocene 

deposits are exposed beyond the Neoglacial maxima of the Deming Glacier. 

Pre-Neoglacial stratigraphic units, from oldest to youngest, include:

(1) a till grading upward into a cross-laminated silt, (2) a diamicton

exhibiting debris-flow characteristics, (3) Mazama tephra, and (4) a 

clayey mudflow containing wood fragments about 6000 years old (Fig. 3).

Neoglacial moraines dated as the pre-13th, 16th, 17th, 18th(?), 

mid- and late 19th, and 20th centuries rib the valley walls between 

Ridley Creek and the present glacier terminus (Fig. 3). Two buried 

moraines are exposed on both valley walls. The younger buried moraine 

probably dates to the 18th century. The age of the older ice marginal 

deposit is problematic.

Lower-Valley Stratigraphy

The lower-valley sequence is exposed in a southwest cutbank of the 

Middle Fork Nooksack River 30 m upriver from the confluence of Ridley 

Creek (Fig. 4). The basal unit is a massive dark grey till, nine meters 

thick,grading upward into a cross-laminated silt bed. The till is well 

compacted and forms vertical exposures. Prolate, subangular andesite 

clasts show a lineation fabric. The long axes of the prolate clasts are 

inclined at approximately 25° plunging in the upstream direction. The 

clasts are surrounded by a grey sandy silt matrix. The fabric appears 

to be the result of shear generated by overriding ice. Gradation from 

till to silt occurs in 50 cm of vertical exposure. The thinly (5 mm)
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cross-laminated silt bed is light grey in color on fresh surfaces and 

locally contains isolated subrounded to rounded stones which do not 

exceed three cm in diameter. The silt bed thins laterally upriver and 

becomes interstratified with till. Downvalley the silt bed is 70 cm 

thick. The base of the till is covered with colluvium derived from an 

overlying diamicton (Plate 2).

The till is older than Mazama tephra and tentatively considered 

late Pleistocene or early Holocene in age. Till from a similar alpine 

advance is also exposed in the Boulder Valley (Burke, 1972; Easterbrook 

and Burke, 1972) and on the northeast flank of Park Butte (Easterbrook, 

1979, personal communication). Alpine till older than Mazama tephra on 

Mt. Baker may have been deposited during the final pulses of Fraser 

Glaciation, possibly an alpine equivalent to the Sumas Stade about 

10,000 years B.P. (Armstrong et ^., 1965; Easterbrook, 1963). Porter 

(1978) provided evidence for an alpine ice advance during the Sumas 

Stade in the Southern Cascade Range. Till on Mt. Baker may be younger 

than late Fraser. Beget (1980) and Waitt et aj_. (1980) recently pro­

vided evidence for an alpine ice advance in the North Cascades about 

8000 years B.P. Correlation of the pre-Neoglacial till on Mt. Baker to 

an advance of either 8,000 or 10,000 years B.P. is not possible at this 

time.

The silt bed probably was deposited in a pro-glacial lake formed 

by localized damming of the Middle Fork Nooksack River by a landslide 

as suggested by landslide deposits exposed 9 km downriver from the silt 

bed exposure.

The till unit is overlain by a two-meter thick boulder diamicton 

which consists predominantly of angular andesite cobbles and boulders;



Fi
gu

re
 4.

R
el

at
io

ns
hi

p o
f th

e y
ou

ng
er

 mu
df

lo
w

 to
 the

 16
th

 an
d 1

7t
h c

en
tu

ry
 mo

ra
in

es
.

Lo
ca

tio
n o

f M
az

am
a

as
h b

et
w

ee
n m

ud
flo

w
 an

d a
nd

 de
br

is
 flo

w
 de

po
si

ts
.



19

PLATE 2. Holocene stratigraphy in the Middle 
Fork Nooksack Valley. The exposure 
is approximately 18 m high.

PLATE 3. Youngest mudflow deposit in the
Nooksack drainage. The small tree 
is 1.5 m in height.



20

clasts more than 40 cm in diameter are common. Sparse well-rounded 

granitic cobbles within this deposit indicate fluvial reworking of older 

Fraser deposits. The grey-brown sandy matrix exhibits one cm-thick 

iron oxidation halos surrounding many of the clasts. Andesite clasts 

exhibit weathering rinds less than .5 mm in thickness. This diamicton 

is interpreted as a debris flow because of the large (>40 cm) clasts, 

occurrence of stream rounded cobbles (granitic) and it looks like debris 

flows elsewhere on Mt. Baker.

Four cm of bioturbated Mazama tephra underlain by a two cm peaty 

horizon overlies the diamicton (Hyde and Crandell, 1978). Exposure of 

the tephra is discontinuous. The color of the moist tephra is yellow- 

brown (lOYR 5/6) and dry color is brownish yellow (lOYR 6/6).

Glass shards in the tephra are equidimensional, less than 150 microns 

in size and stained by iron oxides. The glass is clear and contains 

abundant microlites of undetermined material and elongate vesicles with 

circular cross-sections. Refractive index of the glass is 1.501 ± .001. 

Sparce phenocrysts enclosed in glass include euhedral, lath-shaped, 

plagioclase less than 100 microns in length, and brown-green colored, 

anhedral, amphibole less than 50 microns in length. These data are con­

sistent with that obtained for Mazama tephra by Powers and Wilcox (1964). 

The relatively high refractive index of this tephra distinguishes it 

from other tephras with lower refractive indices on Mt. Baker.

Other minerals recognized, in order of decreasing abundance, are 

quartz, plagioclase, hypersthene, opaques, and microcline. Due to con­

tamination by bioturbation, minerals from the tephra and from the soil 

are intermixed. The tephra is in turn overlain by one m of clayey mud­

flow deposits. Wood obtained from this deposit, about 6.5 km downvalley.
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yielded a radiocarbon age of 5980 ± 250 years B.P. (W-2944, Hyde and 

Crandell, 1978). There are two mudflow deposits in the Middle Fork 

Nooksack drainage. The one just described is referred to as the older 

mudflow. The other mudflow deposit is referred to as the younger mud­

flow.

The younger mudflow forms a distinct terrace four m above the river 

channel. It overlaps the previously described units and contains blocks 

of andesite flow breccia, some of them five m in diameter, in a reddish 

sand matrix. The mudflow extends approximately six km downvalley from 

the present terminus of the Deming Glacier (Plate 3). The deposit 

overlies a 16th century moraine, but has been eroded by an advance in 

the 17th century (Fig. 4).

Upper-Valley Stratigraphy

An early Neoglacial moraine is found between two intermittent 

streams which drain the south wall of the valley 300 m upstream from 

the confluence of Ridley Creek (Fig. 4). The morainal morphology is 

subdued and indistinct. The great antiquity of the deposit is shown 

by the maturity of the forest growing on the moraine. Trees in excess 

of 450 years are rooted in completely decayed, downed trees of similar 

diameter. Living trees greater than 1.5 m in diameter are perched upon 

boulders three m in diameter. The boulders are imprisoned by the root 

systems of these trees which suggests that the original relief of the 

moraine has been greatly reduced (Fig. 5). Weathering profiles exposed 

by blowdowns exceed 1.3 m in thickness and are yellow in color (lOYR 7/6). 

Subangular andesite clasts are oxidized but no measurable weathering 

rinds were found. Exposed boulders are completely covered by lichens



Figure 5. Sketch depicting the amount of crest reduction due to 
erosion on the pre-13th century moraine. Middle Fork 
Nooksack Valley.

and mosses. No ash was found on this moraine.

This moraine, referred to as the pre-13th century moraine, is at 

least 800 years old, based on the relationship between the living and 

downed trees, and may be much older, possibly constructed by the Deming 

Glacier 2000 or more years ago. Evidence for this estimate is discussed 

in the section on results of dating methods.

Erosional remnants of a much younger Neoglacial moraine are exposed 

in two places: (1) on the southeast valley wall, upriver from the two

intermittent streams mentioned above, and (2) on the northwest valley 

wall above the present glacier terminus. The moraine is truncated
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downriver by an intermittent stream which parallels the moraine before 

joining the river. The confluence of the intermittent stream with the 

river is near the maximum downvalley extent of the moraine (Fig. 3).

The moraine merges upriver with a 17th century moraine.

This moraine is 200 m long and 70 cm high, supporting a first- 

generation forest approximately 450 years old. The crest is segmented 

on the northwest wall by landslides. Downed trees less than 1.5 m in 

diameter, in the early stage of decomposition, rest in approximately 

20 cm of forest duff in obvious contrast to the older forest beyond this 

moraine. A reddish brown (2.5YR 4/4) ^2 horizon is developed to 60 cm 

depth on the crest of the moraine. No exposures of the moraine are 

found in river cutbanks due to debris from the younger mudflow. The 

oldest tree cored on this moraine is 420 years old, suggesting that 

the moraine was constructed in the early 16th century.

The first well-preserved Neoglacial advance is marked by a lateral 

moraine with a slightly rounded crest. It can be traced along the 

south valley wall from above the glacier terminus to its intersection 

with the river and discontinuously along the north valley wall. The 

oldest tree cored began growing in the 1600‘s (17th century). Morainal 

deposits from this advance are exposed in river cutbanks 2.5 km down­

river from the present glacier terminus. The younger mudflow has been 

eroded by this advance (Fig. 4).

A deeply weathered paleosol approximately 1.5 m thick is exposed 

in a few places at the base of the 17th century moraine. Based on topo­

graphic relationships, thickness, and color (lOYR 6/6) this weathering 

profile may be correlative with the weathered surface exposed in the 

valley walls near the terminus of the Deming Glacier, The age of the
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weathered surface is uncertain and is discussed in the section on results 

of relative dating.

Several well-defined, sharp-crested moraines and associated trim­

lines are present upvalley from the 17th century moraine. Two of the 

moraines date to the early and late 19th century and six record stand­

stills during this century.

Buried logs are present in a six m cutbank exposure of the early 

19th century moraine (Fig. 3). The age of the logs prior to burial is 

estimated to be approximately 100 years based on the diameter of the 

largest log (60 cm). Lichen suitable for measurement were not found on 

this moraine. The oldest tree cored on this moraine is 142 years (1837). 

This moraine is one m high, 1.5 m wide, and the crest is only slightly 

rounded; the crest is weathered to a depth of 40 cm. This early 19th 

century moraine merges upvalley with the late 19th century moraine 

(1889). Together they form a double crested lateral moraine on the 

southeast valley wall above the present glacier terminus and are one m 

higher in elevation than the 17th century lateral moraine. Since the 

downvalley extent of the 17th century advance is greater than that of 

the 19th century, the difference in crest height (1 m) may reflect a 

minimum amount of crest reduction on the 17th century lateral moraine.

Distinctive trimlines accent the early 20th century moraines which 

are covered by dense thickets of alder and willow (Plate 4). The oldest 

trees cored on these moraines are 54, 32, 23, and 17 years respectively. 

Two recently constructed lateral moraines exposed on the southeast valley 

wall, 12 m below the 19th century lateral moraines, are devoid of vege­

tation. Thirty-five cm of silty clay is exposed in a creek cutbank 

between the moraines dated by tree rings at 54 and 32 years respectively.
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PLATE 4. Twentieth century moraines and
associated trimlines of the Deming 
Glacier.
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The sediment exhibits alternating beds of dark grey silt grading up­

wards into light grey clay which are about 1.5 cm thick. The deposit 

appears to be varved. Fifteen varve couplets were counted. The deposit 

is overlain by outwash sands and gravels. Deposition of the silty clay 

probably was in a small lake ponded behind a morainal dam (54 years) or 

ponded behind one of three landslides. Three unforested landslide 

scarps are present just downriver from the varved sediment exposure.

Lichen diameters were not measured on the 20th century moraines.

In June of 1927 a large ice and boulder avalanche was reported (Easton, 

1911) to have transported debris 9.5 km down the valley. Blocks from 

this event are strewn about these moraines, severely complicating 

1ichenometric measurements.

Hydrothermally altered sand and rock fragments rest on the oldest 

20th century moraine. Several rock fragments are 15 cm across and emit 

a strong sulphurous odor. Similar ejecta have been described elsewhere 

in the Mt. Baker area by Easterbrook (1975) and Hyde and Crandell (1978). 

The mode of deposition of this ejecta in the Middle Fork Nooksack Valley 

is duscussed in the section on dating methods.

In September of 1979 a small moraine, 45 cm high and 60 cm wide, 

was exposed 1.7 m beyond the terminus of the glacier. The moraine is 

composed of angular andesite boulders and minor sand matrix. This 

boulder-rich moraine was probably constructed during the 1979 ablation 

season by accumulation of supraglacial material derived from the Black 

Buttes. Evidence from aerial photographs and historical records (Long, 

1953) suggest that the Deming Glacier has been advancing since about 

1950.

Evidence for two buried moraines is exposed in both valley walls
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beneath the 19th century lateral moraines (Fig, 3, Plate 5). The older 

buried moraine exhibits a yellow oxidized (lOYR 7/6) weathering profile 

about 1.5 m thick and is exposed 3.5 m below the 19th century lateral 

moraines. A similar exposure is seen in the northwest wall of the 

Coleman-Roosevelt Glacier valley (Plate 6). The older buried moraine 

is apparently the result of a stillstand following construction of the 

pre-13th century moraine, and a lengthy period of recession, prior to 

readvance and deposition of the 16th century moraine. Evidence pre­

sented in the section on results of relative dating suggests that the 

pre-13th century moraine is correlative with the Burrows Mountain Stade 

of the Winthrop Glaciation at Mt. Rainier, 2000-3500 years B.P. There­

fore, the older buried moraine reflects a less advanced stand of the 

glacier between approximately 1000-2000 years ago.

Buried in situ tree stumps are exposed at the surface of a younger 

buried moraine which occurs one m above the older buried moraine. The 

bases of these trees were apparently buried in till and then sheared 

off by advancing ice. Abraded logs exposed in the early 19th century 

moraine, 1.5 km downvalley from the in situ stumps, suggests that the 

overrun moraine containing the stumps dates to the 18th century (Plate 

7). Wood from both exposures was collected for future radiocarbon dating. 

Sample collection localities are found in Appendix A.

Avalanche Gorge

The Neoglacial deposits of the Rainbow Glacier are modified by two 

historic rock-debris avalanches which date to the early 1860's and to 

1888. A remnant of a lateral moraine predates the 1860's avalanche 

deposits and may date to the 16th century. A prominent, sharp crested.
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PLATE 5. Buried moraines in the Middle Fork 
Nooksack stratigraphic sequence.

PLATE 6. Buried moraine in the valley of 
the Coleman-Roosevelt Glacier 
(photo by D. J. Easterbrook).
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PLATE 7. Buried logs exposed at the base of
the early-19th century moraine approxi­
mately 1.5 km downvalley from the 1979 
glacier terminus.
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early 20th century moraine postdates 1888 avalanche deposits and encloses

several 20th century recessional moraines (Fig. 6), the youngest of which

2in turn encloses 2000 m of ablation morainal deposits.

Lower-Valley Stratigraphy

The lower-valley stratigraphic sequence is exposed three km down- 

valley from the 1979 glacier terminus. A 15 m section is exposed on the 

north cutbank of Rainbow Creek. Mt. Baker andesite, exhibiting glacial 

striations, is overlain by a grey diamicton which resembles till.

Deposits of two historic rock-debris avalanches overlie the diamicton 

(Plate 8).

The rock-debris avalanche deposits were formed when a large mass 

of rock avalanched from Lava Divide (Fig. 1) onto the glacier. Depending 

upon the season, ice and snow may be incorporated in the mass movement.

The rock debris travels rapidly down the glacier and may cause some 

melting. When the mass reaches the glacier terminus, outwash and morainal 

sediments accompanied by meltwater are mobilized and incorporated in the 

moving mass. This chaotic assemblage of sediments continues downvalley, 

removing the forest in its path, and blankets the valley floor with 

debris to form hummocky topography. The resulting deposit varies con­

siderably along its downvalley extent in thickness, composition, and 

texture.

The underlying diamicton which is thought to be a till consists of 

unweathered clasts of Mt, Baker andesite. The clasts are subangular and 

less than 30 cm in diameter. The grey clayey silt matrix has no oxidation 

halos surrounding the clasts. The deposit is massive and well compacted 

in sharp contrast to the overlying rock-debris avalanche sediments which
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PLATE 8. Diamicton (till) exposed beneath 
rock-debris avalanche deposits in 
Avalanche Gorge. The exposure is 
approximately 15 m high.

PLATE 9. View upvalley of the same exposure 
in Plate 8. The morphology is sug­
gestive of a terminal moraine.
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show little compaction. Based upon the morphology of a six m high, 

subdued arcuate ridge on the valley floor, this till may be a buried 

end moraine (Plate 9). Extrapolating an approximate ice gradient up- 

valley to the present terminus locates the ice margin in the vicinity 

of the oldest preserved lateral moraine and supports this interpre­

tation.

Two rock-debris avalanches, which overlie the till, have been 

briefly described by Hyde and Crandell (1978). Trimlines from both mass 

movements can be readily identified on aerial photographs. The older 

rock-debris avalanche occurred in the mid-1860's (Easton, 1911) and is 

best exposed in creek cutbanks between Rainbow Lakes and the confluence 

of Rainbow and Swift Creeks. The oldest tree cored in the first 

generation forest growing on the deposit is 109 years. The five to 

seven year difference between the date of the avalanche and the oldest 

tree suggests that reforestation was rapid. Lichen thalli diameters 

were not measured on this deposit (see results of dating methods).

The younger rock-debris avalanche occurred in 1888. This date 

is based on a tree-ring count obtained from a partial radial section 

removed from an avalanche damaged tree. Deposits from this event are 

best exposed 4.5 km downvalley from the 1979 glacier terminus and extend 

past Rainbow Falls. The deposit is poorly sorted and contains some blocks 

greater than three m in diameter set in a sandy cobble matrix. The 

deposit occurs as a hummocky surfaced veneer, generally two m thick, 

mantling the valley floor. Between the glacier terminus and Rainbow 

Lakes this deposit looks like a debris flow. The oldest tree cored on 

the 1888 debris avalanche deposits is 79 years (1900). The slightly 

longer reforestation time of 12 years may be due to seed-source removal
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by the earlier rock-debris avalanche.

Although the longer reforestation time can be used as an argument 

favoring two separate events (first the 1888 rock-debris avalanche 

followed possibly 10 years later by a debris flow (1900)), the author 

favors the single event hypothesis. A rock-debris avalanche with a 

magnitude great enough to sweep past Rainbow Falls probably generated 

the less extensive debris flow-like deposit. The 1888 rock-debris 

avalanche appears to be a continuum of textures, composition, and thick­

ness. At the proximal end of the deposit it exhibits debris flow 

characteristics, at the distal end it is predominantly a boulder avalanche.

Upper-Valley Stratigraphy

A 400 m long remnant of a lateral moraine is located on the north 

valley wall 110 m above the 1979 glacier terminus (Fig. 6). Elsewhere, 

the moraine is covered by avalanche debris or has been eroded. The 

crest is severely eroded and is essentially a flat, one meter-wide 

mountain goat thoroughfare, with gently sloping sides. The moraine is 

composed of Mt. Baker andesite and lacks the large blocks of andesite 

flow breccia which are conmon in younger moraines. The morainal surface 

is devoid of vegetation and is deeply weathered to a yellow-grey 

(lOYR 4/6) color. Exposures in a small creek show that the weathering 

profile is 45 cm thick on the crest. The color of the fresh till is grey 

and the matrix lacks oxidation halos around the clasts. Lichen growing 

on andesite clasts on the moraine measure 36 mm in diameter. The rounded 

crest morphology, thick weathering profile, and topographic position 

attest to the moraine's relative antiquity. No trees are growing on this 

moraine. By extrapolating an approximate ice gradient from the remnant
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lateral moraine downvalley, the estimated location of the terminus of 

the glacier during construction of the lateral moraine is very near 

the till located three km downvalley from the present terminus. Posi­

tive correlation of the lateral moraine with the till is not possible, 

but highly suggestive. This moraine may date to the 16th or 17th 

century.

A prominent sharp-crested moraine occurs three m below the moraine 

just described. It can be traced discontinuously along both valley 

walls and across the valley floor. At its maximum downvalley extent, 

the moraine is three m high and is composed of large blocks of andesite 

flow-breccia (>1 m in diameter) reworked from earlier avalanche deposits, 

or transported as supraglacial debris to the terminus.

Cross-sections, exposed in two locations where the moraine is 

breached by streams, reveal a 15 cm light brown (lOYR 5/3) weathering 

profile. The oldest tree on the moraine began growing 53 years ago. 

Maximum thalli diameters of lichen measure 38 mm. This moraine was pro­

bably constructed about 1900 A.D.

Nested within the 1900 moraine is a rather complete record of the

glacier's activity since that time. Several short-lived standstill in

a rapid recession are preserved in three sinuous moraines which enclose 

2a 2000 m exposure of ablation moraine (Fig. 6). The three most pro­

minent recessional moraines do not exceed two m in height and are very 

fresh in appearance (Plate 10). Tree-ring counts and maximum lichen- 

thalli diameters for the three moraines are 36 years and 35 mm, 15 years

and 24 mm, and 9 years and 15 mm, respectively.

2A 2400 m rotational slump on the north side of the valley, active 

prior to 1947, overlies ablation moraine on the valley floor and cuts the



PLATE 10. Twentieth century moraines of 
the Rainbow Glacier.
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20th century moraines. Evidence from 1947 and 1972 aerial photographs 

indicate that the glacier has not advanced downvalley past the slump.

No trees are found grovn’ng on the slump-covered moraine. This indicates 

that reforestation of ablation moraine in Avalanche Gorge may take as 

long as 32 years.

Ablation moraine near the present terminus is ice cored. In August 

of 1979, clean ice of Rainbow Glacier was observed shearing over the 

stagnant, ice-cored morainal deposits and deposition of flow till was 

observed. A 32-year-old tree, growing on the north side of the valley, 

was being buried by till of this advance.
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RESULTS OF DATING METHODS 

Absolute Methods

Tephrochronology

Mazama tephra provides a time-stratigraphic marker for post- 

Hypsithermal deposition. In the Middle Fork Nooksack Valley Mazama 

tephra is overlain by a mudflow containing wood fragments which have 

yielded a radiocarbon age of 5,980 ± 250 years B.P. (W-2944) (Hyde 

and Crandell, 1978). No other tephra layers were found in the Nooksack 

drainage, and none were found in Avalanche Gorge. Mazama tephra in the 

Nooksack drainage was used to assign a maximum age to the first recog­

nizable Neoglacial advance. This tephra was also used to assign a minimum 

age to a post-Fraser till in the Nooksack River Valley.

Recent ejecta from Mt. Baker is restricted to the surface of the 

earliest 20th century moraine in the Middle Fork Nooksack Valley. This 

suggests that the altered rock was erupted from Sherman Crater onto the 

surface of the Deming Glacier prior to, or during construction of the 

early 20th century moraine and transported as supraglacial debris to the 

moraine. Particle size of the ejecta ranges from 15 cm to 2 mm, is 

hydrothermally altered and emits a strong sulfurous ordor. Similar 

material was not found in Avalanche Gorge. Hyde and Crandell (1978) 

report similar deposits elsewhere in the Mt. Baker area and consider 

them to represent ejecta from several eruptive events during the past 

200 years.

Dendrochronology

Absolute minimum ages for Neoglacial deposits were determined by 

dendrochronologic methods. Tree-core data for the different deposits
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are compiled in Appendix B. No attempt was made to develop a tree ring 

chronology.

Although evidence of Neoglacial fluctuations of Rainbow Glacier is 

not well preserved in morainal deposits, three separate reforestation 

times v/ere determined for Avalanche Gorge. Historical accounts of a 

large mass movement, which removed the forest from the terminus of 

Rainbow Glacier to the confluence of Rainbow and Swift Creeks, indicate 

that the event occurred about 1863 (Easton, 1911). The oldest tree cored 

on deposits of this avalanche is 109 years (1870). The seven-year 

difference in time between the age of the oldest tree and the age of the 

deposit suggest that reforestation was rapid.

A slightly longer reforestation time was determined for deposits 

from the younger rock-debris avalanche. The date of the event was 

determined by analyzing a partial radial section removed from a tree 

damaged by the avalanche. The bark had been scraped off on the canyon­

facing side and an angular clast was embedded in the bark-free surface 

3 m above the ground. By counting the annual tree rings, a date of 

1888 (91 years) was obtained for the time of bark removal. The oldest 

tree cored growing on the deposit was 79 years (1900).

A third minimum reforestation time was determined in the area of 

the rotational slump near the terminus of Rainbow Glacier. In this 

area the slump overlies ablation moraine on the valley floor. No trees 

are growing on the ablation moraine. The slump is present on a 1947 

aerial photograph. Therefore, reforestation of ablation moraine during 

this century exceeds 32 years. The longer reforestation time is primarily 

controlled by the time necessary for the stablization of the morainal 

surface. Due to the ice-cored nature of these deposits, stabilization
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of the moraine may take several decades.

In the area of the Middle Fork drainage, no control dates were 

found that could be used to establish reforestation times. Reforestation 

time for moraines deposited by the East Nooksack Glacier, Mt. Shuksan, 

is 25 years (Robert Zasoski, personal communication). Reforestation in 

the Middle Fork drainage is thought to be rapid, probably less than 10 

years, based on the available seed source from the surrounding forest.

Relative Dating

Lichenometry

The use of lichenometry as a relative dating (RD) technique was of 

limited use in the two glaciated valleys of this study. Several 

restricting factors became apparent during the course of the fieldwork.

As both glaciers terminate below timberline, reforestation is nearly 

synchronous with ice recession and deposit exposure. In this environ­

ment, lichens are rapidly crowded out by mosses or buried in forest 

litter.

On several of the moraines, only the largest boulders have exposed 

surfaces available to lichen colonization. Many of these large boulders 

are younger than the deposit, having been deposited later by one of the 

many rock, snow, or debris avalanches. In other instances, the boulders 

have been progressively weathered out of the moraine to their present 

exposure. These large boulders (>1 m in diameter) are composed of ande­

site flow-breccia which is extremely susceptible to weathering. In 

deposits less than 100 years of age, many of these boulders have disinte­

grated to a rubble mound. Thus, the exposed surfaces on these boulders 

are not conducive to lichen colonization. This observation was reached
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independently by Porter and Burbank (1979) on Mt. Rainier.

The use of 1ichenometric methods as a RD technique was restricted 

to moraines in Avalanche Gorge. All lateral and recessional moraines, 

with one exception, were forested. The author's intent was to calibrate 

a lichen growth curve and attempt to date an unforested remnant of a 

lateral moraine. Results indicate that the obviously older remnant 

lateral moraine was younger than the earliest 20th century moraine 

(Appendix C). The younger lichen population on the older moraine is 

apparently renewed colonization following a lichen kill. Burbank (1979) 

reports a lichen kill on Mt. Rainier approximately 150 years B.P. Lichen 

kill by burial in a permanent snow bank for one or more years is probably 

responsible for the anomalously young lichen colony.

Rock Weathering

In the Mt. Baker area, the only rocks old enough to show measurable 

rock weathering parameters, other than the flow breccia blocks, are 

andesite clasts which predate Mazama tephra. The most obvious weathering 

feature in pre-Mazama exposures consists of oxidation halos in the 

matrix surrounding clasts. In a diamicton immediately underlying Mazama 

tephra these halos measure about one cm in thickness. The halos are 

apparently the result of oxidation of iron originating from the clasts.

Andesite clasts within pre-Mazama deposits reveal the first 

occurrence of measurable weathering rinds. Many of the clasts have 

rind thicknesses less than .5 mm. All of these clasts have coatings 

of iron oxides and clay about one mm thick.

Deposits which postdate Mazama tephra lack measurable weathering 

characteristics which could be used for dating. Clasts within moraines
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do not exhibit weathering rinds and their surfaces are only slightly 

oxidized. However, some of the clasts have oxidized surfaces, which 

suggest reworking of older deposits.

Soil Development

Soil weathering profiles were measured on moraine crests to deter­

mine relative age. Colors were based on comparison with a Munsell soil 

color chart. Measurements of ^2 weathering horizon thickness were 

made on all moraines and on buried soils in the Nooksack drainage.

These measurements could not be used for intervalley correlation because 

the soil profiles of forested moraines of the Deming Glacier are different 

from those of the sparcely forested moraines in Avalanche Gorge. Soil 

weathering profiles on forested and unforested moraines in the Nooksack 

Cirque, Mt. Shuksan, show drastic differences in degree of development 

(Robert Zasoski, personal communication).

The measurement of 82 weathering horizon thickness to indicate 

relative age proved useful in the correlation and chronology of buried 

moraines in the Middle Fork Nooksack Valley. Exposed in the southeast 

valley wall, above alder thickets growing on the 20th century moraines, 

the following stratigraphic sequence is observed: a 1.5 m weathering

profile (paleosol) occurs approximately 10 m above the valley floor. A 

weakly developed 10-20 cm paleosol containing iji situ tree stumps occurs 

one to three meters above the older, lower paleosol. An early 19th 

century moraine overlies both paleosols (Plate 5). The lower paleosol 

is also overlain by a 16th century moraine.

The paleosol containing in situ tree stumps is interpreted as the 

weathered surface of an 18th century moraine which was overrun by a more
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extensive ice advance in the early 19th century. Abraded logs exposed 

at the base of the early 19th century moraine, 1.5 km farther downvalley, 

supports this interpretation (Plate 7).

Evidence for an 18th century moraine is preserved in Nooksack Cirque 

on Mt. Shuksan (Robert Zasoski, personal communication). No 18th century 

moraine is found in the moraines of Price Glacier on Mt. Shuksan but 

Leonard (1974) suggests it may have been overrun.

The lower paleosol is deeply weathered, yellowish brown (lOYR 5/6) 

and 1.5 m thick. Clasts in the paleosol do not exhibit weathering rinds. 

This paleosol is also capped by the 16th century moraine. Exposures of 

the paleosol are not found downstream past the 17th century recessional 

moraine. Based on the linear outcrop exposure and the preservation of 

the weathering surface on bedrock, the paleosol is interpreted as the 

weathered surface of a buried moraine. On the basis of similar color, 

thickness, and topographic relationships, the paleosol in the Middle 

Fork Nooksack Valley may be correlated to an analogous outcrop in the 

valley of the Coleman-Roosevelt Glacier (Plate 6). The buried moraines 

in the Coleman-Roosevelt and Nooksack Valleys are overlain by moraines 

dating to the last five centuries. They do not appear to have been 

overrun by the pre-13th century moraine (>800 years old); thus, the pre- 

13th century moraine is thought to be older than the lower paleosol. The 

glacier advance responsible for deposition of the large pre-13th century 

moraine probably would have removed the paleosol if it has existed prior 

to that advance (Plate 11). The possibility that the paleosol weathered 

through the Hypsithermal interval is unlikely because of its stratigraphic 

position and the lack of weathering rinds developed on the clasts.

An approximate age can be assigned to the pre-13th century advance
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PLATE n. Relationship between the extensive 
pre-13th century advance of the 
Deming Glacier and less extensive 
advances during the past five 
centuries. View to the northwest. 
Middle Fork Nooksack Valley. 
Pre-13th century moraine in lower 
right hand corner (photo by D. J. 
Easterbrook).

(
I
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based on these relationships. The length of time required to weather a 

morainal crest to 1.5 m depth is problematic. Weathering profiles 

developed to 60 cm thick are present on moraines dating to the 16th 

century. Therefore, the time necessary to weather the buried moraine 

was at least 450 years. When these observations are summed, a conser­

vative estimate of 1000 years is necessary to span the time from moraine 

deposition, weathering, and burial of the moraine to the present. This 

indicates that the pre-13th century moraine is considerably older than 

1000 years in age. The ancient forest growing on the deeply weathered 

and eroded surface of the pre-13th century moraine reinforces this esti­

mate.

The relationships discussed above suggest that the pre-13th century 

moraines of the Coleman-Roosevelt and Deming Glaciers may have been con­

structed during the phase of Neoglacial expansion about 2600-2800 years 

B.P. These moraines may be correlative to moraines on Mt. Rainier of 

the Burrows Mountain Stade (Crandell and Miller, 1964) which date between 

3500-2000 years B.P. The chronology of these moraines is discussed in 

the following section.

An unforested lateral moraine which occurs as a remnant in Avalanche 

Gorge is of unknown age except that it predates a rock-debris avalanche 

of the mid-1860's. A dark yellowish brown (lOYR 4/6) weathering profile 

is developed to a 45 cm depth. Based upon weathering profiles in the 

Middle Fork Nooksack Valley, the weathering on this moraine has taken 

place for at least 200 years. Weathering is accelerated on forested 

deposits (Birkeland, 1974). Whether this lateral moraine was forested 

in the past is uncertain. This moraine is at least as old as the 18th 

century. The moraine is undoubtedly older, perhaps dating to the 16th
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century.

The relative topographic and downvalley position of moraines, 

coupled with the degree of postdepositional modification, is invaluable 

in the interpretation of past glacier fluctuations. The best example 

of this is seen by contrasting the pre-13th century moraine with 

moraines constructed in the past five centuries.

In summary, dendrochronology, tephrochronology, moraine morphology, 

degree of postdepositional modification of moraines, and soil develop­

ment proved to be the most valuable field techniques for dating Neoglacial 

deposits on Mt. Baker. Linchenometry and rock weathering proved less 

useful.
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CHRONOLOGY

Neoglacial fluctuations of the Deming and Rainbow Glaciers are 

presented in Figure 7. Although the record for the Rainbow Glacier 

is short, its response appears to have been similar to that of the 

Deming Glacier during this century. The record for the Deming Glacier 

begins early in Neoglaciation with the construction of the pre-13th 

century moraine, followed by retreat and construction of a moraine 

which is extensively weathered. Moraines from the most recent Neo­

glacial expansion were constructed within the confines of the pre-13th 

century moraine and buried the extensively weathered moraine. Moraines 

from this expansion date to the 16th, 17th, 18th, 19th and 20th cen­

turies. Each moraine was built during a less extensive still stand with 

the exception of the early 19th century advance which overrode the 18th 

century moraine. Maximum recession of alpine glaciers on Mt. Baker, 

during the past 500 years, occurred about 1950; since then, glaciers 

have advanced to their present positions.

This study of the Deming and Rainbow Glaciers coupled with infor­

mation on the Boulder Glacier (Easterbrook and Burke, 1971; Burke,

1972) and the Easton, Deming and Coleman Glaciers (Easterbrook and 

Burke, 1971; Easterbrook, personal communciation) provide the data base 

for developing a Neoglacial chronology for Mt. Baker (Table 1). A 

generalized curve for the Neoglacial fluctuations of glaciers on Mt. 

Baker is presented in Figure 8. The first recognizable advance pre­

dates the 13th century and is followed by a lengthy period of glacier 

retreat. Subsequent readvance in the past five centuries built 

moraines nested within the pre-13th century moraine.
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Distance of moraine beyond the present 
glacier terminus in kilometers

■= Deming Glacier A = Rainbow Glacier

FIGURE 7. Neoglacial fluctuations of the Deming and Rainbow 
Glaciers, Mt. Baker, Washington.
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CORRELATION

Examination of Table 2 reveals a broadly synchronous pattern for 

the Neoglacial fluctuations of glaciers in the Pacific Northwest.

Dated moraines from different localities distinguish two periods of 

expansion during Neoglaciation; an early period between about 5000- 

2500 years B.P. and a more recent period of expansion within the past 

eight centuries. The two periods were described by Porter and Denton 

(1967) who developed a generalized Neoglacial fluctuation curve 

(Fig. 9). Glaciers on Mt. Baker, Washington, appear to have responded 

in a similar manner (Fig. 8).

Neoglacial moraines on Mount Rainier are assigned to two stades 

of the Winthrop Glaciation (Crandell and Miller, 1964; Crandell, 1965). 

Moraines of the Burrows Mountain Stade were constructed between 3500- 

2000 years B.P. while moraines of the Garda Stade were built between 

the 13th and mid-20th centuries. Maximum Neoglacial expansions for 

different glaciers on Mount Rainier vary considerably but most glaciers 

reached their maximum position between the 14th and 19th century 

(Crandell and Miller, 1975).

Neoglacial moraines of the East Nooksack (Robert Zasoski, personal 

communication) and Price Glaciers (Leonard, 1974) on Mt. Shuksan were 

constructed in the last five centuries. No evidence for an early Neo­

glacial expansion is preserved. Moraines of the East Nooksack Glacier 

date to the late 18th, mid-19th and 20th centuries. Evidence presented 

by Leonard (1974) suggests Price Lake moraines date to the 16th, 17th, 

19th and 20th centuries.

Moraines in the Dome Peak area. North Cascades, contain an excellent
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record of Neoglaciation. An early advance of the South Cascade Glacier 

about 4900 years B.P. (Meier, 1964) was followed by more extensive 

advances in the 16th, 19th and 20th century. Le Conte and Dana Glaciers 

reached Neoglacial maxima in the late 16th century and built subsequent 

moraines in the 19th and 20th centuries (Miller, 1969). The Chickamin 

Glacier behaved somewhat differently by reaching a maximum advance in 

the 13th century followed by construction of moraines in the 16th, 17th, 

18th, 19th and 20th centuries. Evidence for an early Neoglacial expan­

sion of the Le Conte, Chickamin, and Dana Glaciers is not present (Miller, 

1969).

Glaciers in the Mount Garibaldi map area, British Columbia, under­

went initial expansion about 5300 years B.P. (Mathews, 1951) during 

the pre-Neoglacial time. Recently constructed moraines date to the
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16th, 18th and 19th centuries (Mathews, 1951; Barendsen ^ al-, 1957).

The Neoglacial record of glacial activity on Mt. Olympus, Washing­

ton, spans the last seven centuries. Studies by Heusser (1957) indi­

cate that the Blue Glacier constructed two moraines more than 700 years 

ago and subsequently built moraines in the mid-17th, 19th and 20th 

centuries. In contrast, the maximum advance of the Hoh Glacier was 

in 1810.

Although evidence is not overwhelming, the pre-13th moraine on 

Mt. Baker may be related to a Neoglacial expansion between 2600-2800 

years B.P. This would be in general agreement with Neoglacia! moraines 

on Mount Rainier. The period of glacier recession between the two 

periods of Neoglacial expansion, presented by Porter and Denton (1967), 

is recognized in the post pre-13th century buried weathered moraine 

exposed on Mt. Baker. Moraines on Mt. Baker which date to the past 

five centuries are in good agreement with the youngest portion of the 

generalized curve for glacier fluctuations during Neoglaciation and 

moraines elsewhere in the Cascade Range.
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APPENDIX A

Sample DG01 (Radiocarbon sample) Wood collected from south valley wall. 
Approximately 400 m downvalley from the 1979 terminus, Deming Glacier, 
Middle Fork Nooksack Valley. Collection site recorded in Plate 5.

Sample_DG^2 (Radiocarbon sample) Wood collected from southwest river 
cutbank approximately 1.5 km downvalley from the 1979 glacier terminus, 
Deming Glacier, Middle Fork Nooksack Valley. Collection site recorded 

in Plate 7.
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TREE CORE DATA: AVALANCHE GORGE

1860's Rock-Debris Avalanche Deposits

Sample # Diameter (cm) # of Rings

RBF 01 28.0 101
RBF 02 37.0 106
RBF 03 39.5 98
RBF 04 40.5 91
RBF 05 39.0 108
RBF 06 32.0 107
RBF 07 39.5 96
RBF 08 35.0 101
RBF 09 45.0 109
RBF 10 37.0 105
SCD 01 26.0 89
SCD 02 41.0 105
SCD 03 32.5 102
SCD 04 42.5 104
SCD 05 43.0 99
SCD 06 45.5 97

Rock-Debris Avalance Deposits

RBL 01 27.5 59
RBL 02 30.0 62
RBL 03 30.0 71
RBL 04 29.5 68
RBL 05 29.0 64
RBL 06 26.1 67
RBL 07 22.2 63
UVV 04 25.5 65
UVV 05 30.5 78
UVV 06 25.0 65
OWR 05 24.0 62
OWR 06 22.5 58
OWR 07 31.0 53
UVT 08 20.0 43
UVT 09 13.5 42
UVT 10 18.5 45
UVT 11 21.5 68
UVT 12 30.0 71
UVT 13 27.5 75
UVT 14 28.0 76
UVT 15 25.5 70
UVT 16 26.0 77
UVT 17 23.0 79
UVT 18 29.0 72
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APPENDIX B. Continued

1888 Rock-Debris Avalance Deposits (continued)

Sample # Diameter (cm) # of Rings

UVT 20 30.0 77
UVT 21 29.5 69
UVT 25 31.0 78

UW 01 16.5 67
UW 02 28.0 76

Early 20th Century Moraine

UVW 01 7.5 52
UVW 02 7.0 53
UVW 03 4.5 32
UVW 04 6.5 41

20th Century Moraine

UVX 01 4.0 
UVX 02 4.5 
UVX 03 3.5 
UVX 04 4.0

21
36
26
39

20th Century Moraine

UVC
UVC
UTC

2.0
2.0
1.5

11
15

9

20th Century Moraine

UVZ 01 1.5
UVZ 02 1.0

TREE CORE DATA: MIDDLE FORK NOOKSACK VALLEY

Pre-13th Century Moraine

DGV 050 196.0 207

16th Century Moraine

224
198

Estimated
Age

>650

DGV 048 
DGV 049

142.0
138.5

420
401
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APPENDIX B. Continued 

Sample # Diameter (cm) 

17th Century Moraine

DGV 031 76.5
DGV 032 70.5
DGV 033 72.0
DGV 034 68.0

Estimated
# of Rings Age

321 356 
289 340 
307 349 
275 304

Early 19th Century Moraine

D6V onDGV 012 
DGV 013 
DGV 014 
DGV 015 
DGV 016 
DGV 017 
DGV 018 
DGV 019 
DGV 020 
DGV 021 
DGV 022 
DGV 023 
DGV 024 
DGV 025 
DGV 026 
DGV 027 
DGV 028 
DGV 029

85.5 
81.0 
82.0 
80.0
82.5
84.5
83.0
85.0
83.5
86.5
87.0
81.5
80.5
78.0
77.5 
70.2
78.5
82.0 
85.0

138
135 
121 
132
134 
137
140
141
136 
127
142 
140 
129 
132
139 
122 
129
135
140

Late 19th Century Moraine

DGVE 01 65.0 
DGVE 02 63.0 
DGVE 03 68.0 
DGVE 04 67.5 
DGVE 05 58.0 
DGVE 06 60.5 
DGVE 07 64.0 
DGVE 08 59.0 
DGVE 09 62.5 
DGVE 10 60.5 
DGVE 11 62.0 
DGVE 12 66.0 
DGVE 13 • 61.0
DGVE 14 57.0
DGVE 15 63.5

103
98

no96 
98

105
109
105
101

97 
105 
109 
100

92

no
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APPENDIX B. Continued
Estimated

Sample #

Late 19th

Diameter (cm) # of Rings Age

Century Moraine (continued)

DOVE 16 65.0 103
DOVE 17 62.5 97
DOVE 18 66.0 109

Early 20th Century Moraine

D6VD 01 23.5 48
DGVD 02 20.5 42
DGVD 03 26.0 51
DGVD 04 27.0 53
DGVD 05 22.0 46
DGVD 06 24.5 53
DGVD 07 27.0 50
DGVD 08 26.0 49
DGVD 09 25.0 52
DGVD 10 27.5 54
DGVD 11 24.0 51
DGVD 12 19.5 47

20th Century Moraine

DGVC 01 10.0 30
DGVC 02 8.5 28
DGVC 03 10.0 30
DGVC 04 10.0 31
DGVC 05 11.0 32
DGVC 06 9.5 27

20th Century Moraine

DGVB 01 5.0 22
DGVB 02 5.0 23
DGVB 03 4.0 22
DGVB 04 3.5 19
DGVB 05 4.0 21

20th Century Moraine

DGVA 01 4.0 16
DGVA 02 3.5 14
DGVA 03 3.0 11
DGVA 04 4.0 15
DGVA 05 4.0 17
DGVA 06 3.5 12
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