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Abstract 

The Nooksack River in Whatcom County, Washington is an essential fresh water 

resource for industry, agriculture, municipalities and serves as vital fish habitat. Like many 

mountainous watersheds in the western Cascades, the Nooksack Basin is susceptible to shallow 

mass wasting and debris flows because of its steep slopes, young glaciated terrain, and storms 

with high intensity precipitation. Understanding how projected reductions in snowpack and 

increased winter rainfall will affect mass-wasting susceptibility in the Nooksack basin is 

important, because sediment produced mass wasting will jeopardize valuable aquatic and fish 

habitat, increase flooding risk in the Nooksack River, and affect estuarine and coastal dynamics.    

With a projected 60% decrease in snowpack and increase in the snowline elevation by the 

2075 climate normal, there will be an increase in exposed forest roads, harvestable forest areas, 

and previously mapped landsides, which are all documented to increase sediment delivery to 

streams. Retreating glaciers will produce at least 2 km2 of exposed moraines, which have the 

potential to erode, fail and provide additional sediment to streams, especially during large storm 

events coinciding with minimum snowpack during the fall and early spring seasons. I applied a 

static infinite-slope ArcGIS model and a dynamic, probabilistic mass-wasting model integrated 

into the Distributed Hydrology Soil Vegetation Model (DHSVM) to the Nooksack River 

watershed to determine areas susceptible to mass wasting into the 21st century. Susceptibility 

maps produced by the models indicate an increase in regions susceptible to slope failure during 

the winter months in snow free areas at higher elevations later in the 21st century.   Slope failure 

susceptibility increased with soil saturation, which is anticipated with higher intense winter 

rainfall events. Slopes greater than about 30o with thick regolith deposits and lower soil 

mechanical strength, e.g., sand, loamy sand, sandy loam, silt, moraines, glacial outwash and 

former landslide deposits were correlated with higher mass-wasting susceptibility. The simpler 

static ArcGIS infinite-slope model yielded comparable results to the more complex probabilistic 

method integrated into the DHSVM for identifying areas susceptible to mass wasting.  
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1.0 Introduction 

The forecasted loss in snowpack area and increase in snowpack elevation into the 21st 

century have important implications for runoff and mass-wasting susceptibility. Each year, rivers 

of the western Cascades and Olympic Mountains deliver millions of tons of sediment to the 

Salish Sea (Czuba et al., 2011). Common sources of sediment include glaciers, mass wasting, 

forestry roads, erosion from farm fields, streambank erosion, and resuspension of sediment 

previously deposited on streambeds (Anderson et al., 2018; Brown, 2011). In high elevations, 

snow-dominated zones typically mitigate runoff as a result of the refreezing of water deep within 

the snowpack, or snow can attenuate percolation through the snowpack (Brunengo et al., 1992). 

In the Pacific Northwest (PNW), evidence shows that sediment input to rivers, including the 

Nooksack River, is expected to increase in the upcoming century as a result of continued glacier 

recession, a smaller snowpack area, increased winter rainfall and runoff, and more mass wasting 

(Moore et al., 2009; Mote and Salathé Jr., 2010; Lee et al., 2016; Mitchell et al., 2016).  This is 

problematic, because an increase in sediment input within the Upper Nooksack basin will 

jeopardize valuable aquatic and fish habitat and historical restoration efforts, river morphology 

and flooding risk in the Nooksack River, and affect estuarine and coastal dynamics. Currently, 

there has not been an attempt to analyze the mass-wasting susceptibly in the Nooksack basin as 

the result of forecasted loss in snowpack area into 21st century. 

The Nooksack River originates on the northern and western slopes of Mt. Baker in the 

North Cascades mountain range of Washington State and drains an approximately 2300 km2 

watershed into Bellingham Bay in the Salish Sea (Figure 1). The Nooksack River is a critical 

resource that provides valuable habitat for a variety of endangered salmon species. Fish species, 

including salmon, require suitable stream temperatures, stream flows and sediment regimes to 

flourish. Because of their ectothermic makeup and spawning process, salmon are particularly 

vulnerable to climate change (Isaak et al., 2010). Effects of climate change on streamflow, 

stream temperature, and sediment could potentially degrade the physiology, growth and 

distribution of salmon species in the Nooksack basin. In particular, the amount of suspended 

sediment within a river can affect the overall health of salmon. Elevated turbidity, an indicator of 

fine sediment concentration, are associated with reductions in egg-fry survival and have the 

potential to modify the behavior of rearing and holding salmon, resulting in the increased 

mortality and/or reduced productivity of salmon habitats (Brown, 2011; EPA, Nooksack Indian
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Tribe and Tetra Tech, 2015). Therefore, it is essential to assess the potential impacts of increased 

sediment production in order to structure planning aimed towards protecting future salmon 

populations. Although bedload sediment affects redd and riffles of fish species and will likely 

increase as a result of the changing climate, bedload is more difficult to quantify and is not 

assessed in my project (Lee et al., 2016). 

 The value of the Nooksack River as a fresh water resource and valuable habitat for 

endangered salmon species has caused water managers and stakeholders to voice concern over 

the climate variability of the basin and how future climate change might affect the region’s 

snowpack, glaciers, stream functions and fish habitats. Historically, streamflow in the Nooksack 

River basin has been largely controlled by fall and winter precipitation, with the timing of spring 

snowmelt and glacial meltwater being determined by antecedent snowpack and seasonal weather. 

As the climate warms, changes in the ratio of rain to snow precipitation, in the timing and 

amount of total precipitation, timing of snowmelt, and seasonal changes in soil moisture content 

will all modify timing and magnitude of streamflow (Dickerson-Lange and Mitchell, 2013). 

Historical winter snow coverage (1981 – 2010) is generally restricted to elevations above 500 to 

1000 m in the Nooksack River basin. With winter snowpack predicted to decrease in area and 

increase in elevation compared to historical averages, the area available for rapid rainfall-driven 

runoff and mass wasting is expected to increase (Mitchell et al., 2016). 

Exposed landscapes resulting from glacier recession are another potential source of 

sediment input to the Nooksack River. Several glacier mass balance and modeling studies in the 

Nooksack Basin and the PNW have documented the significant historical retreat of glaciers, with 

retreat expected to continue as the climate continues to warm (Pelto and Brown, 2012; IPCC, 

2013; Riedel et al., 2015; Murphy, 2016).  Glacier recession exposes large sources of unstable 

sediment, including mass failures from over-steepened valley walls (Moore et al., 2009). Mass 

failures can be generated on moraines that result from glacier retreat, exposing unconsolidated 

sediments that are vulnerable to both rapid and extensive erosion and entrainment into fluvial 

systems (Leggat et al., 2015). Varying amounts of unconsolidated materials are present in many 

of the headwaters of streams in the North and Middle Fork basins, which are stored in moraines, 

river terraces, and debris flow deposits (United States Department of Agriculture, 2006). Erosion 

and mass wasting of these unconsolidated deposits comprise an important source of both course 

and fine sediment, with additional fine sediment being sourced from glacial meltwater. The 
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retreat of glaciers results in a lowered shear strength and removal of lateral support of adjacent 

material, which can lead to especially large mass-wasting events (Tucker et al., 2014; Nielsen 

and Grah, 2015). Because of the potential effects of receding glaciers and decreased snowpack 

on sediment mobilization in the basin, the timing, magnitude, and turbidity of streamflow in the 

Nooksack River is anticipated to change in impactful ways throughout the 21st century. 

The focus of my study is restricted to the upper Nooksack sub-basins, which is the dominant 

sediment source for the lower river and is susceptible to naturally occurring mass wasting as a 

result of its geology, lithology, and glacial history (Anderson et al., 2018; Weatherly, 2005). The 

steep slopes and high amounts of precipitation lead to frequent shallow mass-wasting events in 

the upper Nooksack River, increasing the likelihood for flooding and the amount of river 

sedimentation. The potential effects of forecasted climate changes on mass wasting in the 

upcoming decades have not been fully explored. As a proxy for predicting an increase in 

sediment fluxes to streams, I applied static and probabilistic infinite-slope numerical models to 

evaluate the potential effects of forecasted climate change on mass-wasting events in the 

Nooksack River basin. I also assess the models’ overall effectiveness as tools for mass-wasting 

susceptibility mapping.  

 

2.0 Background 

2.1 Geologic Setting 

 Bedrock geology in the Nooksack basin consists of sedimentary, metamorphic, and 

igneous rocks (Tabor et al., 2003). Although shallow mass-wasting events are the focus of my 

study, several bedrock units within the upper Nooksack basin are susceptible to deep-seated 

landslide failures, providing chronic and episodic sediment inputs into rivers and streams. The 

Eocene Chuckanut Formation, composed of sandstone, mudstone, siltstone, and minor coal 

seams, has a propensity for deep-seated landsliding in the region due to wide-spread and 

abundant discontinuities (Malick, 2018). In the South Fork Nooksack Basin, deep-seated 

landslides are common on slopes underlain by early Cretaceous Darrington Phyllite, as foliation 

associated with the phyllite and schist compositions can lead to widespread cracking and pull-

apart blocks (Tabor et al., 1989). The area has experienced both strike-slip and extension faulting 

since the Cretaceous Period, with the location of these faults and rock types in the basin 

coinciding with both major and minor landslides (United States Department of Agriculture, 
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2006). Historically, there have also been various types of debris flows generated by volcano 

eruption or collapse, glacial outburst floods, and moraine mass wasting (Tucker et al., 2014). 

Holocene-aged lahars and large debris flows have been deposited in the Middle Fork basin. For 

example, in May 2013, a large debris flow (~100,000 m3) was initiated on a young moraine near 

the toe of the Deming Glacier, with the resulting slug of sediment affecting turbidity in the entire 

reach of the river (Tucker et al., 2014). Smaller-volume debris flows of volcanic clastic 

sediments are recurrent and deposited as terraces in upper tributary stream valleys, with recent 

events occurring in Rocky Creek and Rainbow Creek (Tucker et al., 2014; Mount Baker Volcano 

Research Center, 2018) 

 The major landforms that control stream and hillslope processes in the upper Nooksack 

watershed are mainly the result of the most recent ice-sheet advance in combination with local 

postglacial modification of the landscape (Booth et al., 2003). The last major glaciation of 

Whatcom County culminated approximately 15,000 - 20,000 years ago in the late Pleistocene, 

when thick ice sheets related to the advance of the Cordilleran ice sheet filled valleys in the 

Nooksack basin, covering the region up to at least 2000 m above mean sea level (Booth, 1991). 

Advancement and retreat of this ice sheet deposited a variety of glacial sediments in the upper 

Nooksack River basin. These glacial sediments are collectively named drift, which refers to any 

deposit of glacial origin, and can be divided into several units: outwash deposits – well-sorted 

sand and gravel deposited by streams flowing from advancing and retreating ice sheets; and till 

deposits – unsorted sand, gravel, silt and clay deposited below the ice sheet (Booth et al., 2003). 

Mount Baker remains moderately glaciated today, hosting the largest contiguous network of 

glaciers in the North Cascades mountain range, approximately 3400 hectares, in the North and 

Middle Fork basins (Pelto and Brown, 2012; Murphy, 2016). Alpine glaciers on Mt. Baker have 

modified the landscape since the last major glaciation and deposited moraines - poorly-sorted 

sand, gravel, silt and boulders deposited at the edges and terminus of glaciers upon their 

advancement and retreatment (Booth et al., 2003). Extensive, thick alluvial deposits and series of 

river terraces are found in the more gently sloping valleys of each sub-basin, as streams have 

been actively down-cutting since the last glaciation. Characterizing the location and properties of 

these recent geologic deposits is critical to assessing slope susceptibility, as the stratigraphy of 

glacial and unconsolidated deposits on sloping hillsides is intimately associated with mass 
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wasting and landslide events, and as a result sediment production to streams and rivers (Booth et 

al., 2003).  

Recent landslide hazard mapping on Mt. Baker was conducted around glaciers on Mt. 

Baker and to provide insight on the implications for sediment transport in the Nooksack River 

(Nielsen and Grah, 2015). Landforms and geomorphic events were identified from 1940 to 2013 

using historical airphotos and GIS layers. A total of 294 mass-wasting landforms were identified 

and mapped and digitized into a GIS. The highest hazard areas were identified along the toes of 

receding glaciers and steep slopes located on cirque walls, arêtes, and horns (Nielsen and Grah, 

2015). While many types of landslides were identified, debris flows were found to be the 

dominant mass-wasting process on Mt. Baker, making up almost 70% of the total landslide 

counts documented. Most mass wasting occurred between 1986 and 1991, coinciding with a time 

when glaciers were experiencing a faster rate of recession compared to previous years (Nielsen 

and Grah, 2015). Moraines at the toes of the Deming and Mazama glaciers were classified as 

extremely active and are thought to contribute large amounts of sediment to the North and 

Middle Forks of the Nooksack River, respectively (e.g., Tucker et al., 2014).  

 

2.2 Topography 

 The upper Nooksack River basin (~1550 km2) consists of three major forks, the South 

Fork Nooksack (South Fork), Middle Fork Nooksack (Middle Fork), and North Fork Nooksack 

(North Fork) that converge as the river exits the Cascade foothills near Deming, WA. Elevation 

in the upper Nooksack basin ranges from approximately 67 meters near Deming, WA, to 3286 

meters at the summit of Mt. Baker (Figure 2). The North and Middle forks contain much higher 

elevations in comparison to the South Fork; approximately 49% of both the North and Middle 

Fork basins are greater than 1000 m above sea level, while the South fork only has 

approximately 25% above this elevation (Table 1). Peak elevations in the North and Middle 

forks reach over 3000 m, while the maximum elevation is just over 2000 m in the South Fork. 

The difference in elevation results in a lack of glaciers in the South Fork and approximately 25.8 

km2 and 7.6 km2 of glacial ice in the North and Middle forks, respectively (Table 1).  Channel 

gradients for the three forks are relatively steep, exceeding 5% in the mid to upper reaches and 

decreasing to around 0.5% or less near Deming (Weatherly, 2005). Hillslopes within the basin 
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vary from nearly flat in the river valleys to greater than 80 degrees, with the majority of steep 

canyons adjacent to the river channels having slopes between 30 and 45 degrees (Figure 3).  

 

2.3 Regional Hydrology and Climate 

 The maritime climate of the PNW produces mild winters having long periods of light to 

moderate intensity precipitation, and generally dry and cool summers. The PNW is also strongly 

influenced by climatic events such as the Pacific Decadal Oscillation and El Niño Southern 

Oscillations (Mantua and Hare, 2002; Deser et al., 2012). The Nooksack basin is classified as a 

transient rain-snow basin, i.e., basins having an average winter temperature within about 5°C of 

freezing and a ratio of snow water equivalent (SWE) to precipitation of 0.1 – 0.4 from October – 

March (Dickerson-Lange and Mitchell, 2013). Precipitation can change from snow to rain over 

small temperature increases in transient basins, so they are particularly vulnerable to warming 

climates (Mauger et al., 2015; Murphy, 2016). The topographic relief of the Nooksack River 

basin causes extensive climate variability due to orographic effects. During the 1981–2010 

climate normal, average annual precipitation varied from about 820 mm near sea level to 5655 

mm near the summit of Mt. Baker, and had a basin mean of about 2290 mm (PRISM Climate 

Group, 2017). Extreme precipitation events are possible, an example being the U.S. record 

snowfall of 28.96 m at the Mt. Baker Ski Area (elevation of 1280 m) occurred during the 1998 – 

1999 winter (Mass, 2015). The observed mean annual temperatures in the PNW have increased 

0.6 – 0.8°C since the early 20th century, while precipitation during the same time period has 

increased overall, but these trends are small in comparison to natural variability (Mote et al., 

2014). 

The melting of seasonal snowpack in the North Cascades provides substantial spring and 

summer flows for all three forks, while glaciers located within the North and Middle Fork basins 

supply late summer flow (Dickerson-Lange and Mitchell, 2013; Murphy, 2016). Because of 

lower elevations in the glacier free South Fork basin, streamflow is dominated by snowmelt and 

rain. From 2006 to 2017 the average annual discharge of the Nooksack River at North 

Cedarville, WA, located at the western edge of the upper basin, was approximately 107 cubic 

meters per second (cms; Figure 1; United States Geological Survey, 2018). Historical peak flows 

are attributed to Pacific storms that generate rain-on-storm events during the late fall and early 

winter, e.g., a maximum discharge of approximately 1610 cms was recorded on November 10, 
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1990 at Ferndale, WA (Dickerson-Lange and Mitchell, 2013; United States Geological Survey, 

2018).  

High intensity storms and rain-on-snow events that trigger many slope failures generally 

occur between October and March. The duration and magnitude of these high intensity storms is 

variable, while most are characterized by a significant amount of precipitation falling in a period 

of less than one day to three days, with three-day cumulative precipitation being identified as a 

landslide initiating threshold (Chleborad et al., 2006). In the early 1980s, El Niño caused greater-

than-normal precipitation in mountainous regions and a significant increase in landslide activity 

(Turner and Schuster, 1996; Lu and Godt, 2013). Very saturated conditions result in positive 

pore water pressures that decrease the shear strength of unconsolidated deposits triggering mass-

wasting events (Sidle and Bogaard, 2016).  

  

2.4 Climate Projections  

The variability in topography throughout Washington State produces a range of local 

climate zones and precipitation received throughout the year. Climate change is expected to 

affect each of these climate zones differently (Salathé Jr. et al., 2010). The PNW region is 

projected to warm rapidly during the 21st century relative to 20th century average climate. Global 

climate models (GCMs) used in the International Panel on Climate Change (IPCC) Fifth 

Assessment Report project temperatures to increase as much 1.7 – 4.7°C for the 2050s relative to 

1950 – 1999 (Snover et al., 2013). In the Nooksack River basin, average winter temperatures for 

the 2050s are projected to increase by 2.2°C for moderate carbon emission scenarios and 2.8°C 

for severe carbon emission scenarios relative to 1970 – 1999 (Morgan et al., 2017).  

 Climate projections for the PNW anticipate seasonal changes in precipitation, with 

increases during the winter months and decreases during the summer months (Mote and Salathé 

Jr., 2010; Abatzoglou et al., 2014; Nature Conservancy and the Climate Impacts Group, 2016). 

The change in annual amount of precipitation is projected to be small, with more precipitation 

falling as rain rather than snow and summer precipitation projected to decrease by as much as 

30% by the end of this century as greenhouse gas emissions continue to increase (Mote and 

Salathé Jr., 2010; Mote et al., 2014). Extreme rainfall events are anticipated to increase in 

intensity and frequency, with models stating the heaviest 24-hour rainfall events in the PNW will 

intensify by an average of 22% and occur seven days per year, on average, compared to two days 
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per year historically (1970 – 1999) by the 2080s (Nature Conservancy and the Climate Impacts 

Group, 2016). As a result, soil water content on December 1st, which is used as an indicator of 

winter landslide hazard, is expected to increase up to 35% in the 2040s relative to 1970 – 1999 

along the western Cascade slopes (Mauger et al., 2015). 

Modeling by Murphy (2016) in the Nooksack basin predicted a reduced snowpack in the 

Nooksack basin as a result of more precipitation falling as rain rather than snow.  The increase in 

winter precipitation caused more runoff, and increased winter stream flows, doubling by 2075. 

Winter runoff is expected to be more rapid and higher in magnitude, which will result in an 

increased risk of flooding, soil erosion and mass-wasting events during the wetter winter months 

(Jiménez Cisneros et al., 2014; Mitchell et al., 2016).  Recent studies in the Skagit River 

drainage suggest that the current 100-year flood will increase in magnitude by 26% and recur 

every 22 years by the 2040s (Lee et al., 2016). As a result of these larger floods that occur more 

frequently, a six-fold increase in sediment load during peak winter flow periods is projected by 

the 2080s (Lee et al., 2016).  Murphy (2016) also predicted a significant decrease in both the 

areal extent and thickness of ice, with smaller glaciers disappearing completely. As glaciers 

recede there will be an increased exposure of unconsolidated, lateral moraine deposits that are 

readily erodible and have a propensity for shallow landslides as heavy rainfall events become 

more frequent and intense (Mauger et al., 2015; Lee et al., 2016).  

  

2.5 Forest Harvesting and Hillslope Processes 

 Deforestation and the corresponding forest roads have been well documented to increase 

flooding, erosion, and landslide activity (Fredriksen, 1970; Peak Northwest, 1986; Turner and 

Schuster, 1996; Montgomery et al., 1998; Montgomery et al., 2000; Barik et al., 2017). Forestry 

practices have caused a documented increase in the frequency and absolute number of slope 

failures since 1940, with the approximately 90% of the observed landslides in Canyon Creek, a 

tributary of the North Fork, being associated with roads and clearcuts (Weatherly, 2005). An 

assessment of sediment delivery to streams in the Skookum and Cavanaugh Creek watersheds, 

located in the South Fork Nooksack River, found that 35% of the sediment delivered to streams 

was from road-related mass wasting and runoff from roads (Lummi Nation Natural Resources 

Department, 2012). The high density of forest roads in the nearby North Fork Stillaguamish 

River basin, some of which are placed on unstable geology and steep slopes, contribute to 
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increases in surface runoff and erosion pulses during periods of rain (Brown et al., 2011). The 

removal of vegetation leads to a decrease in root cohesion and associated shear strength over 

time, leading to increased sediment transport and susceptibility to landsliding (Montgomery et 

al., 2000; Lu and Godt, 2013). Furthermore, riparian logging destabilizes stream banks and 

slopes, which can lead to landslides that introduce fine sediment into surface water (Brown, 

2011).  

 

2.6 Previous Work on Mass Wasting in the Nooksack Watershed 

Several studies have focused on mass wasting in the Nooksack watershed to better 

understand landslide hazards and sediment sources, as well as their effects on downstream 

sediment transport, aggradation, and flooding (Peak Northwest, 1986; Kirtland, 1995; Weatherly, 

2005, Lummi Nation Natural Resources Department, 2015). To assist the Whatcom County 

Public Works Department in constructing a sediment management plan for the Nooksack River, 

a summary of sediment delivery to streams within the upper Nooksack River basin was 

completed by KCM, Inc., and compared to other published results (Weatherly, 2005). While 

these results quantified the average annual sediment delivery to streams by drainage area, there 

are multiple limitations to these findings. The available data for the Nooksack River streams are 

focused on only one or a few sub-drainages and results show that estimated sediment production 

varies wildly between streams, as there is a range of more than two orders of magnitude 

(Weatherly, 2005). For the creeks studied in the upper Nooksack basin, the greatest potential 

sources of sediment in the next five to 10 years were additional failures from inner gorges, clear-

cut units, and roadfills (Peak Northwest, 1986). An assessment of sediment delivery for the 

Skookum and Cavanaugh Creek watersheds, located in the South Fork Nooksack River found 

that 65% of the sediment delivered to streams was a result of natural mass-wasting processes, 

35% was from forest road effects (Lummi Nation Natural Resources Department, 2012). Overall, 

estimating sediment delivery to streams is difficult, with estimates usually having large 

uncertainties. Studies tend to focus on areas of high concern, or high sediment delivery, 

essentially neglecting other areas and skewing results that might be used to generalize results 

across the entire watershed (Weatherly, 2005).  

Steeper headwater basins act as fine sediment sources within each sub-basin of the upper 

Nooksack Basin, as indicated from United States Geological Survey (USGS) sediment monitors 



10 
 

(Anderson et al., 2018). Average sediment yields of the entire Nooksack River (1,150 

tons/mi2/yr) are comparable with yields estimated in nearby basins such as the Sauk River (1,450 

tons/mi2/yr; Jaeger et al., 2017) and Stillaguamish River (1,740 tons/mi2/yr; Anderson et al., 

2017). Sediment yields in the upper basins of the Nooksack (2,000 – 2,500 tons/mi2/yr; 

Anderson et al., 2018) were estimated to be similar to yields in the upper Nisqually River (3,100 

tons/mi2/yr; Czuba et al., 2012). Therefore, fine sediment in the Nooksack is produced at a rate 

comparable to, or slightly lower than, similar basins in the Salish Sea region. Fine sediment 

yields in the glaciated North and Middle Forks of the Nooksack basin were found to be very 

similar to yields from the unglaciated South Fork, which may be a function of the extent of 

continental glaciation and the subsequent production of extensive glacial till and glacio-

lacustrine sediment commonly found in the South Fork Nooksack (Anderson et al., 2018). 

However, glaciated and unglaciated basins showed differences in grain size distributions. The 

North and Middle Forks produced fine sediment composed of about 60 – 70% sand, while the 

South Fork was composed of about 30 – 40% sand (Anderson et al., 2018).  

 

2.7 Slope Stability 

2.7.1 Overview 

The stability of a slope is influenced by many controlling factors, such as the geometry of 

the slope, material strength within the soil matrix, root cohesion, and hillslope hydrology (Burton 

and Bathurst, 1998). Typically, these controlling factors work in combination, meaning that 

slope stability and therefore landslide occurrence should not be considered in terms of one 

individual factor. Slope failure can occur when external stresses on a soil mass exceed the 

strength of the soil, suggesting that slope stability can be evaluated by calculating the balance of 

forces acting on a soil or rock mass. One of the most common methods to quantify the force 

balance is a limit equilibrium analysis, which defines the state at which shear stress and shear 

strength are in equilibrium (Stead and Coggan, 2012).  

 

2.7.2 Infinite-Slope Equation 

 The Hammond et al. (1992) infinite-slope stability model is used to calculate the factor of 

safety (FS) and screen for areas susceptible to broad-scale shallow landslides. Infinite slope 

mass-wasting events are generally less than three meters in depth and occur quickly in response 
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to triggering mechanisms, such as increases in pore pressures from rain events (Baum et al., 

2007; Burton and Bathurst, 1998; Lu and Godt, 2013). An infinite-slope analysis is applicable 

when a soil mantle overlies an impermeable layer of bedrock or a denser soil layer (drainage 

barrier), the most common failure types found in the mountainous West (Hammond et al., 1992; 

Sidle et al., 1985). An infinite-slope analysis is a commonly used modeling application because 

it is computationally simple, input variables can be easily measured and are widely available in 

the literature, and it models the failure mechanism most common in forest watersheds (Wu and 

Sidle, 1995; Doten and Lettenmaier, 2004).  

 The basis of the infinite-slope equation is the Mohr-Coulomb failure criterion, with added 

variables considering the loading stress from overlying vegetation weight and changes in the 

effective stress and soil weight from static water table heights. A detailed derivation and force 

diagram can be found in Appendix A of Hammond et al. (1992). The infinite-slope equation for a 

cohesive, partially saturated soil is given by 

          

                  𝐹𝐹𝐹𝐹 =  𝐶𝐶𝑟𝑟+𝐶𝐶𝑠𝑠+[𝑞𝑞0+𝛾𝛾𝑚𝑚𝐷𝐷+(𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠−𝛾𝛾𝑤𝑤−𝛾𝛾𝑚𝑚)𝐷𝐷𝑤𝑤]𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
[𝑞𝑞0+𝛾𝛾𝑚𝑚𝐷𝐷+(𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠−𝛾𝛾𝑚𝑚)𝐷𝐷𝑤𝑤]𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐𝑐𝑐𝛼𝛼𝛼𝛼

   (1) 

 

where 𝐹𝐹𝐹𝐹 is the factor of safety representing the ratio of the shear strength to the driving stress. 

Here,  𝐶𝐶𝑟𝑟 is root cohesion (kPa), 𝐶𝐶𝑐𝑐 is soil cohesion (kPa), 𝛼𝛼 is the slope angle (degrees), 𝜑𝜑 is the 

friction angle (degrees), 𝑞𝑞0 is vegetation surcharge (kg/m2), 𝛾𝛾𝑚𝑚 is unsaturated soil weight 

(kg/m3), 𝛾𝛾𝑐𝑐𝛼𝛼𝛼𝛼 is saturated soil unit weight (kg/m3), 𝛾𝛾𝑤𝑤 is water unit weight (kg/m3), 𝐷𝐷 is the total 

soil thickness (m), and 𝐷𝐷𝑤𝑤 is the saturated soil thickness (m). Root cohesion is the additional 

strength supplied by vegetation through the binding effects of roots in soil. Soil cohesion refers 

to the any additional strength in the soil, which typically includes electrostatic attraction between 

soil particles, intergranular cementation, and negative pore pressure due to matric suction within 

the unsaturated zone (Lu and Godt, 2013). The friction angle quantifies the coefficient of friction 

between individual grains and is defined as the maximum slope angle achieved before a soil 

mass fails independent of cohesion effects. Vegetation surcharge defines the overlying weight of 

vegetation acting on a soil mass.  

 The infinite-slope equation operates on several assumptions. The water table and failure 

plane are assumed to be parallel to the ground surface, which is generally true because of a high 
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hydraulic conductivity contrast between the soil and the drainage barrier (Hammond et al., 

1992). For simplicity, only a single soil layer is considered. The failure plane is assumed to be 

infinite in extent, the length is much longer than the thickness; therefore values for root cohesion 

and soil shear strength reflecting conditions along the true failure plane should be used, not just 

along the drainage barrier (Hammond et al., 1992). The last assumption made is that the infinite-

slope equation is a two-dimensional analysis, meaning that resistance along the sides of the 

failure is negligible in comparison to resistance along the base. When comparing two-

dimensional analysis with three-dimensional analysis of block models, it was shown that the 

infinite-slope model gives the same results with blocks having widths greater than approximately 

9 m, with the two-dimensional analysis producing conservative results with narrower failures 

(Hammond et al., 1992). Therefore, using 1-m inputs might predict lower factors of safety 

compared to 10 m resolution results.  

 Generally, the infinite-slope equation is most sensitive to changes in slope, soil cohesion, 

root cohesion, soil depth, and groundwater-soil depth ratio, moderately sensitive to changes in 

the friction angle, and the least sensitive to changes in tree surcharge, saturated unit weight 

(Hammond et al., 1992; Doten and Lettenmaier, 2004). The FS in Equation (1) increases with 

increasing soil cohesion, root cohesion, and friction angle, and decreases with increasing slope, 

soil depth, water table height, soil unit weight, and vegetation surcharge. When the value for soil 

depth is decreased, the FS becomes more sensitive to soil and root cohesion and less sensitive to 

friction angle and groundwater-soil depth ratio (Hammond et al., 1992).  An extensive review on 

the sensitivity of infinite-slope equation parameters is in Chapter 3.3 of Hammond et al (1992).  

Prompted by significant damages as a result of landslides in the late 1990s, the City of 

Seattle and the USGS applied infinite-slope analysis with an extensive landslide record to 

compare actual landslide locations with those predicted by modeling, ultimately producing a 

landslide hazard map of the city. Generally, many of the steep slopes associated with glacial 

deposits were found to be highly susceptible to slope failures, with the lowest FS values in areas 

where geologic units have low shear strengths (Harp et al., 2006). The similar geologic deposits 

and common landslide failure mechanisms in the Seattle area provide insight to infinite-slope 

failures in nearby forested watersheds, such as the Nooksack basin. 

Following the shallow landslide susceptibility protocol of Burns et al. (2012), the 

Washington State Department of Natural Resources (WADNR) began a landslide mapping 
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project to help local communities within the state become more resilient to landslide hazards 

through the accurate identification of landslide deposits and the prediction of where landslides 

might occur in the future (Mickelson et al., 2017). The WADNR follows a streamlined landslide 

identification protocol (SLIP) mapping procedure to digitize shallow and deep-seated landslides 

(Burns et al., 2012; Mickelson et al., 2017). The WADNR also uses a simplified version of 

infinite-slope equation (Equation 1) for shallow landslide susceptibility analysis. They ignore 

root cohesion and use a uniform soil type and thickness with constant mechanical strength values 

(Mickelson et al., 2017). The WADNR will be applying the susceptibility tools to the Nooksack 

basin starting in the fall of 2018.  

 
3.0 Methods 

3.1 Digital Watershed Characteristics 

I examined mass-wasting susceptibility in the upper Nooksack basin using two different 

modeling approaches that employ the infinite-slope algorithm outlined by Hammond et al. 

(1992)—a static ArcGIS raster-based method, and a dynamic probabilistic approach that is 

integrated in the DHSVM hydrology model (Doten and Lettenmaier, 2004). I applied two 

modeling approaches in part to compare the different outcomes of the models and to assess the 

relative model skill and the utility of using the simpler, more user-friendly static ArcGIS model 

as a means to determine mass-wasting susceptibility. Both models require grid-based digital 

inputs that characterize the spatial and mechanical attributes of soils and vegetation of the basin, 

which I summarize below.  

 

3.1.1 Digital Elevation 

 Newly acquired, 3-ft resolution LiDAR (Light Distance and Ranging) covering most of 

the upper basin was obtained through the WADNR to represent elevations throughout the upper 

Nooksack basin (McWethy, 2016). The LiDAR was produced using an aircraft-mounted 

scanning laser rangefinder and processed to remove tree canopy to produce high resolution bare 

earth topography (Puget Sound LiDAR Consortium, 2006). The original 3-ft LiDAR was 

converted to sub-1 m resolution for consistent units. Due to the missing coverage of newly 

acquired LiDAR in the North Fork basin, a coarser 10 m resolution digital elevation model 

(DEM) was used to produce a dataset covering the entire study area (Figure 3). The 1 m LiDAR 
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was resampled to a 10 m DEM to create the optimal input resolution for mass-wasting analysis 

for the two models. Using the slope tool within ArcGIS and the DEMs I created slope angle 

raster grids. Both 10 m and 1 m resolutions were used as inputs for the static ArcGIS infinite-

slope model to allow for comparisons between resolutions.  
 

3.1.2 Surface Geology and Soil 

 To characterize the surficial geology of the upper Nooksack basin I used a combination 

of publically available digital geology and soil maps. GIS shapefiles of local surface geology and 

landslides are available for download from the WADNR (Washington Division of Geology and 

Earth Resources, 2016). I selected a 1:100,000-scale geologic map of the study area due to the 

data having the highest resolution of mapped surface deposits that covered the entirety of the 

upper basin. The original geology shapefile contained polygons and associated attributes of 

bedrock and surficial units. I used a shapefile outlining DNR mapped debris flows and shallow 

landslides to represent landslide deposits in the basin and added shallow landslides on Mount 

Baker mapped in a recent mass-wasting inventory by Nielsen and Grah (2015). Additionally, I 

followed the SLIP mapping procedure used by the WADNR to identify and digitize more 

landslide deposits within the upper Nooksack basin. Through the interpretation of LiDAR 

derivatives (e.g., hillshade, slope angle, etc.) in a GIS, the SLIP mapping procedure categorizes 

the confidence of the landslide deposit being mapped and streamlines the identification process 

by omitting detailed attributes that are usually associated with landslide inventories (Mickelson 

et al., 2017). High confidence landslides were marked by a polygon that encompasses the entire 

landslide (headscarp, side scarps, etc.) and are the only confidence category added to the 

complete landslide inventory (Figure 4).  

 Quaternary-aged unconsolidated to semi-consolidated units were queried from the 

original geology shapefile based on their available mechanical strength literature values and 

propensity for shallow mass-wasting failures. Deposits used from the original shapefile include 

alluvium (Qa), continental glacial drift (Qad), alluvial fan deposits (Qaf), continental glacial 

outwash (Qgoe), glacial till (Qgt), landslide deposits (Qls), and talus deposits (Qta). The original 

geology shapefile included the extent of glaciers, which were not up to date with current glacier 

extents, as they had receded in the basin since the mapping was produced. To rectify this, I used 

publicly available color orthophotos to digitize and update the extent of glaciers. 
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 As glaciers recede, they expose unconsolidated and unvegetated sediments (e.g., 

moraines and outwash), which are susceptible to erosion and slope failure. Moraines were not 

identified in the initial geologic map shapefile, so I used color orthophotos and LiDAR to 

identify and digitize moraines (Qm) in the geologic shapefile. Because actual moraine 

thicknesses are unknown, I used a constant moraine thickness of 3 meters to be consistent with 

the WADNR’s application of their infinite-slope model (Figure 5; Mickelson et al., 2017). Using 

projected glacier extents centered on 2080 in the North Fork and Middle Fork basins after 

Murphy (2016), I altered the extent of glaciers to simulate future landscape conditions. A decadal 

average of glacier extents centered on 2080 modeled using aggressive carbon emission scenarios 

was used to represent conditions in the late 21st century. Moraine deposits that were digitized to 

represent historical conditions were extended to signify additional moraine buildup as a result of 

historical glacier retreat. The attitude of nearby bedrock was a key factor on the decision to 

extend previously mapped historical moraine deposits, which limited how many deposits were 

extended. All moraine deposits were classified as Qm and assigned the same mechanical 

characteristics and constant soil thickness, regardless of their representation of historical or 

projected landscapes (Table 2 and 5). While mechanical soil characteristics representing 

moraines are difficult to estimate due to their heterogeneity, I used literature values to estimate 

the angle of friction and cohesion values (Table 2 and 5; Lebourg et al., 2004).  

 Soil data are available in shapefile format from the United States Department of 

Agriculture (USDA) Natural Resource Conservation Service (NRCS) Geospatial Data Gateway 

and USDA Forest Service databases (USDA Forest Service, 1991; Soil Survey Staff, 2016). The 

USDA NRCS provides soil coverage in the form of soil survey geographic (SSURGO) 

shapefiles. The SSURGO shapefiles are separated by state counties and the Nooksack watershed 

extends into both Whatcom and Skagit Counties, so separate soil SSURGO shapefiles were 

downloaded and clipped to the basin extent. The SSURGO shapefiles were selected because 

mapping unit symbols attached to polygons in the attribute table can be correlated to the Unified 

Soil Classification System (USCS) designation, which I use for engineering purposes. 

 The SSURGO shapefiles only cover the western extents of the upper Nooksack basin, 

terminating at the boundary of the Mt. Baker-Snoqualmie National Forest. To complete the soil 

coverage in the basin I combined the SSURGO shapefiles with soil resource inventory (SRI) 

shapefiles downloaded through the USDA Forest Service (Figure 6; USDA Forest Service, 
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1991). The SRI was originally mapped on aerial photos in 1976 at a 1:62,500 scale and digitally 

traced and scanned using a 1:1 scale in 1991 (USDA Forest Service, 1991).  

 Soil depth grids were established using a Python/ArcGIS script developed for the 

DHSVM (Figure 5; Ning Sun, personal communication). The script uses a scheme that assigns a 

soil thickness for each grid cell based on the DEM in a basin, i.e., high elevations are assigned 

thin soil depths and low relief regions are assigned thicker soil depths determined by a user 

defined minimum and maximum soil thickness. The soil depth grids were created for each sub-

basin and represented at 10 m and 1 m resolutions. Two ranges of soil depths (0.76 – 3.5 m, 2.0 – 

3.5 m) were created to analyze the effect of soil depth on slope stability. While the script-

generated soil depth grid is difficult to verify at the basin scale and has a significant control on 

mass wasting, the range of soil depth is realistic and more applicable when compared to using a 

constant depth soil grid or a constant depth to failure, e.g., that used by the WADNR (Mickelson 

et al., 2017). Constant soil depths representing digitized moraine deposits in the upper reaches of 

the basin were used in place of the original, thin soil depths produced by the Python script.  

Using the Web Soil Survey available through the USDA NRCS I paired the SSURGO 

soil types with Unified Soil Classification System (USCS) soil types and added a USCS class in 

the attribute table. The USCS is a soil classification system applied in engineering and geology 

to describe the grain size distribution of a soil using a letter designation. For example, the USCS 

classification for SW would designate a soil as a well-graded sand. The queried geologic units, 

SSURGO shapefiles, and SRI shapefile were merged together to produce a final surficial 

shapefile (Figure 7), which is converted to raster format at the appropriate resolution for use in 

the static ArcGIS and DHSVM models. 
 

3.1.3 Landcover 

 I used Washington State 2011 land cover data from the National Oceanic and 

Atmospheric Association (NOAA) collected using 30 m resolution Landsat Thematic Mapper 

and Landsat Enhanced Thematic Mapper satellite imagery (NOAA, 2011). The NOAA data 

includes land cover class groups of developed land, agricultural land, grassland, forest land, 

scrub land, barren land, wetlands, water and ice, with nested land cover classes within each 

group (Figure 8). The original 30 m resolution raster was resampled to 10 m and 1 m resolution 

rasters to conform to necessary input resolutions for the static model. NOAA land cover 
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classifications are different from the land cover classifications used in DHSVM, therefore the 

original raster values associated with NOAA land cover classes were converted to the 

appropriate DHSVM land cover values (Table 3; Figure 9). General differences between the 

NOAA and DHSVM land cover classifications include different assigned values and broader 

DHSVM classifications that include multiple NOAA classifications. For example, DHSVM 

defines grassland to include NOAA classifications of pasture/hay, palustrine emergent wetland 

and grassland. In addition to this, DHSVM defines bare as NOAA classifications of developed 

open space, unconsolidated shore, and bare land. A detailed description of creating a land cover 

raster that is compatible with DHSVM can be found in the work of previous researchers (e.g., 

Dickerson, 2010; Murphy, 2016).  
 

3.2 Forecasted Snow and Landscape Change 

 I estimated the forecasted loss in snowpack area and increase in snowpack elevation into 

21st century using the results of Mitchell et al. (2016).  They used the calibrated DHSVM of 

Murphy (2016) to generate, and average, winter snow water equivalent (SWE) raster outputs 

produced over thirty-year simulations surrounding the years 1995, 2050 and 2075. The historical 

period was modeled using a gridded meteorological forcing data set (1981-2010; Livneh et al., 

2015). Forecasted modeling applied a single GCM (CSIRO-Mk3-6-0 with RCP 8.5) which 

closely approximates the median of the 10 GCMs applied by Murphy (2016). January 1 was used 

as the output day for computing SWE rasters because historically January is a high precipitation 

time of the year, and one of the coldest.  With increasing temperatures towards the end of the 

21st century, Mitchell et al. (2016) predicted that the winter snowline would be restricted to 

elevations above 1200 - 1500 m.  

Using ArcGIS software and the snowmap results of Mitchell et al. (2016), I quantified the 

percent increase in area experiencing reduction in snowpack coverage. Within these projected 

snow-free areas, I used available GIS data and examined the increase in factors that are related to 

mass wasting.  I quantified the increase in area of slopes greater than 25° based on Doten et al. 

(2006), harvestable forest areas (acquired from Ken Pierce, personal communication), the length 

of forest roads, and mapped landslides (WADNR, 2017).  
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3.3 ArcGIS Infinite-Slope Modeling 

3.3.1 ArcGIS Model 

Using ModelBuilder and the raster calculator in the ESRI ArcGIS 10.4 software suite, I 

developed an infinite-slope model based on the modified Hammond et al. (1992) infinite-slope 

equation (Equation 1) to calculate the FS at each cell within a watershed (Figure 10). The 

ModelBuilder is a tool in ArcGIS that facilitates repetitive processing of digital data sets. Raster 

inputs and output grid cells are at the resolution of the DEM. Raster inputs include the LiDAR-

derived DEM, slope angle, internal angle of friction, soil cohesion, root cohesion, dry unit 

weight, saturated unit weight, water unit weight, and soil depth. A ratio of the water table height 

to the total depth of soil is selected to represent the saturation amount at each cell throughout the 

basin.  

 
3.3.2 Static Mechanical Properties 

 To apply the model, I had to add mechanical attributes to my soil and vegetation grids.  I 

used ArcGIS to manually add attribute table columns representing friction angle, soil cohesion, 

dry unit weight, and saturated unit weight for each polygon based on available literature values. 

Given the proximity and similar glacial geologic history, values applied to landslide-prone 

geologic deposits in the Seattle area were assigned to similar deposits in the Nooksack basin 

(Koloski et al., 1989; Savage et al., 2000; Harp et al., 2006). Shear strength values used for 

Seattle geologic deposits were selected based on an archived database of shear strength tests, and 

are near the average values reported.  

 I applied typical USCS literature values for soil cohesion, friction angle, and dry unit 

weight to the soils and geologic deposits in Figure 7 (Table 2). Saturated unit weight values were 

approximated from a typical relationship between dry and saturated soil weights observed in the 

literature (Koloski et al., 1989; Geotechdata.info, 2013). To establish the mechanical properties 

of the SRI soils, polygons were matched to either the closest USCS classification or geologic 

deposit. The soil survey type (SST) attribute column listed descriptions of soil using the USDA 

Textural Soil Classification. Parent material (PM) described the underlying geologic material or 

deposit, such as glacial till and glacier deposited fresh sands and gravels. Based on the 

information from both the SST and PM attribute columns, I manually input the most appropriate 

USCS classification or geologic deposit and associated literature mechanical attributes. I used a 
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method for switching from the USDA to USCS soils outlined by García-Gaines and Frankenstein 

(2015). A constant value raster of 9.81 𝑘𝑘𝑘𝑘
𝑚𝑚3 was used for the specific weight of water and a 

constant ratio of water table height relative to soil depth was selected and applied to the soil 

depth grid to produce water table depth at each cell.  

 Using the polygon to raster tool in ArcMap, the surficial shapefile was converted to 

individual rasters representing the internal angle of friction, soil cohesion, dry unit weight and 

saturated unit weight across the basin used as inputs to the modified infinite-slope algorithm 

(Equation 1; Figure 10). Separate watershed boundaries and digital datasets for the North, 

Middle and South forks of the Nooksack River applied by Murphy (2016) were created to better 

capture local variability in each sub-basin.  

 I assigned static root cohesion values to the DHSVM vegetation classes (Figure 9) based 

on prior mass-wasting modeling in mountainous regions (Hammond et al., 1992; Montgomery et 

al., 1998; Doten and Lettenmaier, 2004; Table 4). Although the DHSVM mass-wasting model 

considers vegetation surcharge, it was omitted from my static infinite slope mass-wasting 

algorithm because the FS is not very sensitive to vegetation surcharge (Hammond et al., 1992). I 

validated the outputs of the ArcGIS static model by manually calculating individual raster values 

at twenty 10 m pixels throughout the basin. 

 

3.3.3 Modeling Scenarios 

 To better understand the sensitivity of input variables on mass-wasting susceptibility, I 

employed the static ArcGIS raster-based method on the entire upper Nooksack basin assuming 

no snow coverage. I used two variable soil depths and water table to soil depth ratios (Dw/D) of 

0.7 and 0.95. To display the effects of forecasted climate change on mass-wasting susceptibility, 

I analyzed differences between historical and projected snowpack coverages. I also applied 

different resolutions for input rasters (1 m and 10 m) to evaluate the influence of spatial scale to 

FS and slope susceptibility outputs. I calculated and compared susceptible areas for different 

modeling scenarios to estimate the relative influence of each variable. 
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3.4 DHSVM Infinite-Slope Modeling 

3.4.1 DHSVM Hydrology Model 

 The DHSVM is a physically based, spatially distributed hydrology model that was 

developed at the University of Washington and the Pacific Northwest National Lab for 

mountainous watersheds (Wigmosta et al. 1994). The model has been used extensively in the 

PNW to examine the impact of land use and climate change on streamflow (e.g., Stork et al., 

1998; Leung and Wigmosta, 1999; Bowling et al., 2000; Elsner and Hamlet, 2010; Battin et al., 

2007; Cuo et al., 2011; Dickerson-Lange and Mitchell, 2013; Murphy, 2016). The DHSVM 

requires digital grids of spatially variable watershed characteristics, including a DEM, soil type, 

soil thickness, vegetation, and stream networks. Hydrology was modeled in the Nooksack basin 

at a 50 m resolution. The DHSVM utilizes physical relationships and a sub-daily (3-hr) time 

series of meteorological input data including temperature, precipitation, wind speed, humidity, 

and short-wave and long-wave radiation to model the flux of water and energy at the pixel scale 

of the DEM; excess water is routed through a stream network. Historical meteorological inputs 

will include observational gridded daily data developed by Linveh et al., (2013) that were 

disaggregated into 3-hr time steps and bias corrected (Murphy, 2016. 

 Future hydrology with the DHSVM employed meteorological data from GCMs 

downscaled to the Nooksack basin. The downscaled future climate data developed by 

Abatzoglou and Brown (2012) using the multivariate adaptive constructed analogs method 

(MACA) were trained with the same grid point data of Linveh et al., (2013). To calibrate for an 

observed cold bias derived from a constant temperature lapse rate in the historical Livneh data, a 

delta method correction (e.g., Sperna Weiland et al., 2010; Watanabe et al., 2012) was applied to 

all Livneh cells within each sub-basin to adjust to PRISM temperature normal (Murphy, 2016). 

The downscaled data compared well with observational temperature data from SNOTEL stations 

within each sub-basin, indicating a more realistic representation of monthly temperatures 

(Murphy, 2016). 
 

3.4.2 DHSVM Sediment Module 

 The DHSVM sediment module was developed as a component to the DHSVM hydrology 

model (Doten et al., 2006). Hydrology outputs are redistributed over a higher-resolution DEM 

grid (i.e., 10 m) to estimate mass wasting, sediment delivery and channel transport in 
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mountainous, forested watersheds.  Mechanical soil and vegetation properties are assigned to 

grid cells and, in combination with outputs from the hydrology model, sediment flux is simulated 

by four processes: mass wasting, hillslope erosion, road erosion, and channel routing. Mass 

wasting is the only process of the sediment module applied in my analysis.  

 The DHSVM sediment module is computationally intensive, therefore it is set up to run 

during the time step that coincides with the greatest basin saturation (a DHSVM output) during a 

storm even. The basin saturation is the percentage of the number of pixels in the basin with a 

water table to soil depth ratios (Dw/D) greater than 0.85. A screening process throughout the 

basin is applied to limit computations to critical areas. The algorithm ensures that a grid cell is a 

potential sediment source and meets a user-defined minimum surface slope angle for mass 

wasting. The DHSVM uses 10o as a conservative value, even though Doten et al. (2006) noted 

that slope stability theory indicates shallow landslides are infrequent on slopes less than 25° 

(e.g., Sidle et al., 1985; Reneau and Dietrich, 1987; Burton and Barhurst, 1998). 

 All cells that meet our criteria are subject to a FS analysis based on the infinite-slope 

model, using a Monte Carlo style simulation to incorporate the variability and uncertainty of 

many input parameters (Hammond et al., 1992). The mass-wasting algorithm generates 

stochastic results of slope failure using predetermined probability distributions for four 

parameters that define shear strength and loading on a hillslope: soil cohesion, friction angle, 

root cohesion and vegetation surcharge (Doten et al., 2006). Random soil and vegetation values 

are chosen from these probability distributions and applied in the infinite-slope failure algorithm 

(Equation 1) in an iterative process. I used 1000 iterations per cell, which is typically used as a 

sufficient amount to incorporate spatial variability of input parameters and produce reproducible 

results (Hammond et al., 1992). The final output is a cell-by-cell probability of failure for a 

particular storm event, calculated by the following equation: 
 

𝑃𝑃 =  𝑚𝑚
𝛼𝛼
                                                               (2) 

 

where 𝑃𝑃 is the probability of failure ranging from 0 to 1, 𝑚𝑚 is the number of iterations for which 

failure was calculated, and 𝑛𝑛 is the total number of iterations. Probabilistic models prove to be 

advantageous over static models because they incorporate uncertainty and variability associated 
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with the prediction of slope stability, quantifying heterogeneities that are inherent in natural 

systems (Hammond et al., 1992).  
   

3.4.3 Probabilistic Mechanical Properties 

 The DHSVM sediment module assigns a probability distribution and range of values to 

each soil and vegetation class for soil cohesion, friction angle, root cohesion and vegetation 

surcharge. Normal, triangular and uniform probability distributions are used by the DHSVM to 

define mechanical properties assigned to soil and vegetation classes (Doten et al., 2006). A 

normal probability distribution is defined by a mean and a standard deviation. Normal 

distributions are typically used to describe a process in which values are distributed about one 

“true” value that is observed from laboratory work on a single soil or vegetation type (Hammond 

et al., 1992). 

 Triangular and uniform distributions are typically used for parameters that are poorly 

understood. Triangular distributions are defined by a minimum, maximum and a mode. The 

mode is the most likely value, while the probability is near zero at the minimum and maximum 

values. Triangular distributions are useful when limited field information is available, yet there is 

enough information to define probable values for the mode and range (Hammond et al., 1992). 

Uniform distributions are defined by a minimum and maximum value, making every value 

within the defined range equally likely. A uniform distribution is appropriate in describing 

heterogeneous materials that typically have minimum and maximum values that can be 

approximated from limited field information (Hammond et al., 1992).  

 I use a combination of parameters derived from PNW studies investigating slope 

stability, DHSVM literature, and mechanical soil characteristic literature to determine parameters 

for each soil and vegetation class (Doten and Lettenmaier, 2004; Hammond et al., 1992; 

Geotechdata.info, 2013). Soil classes included geologic units and USCS soil type designations, 

while DHSVM vegetation classes were matched to the closest vegetation parameters used in 

Doten et al., 2006 (Table 4 and 5). Mechanical characteristics used by Barik et al. (2017) in the 

Olympic Mountains compared relatively well with the mechanical characteristics that I applied 

in the Nooksack basin. 
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3.4.4 Modeling Scenarios 

 The probability of failure was analyzed for two historical and five forecasted storm 

events. Storm events were chosen throughout the 21st century during the months of October, 

December, January, and February. The timing of storm events was selected to provide a 

comparison of mass wasting with differing snow coverages and at various stages throughout the 

century. October was included because, historically, large storms can occur before the onset of 

significant snowpack resulting in high-peaked flood events. Winter storms were chosen to 

examine how the basin would respond as it receives more rain than snow into the 21st century 

during the months with the highest precipitation. Storm events that resulted in highly saturated 

basin conditions were selected to represent hydrologic conditions that would increase the 

probability of shallow mass-wasting events. To isolate these conditions, precipitation outputs 

from the CSIRO-Mk3-6-0 GCM and RCP8.5 meteorological time series were screened to 

identify high intensity precipitation events with values greater than 0.015 meters of precipitation 

during a single three-hour time step. A total of seven storm events were selected based on the 

greatest basin saturation extent during the previously selected high intensity precipitation events. 

The DHSVM outputs a basin average precipitation magnitude at every time step. These values 

were used to sum antecedent precipitation magnitudes of varying durations for each storm event. 

  

3.5 Infinite-Slope Data Analysis 

 Outputs of the static ArcGIS model are rasters of FS values at every grid cell in the basin. 

Using ArcGIS I isolated cells having FS values less than 1.5 to create maps that could be used as 

a susceptibility tool. I used these maps to quantify actual areas having values > 1.5 by summing 

pixels at the respective resolution. Each DHSVM storm event simulation produced an output 

raster of the probability of failure, ranging from 0 to 1, on a cell-by-cell basis over the three-hour 

time step (storm event). I used ArcGIS to query probability values greater than 0.25 to create 

maps that isolate locations of higher failure probability, and to limit the amount of data that I 

used for my infinite-slope analysis. To analyze the change in modeled failure probabilities 

through the 21st century, I calculated differences in failure probabilities (0.25 – 1.0, 0.75 – 1.0) 

between historical and projected storms. To isolate the effect of snowpack conditions on failure 

probability outputs, I analyzed the fall and winter storms separately.  

In addition to the above maps, I employed another technique applied by Saha et al. 
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(2005) using the van Westen (1997) Information Value (InfoVal) method to create mass-wasting 

susceptibly maps based on the DHSVM outputs.  The area of static FS outputs and DHSVM 

probability of failure outputs within a certain area of segmented sections of a class layer (e.g., 

slope angle or geologic unit) was calculated to produce a weighted value that assesses which 

factors have the greatest effect on failure probabilities. For example, the range of slopes within a 

basin can be segmented into various classes that are each weighted against failure probabilities. 

Weights of a specific class are determined by the following equation: 
 

     𝑊𝑊𝑐𝑐 = 𝑙𝑙𝑛𝑛 𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝛼𝛼𝑐𝑐𝑐𝑐𝛼𝛼𝑑𝑑
𝑀𝑀𝛼𝛼𝑀𝑀 𝑑𝑑𝑑𝑑𝛼𝛼𝑐𝑐𝑐𝑐𝛼𝛼𝑑𝑑

                                                     (3) 

 

where 𝑊𝑊𝑐𝑐 is the weight given to the ith class of a specific class layer (e.g., 15 - 30° in the class of 

slope). Class density is the landslide density within the specific class, or the number of landslide 

pixels in a segmented class divided by the total number of pixels in the same class. Map density 

is the landslide density within the entire class layer; in my case it is either the FS output (< 1.5) 

from the static model or the probability of failure output (0.25 to 1.0) from the DHSVM. The 

natural logarithm is applied to account for the large variation in weights. Generally, positive 

weights are associated with higher susceptibility to failures and negative weights are associated 

with lower susceptibility to failure (Saha et al., 2005).  

 After weights were calculated, they were assigned to the segmented sections of each class 

to produce weighted class maps. All weighted class maps were then overlain and added together 

to produce a Landslide Susceptibility Index (LSI). The LSI values have an associated range that 

need to be segmented in order to generate a Landslide Susceptibility Zonation (LSZ) map. 

Following the methodology of Saha et al. (2005), the cumulative frequency curve of LSI values 

were segmented into five classes that represent a near-equal distribution. The five classes 

represent landslide susceptibility zones: very low, low, moderate, high and very high. 

 The resulting LSZ map displays a combination of factors responsible for landslide 

susceptibility. For my study, I selected class layers that are generally well-known to have a large 

effect on slope susceptibility and factors that are more sensitive within the Hammond et al. 

(1992) infinite-slope equation. Soil depth, saturation percentage, slope angle, landcover and 

surficial coverage (soils and geologic deposits) were the layers selected to be segmented into 

classes and weighted to produce LSZ maps. To assess the change in landslide susceptibility 
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throughout the 21st century and isolate highly susceptible areas associated with particular storms, 

LSZ maps were produced based off of the intersection of class layers and failure probabilities 

(0.25 – 1.0) of each DHSVM storm event and compared. The creation of LSZ using DHSVM 

failure probabilities provide an additional tool for slope susceptibility assessment, as the 

resulting failure probabilities and LSZ maps take into account similar attributes associated with 

slope failures of the DHSVM. I also compared the static and probabilistic results to assess 

locations and patterns of susceptible areas. 

  An additional output from each DHSVM is a raster of the accumulated SWE at the time 

step of the modeled storm. I used raster outputs of SWE during each storm event as a proxy for 

snow coverage, and used them to assess changes in areal snow coverage throughout the basin 

and 21st century. I filtered the SWE rasters by eliminating SWE values less than 0.1 m to 

eliminate thin snow coverages.  

 

4.0 Results 

4.1 Forecasted Snow and Landscape Change 

On average, there is a 60% reduction in area covered by snow in January later in the 21st 

century based on the snow coverages produced by Mitchell et al. (2016), increasing the area 

available for runoff and mass-wasting susceptibility through the winter (Table 6; Figure 11). The 

newly exposed snow-free area has an increase in slopes that have angles greater than 25°, 

predominately in the North and South Fork basins. Relative to the historical landscape, the length 

of forest roads exposed in the future is projected to increase ~ 67% across the three sub-basins 

(Table 6; Figure 12; WADNR, 2017). Areas designated as commercial or rural forestry that have 

the potential to be harvested will increase by 80% from the historical to projected landscape as a 

result of decreasing snowpack, mainly in the Middle and South Fork basins (Table 6; Ken Pierce, 

personal communication; Berry, 2017). The increase in average winter snowline elevation will 

expose mapped landslide deposits to mid-winter rain, primarily in higher elevations (>1000 m; 

Figure 13). An area of 21.4 km2 classified as previously mapped landslides becomes exposed by 

the 30-year normal surrounding 2075. The average slope measurement of mapped landslide 

deposits within the exposed area is 23.4°, suggesting that most of the previously mapped 

landslides within the Upper Nooksack basin are located on slopes that are known to be prone to 

failures. 
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4.2 Infinite-Slope Analysis 

4.2.1 Static (ArcGIS) Infinite-Slope Results 

Assuming a snow free landscape, the static infinite-slope modeling results indicate a 

larger percentage of areas susceptible to shallow slope failure (FS < 1.5) when using inputs with 

finer topographic resolution, more saturated soil conditions, and thicker soils input variables. All 

scenarios in each sub-basin showed a significant increase in susceptible areas with the thicker 

soil depth raster (2.0 – 3.5 m) as compared to the thinner soil depth raster (0.76 – 3.5 m), mainly 

because thicker, saturated soils on steeper slopes produce lower FS values. The greatest change 

in susceptible area was observed in the Middle Fork basin when applying thicker soils compared 

to thinner soils, whereas the South Fork basin showed the least amount of change of the three 

upper basins (Table 7). 

The application of 1 m resolution compared to 10 m resolution produced an increase in 

areas susceptible to shallow slope failure for all modeling scenarios and within each sub-basin 

(Table 7; Figure 14). When applying finer resolution, the largest increase in susceptible areas 

from the coarser resolution scenarios were observed in the South and Middle Fork basins (Table 

7; Figure 14). Increasing the saturation level of the soils resulted in an increase of susceptible 

areas within each upper basin, regardless of the resolution and soil thickness scenario applied 

(Table 7). Susceptible areas were found to be less sensitive to changes in fine resolution input 

parameters compared to coarse resolution input parameters. For example, the susceptible area 

increased by an average of 27.9% when increasing saturation levels using 10 m resolution inputs 

when compared to 1 m resolution inputs, which increased by an average of 18.7% (Table 7).  

I also assessed the FS < 1.5 areas after placing the historical and forecasted snow 

coverages on the FS map generated using the thinner soil depth raster (0.76 – 3.5 m) and a very 

high ratio of water table to soil depth (0.95). As a result of the increase in snow-free area, the 

projected landscape had 130% more susceptible area than the historical landscape (Figure 15). 

Most of the susceptible area increases are observed in the higher elevation regions of the Middle 

and South Fork basins. Increases in susceptible areas within the projected landscape are also a 

result of the exposure of the new moraine areas I digitized. The total area of digitized moraines 

within the North Fork and Middle Fork basins based on Murphy’s (2016) 2080 projected glacier 

extents increased by at least 1.74 km2, with the most increases occurring within the North Fork 
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basin (Table 8; Figure 16). Compared to other deposits, moraine deposits produce exceptionally 

low factor of safety results (Figure 16).  The increase in moraine deposits, which have a 

propensity for mass-wasting failures, will likely lead to an increase in sediment entrainment and 

overall slope failure when exposed to fall storm events. 

To provide a comparison between modeling methods, InfoVal weight (described in the 

Methods) were calculated using 10 m resolution grids and on areas where FS < 1.5. Positive 

weights are associated with higher susceptibility to shallow failures and negative weights are 

associated with lower susceptibility (Saha et al., 2005). Weights for slopes indicate that regions 

with moderate, steep, and very steep slopes (30 - 45°, 45 - 60°, 30 - 45°, 60°+) have the highest 

failure susceptibility, with the lowest susceptibility being associated with very shallow slopes (0 

- 15°; Table 9). High failure susceptibility was observed with thin soil depths (0.76 – 1.0 m) for 

all upper basins, while thick soil (2.0 – 3.5 m) depth weights calculated in the North and South 

Fork basins indicate very low failure susceptibility (Table 9). Moderate soil depths (1.0 – 2.0 m) 

produced weights close to zero in value, indicating these soils are potentially susceptible to 

shallow failures (Table 9). The highest positive weights calculated were for thin soil depths and 

the lowest negative weights calculated were for thick soil depths in the North and South Forks. 

Highly susceptible soils associated with static results were observed to be sand (SW), loamy 

sand (GP, GM), sandy loam (ML-MG), silt (ML), muck (PT), talus (Qta), and moraine (Qm) 

deposits, while lower landslide susceptibility was indicated in sand (Qgoe), loamy sand (SM-SG, 

Qls), sandy loam (Qaf, SM), silt (Qgt), sandy clay (Qad), and organic (OH) deposits (Table 9). 

Weights for NOAA landcover classes indicate that regions covered by large conifers and 

shrubland have the highest failure susceptibility, while all other regions have low susceptibility, 

with the lowest susceptibility associated with broadleaf, bedrock, water, and ice regions (Table 

9). 

 

4.2.2 DHSVM Infinite-Slope Results 

 The basin average cumulative precipitation amounts were calculated for each sub-basin 

for 72-hour, 48-hour, 24-hour and 12-hour time periods prior to peak saturation extents for each 

of the seven storms (Table 10-11). The greatest amount of 72-hour cumulative precipitation was 

attributed to the January 2009 storm, with an average of 0.29 meters across all basins (11.4 

inches); the least amount of 72-hour cumulative precipitation was received from a modeled 
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February 2041 storm, with an average of 0.12 meters (4.72 inches; Table 11). The highest 

amount of precipitation received 12 hours prior to the onset of a storm was an average of 0.098 

meters across all basins (3.86 inches) during the December 2096 storm, while the least amount of 

12-hour precipitation received was an average of 0.036 meters (1.42 inches) during the January 

2009 storm (Table 11). A pattern was not observed in the spatial distribution of total cumulative 

precipitation between storm events, although several winter storms (January 2009, January 2018, 

January 2089) produced the highest precipitation amounts in the South Fork basin (Table 11). 

 I also processed the cumulative SWE raster outputs of DHSVM produced at the time of 

each storm. Significant differences in fall and winter snow coverages were observed, as well as 

snow coverages throughout the 21st century. Snow coverage during fall storms was minimal, 

with a total area of 38.5 km2 during the October 2003 storm declining to 3.5 km2 during the 

October 2089 storm (Table 12). Snow coverage decreased from 1,411 km2 during the January 

2009 storm to 60.1 km2 during the December 2096 storm, indicating a strong decreasing winter 

snowpack despite winter seasons maintaining more snow coverage compared to fall seasons 

(Table 12). Note that the unusually large snow area that developed during the 2009 storm is a 

result of a large area of lowland snow that was relatively shallow and short lived. Snow 

coverages in the snow-dominated North and Middle Fork basins are greater than snow coverage 

in the lower elevation, rain-dominated South Fork basin for all storm events.  

The varying precipitation storm characteristics and snow coverages resulted in different 

saturation extents (Table 10-13).  Saturation extent is an output of the DHSVM and is defined as 

the percentage of cells within a basin where the water table depth is equal to or greater than 85% 

of the soil depth. The historical January 2009 storm produced the lowest three-basin average 

saturation extent of 43.6%, while the projected December 2096 storm produced the highest 

average saturation extent of 78.5% (Table 13). Fall storms produced exceptionally high 

saturation extents, suggesting that a reduced snow coverage contributes to highly saturated 

conditions. Projected storms in the latter half of the century produced some of the highest 

saturation extents when compared to historical and early century storms (Table 13). Winter 

storms produced varying average saturation extents of 43.6% (January 2009), 58.7% (February 

2041), and 76.1% (January 2018), suggesting that antecedent precipitation has a direct effect on 

saturation extent and snowpack conditions throughout the century directly affect the saturation 



29 
 

extent observed during each storm (Table 11-13). For most storm events, saturation extent was 

greatest in the South Fork basin and lowest in the Middle Fork basin (Table 13). 

The total area of failure probabilities between 0.25 – 1.0 calculated for each storm event 

indicates that the most failure probabilities occur within the South Fork basin, while the least 

amount of failure probabilities occurs within the North Fork basin (Table 14). In general, 

projected winter storm events produced significantly more failure probabilities than the historical 

winter storm (Table 14). The historical and projected fall storm events resulted in a similar area 

of failure probabilities between 0.25 – 1.0, which were exceptionally high when compared to 

late-century winter storm events (Table 14).  The change in the total area of failure probabilities 

(0.25 – 1.0) calculated between storm events indicate the greatest increase from historical to late-

century projected storms during the winter months. The majority of failure probability changes 

observed from historical to projected winter storms occur in the higher elevation areas of each 

upper basin, where the projected winter snowline has increased, and the areal snow coverage has 

decreased (Figure 17-19).  

The change between the January 2009 storm event and projected January 2089 and 

December 2096 storm events resulted in an average increase between sub-basins of 243% and 

283%, respectfully (Figure 17-19). Furthermore, the same comparisons between storms of high 

failure probabilities (0.75 – 1.0) showed an average increase of 344% and 313% (Table 15). 

Changes in failure probability areas between the January 2009 and February 2041 storms showed 

a very small average increase in comparison to other winter storms (Table 15). The projected 

October storm showed very minimal failure probability increases compared to the historical 

storm, likely due to similar saturation extents and areal snow coverages (Table 12-13 and 15; 

Figure 20-21). The greatest increase in the area of failure probability (0.25 – 1.0; 0.75 – 1.0) for 

all comparisons was observed in the Middle Fork basin, while the smallest increase in failure 

probability was observed in the South Fork basin (Table 15).  

I estimated InfoVal weights in areas with failure probabilities between 0.25 and 1.0 for 

each storm event. Weighted calculations indicate the highest failure susceptibility associated 

with moderate to steep slopes (30 - 45°, 45 - 60°) and the lowest failure susceptibility associated 

with very shallow slopes (0 - 15°) for each storm event (Table 16-18). Probabilistic weights are 

consistently negative for slopes less than 30° and greater than 60°, with an exception being the 

positive weight for slopes 15 - 30° calculated from the January 2009 storm in the North Fork 
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basin. This can likely be attributed to more failures being restricted to lower elevations due to the 

larger snow coverage (Table 12 and 16). InfoVal weights associated with soil depths indicate 

that thin to moderate soil depths have a higher susceptibility to failures compared to thick soil 

depths, in part because they thin soils occur on steeper slopes. Thick soils in the Middle Fork 

basin consistently produced the highest slope susceptibilities in comparison to other basins, 

while thick soils in the North and Middle Forks tend to yield lower susceptibilities compared to 

thin and moderate soil depths (Table 16-18). InfoVal weights also indicate an increase in slope 

susceptibility with increasing saturation. All storms either produced extremely low weights or no 

failure probability pixels within cells containing saturation percentages between 0.1 and 0.7, 

while producing positive weights for soils that are very saturated to fully saturated (0.7 – 1.0; 

Table 16-18). Weights associated with landcover indicate that broadleaf, large mixed stand, and 

shrubland classes have consistently high failure susceptibility for all storms and within each 

upper basin, while landcover classes for large conifers, ice, sparse/open/agriculture, rock and 

water are consistently indicative of low failure susceptibility for all modeling scenarios (Table 

16-18).  

Individual InfoVal weights calculated for soil depth, soil saturation, slope angle, 

landcover and surficial coverage were added to create LSZ maps that represent failure 

susceptibility, similar to Barik et al. (2017). To comprehend changes in fall and winter failure 

susceptibility throughout the upcoming century, I compared differences between historical and 

late-century projected LSZ maps. Saha et al. (2005) defined five LSZ map classes: very low, 

low, moderate, high and very high. I chose to compare only the ‘very high’ susceptible areas 

throughout the century and between sub-basins (Figure 22-25). In the North Fork, the January 

2089 and December 2096 storms saw a decrease in very susceptible areas of 24.1% and 10.5%, 

respectively when compared to the 2009 storm (Table 19). In the Middle Fork, very susceptible 

areas increased by 71.6% in the January 2089 storm, while very susceptible areas decreased by 

24.4% in the December 2096 storm (Table 19). An increase of very susceptible areas was 

observed for both projected storms in the South Fork basin, with an average increase of 13.4% 

compared to the historical winter storm (Table 19). Comparisons between the historical October 

2003 and projected October 2089 storms also showed differences in very high susceptible areas 

for each upper basin. Very high susceptible areas increased by 22.9% between fall storms in the 

North Fork basin, while these areas decreased by 52.5% and 1.17% in the Middle Fork and 
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South Fork basins, respectfully (Table 19). Visual comparisons of very high susceptible areas 

indicate that common surficial units are glacial outwash (Qgoe), loamy sand (GM, Qa), landslide 

(Qls), silt (ML), and moraine (Qm) deposits, with many deposits located along the outer edges of 

river valleys, presumed to be river bluffs (Figure 22-25). 

 

5.0 Discussion 

 5.1 Forecasted Snowlines and Sediment Source Increases 

 The 60% reduction in snow coverage across all basins projected for 2075 will expose 

landscape that will be vulnerable to higher intensity storm events and subsequent sediment 

production (Table 6). A large increase in harvestable forest lands will be exposed during the 

winter months, especially in the Middle and South Forks (Table 6). If these lands are harvested 

in the future, they will present a higher sediment source risk. The effects of forest harvesting on 

mass wasting was not a focus of my study, yet removal of vegetation is known to have a 

significant effect on mass wasting and movement of sediment (Montgomery et al., 1998; 

Montgomery et al., 2000; Roering et al., 2003; Joshua et al., 2003). Sidle and Bogaard (2016) 

found an increase in landslide rate of about 2-10 fold compared to undisturbed forests 

approximately three to 15-20 years after forest harvesting  as a result of a reduction in root 

cohesion and increased infiltration.  The length of forest roads exposed to winter rainfall will 

increase by an average of 67% as the snowline increases in elevation into the 21st century.  Forest 

roads increase surface runoff through the interception and redirection of surface runoff and 

subsurface flow, while also acting as an additional source of surface sediment (Table 6; Doten 

and Lettenmaier, 2004; Brown, 2011). In addition to sediment production from the initiation of 

mass-wasting movements on road cutslopes, culvert failures resulting from trapped sediment and 

debris can lead to increases in sediment delivery to streams (Flannagan, 1999; Wemple et al., 

2001). 

Previously mapped landslide deposits that will be exposed as a result of the increasing 

average winter snowline elevation may reactivate and be a source for sediment delivery (Figure 

13). Landslide deposits are known to currently be serving as sediment sources in smaller 

watersheds within the upper Nooksack basin (e.g., Lummi Nation Natural Resources 

Department, 2012). The South Fork has abundant landslide deposits derived from structurally 

weak glacial deposits, which act as sediment sources due to their frequent failures (Nooksack 



32 
 

Natural Resources Department, 2016). Previous landslide deposits are the most probable sites for 

new landslides, as older deposits in a remolded state have a lower strength than the original soil 

(Selby, 1982; Hammond et al., 1992).  

As expected, my mapped moraine deposits based on Murphy’s 2080 ice extents produce 

low FS values by the ArcGIS model, and are susceptible to mass wasting (Figure 15-16).  

Although moraine deposits are more at risk to erosion and mass wasting when snow coverage is 

minimal or non-existent (i.e., during fall and spring storm events), some moraines will be 

exposed to high intensity precipitation events in the winter months as the snowline increases in 

elevations. Due to their instability and unconsolidated makeup, moraines deposits exposed to 

high intensity precipitation events will be the most susceptible to failure. In addition to slope 

failure, sediment from recently deglaciated moraines is also readily mobilized, transported, and 

deposited by other mass-wasting processes (O’Connor et al. 2001). 

As the snowline increases there is a 38% increase in exposed areas with slopes greater 

than 25° in the upper Nooksack basin (Table 6). According to my static modeling FS < 1.5 maps 

and LSZ maps generated from my DHSVM modeling, these areas are more susceptible to failure 

compared to more gently sloping landscapes (Figure 15 and Figure 23). InfoVal weights 

resulting from my static modeling and probabilistic results (failure probability 0.25 – 1.0) also 

indicate that steeper slopes (30 - 60°) have the highest failure susceptibility. Correlating this 

increase in mass-wasting potential to actual sediment production is not within the scope of my 

project, but it will no doubt be one of the largest sediment sources to streams within the Upper 

Nooksack basin.  

 

5.2 Static Modeling Sensitivity and Uncertainty 

 The exceptionally large study area of the upper Nooksack basin requires more 

generalization of model input variables, specifically; there are limitations and uncertainties 

associated with the scale of the surficial geology and soil mapping and other publically available 

digital data that I used in the model.  As a result of these uncertainties, FS values do not 

necessarily follow the general stability thresholds, e.g., a slope with a calculated FS of 0.9 could 

not fail, while a slope with a calculated FS of 1.1 could fail (Hammond et al., 1992). A finer 

resolution of input grids would reduce uncertainly, but at this point, the only grid available at a 

finer resolution is the 1 m LiDAR. My static infinite-slope modeling results within all three 
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upper basins show that finer resolution inputs based on the LiDAR, produced an increase in total 

area having a FS < 1.5. Given that the slope angle is a key indicator for predicating infinite-slope 

failures, having a LiDAR coverage for determining slope angles in watersheds is essential.  

Mechanical strengths values assigned to each deposit will affect associated FS results and 

InfoVal weights. I used literature values based on similar deposits and modeling studies. For 

example, I used a soil cohesion value of 19.2 kPa for landslide deposits based on Harp et al. 

(2006). While the assigned cohesion value is acceptable, the cohesion of landslide deposits is 

variable and more conservative literature values are available. Landslide cohesion values can 

vary based on the age of the landslide deposit and subsequent breakdown of material. Using 

cohesion-less values (e.g., Mickelson et al., 2017) allows for a more realistic, yet conservative 

representation of susceptibility with respect to landslide deposits, which are prone to additional 

failures through reactivation.  The uncertainties associated with unconsolidated deposits can be 

decreased with additional validation using field measurements. While certain field values, such 

as soil depth, would be more difficult to verify in an expansive area, mechanical characteristics 

of soils specific to the field area would result in a more accurate representation of slope stability. 

Specifically, in-situ tests of site-specific mechanical properties (soil cohesion, angle of friction, 

root cohesion) associated with unique geologic or soil deposits would reduce model uncertainty 

through the refinement of probability distributions. The logical place to start would be the 

deposits that I found to be correlated to higher failure susceptibility, such as glacial outwash 

(Qgoe), loamy sand (GM, Qa), landslide (Qls), silt (ML), and moraine (Qm) deposits. 

 More susceptible areas were predicted when thicker minimum soil depths (2.0 m) were 

applied at higher elevations compared to thinner minimum soil depths (0.76 m; Table 7) because 

of how I estimated the water table depth in the static model. For example, if the Dw/D ratio is 

0.95, the water table is 95% of the soil thickness, regardless how thick the soil. A nearly 

saturated thick soil at a steep angle would yield a lower FS than a nearly saturated thin soil. 

Moreover, for a constant soil thickness, a higher Dw/D ratio results in a lower FS value. 

Hammond et al. (1992) documented this in their sensitivity analysis. They also found that the FS 

becomes less sensitive to the Dw/D ratio when the soil depth is decreased. The addition of water 

into the soil increases the weight acting on the matrix and decreases grain-to-grain contact 

through buoyancy forces, effectively decreasing the overall shear strength and increasing the 

propensity for slope failures (Dhakal and Sidle, 2004; Sidle and Bogaard; 2016). As such, when I 
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apply a Dw/D of 0.95, there is a greater potential for infinite-slope failures (Table 7). My 

motivation for examining the infinite-slope susceptibility using a minimum soil depth of 2 m, 

even at high elevations in the basins, was based on the fact that the WADNR is currently using a 

simplified version of Equation (1) and assumes a 10 ft (~3 m) failure depth to assess susceptible 

mass-wasting regions (Mickelson et al., 2017). Aside from moraine deposits, I consider 2 m soil 

thicknesses to be unrealistically thin at high elevations in mountainous regions, meaning the 

WADNR model will predict more regions with low FS values at higher elevations.  

 The InfoVal analysis that I used to weight variables has limitations as a result of the 

relative magnitudes of the map and class densities in Equation (3). Given that the InfoVal 

method takes into account the overall area, deposits with limited coverage could produce 

abnormally low weights. For example, surficial units such as glacial outwash and landslide 

deposits that are likely susceptible to failure, produced lower weights and failure susceptibility 

than expected, primarily because both deposits make up relatively small areas within the upper 

Nooksack basin (Table 9; Figure 7). Also, despite conifer landcover having relatively high root 

cohesion values, InfoVal weight calculations indicate high failure susceptibility associated with 

conifers within each upper basin (Table 4 and 9).  This is most likely attributed to the high 

percentage of overall conifer coverage with respect to other landcover classes, which would alter 

the associated weights by allowing for more potential intersection with susceptible areas. Slope 

categories in my analysis were defined by 15o intervals and my results revealed negative InfoVal 

values for the 15-30 o category. Although Doten et al. (2006) noted that shallow landslides are 

infrequent on slopes less than 25°, it is possible that the failure risk could be higher for slopes 

between 15-30 o.  

 

5.3 Forecasted Storm Effects on Mass Wasting  

Increases in failure probabilities during winter months are attributed to the substantial 

decreases in areal snow coverage coinciding with increases in basin-wide saturation extent 

driven by cumulative precipitation increases. These conditions will lead to a subsequent increase 

in sediment delivered to streams. Despite 72-hour cumulative precipitation being greater for the 

January 2009 storm in comparison to the January 2089 and December 2096 storms, the resulting 

saturation extents for the projected storms are much greater than the saturation extent for the 

historical storm due to differences in snow coverage (Table 11-13). A relatively small increase in 
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failure probability occurred between the historical and forecasted October storms, which can 

most likely be attributed to the small difference in saturation extents due to the lack of snow 

coverage in October (Table 13 and 15). 

The variability in storm characteristics, particularly differences between 72-hour and 12-

hour cumulative precipitation amounts, can affect the sensitivity of mass-wasting susceptibility 

because most shallow failures occur from high groundwater pressures resulting from previous 

rainfall accumulation (Lu and Godt, 2013). Scientists are aware of the relationship between 

rainfall thresholds and shallow slope failures and have developed tools for risk assessment 

purposes in the Seattle region (e.g., Chleborad et al., 2006; Godt et al., 2006: Baum and Godt, 

2010; Scheevel et al., 2017). Based on these works, the WADNR has developed a web-based 

tool for predicting mass-wasting risk using real-time rainfall (WADNR, 2018). The influence of 

rainfall on mass wasting is evidenced by my DHSVM modeling. For example, the average 

difference between the 72-hour and 12-hour cumulative precipitation amounts for the February 

2041 storm was 0.052 m, which resulted in a low saturation extent (Table 11 and 13). The area 

of failure probabilities between 0.25 and 1.0 under these conditions was 2.31 km2 (Table 14). 

The January 2018 storm produced an average difference of 0.13 m between 72-hour and 12-hour 

cumulative precipitation amounts, and a high saturation extent, resulting in 6.2 km2 of failure 

probabilities between 0.25 and 1.0 (Tables 11-12 and 14). More areas with failure probabilities 

between 0.25 and 1.0 were predicted with future winter storms than the fall storms, with the 

February 2041 storm event being an exception likely related to relatively low cumulative 

precipitation amounts and resulting saturation extents (Table 11 and Table 13-14). While 

forecasted October storms are less likely to produce more failures than mid-winter storms due to 

anticipated lower saturation extents, higher amounts of precipitation earlier in the water year 

would act to precondition soil saturation levels and produce more failures, for example during 

rainfall events in November.  

Approximately half of the total storm events show that the highest 72-hour cumulative 

precipitation amounts were received in the South Fork basin (Table 10-11). Subsequent 

saturation extents in the South Fork basin are typically the highest among the three upper basins 

as well as a result of the relatively lower elevations that receive more rain than snow (Table 1 

and Table 10-11 and Table 13). The relatively high cumulative precipitation amounts and 

saturation extents, as well as minimal snow coverage becoming almost nonexistent by the end of 
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the century, likely makes the South Fork basin more sensitive to increases in mass-wasting 

susceptibility (Table 12). This increase in landslide susceptibility suggests a higher frequency of 

episodic and chronic sediment inputs to streams and rivers in the upper Nooksack basin, and the 

necessity for a sediment management plan focused on protecting local salmon populations.  

 With regard to the DHSVM modeling, in addition to the soil and landcover limitations 

mentioned above with regards to the static model, Murphy (2016) pointed out a number of 

uncertainties associated with the hydrology modeling. Specifically, the disaggregation of 

extrapolated daily meteorology grids, generalizations about several climate parameters 

associated with GCM climate forecasts, and the relatively coarse resolution of the GCM climate 

forecasts introduce uncertainty into the hydrology modeling (Murphy, 2016).  Note too, that all 

historical and forecasted simulations use the same 2011 NOAA landcover.  Projected landcover 

changes such as harvesting or tree growth, and subsequent changes in rooting depths and root 

cohesion are not considered. None the less, the model serves as a rigorous tool for estimating the 

probability of failure and making qualitative, relative comparisons between the stability of 

hillslopes, and for identifying areas that should be selected for additional analysis. 

 

5.4 Mass-Wasting Susceptibility Mapping 

The output of the DHSVM mass-wasting model are pixel locations that have a high 

probability of failure, which are typically isolated in small areas because of soil heterogeneities 

in mechanical properties and degrees of saturation (Figure 17-21). Hence, they do not serve well 

as susceptibility maps. As such, I produced the LSZ maps to identify areas having similar failure 

attributes as the factors associated with the high failure probabilities produced by the DHSVM 

(Figure 26). The susceptible areas derived from LSZ maps are more extensive hence serve as 

broader, less specific tool for slope susceptibility assessment (Figure 26). Note, however, that the 

range of LSI values generated for the maps are based off of failure probabilities, which were split 

into five equal intervals, with the top twenty percent representing very high susceptible areas 

(Saha et al., 2005). Therefore, very high susceptible areas are not represented by the same LSI 

values, which are dictated by the snow coverage and precipitation characteristics of the related 

storm. Very high susceptible areas give an indication of the most susceptible areas based on the 

unique storm characteristics, and should be used as a general comparison between storm events.  
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An advantage of applying the more complex DHSVM mass-wasting model is that it 

accounts for uncertainty and variability in the soil and vegetation mechanical properties and for 

more natural soil-water conditions produced by the hydrology model in the DHSVM (Doten et 

al., 2006). To determine the effectiveness of applying the simpler static ArcGIS method as a tool 

for infinite-slope susceptibility mapping, I compared overlapping areas from the FS < 1.5 map 

with the LSZ map generated from outputs for a late century winter storm.  Within the North, 

Middle and South Fork basins, 79.9%, 78.2%, and 54.7%, respectively, of ‘very high’ 

susceptible areas fall within susceptible areas (FS < 1.5) derived from static modeling (Figure 

27). The lower percentage in the South Fork basin may be due to the distribution of soil depths in 

the lower relief South Fork basin relative to the higher relief Middle and North Fork basins.  

While static modeling produces more susceptible areas than highly susceptible areas from LSZ 

maps, isolated areas identified by both methods could be regions to focus additional study. Given 

the reasonable correlation between the two models, the static ArcGIS would serve as a 

reasonable first-order tool for identifying susceptible slopes. The static model does however, 

account for a more realistic soil-thicknesses, unconsolidated deposit mechanical strength 

variability, and vegetation root cohesion strength variability in a watershed, unlike the WADNR 

infinite-slope model.  

 

6.0 Conclusion 

Projected warming and changes in precipitation are likely to drive significant increases in 

mass-wasting susceptibility and subsequent sediment production in the Nooksack basin affecting 

water quality, salmon habitat and flood hazard risk. Modeling indicates that snowpack will 

develop later in the fall, melt out earlier in the spring, with winter snowpack restricted to higher 

elevations into the 21st century. As the snowpack diminishes, there will be a significant increase 

in forest roads, and harvestable forest area exposed to winter rainfall. While these elements 

increase sediment production, the variability of their effects rely heavily on complex human 

decisions. There will be a large increase in slopes measuring greater than 25° and previously 

mapped landslides, which are documented to increase mass-wasting in drainages feeding 

tributaries of the Nooksack River. Glaciers will retreat leaving at least an additional 2 km2 of 

exposed moraines that have the potential to erode and fail, primarily during large storm events 

when the snowpack is at a minimum in the fall and early spring. Susceptibility maps produced by 
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the static ArcGIS model and the DHSVM sediment module indicate an increase in regions 

susceptible to slope failure during the winter months in snow free areas at higher elevations. As 

expected, higher mass-wasting susceptibility was associated with more saturated slopes greater 

than about 30° having thicker deposits with lower mechanical strength, e.g., sand (SW), loamy 

sand (GP, GM), sandy loam (ML-MG), silt, moraines, glacial outwash (Qgoe) and former 

landslide deposits. The more user-friendly static ArcGIS raster-based method proved to be a 

useful tool for identifying highly susceptible areas that have the potential to deliver sediment to 

steams, compared to the more rigorous and complicated probabilistic method integrated into the 

DHSVM hydrology model. Identifying susceptible areas with such models can assist hazard 

planning, and mitigating the effects of sediment on fish habitat and protecting future salmon 

populations. 
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8.0 Tables 

 

Table 1. Total basin areas (km2), areas above 500, 1,000, 1,500, and 2,000 meters, and glacial 
area in each of the three upper basins of the Nooksack River.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Basin Area Area > 

500m 
Area > 
1000m 

Area > 
1500m 

Area > 
2000m 

2009 
Glacier Area 

North Fork 817.1 230.5 366.2 128.6 18.6 25.8 

Middle Fork 259.7 220.1 127.0 27.9 7.2 7.6 

South Fork 475.8 310.6 118.1 8.8 0.04 0.0 
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Table 2. Average mechanical soil characteristics assigned to surficial units used in the static 
infinite-slope equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surficial Unit 𝑐𝑐 (kPa) 𝜑𝜑 (°) 𝛾𝛾(kN/m3) 𝛾𝛾𝑠𝑠 (kN/m3) 
CL (Clay Loam) 20.0 27 18.8 20.1 

CL-ML (Silty Clay) 18.0 25 18.8 20.1 
GM (Loamy Sand) 0.0 35 21.5 24.0 
GP (Loamy Sand) 0.0 36 20.5 24.0 

ML (Silt) 0.0 33 18.8 20.1 
ML-MG (Sandy Loam) 0.0 35 18.8 20.1 

ML-MS (Silty Loam) 0.0 36 18.8 20.1 
OH (Organic) 10.0 22 18.8 20.1 
OL (Organic) 10.0 25 18.8 20.1 

PT (Muck) 0.0 10 18.8 20.1 
Qa 0.0 32 18.8 20.1 

Qad 19.2 33 18.7 21.2 
Qaf 9.6 30 18.8 20.1 

Qgo(e) 14.4 34 18.7 21.2 
Qgt 28.7 30 18.8 20.9 
Qls 19.2 32 18.8 20.1 
Qm 5.0 38 18.8 20.1 
Qta 0.0 36 18.8 20.1 

SM (Sandy Loam) 22.0 34 20.5 24.0 
SM-SC (Sandy Clay Loam) 20.0 31 19.5 23.0 

SM-SG (Loamy Sand) 18.0 32 20.0 24.0 
SW (Sand) 0.0 35 20.5 24.0 
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Table 3. Conversion of NOAA landcover classification to DHSVM landcover classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOAA Landcover Classification DHSVM Landcover Classification 
2, Developed, High Intensity 13, Developed 
3, Developed, High Intensity 13, Developed 
4, Developed, High Intensity 13, Developed 
5, Developed, Open Space 12, Bare 
6, Cultivated Crops 11, Cropland  
7, Pasture/Hay 10, Grassland 
8, Grassland/Herbaceous 10, Grassland 
9, Deciduous Forest 4, Deciduous Forest 
10, Evergreen Forest 1, Evergreen Needleleaf 
11, Mixed Forest 5, Mixed Forest 
12, Scrub/Shrub 8, Closed Shrub 
13, Palustrine Forested Wetland 4, Deciduous Forest 
14, Palustrine Scrub/Shrub Wetland 8, Closed Shrub 
15, Palustrine Emergent Wetland 10, Grassland 
16, Estuarine Forested Wetland 4, Deciduous Forest 
17, Estuarine Scrub/Shrub Wetland 8, Closed Shrub 
18, Estuarine Emergent Wetland 10, Grassland 
19, Unconsolidated Shore 12, Bare 
20, Barren Land 12, Bare 
21, Open Water 14, Water 
22, Palustrine Aquatic Bed 14, Water 
23, Estuarine Aquatic Bed 14, Water 
24, Tundra 20, Ice 
25, Perennial Ice/Snow 20, Ice 
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Table 4. Root cohesion (kPa) and vegetation surcharge ( 𝑘𝑘𝑘𝑘
𝑚𝑚2 ) values applied to vegetation 

coverages in the ArcGIS and DHSVM models. 

Parameter (ArcGIS Vegetation) Deterministic Probability 
Distribution Range Mean / 

Mode 
Standard 
Deviation 

Large Conifer (1) 
Root Cohesion 7.0 Triangular 12 - 23 17.0 - 

Vegetation 
Surcharge - Uniform 48.9 – 195.4 - - 

Mixed Stand (5) 
Root Cohesion 7.0 Triangular 2 - 17 9.5 - 

Vegetation 
Surcharge - Uniform 48.9 – 195.4 - - 

Urban (13) 
Root Cohesion 0.0 Normal - 2000 0.0 

Vegetation 
Surcharge - Normal - 0.0 0.0 

Broadleaf (4) 
Root Cohesion 7.0 Triangular 2 - 13 5.5 - 

Vegetation 
Surcharge - Uniform 48.9 – 195.4 - - 

Barren (12) 
Root Cohesion 0.0 Normal - 2000 0.0 

Vegetation 
Surcharge - Normal - 0.0 0.0 

Shrubland (8) 
Root Cohesion 4.0 Triangular 2 - 6 4.0 - 

Vegetation 
Surcharge - Uniform 0 - 5 - - 

Cropland (11) 
Root Cohesion 1.0 Triangular 1 - 2 - - 

Vegetation 
Surcharge - Uniform 0 - 5 - - 

Rock (12) 
Root Cohesion 0.0 Normal - 2000 0.0 

Vegetation 
Surcharge - Normal - 0.0 0.0 

Water (14) 
Root Cohesion 0.0 Normal - 2000 0.0 

Vegetation 
Surcharge - Normal - 0.0 0.0 

Grassland (10) 
Root Cohesion 1.0 Triangular 2 - 6 4.0 - 

Vegetation 
Surcharge - Uniform 0 - 5 - - 
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Table 5. Probability distributions of cohesion (kPa) and friction angle (degrees) applied to 
surficial units used in DHSVM. 

Parameter Probability 
Distribution Range Mean / 

Mode 
Standard 
Deviation 

Sand (SW) Cohesion Normal - 0.75 0.25 
Friction Angle Normal - 33.0 1.5 

Sand (Qgoe) Cohesion Normal - 0.75 0.25 
Friction Angle Normal - 33.0 1.5 

Loamy Sand (SM –SG) Cohesion Normal - 12.0 7.0 
Friction Angle Normal - 33.0 1.5 

Loamy Sand (GP) Cohesion Normal - 0.75 0.25 
Friction Angle Uniform 32 - 44 - - 

Loamy Sand (GM) Cohesion Normal - 0.75 0.25 
Friction Angle Uniform 30 - 40 - - 

Loamy Sand (Qa) Cohesion Normal - 0.75 0.25 
Friction Angle Uniform 30 - 35 - - 

Loamy Sand (Qls) Cohesion Uniform 7.5 - 13 - - 
Friction Angle Uniform 25 - 32 - - 

Sandy Loam (Qaf) Cohesion Normal - 9.75 5.0 
Friction Angle Uniform 27 - 35 - - 

Sandy Loam (SM) Cohesion Normal - 18.0 7.0 
Friction Angle Uniform 30 - 35 - - 

Sandy Loam (ML-MG) Cohesion Normal - 9.75 5.0 
Friction Angle Uniform 27 - 35 - - 

Silty Loam (ML-MS) Cohesion Normal - 12.75 7.0 
Friction Angle Uniform 29 - 38 - - 

Silt (ML) Cohesion Normal - 7.0 3.0 
Friction Angle Uniform 27 - 41 - - 

Silt (Qgt) Cohesion Uniform 20 - 40 - - 
Friction Angle Uniform 35 - 45 - - 

Sandy Clay Loam (SM 
– SC) 

Cohesion Uniform 8 - 25 - - 
Friction Angle Uniform 30 - 38 - - 

Clay Loam (CL) Cohesion Uniform 4 - 10 - - 
Friction Angle Uniform 25 - 32 - - 

Sandy Clay (Qad) Cohesion Uniform 7.5 - 13 - - 
Friction Angle Uniform 25 - 32 - - 

Silty Clay (CL-ML) Cohesion Uniform 7.5 - 13 - - 
Friction Angle Uniform 25 - 32 - - 

Organic (OH) Cohesion Normal - 22.0 8.0 
Friction Angle Uniform 17 - 35 - - 

Organic (OL) Cohesion Normal - 22.0 8.0 
Friction Angle Uniform 22 - 32 - - 

Muck (PT) Cohesion Normal - 10.0 7.0 
Friction Angle Uniform 17 - 35 - - 

Talus (Qta) Cohesion Normal - 0.75 0.25 
Friction Angle Normal - 33.0 1.5 

Loamy Sand (Qm) Cohesion Normal - 0.75 0.25 
Friction Angle Uniform 30 - 40 - - 

Water Cohesion Normal - 2000 0.0 
Friction Angle Normal - 45.0 0.0 

Bedrock Cohesion Normal - 2000 0.0 
Friction Angle Normal - 45.0 0.0 
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Table 6. Landscape changes from historical to projected 2075 median snow coverages within 
each upper basin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basin Period 
Snow Coverage Slopes > 25° Roads Forest Practices 

% 
Basin 

% 
Reduction 

% 
Basin 

% 
Increase 

Basin 
(km) 

% 
Increase 

Basin 
(km2) 

% 
Increase 

South 
Fork 

Historical 52 - 23.4 - 650 - 166.5 - 

Projected 19 -63 31.2 33.3 1101 69.4 306.9 84.3 

Middle 
Fork 

 

Historical 63 - 37.6 - 219 - 74.6 - 

Projected 23 -65 48.6 39.3 499 82.6 131.3 76.0 

North 
Fork 

Historical 64 - 24.7 - 973 - 240.3 - 

Projected 31 -51 37.1 50.2 `454 49.4 310.4 29.2 



54 
 

Table 7.  ArcGIS results, area (km2) of FS < 1.5, for each upper basin with varying grid 
resolution (10 m and 1 m), soil depth, and water table to soil depth ratio (Dw/D). 

*10 m resolution used where 1 m resolution was not available 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Soil Depth Range 
(m) 

Dw/D = 0.7 
(10m) 

Dw/D = 0.7 
(1m*) 

Dw/D = 0.95 
(10m) 

Dw/D = 0.95 
(1m*) 

NF 0.76 – 3.5 157.7 218.0 203.4 264.3 

 2.0 – 3.5 277.6 354.0 317.0 385.6 

MF 0.76 – 3.5 48.3 76.0 61.9 91.9 

 2.0 – 3.5 91.7 129.7 103.9 137.7 

SF 0.76 – 3.5 74.0 124.3 93.6 141.6 

 2.0 – 3.5 114.5 173.5 133.3 188.9 
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Table 8. Area of digitized moraine deposits (km2) for historical and projected landscapes within 
the North and Middle Fork basins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Historical (2017) Projected (2080) 

NF 2.50 4.04 

MF 2.28 2.58 
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Table 9. InfoVal weights calculated from ArcGIS static results (FS < 1.5) for failure factors 
within each upper basin. 
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Table 10. Cumulative precipitation values for fall storms within each upper basin used in 
DHSVM.  

 North Fork Middle Fork South Fork 
10/20/2003 Meters Inches Meters Inches Meters Inches 

72 hours 0.160 6.311 0.177 6.961 0.166 6.553 
48 hours 0.128 5.057 0.141 5.567 0.134 5.290 
24 hours 0.090 3.561 0.101 3.957 0.099 3.887 
12 hours 0.057 2.233 0.063 2.495 0.063 2.487 

10/26/2089       
72 hours 0.243 9.556 0.280 11.034 0.264 10.397 
48 hours 0.179 7.037 0.204 8.044 0.189 7.434 
24 hours 0.138 5.447 0.157 6.163 0.138 5.451 
12 hours 0.084 3.294 0.095 3.721 0.083 3.268 
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Table 11. Cumulative precipitation values for winter storms within each upper basin used in 
DHSVM.  

 

 

 

 

 

 

 

 

 

 

 North Fork Middle Fork South Fork 
01/08/2009 Meters Inches Meters Inches Meters Inches 

 0.243 9.556 0.280 11.034 0.264 10.397 
 0.179 7.037 0.204 8.044 0.189 7.434 
 0.138 5.447 0.157 6.163 0.138 5.451 
 0.084 3.294 0.095 3.721 0.083 3.268 

01/13/2018       
72 hours 0.193 7.602 0.219 8.618 0.249 9.797 
48 hours 0.184 7.232 0.206 8.102 0.233 9.192 
24 hours 0.135 5.316 0.150 5.902 0.165 6.513 
12 hours 0.085 3.358 0.094 3.714 0.103 4.039 

02/24/2041       
72 hours 0.111 4.366 0.137 5.376 0.119 4.686 
48 hours 0.111 4.366 0.137 5.376 0.119 4.686 
24 hours 0.103 4.064 0.127 4.991 0.110 4.339 
12 hours 0.064 2.513 0.078 3.085 0.068 2.681 

01/08/2089       
72 hours 0.200 7.873 0.212 8.356 0.237 9.330 
48 hours 0.180 7.072 0.189 7.460 0.212 8.360 
24 hours 0.135 5.328 0.143 5.621 0.157 6.187 
12 hours 0.081 3.184 0.085 3.360 0.094 3.685 

12/10/2096       
72 hours 0.217 8.539 0.207 8.156 0.202 7.961 
48 hours 0.216 8.510 0.206 8.130 0.202 7.944 
24 hours 0.174 6.865 0.163 6.419 0.151 5.956 
12 hours 0.105 4.144 0.098 3.859 0.090 3.545 
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Table 12. Areal snow coverage (km2) during the mass-wasting time step of DHSVM storm 
events within each upper basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1/2009 1/2018 2/2041 1/2089 12/2096 10/2003 10/2089 

NF 722 376 178 75.2 45.9 27.1 2.91 

MF 247 116 35.7 16.4 11.6 6.85 0.59 

SF 442 152 29.0 5.94 2.60 4.58 0 
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Table 13. Basin saturation extent of each DHSVM storm, expressed as a percentage of pixels 
with a water table to soil depth ratio (Dw/D) greater than 0.85. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1/2009 1/2018 2/2041 1/2089 12/2096 10/2003 10/2089 

NF 38.8 74.3 57.3 72.3 81.4 72.8 71.6 

MF 36.7 73.3 58.6 68.4 75.1 70.4 72.4 

SF 55.5 80.7 60.3 76.5 79.1 74.4 73.1 
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Table 14. Area (km2) of failure probabilities (0.25 – 1.0) for historical and projected DHSVM 
storm events within each upper Nooksack basin.  

 North Fork Middle Fork South Fork 

January 2009 0.68 0.22 1.10 

January 2018 2.06 1.13 3.01 

January 2089 2.17 1.08 2.50 

February 2041 0.72 0.55 1.04 

December 2096 2.67 1.14 2.70 

October 2003 2.01 0.88 2.24 

October 2089 2.20 1.11 2.41 
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Table 15. Change in area (km2) of noticeable and high failure probabilities between historical 
and projected DHSVM storm events within each upper basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Failure Probability North Fork Middle Fork South Fork 

1/2009 – 1/2018 
0.25 – 1.0 1.37 0.91 1.91 

0.75 – 1.0 0.45 0.32 0.71 

1/2009 – 2/2041 
0.25 – 1.0 0.04 0.33 -0.06 

0.75 – 1.0 -0.02 0.10 -0.03 

1/2009 – 1/2089 
0.25 – 1.0 1.49 0.86 1.40 

0.75 – 1.0 0.49 0.31 0.49 

1/2009 – 12/2096 
0.25 – 1.0 1.99 0.92 1.60 

0.75 – 1.0 0.65 0.32 0.54 

10/2003 – 10/2089 
0.25 – 1.0 0.19 0.22 0.16 

0.75 – 1.0 -0.0004 0.08 0.03 
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Table 16. InfoVal weights of saturation percent and surficial unit classes calculated from failure 
probability results (0.25 – 1.0) for winter DHSVM storms within each upper basin.  

a represents an arbitrary weight equivalent to -3.00 used as a filler 

 

 

 

Classes January 2009 January 2018 February 2041 January 2089 December 2096 
 NF MF SF NF MF SF NF MF SF NF MF SF NF MF SF 

Saturation % 0.1 - 0.3 a a a a a a a -5.37 a -6.09 -2.42 -5.81 -5.92 a a 

Saturation % 0.3-0.5 -6.13 a -5.85 -3.94 -2.65 -4.42 -3.81 -4.35 -5.87 -4.73 -1.56 -4.48 -3.69 -3.61 -
5.17 

Saturation % 0.5-0.7 -4.34 -4.01 -3.42 -2.10 -2.20 -2.75 -2.25 -2.11 -3.54 -3.78 -1.72 -2.96 -2.14 -2.67 -
2.94 

Saturation % 0.7-1.0 0.53 0.58 0.34 0.15 0.17 0.12 0.29 0.29 0.23 0.18 0.19 0.15 0.12 0.17 0.13 

1 (Sand, SW) - - a - - a - - a - - a - - a 

2 (Sand, Qgoe) -0.36 -0.05 0.11 -2.96 -1.55 0.00 a a -0.77 -1.98 -2.75 -0.69 -2.27 -2.05 -
0.44 

3 (Loamy Sand, SM-SG) a a - a a a a a - a a - a a - 

4 (Loamy Sand, GP) 0.71 1.54 -2.20 1.84 1.06 2.31 1.90 1.30 3.21 1.73 1.40 2.53 1.47 0.93 2.48 

5 (Loamy Sand, GM) 1.70 1.36 1.36 1.82 1.47 1.35 1.64 1.30 1.33 1.79 1.47 1.38 1.82 1.47 1.37 

6 (Loamy Sand, Qa) 0.63 1.37 -1.28 -0.37 -0.07 -1.68 -0.33 0.10 -1.15 -0.20 0.05 -1.67 -0.41 -0.03 -
1.64 

7 (Loamy Sand, Qls) -1.53 -1.45 -1.88 -1.80 -1.27 -2.29 -1.70 -0.78 -1.61 -1.81 -1.28 -2.21 -1.90 -1.25 -
2.26 

8 (Sandy Loam, Qaf) -2.44 a a -3.54 a a a a a -4.98 a a -4.09 a a 

9 (Sandy Loam, SM) -2.51 -2.91 -3.06 -3.29 -2.98 -3.05 -5.06 -2.87 -2.75 -3.28 -3.22 -2.81 -3.35 -2.96 -
2.86 

10 (Sandy Loam, ML-MG) -5.05 a -5.85 -5.01 -5.06 -3.97 -4.70 -6.74 -3.12 -5.15 -5.62 -3.81 -5.27 -5.86 -
3.86 

11 (Silty Loam, ML-MS) -5.93 a a -5.65 a a -4.60 a a -5.14 a a -5.50 a a 

12 (Silt, ML) -1.24 -1.86 -2.98 -2.35 -2.23 -2.77 -2.54 -3.28 -4.63 -2.19 -2.63 -3.12 -2.02 -2.38 -
2.93 

13 (Silt, Qgt) -3.17 a -2.36 -4.53 -4.21 -2.80 -4.69 -4.59 -2.71 -3.71 -4.58 -2.88 -3.92 -4.63 -
2.88 

14 (Sandy Clay Loam, SM-
SC) a a a a a a a a a a a a a a a 

15 (Clay Loam, CL) a - a a - a a - a a - a a - a 

16 (Sandy Clay, Qad) -2.03 -2.01 -3.31 -4.09 -3.80 -3.76 -4.04 -4.18 -3.48 -3.01 -3.49 -3.65 -3.77 -3.78 -
3.63 

17 (Silty Clay, CL-ML) a a - a a - a a - a a - a a - 

18 (Organic, OH) a a a -2.28 a a a a a -3.40 a a -2.50 a a 

19 (Organic, OL) -3.66 -4.08 -3.60 -3.37 -3.02 -3.12 -2.90 -2.95 -3.55 -2.90 -2.72 -2.92 -3.15 -2.74 -
3.12 

22 (Muck, PT) -3.54 a -2.57 -6.03 -3.55 -2.56 -3.89 -2.83 -3.21 -4.48 -3.91 -2.66 -5.60 -3.56 -
2.53 

23 (Talus, Qta) 0.71 -1.40 -2.07 1.14 0.80 0.38 1.90 0.20 0.00 1.29 0.52 0.20 1.24 0.24 0.18 

24 (Loamy Sand, Qm) a 0.13 a 2.44 2.34 a 3.31 3.07 a 2.26 2.41 a 2.27 2.44 a 
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 Table 17. InfoVal weights of slope, soil depth, and landcover classes calculated from failure 
probability results (0.25 – 1.0) for winter DHSVM storms within each upper basin. 

a represents an arbitrary weight equivalent to -3.00 used as a filler 

 

 

 

 

 

 

 

 

 

 

Classes January 2009 January 2018 February 2041 January 2089 December 2096 
 NF MF SF NF MF SF NF MF SF NF MF SF NF MF SF 

Slopes 0 -15° -3.10 -3.97 -4.36 -3.32 -3.51 -4.17 -4.32 -3.71 -4.83 -4.30 -5.55 -4.33 -3.41 -3.39 -
4.00 

Slopes 15-30° 0.11 -0.47 -0.02 -0.54 -0.77 -0.13 -0.95 -0.69 -0.16 -0.51 -0.88 -0.16 -0.67 -0.76 -
0.15 

Slopes 30-45° 0.71 0.83 1.08 0.99 0.84 1.15 1.04 0.80 1.16 0.98 0.91 1.16 1.01 0.84 1.15 

Slopes 45-60° -0.36 -0.03 -0.45 0.43 0.81 -0.15 1.04 0.89 0.15 0.59 0.53 -0.03 0.68 0.74 -
0.01 

Slopes 60°+ -2.16 a -3.35 -0.77 -0.73 -2.05 -0.13 -0.13 -1.91 -1.23 -0.81 -1.28 -0.93 -0.54 -
1.95 

Soil Depth 0.76 - 1.0 m -1.10 -2.91 -2.59 0.23 0.02 -0.26 0.69 -0.10 0.12 0.32 -0.04 -0.14 0.31 -0.08 -
0.18 

Soil Depth 1.0 - 2.0 m 0.40 0.39 0.27 -0.01 -0.10 0.18 -0.73 -0.26 0.12 -0.08 -0.09 0.16 -0.07 -0.07 0.17 

Soil Depth 2.0 - 3.5 m -0.86 -0.39 -3.02 -1.01 0.72 -3.73 -0.17 1.42 -3.51 -1.00 0.80 -3.91 -1.15 0.81 -
3.84 

Large Conifer -1.18 -0.80 -1.14 -1.35 -1.53 -1.26 -1.36 -1.69 -1.15 -1.36 -1.52 -1.27 -1.34 -1.51 -
1.27 

Large Mixed Stand 0.82 1.12 0.35 0.61 0.70 0.27 0.68 0.62 0.29 0.67 0.67 0.26 0.61 0.69 0.26 

Developed -2.26 0.50 -1.92 -2.26 0.35 -1.60 -2.31 -1.50 -1.17 -1.87 0.22 -1.49 -2.08 0.54 -
1.72 

Broadleaf 0.65 1.02 0.72 0.30 0.69 0.40 0.13 0.92 0.60 0.27 0.68 0.47 0.34 0.73 0.43 

Ice a a a a -5.78 a a -5.06 a a a a a -5.79 a 

Shrubland 1.18 1.00 1.03 1.34 1.47 1.12 1.39 1.38 1.03 1.37 1.47 1.11 1.32 1.45 1.12 

Sparse/Open/Agriculture -1.11 -0.40 -2.59 -2.11 -0.15 -2.50 -2.27 -1.99 -2.31 -1.69 -0.72 -2.40 -2.27 -0.08 -
2.48 

Rock -3.18 -2.11 -4.10 -1.92 -2.04 -2.39 -1.44 -2.03 -1.87 -1.90 -2.22 -2.20 -1.79 -2.06 -
2.20 

Water a -2.73 -3.16 -4.10 -4.35 -3.07 a -3.63 -3.10 a -4.31 -3.98 -3.85 -4.36 -
4.06 

Wetland 0.28 -0.27 -2.52 0.68 1.20 -0.90 0.22 1.78 -0.72 0.37 1.30 -0.91 0.76 1.31 -
0.86 
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 Table 18. InfoVal weights of factors calculated from failure probability results (0.25 – 1.0) for 
fall DHSVM storms within each upper basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a represents an arbitrary weight equivalent to -3.00 used as a filler 

Classes October 2003 October 2089 

 NF MF SF NF MF SF 
Slopes 0 -15° -4.22 -5.45 -5.00 -3.86 -3.60 -4.31 

Slopes 15-30° -0.48 -0.78 -0.03 -0.80 -0.73 -0.14 

Slopes 30-45° 0.95 0.88 1.09 1.01 0.83 1.15 

Slopes 45-60° 0.74 0.55 -0.29 0.98 0.73 -0.06 

Slopes 60°+ -1.39 -0.71 -3.37 -0.71 -0.54 -1.30 

Saturation % 0.1 - 0.3 -4.24 a a -6.14 a a 

Saturation % 0.3-0.5 -4.34 -4.49 -6.36 -3.71 -3.73 -4.53 

Saturation % 0.5-0.7 -3.09 -3.55 -3.58 -2.27 -2.35 -3.04 

Saturation % 0.7-1.0 0.20 0.25 0.19 0.13 0.19 0.17 

1 (Sand, SW) - - a - - a 

2 (Sand, Qgoe) -1.87 -1.73 -0.72 -3.83 -3.40 -0.79 

3 (Loamy Sand, SM-SG) a a - a a - 

4 (Loamy Sand, GP) 1.12 1.54 2.17 1.47 1.04 2.53 

5 (Loamy Sand, GM) 1.77 1.44 1.38 1.82 1.46 1.38 

6 (Loamy Sand, Qa) -0.18 0.16 -1.45 -0.67 -0.03 -1.74 

7 (Loamy Sand, Qls) -1.99 -1.21 -2.16 -1.98 -1.47 -2.15 

8 (Sandy Loam, Qaf) -3.29 a a -3.89 a a 

9 (Sandy Loam, SM) -3.10 -3.40 -2.84 -3.60 -2.99 -2.77 

10 (Sandy Loam, ML-MG) -4.62 -7.21 -3.57 -5.16 -5.64 -3.72 

11 (Silty Loam, ML-MS) -5.62 a a -4.70 a a 

12 (Silt, ML) -2.10 -2.61 -2.84 -2.76 -2.68 -3.18 

13 (Silt, Qgt) -3.67 -4.66 -2.77 -3.64 -4.59 -2.84 
14 (Sandy Clay Loam, SM-
SC) a a a a a a 

15 (Clay Loam, CL) a - a a - a 

16 (Sandy Clay, Qad) -3.08 -3.34 -3.40 -4.08 -3.75 -3.57 

17 (Silty Clay, CL-ML) a a - a a - 

18 (Organic, OH) -5.51 a a -3.41 a a 

19 (Organic, OL) -3.18 -3.03 -3.22 -3.08 -2.61 -2.88 

22 (Muck, PT) -4.40 -3.71 -2.91 -6.10 -3.53 -2.64 

23 (Talus, Qta) 1.49 0.36 0.50 1.47 0.74 0.50 

24 (Loamy Sand, Qm) 2.34 2.52 a 2.44 2.48 a 

Soil Depth 0.76 - 1.0 m 0.36 -0.27 -0.46 0.55 -0.10 -0.17 

Soil Depth 1.0 - 2.0 m -0.12 -0.01 0.19 -0.32 -0.07 0.17 

Soil Depth 2.0 - 3.5 m -0.93 0.90 -3.13 -1.04 0.84 -3.90 

Large Conifer -1.40 -1.50 -1.27 -1.48 -1.51 -1.28 

Large Mixed Stand 0.68 0.67 0.26 0.61 0.67 0.25 

Developed -2.82 0.33 -1.53 -2.13 0.37 -2.01 

Broadleaf 0.33 0.67 0.38 0.28 0.71 0.43 

Ice -5.05 -5.53 a -4.44 a a 

Shrubland 1.35 1.45 1.13 1.38 1.45 1.12 

Sparse/Open/Agriculture -1.99 -0.67 -2.74 -2.28 -0.29 -2.56 

Rock -1.61 -2.03 -2.23 -1.46 -1.90 -2.35 

Water -4.07 -3.41 -3.87 -3.88 -4.33 -3.94 

Wetland 0.45 1.38 -1.05 0.63 1.35 -0.87 
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Table 19. Area of very high susceptibility (km2) derived from LSI values in InfoVal method for 
historical and projected storm events within each upper basin.  

 January 2009 January 2089 December 2096 October 2003 October 2089 

North Fork 89.5 67.9 80.1 64.7 79.6 

Middle Fork 17.9 30.8 13.6 27.7 13.2 

South Fork 64.1 73.4 72.0 71.2 70.4 
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9.0 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the Nooksack River basin, northwest Washington State, with the North, 
Middle and South Fork basins. 
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Figure 2. Elevation in the upper Nooksack River basin, represented by a filled 1-m resolution 
DEM. 
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Figure 3. LiDAR derived slope map of the upper Nooksack Basin in degrees. The majority of the 
study area is covered by 1 m LiDAR, while the remaining NE section is covered by 10 m LiDAR. 
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Figure 4. Landslide deposits digitized by WADNR, Nooksack Indian Tribe (Nielsen and Grah, 
2015), and Knapp (2017, WADNR SLIP mapping protocol) within the upper Nooksack basin. 
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Figure 5. Soil depth raster (meters) derived from a DEM using a Python script for the upper 
Nooksack Basin. Mapped moraine deposits (Qm) with an assigned constant soil depth of 3 m are 
shown in the upper elevations of each sub-basin. 
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Figure 6. Soil coverage shapefiles used in the upper Nooksack basin: Whatcom County SSURGO 
(green), Skagit County SSURGO (blue), and Mt. Baker-Snoqualmie National Forest SRI (red). In 
locations where coverages overlapped, SSURGO coverages were used because of their more 
detailed attributes. 
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Figure 7. Surficial unit distribution in the upper Nooksack basin with polygons representing USCS 
classifications (e.g., CL) and geologic units (e.g., Qa).  
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Figure 8. Original 30 m resolution 2011 NOAA landcover classification raster. 
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Figure 9. Resampled 10 m DHSVM land cover classification raster based on the 2011 NOAA 
landcover grid.  
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Figure 10. ArcGIS ModelBuilder visual representation of the modified Hammond et al. (1992) 
static infinite-slope model. Dark blue circles represent input rasters, light blue circles represent 
constant input values, yellow rectangles represent geoprocessing tools, and green circles 
represent output raster. 
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Figure 11. Modeled 30-year median snow coverages in January, centered on 1995 (historical), 
2050, and 2075 for RCP 8.5 scenarios using the CSIRO-Mk3-6-0 GCM (Mitchell et al., 2016). 
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Figure 12. Roads and harvestable forest areas within the upper Nooksack basin with median 
historical (1995) and projected (2075) snow coverages. 
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Figure 13. Landslide deposits digitized by WADNR, Nooksack Indian Tribe (Nielsen and Grah, 
2015), and Knapp (2017, WADNR SLIP mapping protocol) with median historical (1995) and 
projected (2075) snow coverages within the upper Nooksack basin. 
 

 

 

 

 

 

 

 

 

 

 

Robert Mitchell
Change DNR to WADNR in the legend.
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Figure 14. FS results from static modeling associated with a historical scenario using 1-m 
resolution, Dw/D = 0.95, and a soil depth profile of 0.76 – 3.5 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



81 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. FS results from static modeling associated with a projected moraine deposits using 1-
m resolution, Dw/D = 0.95 and a soil depth profile of 0.76 – 3.5 m, with historical (1995) and 
projected (2075) median snow coverages displayed within the upper Nooksack basin. 
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Figure 16. Static results (FS < 1.5) showing both historical and projected glacier extents and 
moraine deposits at a 10-m resolution. 
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Figure 17. Failure Probability areas (0.25 – 1.0) associated with the January 2009 storm event, 
with historical median snow coverage (1995) displayed within the upper Nooksack basin. 
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Figure 18. Failure Probability (0.25 – 1.0) associated with the January 2089 storm event, with 
historical (1995) median snow and the projected 2089 snow coverage displayed within the upper 
Nooksack basin. 
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Figure 19. Failure Probability (0.25 – 1.0) associated with the December 2096 storm event, with 
historical (1995) median snow and the projected 2096 snow coverage displayed within the upper 
Nooksack basin. 
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Figure 20. Failure Probability (0.25 – 1.0) associated with the October 2003 storm event. 
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Figure 21. Failure Probability (0.25 – 1.0) associated with the October 2089 storm event. 
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Figure 22. Very high susceptibility associated with the January 2009 storm event, with historical 
median snow coverage (1995) displayed within the upper Nooksack basin. 
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Figure 23. Very high susceptibility associated with the January 2089 storm event, with historical 
(1995) median snow and the projected 2089 snow coverage displayed within the upper Nooksack 
basin. 
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Figure 24. Very high susceptibility associated with the October 2003 storm event displayed 
within the upper Nooksack basin. 
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Figure 25. Very high susceptibility associated with the October 2089 storm event displayed 
within the upper Nooksack basin. 
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Figure 26. Very high susceptible areas derived from the LSZ map and failure probabilities 
within the upper Nooksack basin associated with the January 2089 storm event. 
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Figure 27. Very high susceptible areas derived from the LSZ map for the December 2096 storm 
event and susceptible areas derived from static modeling with historical (1995) median snow and 
the projected 2096 snow coverage displayed within the Upper Nooksack basin. 
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