
Western Washington University
Western CEDAR

WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship

Spring 1994

Downstream Fining in a Mountain Stream
Channel Affected by Debris Flow
Craig Emerson Cooper
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/wwuet
Part of the Geology Commons

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been
accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact
westerncedar@wwu.edu.

Recommended Citation
Cooper, Craig Emerson, "Downstream Fining in a Mountain Stream Channel Affected by Debris Flow" (1994). WWU Graduate
School Collection. 821.
https://cedar.wwu.edu/wwuet/821

https://cedar.wwu.edu/?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/grad_ugrad_schol?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet/821?utm_source=cedar.wwu.edu%2Fwwuet%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


DOWNSTREAM FINING IN A MOUNTAIN STREAM CHANNEL 

AFFECTED BY DEBRIS FLOW

by

Craig Emerson Cooper

Accepted in Partial Completion 

of the Requirements for the Degree 

Master of Science

Dean of Graduate School

Advisory Committee



MASTER'S THESIS

In presenting this thesis in partial fulfillment of the requirements for a 
master's degree at Western Washington University, I agree that the 
Library shall make its copies freely available for inspection. I further agree 
that extensive copying of this thesis is allowable only for scholarly 
purposes. It is understood, however, that anv copying or ouhlicatinn r^f 
this the$i$ for commercial purposes, or for financial gain, shall not hP 
allowed without my written permission.



MASTER'S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western 
Washington University, I grant to Western Washington University the non-exclusive royalty-free right to 
archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, 
via any digital library mechanisms maintained by WWU.

I represent and warrant this is my original work and does not infringe or violate any rights of others. I 
warrant that I have obtained written permissions from the owner of any third party copyrighted 
material included in these files.

I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to 
the right to use al! or part of this work in future works, such as articles or books.

Library users are granted permission for individual, research and non-commercial reproduction of this 
work for educational purposes only. Any further digital posting of this document requires specific 
permission from the author.

Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed 
without my written permission.

Name: /'‘i7A(&-



DOWNSTREAM FINING IN A MOUNTAIN STREAM CHANNEL 

AFFECTED BY DEBRIS FLOW

A Thesis 

Presented to 

The Faculty of

Western Washington University

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science

by

Craig Emerson Cooper 

May, 1994



ABSTRACT

Grain size of particles tend to become smaller in the downstream 

direction. Abrasion and selective transport are two sets of processes commonly 

accepted as explanations for observed trends in fining of sediment. Most recent 

studies have emphasized the effectiveness of selective transport in producing 

downstream fining in streams with abundant sediment supply. The contribution 

of abrasion to particle fining of the coarsest class of particles was investigated in 

Finney Creek, a high gradient mountain stream in northwest Washington that has 

a high incidence of sedimentation from debris slides and debris flows. Two 

dominant rock types comprise the coarsest bed material in the studied reach; 

foliated particles, which are derived from the local bedrock, and non-foliated 

particles, which are derived from glacial valley fill. Four distinct downstream 

trends of particle fining are spatially associated with sources of recent deposits of 

coarse clasts in the channel. While particle sizes of both rock types diminish 

rapidly from the debris source, overall fining trends are influenced most by the 

fining trend evident in the foliated class of particles. The primary fining 

mechanisms are different for the two rock types, and are related most strongly to 

the inherent durability of each rock type. Selective transport is probably most 

important for non-foliated particles, and active but overwhelmed by abrasion for 

foliated particles. Field observations and experimental abrasion studies indicate 

that abrasion is the dominant set of processes responsible for the reduction of 

sizes of foliated particles, which abrade at about 10 times the rate of non-foliated 

particles.
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INTRODUCTION

Particles tend to fine in the downstream direction. Previous studies have 

documented trends of fining in natural gravel-bed rivers (Bradley, 1970; Bradley 

etal., 1972; Brierly and Hicken, 1985; Church and Kellerhals, 1978; Knighton, 

1980; Werrity, 1992). While the studies show overall fining trends, scatter about 

a regression can be attributed to contributions of new material at tributary 

junctions and from channel banks (Church and Kellerhals, 1978; Knighton, 1980) 

and to the differential effects of abrasion on contrasting lithologies in transported 

sediment loads (Knighton, 1980; Werrity, 1992).

Abrasion and selective transport are two sets of processes commonly 

accepted as explanations for observed fining trends. Abrasion is a summary 

term for mechanical processes of diminution by cracking, splitting, chipping and 

grinding. Progressive downstream sorting by selective transport results from flow 

competence. The relative importance of abrasion and selective transport 

processes, and how they vary with variation in particle sizes, shapes, and 

lithologies, are still incompletely understood. Experimental and field studies have 

attested to the effectiveness of abrasion (Bradley, 1970; Krumbein, 1941; Shaw 

and Kellerhals, 1982; Werrity, 1992), while other studies concluded that selective 

transport is an effective mechanism producing downstream fining and may be 

more effective than abrasion in streams with abundant sediment supply (Bradley 

et al., 1972; Brierly and Hicken, 1985; Paola et al., 1992).

Few studies have investigated particle fining in mountain streams in which 

channels are supplied with an abundance of sediment. In alluvial channels of 

mountain streams in the Pacific Northwest, the spatial and temporal distribution 

of particles is affected by debris flows (Benda, 1989). These channels provide an 

opportunity to investigate the phenomenon of particle fining because the volume 

of poorly sorted sediment that is episodically delivered directly to stream



channels from adjacent hillslopes by debris flows may initially exceed the 

sediment transport capacity of the stream. Consequent changes to the 

distribution of particle sizes in the channel downstream of a debris deposit must 

be attributable to either selective transport or abrasion, or to a combination of 

both processes.

This study investigates the downstream decrease in grain size (fining) of 

the largest particles in a mountain stream channel with recent debris-flow input, 

and investigates whether fining is related to contributions of coarse clasts from 

debris flows. The study also investigates the relation of particle fining to particle 

lithology and particle shape. Finally, the relative importance of abrasion and 

selective transport as a fining mechanism is evaluated .

The site selected for this study is Finney Creek, a third-order tributary to 

the Skagit River in northwest Washington (Figure 1). The studied channel drains 

mountainous terrain of the west slopes of the North Cascade range. The channel 

was sampled systematically to provide an inventory of the largest clast sizes, 

lithologies and shapes. All reaches were investigated for the occurrence of 

debris deposits. Field sampling and laboratory investigations were performed 

during the summers of 1992 and 1993.

The purpose of this study is three-fold: 1) determine if there is any 

systematic distribution of the largest particles in mountain stream channels: 2) 

analyze the controls on trends of particle fining with respect to debris-flow history, 

source-area lithology and rock durability: and 3) assess the roles of selective 

transport and abrasion in producing the observed trends of particle fining.
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STUDY AREA

Finney Creek drains mountainous terrain of the western slopes of the 

Cascade Range in northwest Washington (Figure 1). The Finney Creek drainage 

area comprises 134 km^ of rugged, heavily forested land south of the Skagit 

River. Relief within the entire basin is greater than 1400 meters (Table 1), and 

the majority of hillslopes exceed 25 degrees. The location and age of recent 

debris-slide and debris-flow deposits and the location of small stream-side mass 

movements in the Finney Creek study reach are shown in Figure 2. Slide 

deposits were identified in the field and assigned ages of deposition based on 

field evidence and aerial photo interpretation.

Climatologic, lithologic and structural characteristics within the basin 

contribute to active landslide processes. High annual precipitation and rain-on- 

snow precipitation events affect slope stability in the basin (Parks, 1992). Rain- 

on-snow events in the basin also have produced rapid fluctuations of discharge 

(Harr et al., 1989). Annual precipitation averaged 1730 mm/yr from 1931 to 1991 

(National Climatic Data Center, 1991) at a U.S. Weather Service observation 

station that is located 18 km north of Finney Creek in the town of Concrete, at an 

elevation of 61 m. The stream is not presently gaged, although some flow data 

for water years 1943 to 1948 are available. Streamflow values ranged from a 

minimum daily discharge of 0.55 m^ sec'* to a maximum daily discharge of 83 

m3 sec'' (U.S.G.S., 1943 to 1948). The two-year bankfull discharge, calculated 

at the downstream end of the drainage basin using a regression equation and 

exponents specific to Region I of western Washington (Cummans et al., 1975), is 

144 m3 sec""’.

The Finney Creek basin is underlain almost entirely by the Cretaceous 

and Jurassic Shuksan Metamorphic Suite (Figure 1 and Table 2), which includes 

metabasaltic greenschist with some intercalated blueschist, and quartzose -

4



TABLE 1: Drainage-Basin Characteristics For The Finney Creek Study Basin

Finney Creek

Entire basin Study reach

Drainage area (km2) 134 55

Basin relief (m) 1489 1365

Aspect SE-SW N- NE

Stream order third third

Average channel gradient 0.034 0.0064

Average unvegetated 
channel width (m)

>25 31

Two - year discharge* (m^ sec""') 144 —

* Discharge with a recurrence interval of two years, calculated based on drainage area and
annual precipitation using regression relations of Cummans et al. [1975]. Calculated for

entire basin at distal end of study reach near the confluence with Skagit River.
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TABLE 2: Distribution of Geologic Units Within The Finney Creek Study Basin

Rock unit* Finney Creek

Entire basin Study reach

km2 %of
basin

km 2 %of
basin

Quaternary sediments 29 22 22 40

Carrington phyllite 70 52 31 56

Shuksan greenschist 31 23 2 4

Barroisite schist <1 <1 — —

Deer Peak metavolcanics 2 -1 — —

Chilliwack and Chuckanut 
sedimentary rocks 2 -1 ••

Ultramafic rocks <1 <1 — —

* From Brown et al., 1987

7



carbonaceous phyllite (Brown et al., 1987). Small areas in the extreme upper 

basin include ultramafic rock, Mesozoic metavolcanics and Tertiary sandstone. 

The predominant structural element in the Shuksan Metamorphic Suite in this 

area is a foliation that strikes northwest and dips steeply to the southwest (Brown 

et al., 1987). The basin has been extensively glaciated, and surficial deposits of 

till, outwash and lacustrine material mantle the bedrock throughout the area.

The study reach is in the lower 40% of the Finney Creek basin. The 

upstream end of the Finney Creek study reach (Figure 2) commences where 

Finney Creek emerges from a bedrock canyon that also defines the upstream 

limit of anadromous fish passage, and extends 20.4 km downstream to within 

one km of the confluence with Skagit River (Figure 2). The channel has an 

irregular pattern, and it is generally confined by its valley walls. In the study 

reach, Finney Creek flows primarily on alluvial cobble; exposures of bedrock in 

the channel are rare.

Phyllite bedrock and Quaternary sediments are the major map units 

represented in the Finney Creek study basin (Figure 1, Table 2). The fissile, 

platy character of much of the phyllite unit makes it highly prone to mass failure.

A landslide inventory for the entire Finney Creek watershed has documented that 

slope failures occur most frequently as debris slides in that portion of the basin 

underlain by phyllite bedrock (Parks, 1992). The Quaternary sediments are part 

of the Skagit River valley fill deposited during the last glaciation (ca. 18 -14 ka 

[Thorson, 1989]). The valley fill makes up the hilly terrain that confines Finney 

Creek on its north bank within the study reach (Figure 1).

8



SAMPLING PROCEDURES: PARTICLE SIZE, PARTICLE LITHOLOGY AND 

PARTICLE SHAPE

Particle Size and Particle Lithology

The first objective of the study was to determine whether particle sizes 

systematically changed downstream. Sample sites were selected based on a 

systematic sampling strategy (Krumbein and Graybill, 1965; Smartt and Granger, 

1974). The channel was divided into segments between confluences shown by 

intersections of blue lines on a 1:24,000 topographic map, and sample sites 

were mapped at equally spaced intervals within each segment. In the field, a 

systematic search was undertaken to locate the largest size particles on the 

coarsest surface of the active channel bar nearest each mapped site. Generally, 

the largest sizes were found either at the head of the bar or close to the active 

channel. Typically, the length of bar sampled was between 80 and 100 m. 

Sampling of particle sizes was performed on a total of 43 sites at an average 

interval of about 15 channel widths (Figure 2). A closer spacing of sample sites 

was warranted in some channel segments where recent debris slides had 

deposited sediment (Figure 2).

Downstream fining was examined as the trend in the largest clast sizes, 

using field procedures adopted from Bradley et al. (1972) and Werrity (1992).

The apparent intermediate axis (b-axis) was measured on at least the 51 largest 

particles that could be found at a site, and the rock type of each of the measured 

clasts was recorded. On average, between 65 and 70 particles were selected at 

each sample site. The lengths of the intermediate axes were then ranked and, 

using the 51 largest clasts for each sample site, the median b-axis diameter was 

computed. This median of particle sizes will henceforth represent the largest size 

class of particles and will be referred to as the D100. Sizes reported from these 

measures are minimums due to partial burial of some particles.

9



After measurement of the largest particles, a Wolman (1954) pebble count 

was performed over the coarsest section of the bar. The line of measurement 

was oriented parallel with stream flow. The purposes of the count were to record 

the intermediate diameters of particles in half-phi size units and to do an 

inventory of all clasts by lithology, not just for the D100 clasts. The D90 and D50 

particle sizes were derived from cumulative frequency analysis of the particle- 

size data collected (Figure 3).

Particle Shape

Particle size and lithology are the dominant variables that control changes 

in sphericity and form (Sneed and Folk, 1958), and particle sphericity and form 

are two components of particle morphology that have been demonstrated to 

affect a particle's resistance to fluvial transport (Bradley, 1970; Bradley, et al., 

1972; Krumbein, 1941 and 1942; Sneed and Folk, 1958). When transported by 

traction, the velocities of spherical particles exceed the velocities of disc-shape 

particles of the same mass (Krumbein, 1942), though that is not necessarily the 

case with particles of the same size (b-axis) but with different mass (Bradley, 

1972, and references therein).

Particle sphericity is a measure of how nearly the shape of a particle 

approaches that of a sphere. Therefore, an appropriate measure of sphericity of 

a particle is the ratio of the maximum projection area of a sphere of the same 

volume as the particle to the maximum projected area of the particle. The ratio is 

called the maximum projection sphericity, 'F, where

'F = [(abc)i/3]2 + it/4 (ab)

= [c2 + (ab)]i/3

and a, b and c are the long, intermediate and short axes of the particle (Sneed 

and Folk, 1958).

10



Figure 3. (Upper) Cumulative grain-size distributions derived by the Wolman 
(1954) pebble-count method for the 43 samples collected within the 
Finney Creek study reach. (Lower) Cumulative grain-size distributions 
for the four fining series. Dashes are extrapolated extensions of grain- 
size curves for those sites where an upper limit on clast size was 
imposed during field measurements.
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Particles of the same sphericity may have different ratios between their 

three dimensions. Form is a measure of the relation between the three 

dimensions of a particle. Particles may be classified quantitatively as compact 

(equidimensional), elongate (rodlike), bladed, or platy (disclike), with a range of 

intermediate categories (Figure 4). In studying the effects of shape on transport, 

analysis of both form and maximum projection sphericity is better than analysis of 

sphericity alone (Sneed and Folk, 1958).

Particle shapes (sphericity and form) were determined for fully exposed 

particles of D100 size. Only fully exposed particles were chosen so that all three 

principle axes could be measured. Particle shape measurements were 

performed after sampling the entire study reach for size and lithology. In this 

way, particle shape analysis focused on stream reaches where particle-fining 

trends were documented.

12



COMPACT
1.0

PLATY ELONGATED
a-c

BLADED

Figure 4. The sphericity-form diagram of Sneed and Folk (1958). Given the long (a), 
intermediate (b) and short (c) axial measures of a particle or mean of sample 
particle lengths, particle form is determined by plotting the two diameter ratios 
c/a and (a-b) / (a-c). Ten form classes are defined by the dashed lines: C, 
compact: CP, compact-platy; CB, compact-biaded; CE, compact-elongate;
P, platy: B, bladed; E, elongate; VP, very platy; VB, very bladed; VE, very 
elongate.
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DOWNSTREAM FINING TRENDS

Particle-size versus distance downstream (Figure 5) shows marked 

changes where some debris deposits and tributary junctions are located. These 

particle-size changes serve as a basis for breaking the channel into two zones 

and for breaking the upper zone into four data series. The lower 10 km of the 

channel shows no apparent trend with regard to particle-size, whereas in the 

upper 10 km, four separate data series (henceforth called Series 1, Series 2, 

Series 3 and Series 4) each define a trend of decreasing grain size with distance 

downstream. The spike in grain size that defines the start of each series is 

spatially associated with a recent debris flow deposit or debris slide deposit in the 

channel (shown by the up arrows on the longitudinal profile in Figure 5). In two of 

the four cases, associated debris flows were routed through tributaries: the 

locations of tributaries are shown as down arrows in Figure 5.

The four trends of reduction in grain size were assessed with respect to 

distance downstream from each spike in order to evaluate whether grain size 

decreased exponentially, and whether the trend was better defined by the D100, 

D90 or D50 grain sizes. Figure 6 graphically presents the four series of grain- 

size reduction as log-linear plots. In each series, distances over which fining 

occurs are adjusted so that zero distance for each series is at the start of the 

series. Within each graph, regression lines for an exponential function are fitted 

through the D100, D90 and D50 grain size percentiles (Figure 6). An incomplete 

data set hampers the analysis for Series 3, a reach consisting of a bedrock gorge 

in phyllite. Here, the D90 and D50 size classes were not measured at the first 

sampling site.

Table 3 shows the variables for the best-fit relations between grain size 

and channel length (Figure 6) for the channel reaches over which trends of 

reduction in grain size were found. In comparing the r^ values for the best-fit

14



Figure 5. (Upper) Median D100 grain size versus distance for the entire Finney 
Creek study reach. Four series of fining trends are depicted for the 
three different size classes. (Lower) Longitudinal profile of the Finney 
Creek study reach. Arrows directed down show tributary junctions: 
arrows directed up show locations of recent debris deposits in the 
channel.
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Figure 6. Four series of fining trends plotted on log-linear scale for the D100,
D90 and D50 size classes. Best-fit regression lines for an exponential 
function fit to the data are shown for each size class in each series. 
For the regression analysis, distance is normalized to the start of each 
series. Symbols are the same as in Figure 5.
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TABLE 3; Variables For Curve Fitting For Downstream Fining Trends, Finney 

Creek

Particle size Downstream Length of
class fining series channel, L

(m)

Exponential fit: y=beSX, 
a=slope; b=intercept; 

y=D100(mm);
X = distance downstream (meters)

D100

D90

D50

Series 1 2040
Series 2 2430
Series 3 1370
Series 4______ 2430
Series 1 2040
Series 2 2430
Series 3 1370
Series 4 2430
Series 1 2040
Series 2 2430
Series 3 1370
Series 4______ 2430

intercept slope fining
(b) (a) coefficient
(mm) a fkm-1)*
43o -0.00039 ^0^39 094
530 -0.00049 -0.49 0.70
850 -0.00110 -1.10 0.74
650^__^0.00045 -0.45 0.67
280 -0.00048 ^048 07^
270 -0.00038 -0.38 0.87
440 -0.00110 -1.10 0.72
460__ -0.00053 -0.53 0.79
101 -0.00035 -0.35 0.69

72 -0.00011 -0.11 0.25
150 -0.00110 -1.10 0.48
140_______ -0.00048 -0.48_________ 0.60

the fining coefficient (Paola et al., 1992) is an empirical factor that relates percentile class 

size to distance downstream (% + looom) or km'"'

17



relations in Figure 6, particle size reductions are best described for the D100 and 

D90 size classes and least well described for the D50 size class. In Series 1 and 

Series 3, the strength of the exponential function as a predictor of grain-size 

reductions increases through the particle size range, being greatest for the D100 

size class and least for the D50 size class.

While fining trends are clearly well defined for both the D100 and D90 

particle size classes, subsequent analysis of particle lithology and particle shape 

will be restricted to only the D100 size class. The method for identifying the 

D100 was easy to apply in the field, and the coarsest fraction represents particle 

sizes that are most likely to challenge Finney Creek's competence.
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DOWNSTREAM FINING TRENDS VERSUS SIZE AND ABUNDANCE OF 

CLASTS OF DIFFERENT LITHOLOGY

Lithologies recorded during the survey of D100 clasts reveal that they fall 

in two groups. All of the largest particles measured in the channel (Table 4) 

appear to be phyllite or from the Quaternary unit (Table 2). Particles in the 

Quaternary unit are dominantly comprised of hard igneous and hard 

metavolcanic rock (Table 4). These particles are massive and rounded to very 

well-rounded. The shapes of particles from this unit appear to be inherited from 

exogenous factors related to glacial erosion processes. Rock types in the 

Quaternary unit can reasonably be classified as non-foliated in comparison to the 

phyllite clasts, which are foliated. The along-channel distribution and size of 

particles belonging to these two groups provides a basis for assessing rates of 

particle-size reduction and abundance between foliated and non-foliated rock of 

the largest size class.

Results of grain-size analysis by rock type (foliated vs. non-foliated) 

plotted against distance downstream for the four fining series (Figure 7) suggest 

that fining trends are essentially equivalent for both rock-type classes. However, 

at many of the sites phyllite comprises a small fraction of the sample pool of 

largest size rocks, and in a few sample locations none of the 51 largest particles 

is phyllite (bottom. Figure 7).

To better assess comparative fining trends for foliated versus non-foliated 

particles, the reaches that encompass Series 1 and Series 3 were re-examined 

for particle lithology and particle shape. Only fully exposed D100 particles were 

tallied for lithologic types (foliated or non-foliated) and at least 12 largest clasts 

for each rock type were measured at each site. Sizes were calculated as the 

mean of the 12 largest particles of each rock type. Results are summarized in
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TABLE 4; Principle Lithologies Of The 51 Largest Particles Measured at 43 
Sites In The Finney Creek Study Reach

Classification Rock type % of total

Foliated Phyllite 17.5

Non-foliated Igneous
Includes granite, diorite, 
gabbro, andesite and basalt

58.3

Metamorphic
Includes metavoicanic, 
metaconglomerate, quartz, 
ultramafic and greenstone*

24.2

* Although the source of some of the greenstone may be the Shuksan
greenschist unit in the upper Finney Creek basin, none of these largest
particles exhibited a foliated texture.
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Figure 7. (Upper) Median grain size versus distance downstream for foliated 
(open squares), non-foliated (open triangles) and combined (open 
circles) rock types of the D100, plotted for all four fining series. 
(Lower) Abundance of foliated (phyllite) and non-foliated (clasts 
derived from Quaternary unit) clasts at each sample site in the four 
fining series.
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Figure 8. A, Downstream fining trend for D100 clasts (median of 51 fully exposed 
clasts only). B, Downstream abundance of clasts of different lithology. 
C, Downstream fining trends for clasts of different lithology (mean size 
of 12 largest fully exposed clasts of each lithology).
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Table 5, and are shown graphically in Figure 8. Again, a fining trend is evident in 

the D100 data (Figure 8a), but this time using just fully exposed particles.

The two clast types do not exhibit the same rate of downstream fining 

(Table 5 and Figure 8c). Using the 12 largest clasts (fully exposed clasts) for 

each rock type, the overall fining trend is controlled most by the fining trend 

evident in the foliated particles. The particularly poor fit for the 12 largest non- 

foliated clasts of Series 3 can be attributed to mid-reach deposition of large 

particles from a slump along the channel bank, which originated in glacial fill 

material. The slump occurred between the second and third sample sites (Figure 

2), below the phyllite bedrock gorge in which Series 3 originates.

The relative abundance of clasts of different lithology shows no consistent 

pattern for the two fining series (Figure 8b). For Series 1, the number of foliated 

particles and the number of non-foliated particles remain nearly constant through 

the 2-km reach over which fining occurs. For series 3, the number of foliated 

particles decreases and the number of non-foliated particles increases through 

the 1.5-km reach over which fining occurs.
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CHANGES IN PARTICLE SHAPE WITH FINING

In order to determine whether particle shapes changed with reduction in 

particle size, sphericity and form were determined for foliated and non-foliated 

rock types at the first and last sample sites in each of fining Series 1 and Series 

3. The three orthogonal axes were measured on the 12 largest exposed particles

of each lithology at a site, and axial measurements were converted into 

appropriate ratios.

Sphericity versus Fining

At the beginning and end of Series 1 and Series 3, average maximum 

projection sphericity was calculated for the two classes of particles (foliated and 

non-foliated) based on each particle's sphericity derived from triaxial 

measurements (Table 6). Average sphericity is higher for the non-foliated class; 

sphericities range from 0.64 to 0.70 for non-foliated rock-types, and from 0.54 to 

0.60 for the foliated rock-types (Table 6). Both average sphericity and the 

distribution of sphericities of both rock types did not appreciably change with 

fining in either Series 1 or Series 3 (Table 6). Average sphericity declined slightly 

for the foliated class of particles in Series 1.

Changes in Clast Form versus Fining

Average form of the clasts in each rock type show generally consistent 

groupings in the two fining series. Non-foliated rock types are grouped between 

compact-bladed and bladed, and foliated rock type forms range between bladed 

and platy (Figure 9).

Changes in form between the first and last sample site are shown by 

arrows that link the initial shape to the final shape in each Series. In Series 1 

foliated particle forms initially are bladed and become platy downstream, but in
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Figure 9. Shapes of foliated and non-foliated particles of fining Series 1 and 
Series 3, plotted on the sphericity-form diagram of Sneed and Folk 
(1958) (Figure 4). The ternary diagrams are simpiified to depict only 
the ratios used to calculate mean form. Open symbols designate 
foliated particles, closed symbols designate non-foliated particles.
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Series 3 the particle forms move from the region of platy to become bladed 

downstream (Figure 9). Non-foliated particle forms in Series 1 are bladed and 

change toward compact-bladed; but in Series 3, the change is in the direction 

away from compact-bladed toward bladed (Figure 9). Except for the foliated clast 

forms in Series 1, changes of average form appear to be small compared to the 

range of measures at the beginning and end of the respective fining series (Table 

6; Figure 9).
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ABRASION TANK STUDY

An experiment of mechanical abrasion was performed to determine the 

relative rates of change in size and shape caused by abrasion for the foliated and 

non-foliated rock types. Seven pairs of Finney Creek particles were transported 

a total distance of five kilometers each in a circulating flume (see Appendix I for a 

description of the flume). Each pair consisted of one large foliated and one large 

non-foliated clast; sizes ranged between 175 and 232 mm (intermediate axis).

All samples used in the study were collected from the first fining reach (Series 1). 

The principal axes (a, b and c) were measured, and the dry mass was recorded 

for each rock before transport in the flume. The pairs were transported with 

about 35 kg of coarse sand and fine gravel over a hard bed of cobbles embedded 

in cement. The particles were transported for 2.5 km, their axes were measured 

again, and then the particles were transported another 2.5 km. A final measure 

was taken of the axes and the dry mass. Average water depth was 0.28 m, 

mean water velocity was 2.8 m sec"*, and mean particle velocity ranged from 

0.57 to 0.81 m sec*^ for the seven pairs.

Results are summarized in Table 7 and Figure 10. Mean size reduction 

(intermediate axis) for each rock type was greater in the first 2.5 km of transport 

than in the second (bottom. Table 7). In the first run of 2.5 km the greatest 

reduction of axial lengths for both rock types occurred on the intermediate and 

short axes (b-axis and c-axis. Table 7). In contrast, foliated particle's average of 

axial reductions during the second run indicates that the greatest wear was on 

the long axis. However, this is due to a single particle, foliated sample number 6, 

which broke apart during transport. If axial reductions from this particle are 

excluded from the average of axial reductions during the second run, then the 

results are similar to the first run; the greatest wear occurred on the intermediate
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Figure 10. Form diagrams showing changes in particle form in the abrasion tank 
experiment. Open symbols designate foliated particles, closed 
symbols designate non-foliated particles. For non-foliated particles, 
three data points are plotted but the second and third shape 
measurements (lower closed circle) are the same.
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and short axes. The greater wear on the intermediate and short axes suggests 

that particles moved by rolling rather than by sliding or tumbling end over end.

Form and sphericity changes were greater for the foliated particles; non- 

foliated specimens changed very little (Figure 10; Table 7). For the foliated 

specimens, average form changed rapidly in the first 2.5 km of transport and 

more slowly in the final 2.5 km of transport (Figure 10). Average form of the 

foliated particles changed from compact-bladed to bladed.
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DISCUSSION

Downstream particle fining in the Finney Creek channel is evident over 

short distances for the coarsest fraction of particles, and the fining trends are 

spatially associated with recent deposition of coarse clasts from debris slides and 

debris flows. For the field data, analysis of fining trends by lithologic differences 

between the principle rock types and by particle shape does not provide sufficient 

constraints to assess the relative importance of selective transport versus 

abrasion as fining mechanisms for particles smaller than 400 mm. Sediment 

supplied from multiple sources along channel, combined with the short distances 

over which fining occurs, are the principle deterrents to a definitive field evaluation 

of fining mechanisms. However, by combining field and abrasion tank data, and 

using assumptions about the correlation of these two data sets, qualified 

conclusions can be made about the influence of clast lithology and clast size on 

fining mechanisms.

Eininq Trends and Coarse Sediment Input from Debris Flows and Dahhs Sliripg

Four particle-fining trends are evident in the upper half of the study reach, 

where particle fining is spatially related to recent (2-14 year) channel deposits 

from debris flows and debris slides (Figure 5). Fining trends are not evident in the 

lower half of the study reach (Figure 5); three debris flow deposits in the lower 

portion of the study reach did not correlate with reductions in particle size . The 

apparent absence of particle fining in the lower reach can be related in part to the 

valley geometry. The lowermost Finney Creek valley, which includes the lower 

reaches of the downstream-most tributaries, is part of a broad valley that is 

graded to the Skagit River. The largest clasts from debris flows deposited in the 

downstream-most tributaries never make it to Finney Creek.
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The four fining trends in the upper portion of the study reach are best 

exhibited by the coarsest particles in the channel. Particle sizes decrease rapidly 

downstream from the source deposit, the largest size changes occurring in the 

first 1000 m of the deposit. If one were to ignore the size data from sample sites 

in the first 1000 m of each fining series, then the distribution of the D100 in the 

upstream half of a sample reach would lack a distinctive fining trend and thus be 

similar in this sense to the distribution of the D100 in the lower half of the sample 

reach (Figure 5).

Based on Finney Creek field data, particles larger than 400 mm are 

inferred to move infrequently relative to particles smaller than 400 mm. This 

upper-size limit is derived from two observations: first, this size exceeds the 

upper limit of the D100 in the lower half of the study reach, and second, this size 

exceeds the D100 sizes found at the tails of the fining trends in the upper reach.

It thus appears that 400 mm approximates an upper boundary for the largest- 

sized particles that Finney Creek is competent to transport within the study reach .

Particles larger than 400 mm are generally immobile, abrade in place and 

tend to become buried. For example, in the first two sample sites of Series 3, 

quartz veins in some large foliated particles project by several centimeters from 

the phyllite where the phyllite has been preferentially worn away due to abrasion 

in place. These larger particles are partially buried by more mobile smaller 

particles. Figure 11 compares particle fining trends of the D100 that includes 

partially buried particles (Figure 6) with fining trends of the D100 that includes only 

fully exposed particles (Figure 8a). Fining trends of both data sets are essentially 

equivalent for sizes that are 400 mm and smaller.
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Insights Into Fining Mechanisms for Particles Less Than 400 mm: Fielrl Data

Because particles larger than 400 mm are relatively immobile and are 

subject to burial by particles that the stream is competent to move, then size 

sorting by selective transport is clearly an important process for these particles. 

Transport of the largest particles in Finney Creek must be selective because the 

stream does not have the capacity to transport all the sediment delivered to it. 

However, D100-sized particles less than 400 mm do not fine only by selective 

transport; abrasion tank data indicate that some of the fining is attributable to 

abrasion of the particles as they move along the bed of the stream.

Evaluating the proportion of fining attributable to abrasion for particles less 

than 400 mm was attempted in field and experimental investigations. In the field, 

observed fining trends were analyzed by lithology of the principle rock types of the 

D100. Unfortunately, as mentioned previously, this analysis is complicated by 

bank erosion of Quaternary glacial sediment that provides the non-foliated 

particles along the stream reaches with the observed fining trends. The 

abundance of D100 foliated particles declines from the sites of initial deposition in 

some reaches (Figure 7 lower, and Figure 8b). Based on a decline in abundance 

of foliated particles as a percentage of the D100,1 infer preferential attrition of the 

foliated particles for that size class. However, the decreasing relative abundance 

of foliated clasts with fining may be due in part to an increase in the number of 

non-foliated clasts due to bank erosion.

Downstream decreases of particle size are generally greater for the foliated 

class of particles (Figure 8 and Table 5). In Series 1, the initial average sizes of 

foliated and non-foliated particles are nearly equal; thereafter, sizes of foliated 

particles are less than the non-foliated sizes (Figure 8c). However, the rates of 

fining (fining coefficients in Table 5) do not differ appreciably between the rock
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types over the length of the reach in Series 1. In Series 3 the fining rates differ by 

an order of magnitude (Table 5) over the length of the reach, but initial sizes of the 

lithologies are not related; all non-foliated particles in Series 3 were not supplied 

from a single source at the head of the fining series. However, from the third 

sample site to the last, size reductions proceed at about the same rate (Figure 

8c). The third sample site is located where coarse non-foliated particles are 

contributed from a bank-side slump. In both fining series, size reduction appears 

to proceed at about the same rate for both lithologies despite complications to the 

relative abundance of lithologies caused by introduction of new material from 

channel bank failures.

Particle Shape Changes with Downstream Changes in Particle Size: Field versus 

lank Dat9

Average sphericities of both foliated and non-foliated rock types fall within a 

narrow range, and the sphericities do not change appreciably with fining (Table 6). 

Though the foliated particles do not become more spherical, they do tend to 

become either more platy or bladed while retaining roughly the same c/a ratio 

(Figure 9).

Foliated and non-foliated particles at the first sample site in Series 1 are 

nearly equal in size (Figure 8c), including volume and mass (average volumes of 

both rock types are between 3.3 x 10^ and 3.4 x 10^ mm3), and their forms are 

bladed (Figure 9). However, below the first sample location, sizes of the non- 

foliated class of particles are everywhere larger than sizes of the foliated class of 

particles. Also, the change of form downstream for non-foliated particles shows a 

tendency toward compact, and sphericity of such particles increases.

These observations from the field suggest two alternative interpretations. 

The first interpretation is that smaller platy foliated particles are preferentially
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transported from their upstream source along with larger, more compact non- 

foliated particles. This alternative would require flows sufficient to overcome the 

resistance to tractive transport offered by the platy particle forms.

The second interpretation is that the shapes of the foliated particles are 

produced by wear during transport, and therefore the shape changes are the 

product of abrasion rather than selective downstream transport. In this second 

interpretation, the more spherical particles of both rock types are winnowed from 

upstream. However, particle wear during transport then proceeds more rapidly for 

foliated particles than for non-foliated particles.

The abrasion tank data support the second alternative but not the first. The 

tank data show that foliated particles abrade much more than non-foliated 

particles: total mass lost due to abrasion of the foliated particles was about 7 

times greater than for the non-foliated particles (Table 7). In addition, 

observations from the abrasion tank study indicate that particle shapes do affect 

mobility. Of non-foliated and foliated particles of equal mass that duplicated the 

range of form and sphericity of particles from the first sample site in Series 1, platy 

foliated particles did not move at all in the tank under flow conditions that 

transported non-foliated and foliated compact-bladed particles with higher 

sphericities. Hence, foliated particles that had a compact-bladed form were 

chosen for transport in the tank.

Combining Tank and Field Data: Approximating the Separate Contributions of 

Abrasion and Sorting Processes to Fining Mechanism.^

The reduction of grain size can be described exponentially in the four 

fining reaches of Finney Creek. An exponential decrease of particle size 

downstream is described by the equation whose general form is y=be'®^ in which
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y is the particle size at some distance x downstream of where the initial particle 

size b is measured, and the constant a is the coefficient of fining.

The equation y=be'a^ can be expanded to y=be’(ai + ^2'^^ in which a? is the 

coefficient of abrasion and a^ is the coefficient of sorting by selective transport 

(Knighton, 1980). Most empirical studies calculate a single coefficient and the 

separate effects of sorting and abrasion remain hidden. I will make the case that 

results obtained from my abrasion tank studies can be used, in conjunction with 

the field results, to estimate a range of the separate rates of size reduction due to 

abrasion and selective transport for foliated and non-foliated particles in the 

Series 1 fining reach of Finney Creek.

Results from the abrasion experiment show that in five km of transport the 

reduction of size (b-axis) due to abrasion is about nine times greater for foliated 

particles than for non-foliated particles (Table 7). For the sake of comparison to 

field data on fining, exponential equations are fitted to the tank-determined grain 

size reduction data (Figure 12). The coefficient of abrasion (ai) of the foliated 

particles is 0.05, an order of magnitude greater than that of the non-foliated 

particles, which is 0.005 (Figure 12).

Coefficients of abrasion for the field data would be at least as large as the 

coefficients derived from the tank data because tank-derived abrasion 

coefficients are minimums. Tank-derived abrasion coefficients are minimums 

because many transits around a circular flume are required to represent the in- 

place motion and abrasion of coarse particles on a river bed (Schumm and 

Stevens, 1973). Hence, results obtained from abrasion experiments may 

underestimate by as much as 10 times the actual amount of abrasion that occurs 

over an equivalent distance in the stream channel (Schumm and Stevens, 1973). 

However, the tank-derived abrasion coefficients are none-the-less illuminating as 

to the relative importance of abrasion for the two clast lithology types. Both the
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Figure 12. Plot of grain sizes (b-axis) of foliated and non-foliated particles 
transported in the abrasion experiment, and the exponential curves that 
describe the reduction of grain size.
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Figure 13. Plots of predicted D100 grain size versus distance for foliated and 
non-foliated particles in Series 1. Curves are plots of exponential 
equations derived from combined field and experimental data. Curve 
yp is the best-fit relation from the field data. Curve yj utilizes 
experimental results to predict grain size as a function of abrasion. 
ai is the coefficient of fining due to abrasion. a2 is the coefficient of 
fining due to selective transport. Coefficient b is observed.
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abrasion experiment and field observations indicate that the effects of abrasion 

on the reduction of grain size of the non-foliated particles are minor; non-foliated 

particles showed only small percussion marks and very little evidence of 

cracking, splitting, or chipping. Conversely, all evidence discussed above shows 

that abrasional processes are relatively important in reducing the sizes of the 

foliated particles.

An upper boundary on the range of values of the coefficient of abrasion for 

the foliated particles is limited only by the overall coefficient of fining, which is 

0.40. Neither field relations nor observations from the abrasion experiment are 

sufficient to estimate the proportion of fining by abrasion on the total reduction of 

sizes of the foliated particles, except that abrasion may account for 100% of total 

reduction. Thus, estimates of the coefficients of abrasion for particles in Series 1 

of Finney Creek range between 0.05 and 0.40 for foliated particles (Figure 13).

In contrast, non-foliated particles transported in the channel and in the 

tank suffer very little reduction in size from abrasion; very few non-foliated 

particles in the channel were broken, chipped or cracked, and non-foliated 

particles transported in the tank showed only percussion marks from impacts. 

Shapes of non-foliated clasts are inherited from previous erosion processes, and 

these shapes do not change appreciably downstream (Table 6, Figure 9). Thus, 

the tank-derived coefficient of fining due to abrasion for the non-foliated particles 

is small. Even if I assume it is 10 times larger than that determined in the tank 

(0.005), it is still only about 17% of the total fining coefficient, the rest of which 

must be attributed to selective transport.

Experimental abrasion results applied to field relations, together with 

evidence that definitively shows selective transport of particles larger than 400 

mm, indicate that selective transport is the dominant mechanism responsible for 

the observed fining trends for non-foliated rock types in the Finney Creek
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channel. The components of fining that can be attributed to abrasion during 

transport over several kilometers of distance is greater than 10% and most likely 

approaches 100% for foliated particles less than 400 mm in size, and is less than 

17% for non-foliated particles smaller than 400 mm in size.
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SUMMARY

The grain size distributions of coarse particles, and the distributions of 

coarse particle shapes and lithologies, were investigated in Finney Creek, a 

mountain stream channel in northwest Washington with an historically high 

incidence of sedimentation from landslides. The investigation showed that the 

size of the coarsest particles, defined by the median size of the 51 largest 

particles measured at a site, exhibits an orderly decline downstream from 

sources of coarse debris delivered to the channel. While fining trends appear to 

be influenced by shapes of the principle lithologies, durability of the principal rock 

types is a more important determinant of the fining mechanism.

Four distinct downstream trends of particle fining are spatially associated 

with recent deposition of coarse clasts in the channel from debris slides and 

debris flows. These trends of particle fining are evident over relatively short 

distances (1370 m to 2430 m). Particle sizes diminish rapidly downstream from 

the debris source, and in all trends approach a common minimum value. The 

distance over which fining occurs appears to be dictated in every fining series by 

the occurrence of a recent debris slide or debris flow deposit.

Fining trends for the two principal rock types in the channel are strongly 

related to their relative abundance. Analysis of fining trends by lithology of the 

principle rock types shows that overall trends are influenced most by the fining 

trend evident in the foliated rock type and least by the trend evident in the non- 

foliated rock type. This observation is attributed primarily to contamination from 

erosion of channel banks comprised of glacial fill material from which the non- 

foliated rock type is derived.

Longitudinal changes in the lithologic composition of the coarsest clasts 

suggest that selective transport occurs for all particles of size greater than about 

400 mm, but below that size the primary fining mechanism is different for the two
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rock types. Experimental results from the abrasion tank study demonstrated that 

foliated particles abrade at about 10 times the rate of non-foliated particles. The 

best insight into the relative effects of abrasion versus selective transport comes 

from combining results of the field and tank data. Assessments of the correlation 

between tank and field data indicate that abrasion processes account for 10 to 

100% of the total reduction of grain size of foliated clasts, and less than 17% of 

the total size reduction of non-foliated clasts.
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APPENDIX

The abrasion tank (Figure 14) was modeled after that used by Kuenen 

(1956, Figure 2). The apparatus was constructed using a 1.8 m (six-foot) 

diameter metal tank that was 0.45 m (1.5 feet) deep. Small cobbles were 

embedded in concrete on the floor. In the center was a metal pillar, which 

provided a tapered-walled circular channel 0.4 m (1.3 feet) deep, 0.61 m (2.0 

feet) wide, and about 5.49 m (18 feet) around the outside diameter. Two paddles 

were constructed of PVC and were driven by a one-horse power motor, stepped 

down through a gear reduction box and a series of step-pulleys. The paddles 

propelled water around the channel and this current moved the particles. All 

particles, from the largest cobbles to sand, had a tendency to collect in the low- 

velocity zone on the inside of the channel. This problem was corrected by 

increasing the taper on the inside wall, and by cutting the paddles short on the 

outside and long on the inside.

Each pair of particles were transported for the calculated amount of time it 

would take to transport the slowest particle a distance of 2500 m. In all cases the 

foliated particle was the slowest particle in a pair. The time was calculated by

T = (2500 m) X (1 minute / N) x (1 revolution / 5.5 m) 
where T is the total required time in minutes and N is the number of revolutions 
made by the slowest particle in one minute.
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Figure 14. Schematic drawing of the abrasion tank.
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