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ABSTRACT

A study of the 48 Ma Cooper Mountain pluton (CMP) in the North Cascade 

Mountains of Washington using anisotropy of magnetic susceptibility (AMS) defined the 

orientation of magnetic fabrics. Fabrics in limited areas at the margins of the CMP tend 

to be parallel to the pluton margin and are therefore interpreted to be emplacement- 

related. The fabrics in the interior of the body, throughout the bulk of the pluton, are 

discordant with respect to the NW pluton margin. The fabric is manifest by NW-striking, 

moderately to steeply dipping foliation and NW-SE trending, moderately to shallowly 

plunging lineation, approximately parallel to regional structural trends in the Cascade 

Crystalline Core. Discordance of the fabric to the pluton margin and near concordance 

with regional structures suggests a tectonic origin.

Remanent magnetization was measured to determine if the CMP has been 

reoriented since emplacement. The characteristic remanence was unblocked in some 

samples at 580°C and in others at 370°C. A variety of techniques were used to determine 

that magnetite and pyrrhotite are the remanence-carrying minerals. Magnetic directions 

obtained from both of these remanence carriers plot, within error, on the North American 

expected Eocene direction (Diehl et al. 1983) suggesting that there has been no 

reorientation of the pluton since remanence was acquired and that magnetic fabrics 

require no correction to obtain their Eocene orientation.

Results of fabric analysis indicate that the Cooper Mountain pluton is a syn- 

tectonic pluton rather than post-tectonic (Haugerud et al. 1991b) due to the tectonic 

development of magmatic fabrics. This fabric is slightly oblique to the length of the
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Cascade orogen and is thus best interpreted to have formed as a consequence of regional 

dextral-shear due to transpression.
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TITLE

TECTONIC IMPLICATIONS OF MAGNETIC FABRICS AND REMANENCE IN 

THE COOPER MOUNTAIN TEUTON, NORTH CASCADE MOUNTAINS, 

WASHINGTON

INTRODUCTION

Recent structural studies have shown the usefulness of fabric analysis of plutons 

in elucidating regional tectonics and mechanisms of plutonism. Distinctions have been 

made between solid-state and magmatic fabrics (e.g. Paterson et al. 1989). Magmatic 

fabrics can owe their origin to stresses of either pluton emplacement or regional tectonics 

(see reviews by Bouchez 1997 and Paterson et al. 1998). Tectonically-controlled 

magmatic fabrics are not only indicators of regional strain, but as these fabrics are 

developed during pluton crystallization, they therefore can constrain the age of 

deformation if the pluton is dated (e.g. Benn et al. 2001).

A problem often encountered in fabric study of plutons is weak development of 

the fabric such that it is difficult to measure and often is visible only in small portions of 

a pluton. In these instances, measuring magnetic fabric is advantageous because even 

subtle anisotropy can be easily detected magnetically. The procedure that has been 

developed for this purpose measures the magnetic susceptibility of minerals in a rock to 

determine overall rock fabric (anisotropy of magnetic susceptibility - AMS) (e.g. Uyeda 

et al. 1963, Hrouda 1982). Examples in which this technique has proved successful 

include the following. The Archean Bamum Lake and Trout Lake plutons near Thunder 

Bay in the Canadian Shield (Borradaile and Kehlenbeck 1996) preserve a visible



emplacement-related fabric at the margins. Also, a pervasive magnetic fabric was 

documented, in the absence of visible fabric, which suggested a tectonic origin. The Late 

Cretaceous Mono Creek granite in the Sierra Nevada of California (Tikoff and de Saint 

Blanquat 1997) contains macrostructural, microstructural and magnetic fabric all 

interpreted as syn-magmatic due to shearing of the Rosy Finch Shear Zone. Furthermore, 

the Prosperous Suite of granites in the Slave Province of the Canadian Shield contains 

macroscopic foliation as well as magnetic foliation and magnetic lineation that record 

deformation during transpression (Benn et al. 1998). Fabric analysis, primarily by AMS, 

of the Eocene Cooper Mountain pluton (Barksdale 1975) is the subject of this report.

This fabric analysis was carried out with the expectation that results would either bear on 

the emplacement mechanism of the batholith or lead to better understanding of the 

regional tectonic history.

Paleomagnetism was analyzed in the Cooper Mountain pluton, in addition to 

AMS, for the purpose of evaluating the degree to which the body as a whole has been 

reoriented since cooling. Some older plutons of the Cascades show significant 

paleomagnetic discordance with respect to the North American direction of the same age, 

indicating either tilt or large-scale translation (e.g. the Cretaceous Mt. Stuart batholith. 

Beck and Nosen 1972). If paleomagnetism indicates reorientation, then the AMS fabrics 

must be corrected for this in order to be applicable to understanding of regional strain.

GEOLOGIC SETTING

The Cooper Mountain pluton (CMP) is located in Chelan and Okanogan Counties 

in the North Cascade Mountains of Washington (Figure 1). It is a 48 Ma (K-Ar biotite
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age, Tabor et al. 1980) granitic to granodioritic pluton with an aerial extent of 300 km 

(Barksdale 1975) (see Appendix A for modal comparisons). It was emplaced when the 

orogeny of the North Cascades Crystalline Core was coming to an end (Haugerud et al. 

1994). The Crystalline Core is a block of metamorphic and plutonic units bounded by the 

Straight Creek Fault on the west and the Ross Lake Fault Zone (RLFZ) on the east 

(Figure Ic). The orogeny of the Crystalline Core began in the Cretaceous and extended 

into the Tertiary (Mattinson 1972, Tabor et al. 1980, Haugerud et al. 1994). Some 

workers suggest a significant component of orogen-parallel dextral transpression (Brown 

and Talbot 1989) during this orogeny, while others emphasize evidence for SW-directed 

thrusting (Paterson and Miller 1998). The Crystalline Core itself is divided into two 

distinct blocks by the NW-striking Entiat fault (Figure 1). The CMP is located in the 

eastern of these two blocks, the Chelan block, and is the focus of this paper.

By the Early Tertiary, the orogeny had subsided in much of the North Cascades 

Crystalline Core. There was dextral strike-slip faulting along the Straight Creek Fault 

(Misch 1966) (Figure Ic). Some workers find evidence for similar displacements on the 

Ross Lake Fault Zone (Misch 1966, Haugerud et al.l991a). Others interpret the RLFZ as 

a continuous crustal section between two large-scale folds in the Skagit Gneiss Complex 

and Jurassic-Cretaceous Methow Basin (Kreins and Wernicke 1990). In the strike-slip 

scenario, the Ross Lake Fault Zone records dextral movement until ~45 Ma when the 

Ross Lake Fault Zone is truncated by undeformed, post-tectonic plutons (Haugerud et al. 

1991b). These plutons cut-across the Ross Lake Fault Zone and there is no displacement 

at their margins. The CMP is one of these post-tectonic plutons intruding the southern

most extension of the Ross Lake Fault Zone, the Foggy Dew fault (Figure lb). On its
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western side, the CMP intrudes rocks of the Skagit Gneiss Complex (Haugerud et al. 

1991b) and Twenty-five Mile Creek Unit (Figure lb). Nearly 2-km of vertical relief is 

exposed in this area along glacially carved Lake Chelan. This study focuses on this 

western portion of the pluton (Figure lb).

Previous work includes a study by Wade (1988) who looked at emplacement 

fabrics of the CMP at its northern margin that includes the truncation of the Foggy Dew 

fault. He was able to gather few fabric measurements relative to the extent of the field 

area due to extremely weak flow fabrics. Wade (1988) interpreted foliations parallel to 

the CMP - Skagit Gneiss Complex boundary to be caused by emplacement of the pluton, 

but he describes a small area of NW-striking, moderately SW-dipping foliation that does 

not fit this explanation. He also observed sloping at the margins, which was recognized 

in our study as well. Wade concluded that sloping was a probable mechanism for 

emplacement. Raviola (1988) studied the southeastern tip of the CMP but made only one 

fabric measurement citing weak fabric development. Figure lb shows the approximate 

boundaries of the field areas in this, Wade’s (1988) and Raviola’s (1988) studies.

In a study by Hopson and Mattinson (1999), they concluded that the CMP was fed 

by melt transported through fractures in the Skagit Gneiss Complex. These fractures 

formed from extension in the Skagit Gneiss Complex as it was being tilted to the SE 

(Hopson and Mattinson 1999). Evidence for this tilting comes from contact relations 

between the Skagit Gneiss and the CMP, a change in dike fabrics from deep to shallow 

crystallization, and pressure relations indicating an increase in depth from southeast to 

northwest in the Skagit Gneiss Complex (Hopson and Mattinson 1999).

4



In this study, the margins of the CMP were observed to be a stockwork of dikes 

and sills (Figure 2). Blocks of Skagit Gneiss Complex with fabric discordant to the well- 

defined foliation were found at the CMP - Skagit Gneiss Complex margin. The NW- 

striking foliation of the Skagit Gneiss Complex is not deflected by emplacement of the 

CMP. Figure 3 shows fabric orientation in the Skagit Gneiss Complex and the CMP 

based on field mapping by Wade (1988) and this study. Magmatic fabric is very weak 

and can be measured in few sites where the foliation is defined by aligned biotite.

PETROGRAPHY

Over 200 oriented hand samples were collected in the field for AMS, 

paleomagnetic and petrographic analyses. Thirty-five of these samples were slabbed and 

stained to discriminated plagioclase from potassium-feldspar. Thirteen thin-sections 

were made of the samples. Thin-section samples were chosen and oriented based on 

AMS data, in addition to spatial variation throughout the field area.

The CMP is a granite to granodiorite with the following modal composition. The 

granite contains 30-50% quartz, 29-47% plagioclase, 16-24% potassium feldspar and 2- 

8% mafic minerals. The granodiorite contains 29-47% quartz, 33-48% plagioclase, 9- 

26% potassium feldspar and 2-13% mafics. The mafic minerals in both rock types are 

biotite and hornblende. See Appendix A for QAP diagram, data table and 

photomicrographs. Figure 4 is a photomicrograph of a granite sample from the CMP. 

Notice alignment of biotite and lack of solid-state deformation.

Based on modal distribution, the field area could not simply be divided into 

lithologically characteristic zones. However, there appears to be a textural variability that
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can be mapped. Texture in the CMP ranges from fine-grained (< 0.3 cm grains) to 

equigranular, coarse-grained (0.1 to 0.6 cm grains) to porphyritic (0.1 to 0.7 cm quartz 

and plagioclase) with phenocrysts of potassium-feldspar up to 2.0 cm in size. The 

porphyritic phase of both modal types is present in NE-SW oriented swaths through the 

body of the pluton (Figure 5). Note that only 35 sites were ineluded in the petrographic 

study and more ground-truthing needs to be done to conclusively define these porphyritic 

swaths.

AMS METHODS AND RESULTS

Oriented hand samples were collected from 113 sites in the field and drilled in the 

lab. One or two block samples were collected per site, one to five cores (average 2) were 

drilled per block sample with one to three specimens (average 2) per core. The 

Kappabridge KLY-3 was used to measure the AMS.

Anisotropy of magnetic susceptibility (AMS) characterizes the variability in 

magnetic susceptibility with orientation in a mineral. Many studies (Bouillin et al. 1993, 

Cruden et al. 1999, McNulty et al. 2000) have shown that this variation is coincident with 

petrofabrics in rocks. For all minerals except magnetite, single crystal AMS is controlled 

by the mineral’s crystallographic axes (Hrouda 1982). Thus, measurements of AMS of a 

rock provide the overall crystallographic preferred orientation of the minerals in the rock. 

In many rocks, AMS is controlled by an Fe-rich silicate sueh as biotite (Hrouda 1982, 

Borradaile and Henry 1997).

F-statistics were calculated for each specimen to determine whether the magnetic

susceptibility is significantly anisotropic (Tauxe 1998). Two specimens were omitted
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from further analysis because their F-values were within the 95% confidence level for 

isotropy. The remaining specimens were analyzed using a bootstrap procedure to 

determine the scatter (or uncertainty) in the orientation of the AMS axes (Constable and 

Tauxe 1990). The scatter relates to the shape of the AMS ellipsoid, which indicates 

preferred crystal orientation within the rock. Three axes of susceptibility define the AMS 

ellipsoid. An overlap in the degree of scatter between two of the three axes makes 

mineral orientation distinguishable as prolate or oblate. The maximum, intermediate and 

minimum axes of susceptibility (k) are denoted throughout the text as kmax, ki„t and kmin, 

respectively. Magnetic foliations were plotted as the kmax-kint plane and lineations were 

plotted as kmax- Therefore, for uniaxial oblate sites, only foliation directions were 

included in the analysis, and for uniaxial prolate sites, only lineation directions were 

included. In all, foliation data from 14 sites and lineation data from 13 sites were omitted 

because the uncertainty in orientation of the axes of susceptibility was too high (there was 

overlap in the scatter for the AMS ellipsoid; the sites appear as dots in Figure 6). See 

Appendix B for the statistical analysis of the AMS ellipsoid.

Figure 6 shows the magnetic fabric throughout the study area. The area was 

divided into six different geographic zones with accompanying equal area plots. Poles to 

foliation plotted in Figure 6a show predominately NW-striking, moderately to steeply 

dipping foliation. Lineation trends NW-SE with a gentle to moderate plunge (Figure 6b). 

Figure 6 also shows that in some zones of the pluton, immediately adjacent to the margin, 

foliation has an east-west strike and a moderate to steep dip (zone E). Zones A and D 

have a few sites that show this same margin-parallel trend.
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The oblateness and prolateness of the AMS shape fabrics were characterized 

using P- (Nagata 1961) and T-values (Jelinek 1981). P-values (P ~ kmax/kmin) describe 

how anisotropic a sample is. The average P-value for the CMP was 1.058 (5.8% 

anisotropy; P-values ranged from 1.006 to 1.216) which is typical for a pluton with weak 

flow fabric (Borradaile and Kehlenbeck 1996, Bouillin et al. 1993, McNulty et al. 2000). 

Figure 7a is a contour map showing that the majority of the field area has < 5% 

anisotropy with small areas of higher anisotropy. T-values provide a sense of shape for 

the AMS ellipsoid (T = -1 is truly prolate, T = 1 is truly oblate). Keep in mind that T- 

values demonstrate whether a specimen is more strongly lineated or more strongly 

foliated but does not give any indication as to whether the axes of susceptibility are 

statistically well defined (see Appendix B for a comparison of shape parameters). The 

average T-value for the CMP was 0.050 (oblate/foliation is more developed), but there 

was quite a bit of variability within some sites and none of the sites was truly uniaxial 

oblate or prolate meaning that both foliation and lineation are variably developed which, 

again, is common in plutons with weak flow fabrics (see previous P-value citations). 

Figure 7b shows the T-value distribution throughout the study area.

Modal analysis showed that the CMP varies from granite to granodiorite with no 

logical pattern based on modal distribution (see Appendix A). Bulk susceptibility was 

compared to modal variation revealing that there was a wide range of distribution in 

susceptibility data (Figure 7c) and, like model distribution, no discreet pattern could be 

found. Average bulk susceptibility was 1.045 x lO"* (for a standard 10 cm^ specimen). 

Typically, samples with more mafic minerals display higher magnetic susceptibility. The 

mafic mineral content in the pluton ranged from 2% to 13% with < 1% of ferromagnetic

8



minerals (magnetite) contributing to magnetic susceptibility. This yielded enough 

variation where a simple spatial, lithologic-versus-susceptibility correlation could not be 

made.

It is important to know which minerals contribute to the AMS of a specimen to 

know how the fabric orientations should be interpreted. For a few minerals, such as 

single-domain magnetite, kmin corresponds to the long axis of the mineral and kmax 

corresponds to the short axis resulting in the fabric appearing to be inverse (Potter and 

Stephenson 1988). Typically, for specimens with a low magnetic susceptibility (less than 

5x10"^), paramagnetic minerals (biotites) control the AMS (Hrouda and Jelinek 1990). 

However, single-domain magnetite also has low susceptibility and interpretation of the 

AMS ellipsoid for single-domain grains is different from multi-domain grains or 

paramagnetic minerals. To identify the dominant AMS carrier for the CMP three 

different analysis techniques were used. First, the Kappabridge CL-3 was used to 

measure magnetic susceptibility at low temperature (-192° to 10°C) in order to separate 

the paramagnetic from ferromagnetic components. Sixteen sites were analyzed to span 

the range of bulk susceptibility observed. Eleven (69%) sites had a paramagnetic 

signature, four (25%) had a ferromagnetic signature and 1 (6%) showed equal 

paramagnetic and ferromagnetic contribution (Figure 8). For those sites with a 

ferromagnetic susceptibility component, the magnetic fabric was similarly oriented to 

either magnetic or visible fabric measurements from adjacent sites (see Figure 9). This 

suggests that the ferromagnetic minerals are oriented parallel to the paramagnetic ones.

Further analysis of the ferromagnetic component showed that both single-domain 

and multi-domain magnetite grains are present. The magnetic remanence of five
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specimens was measured over a temperature range of 20 to 300 K using the MPMS-2 at 

the University of Miimesota Institute of Rock Magnetism. Figure 10 shows that at 

temperatures between 20 to 120 K, single-domain magnetite have a higher magnetic 

remanence when a high magnetic field (2T) is applied as the sample is cooled from room 

temperature (Dunlop and Ozdemir 1997). Both multi-domain magnetite and other non

ferromagnetic minerals do not display this increase in magnetic remanence during 

cooling in a high magnetic field. All five specimens analyzed contained some single

domain magnetite.

Hysteresis loops were obtained for eight specimens to further classify the size and 

quantity of magnetite grains. Seven of the hysteresis loops show no indication of 

ferromagnetic minerals (Figure 11). This suggests that the quantity of magnetite grains is 

so low that the paramagnetic minerals are overshadowing them. The single specimen 

with a hysteresis loop proved to be multi-domain magnetite because of the high 

remanence to saturation ratio. See Appendix B for data. The combined analysis of two 

types of low-temperature thermomagnetic experiments and hysteresis loops strongly 

suggests that the paramagnetic minerals are the dominant contributor to magnetic 

susceptibility.

PALEOMAGNETIC METHODS AND RESULTS

Magnetic minerals within a specimen may preserve a paleomagnetic field 

direction. By measuring a specimen’s remanent magnetization the paleomagnetic field 

direction can be determined. This can be compared to a reference direction expected for 

the stable craton. If the observed and reference directions are different, the rock body
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may have been reoriented. The paleomagnetism of the CMP was studied to determine if 

such reorientation had occured. Specimens used for the non-destructive AMS study were 

measured for magnetic remanence using a 2G-755 cryogenic magnetometer housed in a 

magnetically shielded room.

Specimens from more than 90 sites were thermally demagnetized in a custom- 

built magnetically shielded oven, also within the shielded room (see Tables 1 and 2). 

Remanence in most specimens was unblocked by 370°C, magnetization in all but one of 

the remaining specimens was unblocked by 600°C. Linear segments of demagnetization 

paths were visually identified on orthogonal diagrams (Zijderveld 1967) as components 

of magnetization. Directions of those components and the maximum angular deviation 

(MAD) were obtained with principal component analysis (Kirschvink 1980). Two 

remanence components were extracted from the demagnetization data. Orthogonal plots 

(Figure 12) show the thermal demagnetization paths and the two components. In the 

following sections, the component demagnetized at lower temperatures is referred to as 

component 1 whereas the highest temperature component is referred to as component 2.

Several approaches were employed to determine what magnetic minerals carry the 

remanence. High temperature thermomagnetic experiments established magnetite as a 

remanence carrier. Figures 13a and 13c are graphs of the experiment showing a drop in 

susceptibility at ~580°C, which corresponds to the Curie temperature of magnetite 

suggesting magnetite is the only remanence carrying mineral present. This was 

apparently confirmed when magnetite was the only opaque mineral identified using 

reflected light microscopy (see Appendix A) and by an intensity drop below 600°C 

(Figure 13d), near the Curie temperature of magnetite. However, thermal
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demagnetization shows that most specimens lose 90% of their intensity by 370°C instead 

(Figure 13b). This low unblocking temperature corresponds to the Curie temperature of 

pyrrhotite. To resolve this discrepancy, the Lowrie method of thermal demagnetization 

(Lowrie 1990) was then used to document pyrrhotite’s presence. Eight specimens were 

magnetized at 30, 80 and 200 mT along three orthogonal axes (x, y and z, respectively). 

These particular strengths of magnetizing fields were chosen to match the different 

coercivity ranges of the expected magnetic minerals and different grain-sizes of ranges 

(see Appendix C). Figure 14 is a graph of one experiment using the Lowrie method. For 

all three axes the unblocking temperature was ~340°C which is a pyrrhotite signature. 

Therefore, both pyrrhotite and magnetite are interpreted as the paleomagnetic remanence 

carriers for the CMP.

Directions of both components 1 and 2 are scattered, with some upward directions 

(Figure 15). This suggests that some of the remanence dates from a time of reverse 

polarity of the magnetic field. Some of the scatter might result from magnetizations 

recording transitional fields, or mixture of the two polarities. To help reduce the 

contribution to scatter from demagnetization paths that result from simultaneous 

demagnetization of opposite polarity magnetizations, only line segments with MAD < 8 

degrees were used. Futhermore, to reduce bias that might arise from inproperly separating 

the polarities to calculate their mean directions, the bootdi method of Tauxe (1998) was 

used. This first employs a PCA approach to divide the dataset, then evaluates whether 

either set has a Fisherian distribution (Fisher 1953), and, if so, calculates the mean and 

Fisher statistics.
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The mean direction of component 1 is D = 343.5,1 = 73.2, ags = 6.7 and k = 12. 

The mean direction of component 2 is D = 342.7,1 = 72.8, ags = 9.2 and k = 17. The 

upward directions were not included in this analysis because they are too poorly 

constrained (scatter is too large). The present day field direction in the field area is D = 

20.9,1 = 71.7 and the expected North American Eocene direction is D - 349.5,1 = 67.4 

(Diehl et al. 1983). See Tables 1 and 2 for a list of site data and Figure 16 for a plot of 

component 1 and component 2 data.

Component 1 and 2 mean directions were calculated assuming a Fisher 

distribution of data (a circular distribution about the mean). Component 2 is Fisher 

distributed while component 1 is slightly elongate. There is an underlying E-W 

elongation in the data set that makes use of Fisher statistics inappropriate although not 

necessarily inaccurate. However, one can see from Figures 15 and 16 that the two 

components of magnetization are very similar suggesting that both magnetite and 

pyrrhotite record the same direction, not much different from the expected Eocene 

direction.

Noting the grain-size variation in the CMP and the NE-SW swaths of porphyritic 

phase rock (see Figure 5), the paleomagnetic data were reevaluated to determine if the 

porphyritic phase records a different direction than the other petrographic phases. The 

results, nonetheless, confirmed that all the phases record, on average, the same magnetic 

field.

As far as the underlying E-W elongation of directions goes, more analysis needs 

to be done to isolate this elongation and determine the significance, if any. Beck (1999) 

has discussed the significance of shape analysis and various ways in which to approach it.
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If this elongation does prove to be significant, the elongation of remanence of the CMP 

could be resulting from a transition in polarity.

DISCUSSION

In a few localized zones within the CMP, AMS fabric parallels the pluton - 

country rock margin (Figure 6). This fabric is interpreted as an expansion fabric acquired 

during emplacement because of its concordance with the margin. Wade (1988) proposed 

emplacement mechanisms for this pluton that include sloping and shouldering aside.

This conclusion was based on contact relations and field mapping. The magnetic fabric 

elsewhere in the pluton (beyond the margins) is interpreted to be expressive of regional 

deformation rather than emplacement due to the overall NW-SE trend of fabrics in the 

pluton and discordance of these fabrics with the pluton boundary. Figure 17 shows two 

lower-hemisphere projections of the predominant trend of these tectonic fabrics. The 

magnetic fabrics shown in Figures 6 and 17 are interpreted as tectonic alignment of 

biotite when the pluton was crystallizing. This conclusion for the timing of fabric 

development is drawn from the lack of solid-state deformation in the rocks (see Figure 4). 

Therefore, the sub-horizontal lineations in the CMP may suggest two things. First, 

pervasive fabrics in the CMP show that it is not an undeformed post-tectonic pluton, 

rather it is a syn-tectonic pluton. Second, the orientation of these fabrics gives some 

indication of Eocene-age strain in the area, as the fabrics were formed in response to 

regional strain.

A recent study was done on an older pluton in the North Cascades with similar 

results to this study. The Late Cretaceous Mt. Stuart batholith has AMS fabrics with a

14



NW-SE lineation that may record strain during the final stages of crystallization (Benn et 

al. 2001). These data were then used to investigate two models of plate tectonic history 

during the Cretaceous, 1) plate convergence orthogonal to the continental margin and 2) 

plate convergence oblique to the continental margin. Both models are viable to the 

Eocene Cooper Mountain pluton study however, the later model is more likely and is 

explained in the following paragraphs.

One model to explain fabric orientation in the CMP involves shear, perhaps 

associated with the NW-SE faults in the region (i.e. the Ross Lake Fault Zone, RLFZ). 

The RLFZ is an Early Tertiary fault, thought to be active until ~45 Ma, exhibiting dextral 

strike-slip motion (Misch 1966, Haugerud et al. 1991b). The younger age limit of fault 

movement was inferred from evidence that the Golden Horn batholith (GHB) and the 

CMP were undeformed, post-tectonic plutons that cut the fault trace and fabrics related to 

it (Haugerud et al. 1991b), however it has been established that the CMP is not post- 

tectonic. Moderate shear-strain combined with a low angle of plate convergence (<20 ) 

will result in horizontal lineations (Tikoff and Greene 1997) much like the magnetic 

lineations observed in the CMP that are oblique to the regional faults and trend of the 

orogen. Figure 18a is a model of such a system with the lineation direction horizontal 

and oblique to the trend of the orogen. Figure 18b shows the obliquity of the lineations.

A second model is orogen-parallel extension (Figure 18c). Some workers 

studying rocks in the North Cascades Crystalline Core have concluded that there was 

significant orogen-parallel (NW-SE) stretching during the Eocene (Ewing 1980, Miller et 

al. 2000). The orogen-parallel extension models assume that shortening was more or less 

orthogonal to the NW-SE trend of the orogen, producing a sub-horizontal stretching of

15



the orogeny via pure shear. If this strain regime was active during emplacement and 

cooling of the CMP, the lineation recorded by AMS should also parallel the extension 

direction. The obliquity (-30°) between the lineation direction in the CMP and both the 

major trend of the Cascade orogeny and nearby faults, such as the RLFZ, leads to the 

favoring of dextral shear strain as the origin of these fabries.

CONCLUSIONS

On the basis of field mapping alone, the CMP has very little observable fabric. 

However, AMS was able to discern the subtle anisotropy present. Margin-parallel fabric 

suggests expansion during emplacement, but AMS reveals an internal, predominant NW

SB trend of foliations with sub-horizontal lineations. These fabrics are consistent with a 

model of Eocene dextral shearing resulting from regional strain in the North Cascades 

Crystalline Core. In addition, the paleomagnetic evidence suggests that there was no or 

little reorientation of the CMP since it cooled below 550°C and therefore, no need to 

correct the found fabrics for reorientation.

AMS and paleomagnetic work on other plutons in the North Caseades, such as the 

Eocene Golden Horn batholith, can provide additional data to eonstrain internal 

deformation of the North Cascades partieularly during Eoeene events in the Chelan block 

of the North Cascades Crystalline Core.
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Cooper Mountain 
X pluton

Figure 2. Site 24; Cooper Mountain 
pluton (CMP) intruding Skagit Gneiss 
Complex (SGC). The CMP is cross
cutting the SGC foliation. Stockwork 
of dikes and sills at the margin.
Hammer for scale. Upper-left image is 
a photograph of the outcrop; lower-right 
image is a sketch of the photograph.

Brush
m
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Figure 3. Cumulative fabric maps of Wade (1988) and this study. These are fabrics measured in the 
field and/or oriented hand sample. Note that very few fabric measurements were taken in the pluton 
boundary. Wade's field area is outlined with a dashed line, other fabrics measurements beyond the 
dashed line are from this study. CMP = differently mapped lithologies of the Cooper Mountain 
pluton (Wade 1988).
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Figure 4. Sample 183-209b, fine-grained granite. Aligned biotites, lack of solid-state deformation, k 
= 6.29x10■^ P = 1.212, T = 0.344. Upper image in plane-polarized light, lower image in cross- 
polarized light. Scale = 16x magnification; 4.2 x 6.4 mm.
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<1.05 1.05-1.1 1.1-1.15 1.15-1.22 No Data

Cooper Mountain
^ pluton

Shape Parameter (T)

I I I. . '-J IHI I I
T<0 T varies T>0 No Data 

Prolate Oblate

0-5 5-10 10-15 15-20 No Data

Figure 7. Contoured maps of the field area showing spatial distribution for values of a) anisotropy (P), 
b) shape (T) and c) bulk susceptibility (k). See Figure 1 for field area boundaries.
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Figure 8. Low temperature thermomagnetic plots for specimens 143 and 88. Specimen 143 displays a 
dominant paramagnetic component characterized by the large susceptibility at lower temperatures. 
Specimen 88 displays a dominant ferromagnetic component shown by the small change in susceptibility 
with temperature and the Verway transition at ~ -150 degrees C. Kt = whole rock susceptibility, Kp = 
paramagnetic component, Sp = paramagnetic determination error, Kf = ferromagnetic component, Sf = 
ferromagnetic determination error, A = using the constant ferromagnetic susceptibility method (Hrouda 
1994), B = using the sloped ferromagnetic susceptibility method (Hrouda et al. 1997).
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a. Site 101 b. Site 127

Figure 9. Lower hemisphere projections for the foiu specimens that displayed ferromagnetically 
controlled susceptibility with low temperature thermomagnetic experiments. The AMS data for each 
specimen (thick, gray lines for foliation, open squares for lineation) is plotted against magnetic fabric 
from adjacent AMS sites and fabric measured in the field (thin, black lines for foliation, solid squares 
for lineation). FMF = field measured foliation, others are AMS fabrics. The ferromagnetically 
controlled AMS is oriented similarly to the non-ferromagnetically controlled fabric indicating single
domain inverse fabrics are not present.
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Specimen 183-121

Temperature (K)

Figure 10. Low temperature magnetic remanence plot from 20 to 300 Kelvin. The lower curve is the 
susceptibility of the specimen measured in a zero-field environment and the upper curve is the same 
specimen measured in a 2.5 T field. See text for discussion.
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Figure 11. Magnetization of specimen 183-204a in a high-magnetic field. This specimen lacks a 
hysteresis loop and shows only the high-field slope.
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N, UP N,UP b.

Figure 12. Orthogonal plots for four paleomagnetic specimens, a), b) and c) all contain two components 
(Cl and C2) with thermal demagnetization steps labeled (degrees C). d) is an example of a specimen 
with unstable remanence that was subsequently omitted from tbe data set. Horizontal projection is 
labeled Cl and C2. Vertical projection is labeled with thermal steps.
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Figure 13. High temperature thermomagnetic plots (a & c) ahowing a dramatic drop in magnetic 
intensity at ~580 degrees C, which corresponds to magnetite's Curie temperature. Accompnnying 
demagnetization-intensity plots show that for the same specimens there are two different unblocking 
temperatures (320 and 580 degrees C).
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Figure 14. Specimen 66-cl-b thermally demagnetized using the Lowrie method (Lowrie 1990). Notice the 
drop in intensity between 320"C and 340“C for all axes. See text for discussion.
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Specimen Dec Inc Npoints MAD Begin T End T 1 Angle

114-cl-c 340.0 68.9 5 4.3 310 350 0.3
116-c2-a 24.2 70.0 7 0.6 260 350 0.0
120-c2-a 311.3 70.7 6 6.5 260 340 8.6
121-cl-b 354.6 79.7 5 2.5 300 340 0.3
133a-cl-b 252.2 82.4 4 7.1 100 300 27.9
135a-cl-b 54.8 51.0 4 0.5 225 370 0.1
137a-cl-c 9.7 80.5 8 1.6 210 350 2.4
139-c2-b 4.0 76.2 6 1.6 275 340 0.1
142-c3-b 159.7 -21.8 5 2.0 300 340 7.8
160-c2-a 311.6 53.4 6 7.6 290 350 7.9
200-cl-c 318.6 71.5 8 6.5 150 340 12.9
201-cl-a 23.0 53.7 4 1.9 150 370 0.3
205-cl-b 316.7 72.9 6 7.5 290 350 8.8
211-cl-c 129.9 -29.6 9 2.3 150 350 0.4
213-cl-a 130.1 -3.6 5 6.3 150 370 0.9
214-c2-b 281.5 32.9 4 6.8 250 400 1.4
217-C2-C 60.4 50.5 7 7.3 260 350 0.6
220-cl-b 100.1 26.9 4 7.4 225 370 3.8
229-cl-a 53.6 63.5 7 5.1 250 340 1.1
234-C2-C 344.7 68.5 4 1.1 330 360 4.4

235-C2-C 203.9 -0.9 5 5.8 250 325 135.3
239-c2-b 256.5 52.4 5 2.6 150 370 1.3
247-cl-b 322.5 58.3 4 5.3 250 400 24.6
248-c2-b 86.7 80.4 4 5.1 100 275 98.8
249-c2-a 323.4 75.4 4 2.8 150 370 0.5
251-cl-b 308.0 68.3 4 6.6 320 450 1.2
252-cl-b 222.7 81.5 4 7.9 150 290 22.6
253-c3-b 18.5 74.4 4 2.5 150 370 0.5
254-c2-b 235.0 70.9 6 5.0 290 450 1.1
256-cl-d 45.5 -14.5 4 7.7 330 360 62.1
259-c2-b 335.8 55.9 5 5.2 290 340 2.5
25-c2-b 313.8 52.3 5 7.1 150 370 2.4
261-cl-b 325.8 72.3 9 3.7 150 350 2.9
262-cl-c 321.3 50.6 4 2.4 150 370 0.6
263-c2-a 305.1 35.9 4 2.6 150 370 9.5
28-cl-a 64.0 83.6 9 3.4 90 340 0.2
2-c2-a 335.8 71.8 7 4.7 150 330 0.6
32-cl-b 336.7 56.5 4 6.2 320 350 1.3
35-cl-b 329.0 50.5 5 6.0 290 340 7.6
36-C2-C 339.4 66.8 8 1.9 150 340 0.2
37-c2-b 165.8 -62.9 6 4.6 150 320 179.9
3-cl-d 86.7 76.7 7 5.1 250 340 1.3
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Specimen Dec Inc Npoints MAD Begin T EndT Angle

46-cl-b 5.9 66.2 4 5.1 325 370 5.6
65-cl-c 343.4 72.4 7 0.8 250 355 0.0
68-cl-b 358.9 44.0 6 6.5 260 340 1.7
76-cl-c 17.0 80.9 5 5.3 150 370 11.8
82a-c3-b 107.5 -67.0 4 6.2 210 310 33.2
83-C2-C 35.3 66.4 4 4.8 290 330 54.2
84-cl-d 21.8 82.8 5 3.5 150 370 0.5

Table 1. Paleomagnetic directions for pyrrhotite specimens. Npoints = number of points in the line or 
plane fit analysis; MAD = mean angular deviation; Begin T and End T= beginning and ending thermal 
demagnetization temperature (°C) in the line or plane fit; Angle = angle to the origin.

Specimen Dec Inc Npoints MAD Begin T EndT Angle

004-cl-d 269.2 57.5 7 7.7 390 525 70.9
026-c2-b 343.7 62.7 10 2.9 300 565 0.6
028-c2-b 38.3 71.3 12 4.9 370 600 0.5
065-c2-a 351.0 71.1 9 6.9 370 575 1.1
069-c2-a 36.1 59.9 12 1.4 370 600 0.1
076-cl-c 336.7 66.0 10 7.1 370 585 0.7
123-C2-C 318.8 75.4 14 2.6 340 580 0.2
124-c2-b 310.7 51.2 10 5.9 400 580 1.2
133a-c2-a 290.4 50.8 15 6.6 300 565 10.6
139-cl-b 58.4 76.8 6 5.5 400 565 0.9
201-c2-b 24.4 61.9 18 0.6 300 580 0.0
205-c3-b 39.6 75.5 5 1.7 510 575 0.3
205-c3-b 222.6 -74.0 4 4.0 400 510 177.1
208-c2-a 43.1 69.4 10 1.5 150 535 0.6
236-cl-b 42.7 72.3 17 5.3 100 600 1.8
241-c3-b 178.7 -28.7 4 7.8 620 665 26.8
251-cl-b 308.0 68.3 4 6.6 320 450 1.2
260-c2-b 298.4 61.4 8 5.0 370 565 1.3

Table 2. Paleomagnetic directions for magnetite specimens. Npoints = number of points in the line or 
plane fit analysis; MAD = mean angular deviation; Begin T and End T= beginning and ending thermal 
demagnetization temperature (°C) in the line or plane fit; Angle = angle to the origin.
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Pyrrhotite Directions

Figure 15. Paleomagnetic directions of both specimens containing pyrrhotite and magnetite as 
remanence carriers, a) and c) are equal-area projections of individual specimens with either line or 
plane fits. Closed circles are downward directions, opened circles are upward directions, b) and d) 
are equal-area projections of pyrrhotite and magnetite mean directions (black squares), the North 
American Expected Eocene direction (gray squares; Diehl et al. 1983) and the present day field direction 
(stars). Data listed are the mean declination, inclination, ags, k and N (number of specimens). These 
data do not include upward directios for they were too poorly constrained.
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Figure 16. Pyrrhotite and magnetite mean directions plotted against each other with their ags 
circles of confidence. Pyrrhotite has the smaller of 6.7 and magnetite is the larger (9.2).
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Poles to Magnetic
Magnetic Lineations Foliation

pluton. The projection on the left is magnetic lineation and the projection on the right is poles the 
magnetic foliation.
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Shortening direction

Figure 18. Two models used to explain fabric orientation. The shear model shows right-lateral shearing 
causing lineation to be oblique to the trend of the orogen and regional faults (a). Figure b is a lower- 
hemisphere contour of Cooper Mountain pluton magnetic lineations showing the average direction of 
magnetic lineation and the trend of the orogen. The orogen-perpendicular extension model (c) shows 
orogen-perpendicular shortening resulting in extension parallel to the orogen.
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APPENDIX A

FIELD AND PETROGRAPHIC OBSERVATIONS

Fieldwork for this study was done along Lake Chelan (see Figure 1), logging 

roads, trails and trough the brush. Many areas were tree covered and outcrops are few 

except for along the lake and logging roads. The margins of the Cooper Mountain pluton 

(CMP) are characterized by a stockwork of dikes and sills cutting Skagit Gneiss Complex 

foliation (Figures A.l, A.2 and 2). Blocks of Skagit Gneiss Complex with fabric 

discordant to the well-defined Skagit foliation were observed at the northwest margin of 

the pluton.

The petrography of the Cooper Mountain pluton was studied to determine 

lithologic variation within the body. Slabbed hand samples were stained with 

hydrofluoric acid to discriminate potassium-feldspar from plagioclase. Modes of these 

stained slabs were obtained by point-counting (Table A.l). The QAP classification is 

shown in Figure A. 3. Figure 5 shows locations of sites for which modes were 

determined. No mappable lithologic distinctions could be made based on mode, but there 

are NE-SW trending swaths of porphyritic phase through the field area. More fieldwork 

needs to be done to confirm.

The Cooper Mountain pluton is granite to granodiorite with biotite and 

hornblende as the mafic constituents. The granite contains 30-50% quartz, 29-47% 

plagioclase, 16-24% potassium-feldspar and 2-8% mafic minerals. The granite is divided
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Figure A. 1 Site 173; Cooper Mountain pluton (CMP) intruding Skagit Gneiss Complex 
(SGC). The CMP crosscuts SGC foliation. Upper image is a photograph of the site with 
an oar for scale; lower image is a sketch of the photograph.
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Figure A.2 Stockwork of dikes and sills (Cooper Mountain pluton, CMP) intruding the 
country rock (Skagit Gneiss Complex). Field assistant for scale. Upper image is a photograph 
of the outcrop; lower image is a sketch of the photograph.
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Figure A.3 QAP diagram for Cooper Mountain pluton specimens; n = 35. See Table A.l 
for site numbers and raw data.

in to three groups based on grain size: porphyritic, equigranular and fine-grained granite. 

The porphyritic granite contains 0.1-2.0 cm subhedral potassium-feldspar phenocrysts, 

0.1-0.7 cm anhedral quartz, 0.1-0.7 cm subhedral plagioclase and < 0.3 cm anhedral 

mafics. The equigranular granite contains 0.1-0.6 cm subhedral potassium-feldspar, 0.1- 

0.7 cm anhedral quart z, 0.1-0.7 cm subhedral plagioclase and < 0.3 cm anhedral mafics. 

The fine-grained granite contains subhedral plagioclase and potassium-feldspar that is < 

0.3 cm, anhedral quartz that is < 0.2 cm and < 0.3 cm anhedral mafics. Figures A.4 and 

A.5 are two photomicrographs of representative samples of granite. Figure A.5 shows

poikilitic texture in granite.
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Site
number

Sample
number

Quartz 
no. %

Plagioclase 
no. %

K-feldspar
no. %

Mafics 
no. %

Total
no.

Rock
Type

11 183-11 350 35.8 364 37.3 240 24.6 23 2.4 977 EG
12 183-12 415 41.5 334 33.4 235 23.5 16 1.6 1000 EG
49 183-25 373 37.3 334 33.4 229 22.9 64 6.4 1000 PG
72 183-46 383 40.9 397 42.4 119 12.7 37 4.0 936 FGD
84 183-57b 355 35.5 424 42.4 161 16.1 60 6.0 1000 EGD
86 183-59 345 35.3 441 45.1 139 14.2 52 5.3 977 PGD
126 183-87a 262 41.9 196 31.3 123 19.6 45 7.2 626 EG
127 183-88 334 33.4 452 45.2 149 14.9 65 6.5 1000 PGD
179 183-117 478 48.5 336 34.1 133 13.5 39 4.0 986 EGD
181 183-118 261 34.5 311 41.1 126 16.6 59 7.8 757 PGD
186 183-122 408 40.8 394 39.4 159 15.9 40 4.0 1001 FGD
188 183-124 294 35.4 301 36.3 185 22.3 50 6.0 830 EG
197 183-132b 301 40.2 266 35.5 85 11.3 97 13.0 749 PGD
224 183-153b 323 32.3 410 41.0 213 21.3 55 5.5 1001 PGD
237 183-158 294 30.2 439 45.1 182 18.7 58 6.0 973 EG
240 183-160 215 31.7 285 42.0 144 21.2 35 5.2 679 PGD
302 183-202 186 29.5 294 46.7 100 15.9 50 7.9 630 EGD
303 183-203 360 36.0 399 39.9 185 18.5 56 5.6 1000 PGD
310 183-209b 397 46.0 258 29.9 167 19.4 41 4.8 863 FG
312 183-210 391 44.6 302 34.4 126 14.4 58 6.6 877 PGD
332 183-222 409 41.0 386 38.7 158 15.8 44 4.4 997 PGD
344 183-227 301 30.1 487 48.7 93 9.3 119 11.9 1000 PGD
345 183-228 370 37.8 384 39.2 178 18.2 47 4.8 979 EGD
347 183-230 404 40.4 367 36.7 184 18.4 45 4.5 1000 EGD
353 183-234 349 34.9 359 35.9 242 24.2 50 5.0 1000 EG
360 183-241 333 33.3 401 40.1 244 24.4 22 2.2 1000 PG
363 183-244 282 35.4 318 39.9 163 20.5 33 4.1 796 PGD
366 183-247 425 45.1 307 32.6 170 18.0 40 4.2 942 EG
367 183-248 455 50.0 267 29.3 154 16.9 34 3.7 910 EG
370 183-251 360 36.0 396 39.6 223 22.3 21 2.1 1000 PG
374 183-255 303 30.3 386 38.6 262 26.2 49 4.9 1000 PG
376 183-257 382 46.6 279 34.1 124 15.1 34 4.2 819 PGD
379 183-260 354 41.4 308 36.0 161 18.8 32 3.7 855 PGD
381 183-262 269 29.1 364 39.4 226 24.5 65 7.0 924 PG
382 183-263 288 31.5 391 42.7 186 20.3 50 5.5 915 PGD

Table A. 1 Modal raw data for the Cooper Mountain pluton. Site numbers correspond to sites in Figure 5. 
Data plotted on a QAP diagram (minus the mafics) in Figure A.3. Rock type abbreviations: PG - 
porphyritic granite, EG - equigranular granite, FG - fine-grained granite, PGD - porphyritic granodiorite, 
EGD - equigranular granodiorite, FGD - fine-grained granodiorite.
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The granodiorite is comprised of 29-47% quartz, 33-48% plagioclase, 9-26% 

potassium-feldspar and 2-13% mafics (see Table A.l). The mafic minerals are biotite 

and hornblende. The granodiorite is divided into three groups much like the granite. The 

porphyritic granodiorite has 0.1-1.7 cm subhedral potassium-feldspar phenocrysts, 0.1- 

1.2 cm subhedral plagioclase, 0.1-0.5 cm anhedral quartz and < 0.4 cm mafics. The 

equigranular granodiorite contains 0.1-0.8 cm subhedral potassium-feldspar, 0.1-1.0 cm 

subhedral plagioclase, 0.1-0.7 cm anhedral quartz and < 0.3 cm mafics. The fine-grained 

granodiorite contains < 0.4 cm subhedral potassium-feldspar, subhedral plagioclase and 

anhedral quartz that is < 0.3, and < 0.2 cm mafics. Figure A.6 is a photomicrograph of a 

representative sample of granodiorite.

Accessory minerals constitute less than 1% of the modal composition of both rock 

types and include apatite, zircon and opaques. Reflected light microscopy identified 

ilmenite and magnetite as the opaque minerals. Figures A.l and A.8 contain two 

photomicrographs of opaque iron-oxides. Minor chlorite is found in both the granite and 

granodiorite. Chlorite is found in veins and replacing biotite (see Figure A.9). Minor 

epidote is found with chlorite (<0.1% of modal composition).

Most of the quartz in both rock types occurs as anhedral grains, some of which 

have undergone static recrystallization. These recrystallized grains have serrated grain 

boundaries, are restricted to the pluton margins and lack pervasive stress features (see 

Figure A. 10).
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I 0.5 mm I

Figure A.4 Sample 183-117, equigranular granite. Undefoimed quartz grains and randomly oriented 
biotite grains, k = 8.01x10'^, P = 1.0712, T =-0.0772. Image in cross-polarized light. Scale = 20x 
magnification; 3.4 x 5.1 mm.
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mm

Figure A.5 Sample 183-262, porphyritic granite. Poikilitic texture (biotite and plagioclase grains 
within potassium feldspar). Image in cross-polarized light. Scale = 16x magnification; 4.2 x 6.4 mm.
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Figure A.6 Sample 183-257, porphyritic granodiorite. Randomly oriented biotites, undeformed quartz, 
some sauceritization. k = 9.19x10'^, P = 1.0435, T = 0.479. Upper image in plane-polarized light, 
lower image in cross-polarized light. Scale = 16x magnification; 4.2 x 6.4 mm.
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0.25 mm

Figure A.7 Sample 183-247. Reflected light image showing magnetite and ilmenite grains within a 
biotite grain. Scale = 8x magnification.
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0.1 mm

Figure A.8 Sample 183-2. Reflected light image showing magnetite and ilmenite grains within a 
biotite grain. Scale = 16x magnification.
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0.5 mm

Figure A.9 Sample 183-244, porphyritic granite. Streaked-out, recrystallized quartz in a shear zone. 
Veins filled with chlorite or chlorite replacing biotite. k = 8.49x10'^, P = 1.0664,7 = 0.078. Image in 
cross-polarized light. Scale = 25x magnification; 2.7 x 4.1 mm.

55



1 mm

Figure A. 10 Sample 183-262, porphyritic granite. Subgrain development in quartz. Quartz-subgrains 
not stretched out, no alignment. Zoned plagioclase grain northeast of center. Thin section cut parallel 
to magnetic lineation. k = 9.68xl0■^ Image in cross-polarized light. Scale = 16x magnification; 4.2 x 
6.4 mm.
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APPENDIX B

ANISOTROPY OF MAGNETIC SUSCEPTIBILITY (AMS)

SAMPLE COLLECTION AND MACHINE SPECIFICATIONS 

Oriented hand samples were collected from 113 sites in the field and drilled in the 

lab. One to five cores (average 2) were drilled per hand sample with one to three 

specimens cut (average 2) per core. Note: the core orientation line was drawn directly 

on the brass scribe-line and individual specimens from each core were labeled a, b, and c 

with a being the specimen farthest out of the outcrop and c being the specimen farthest in 

the outcrop. The Kappabridge KLY-3 was used to measure the AMS. Specifications: 

field intensity = 300 Am'^ sensitivity = 3 x 10'* (SI) (for bulk susceptibility), 2 x 10‘* (SI) 

(for a spinning specimen). AMS raw data is included on the accompanying compact disc 

as Msc files organized by site number.

STATISTICAL ANALYSIS 

F-statistics

F-statistics were calculated on each specimen to determine the significance of any

anisotropy. The equations and methods are explained in Tauxe (1998). Specimens 72- 

cl-a and 243-cl-b were omitted from further analysis because their F-values were within 

the 95% confidence level for isotropy meaning they had no statistically meaningful 

fabric.
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Bootstrap Statistics

The statistically anisotropic specimens were analyzed using a bootstrap procedure 

to determine the degree in the orientations of the AMS data (Constable and Tauxe 1990). 

The scatter relates to the shape of the AMS ellipsoid, which indicates preferred crystal 

orientation within the rock. The AMS ellipsoid is defined along three axes of 

susceptibility. The axes of maximum, intermediate and minimum axes of susceptibility 

(k) are denoted throughout the text as kmax, ki„t and kmin, respectively. If all three axes of

susceptibility are distinct (kmax>kint>kmin) the shape of the AMS ellipsoid is triaxial. For 

prolate (kmax>kint~kmin) and oblate (kmax«kint>kmin) shapes, an overlap in the directions 

between two of the three axes makes mineral orientation difficult to distinguish. Figure 

B.l shows examples of sites with triaxial, prolate and oblate ellipses. The lower- 

hemisphere equal-area plots show the mean axes of susceptibility for a site with 

corresponding, statistical bootstrapped 95% confidence ellipses. Notice how Figures 

B.lc and B.le have overlap in their confidence ellipses. This indicates that those axes are

not statistically distinct from each other. This is important when interpreting the data, 

because those axes of susceptibility describe bulk mineral orientation. In addition, 

statistical bootstrap analysis can be interpreted with histograms. Figure B.l includes 

histrograms of eigenvalues (t) plotted against fraction of bulk susceptibility. Bars of 

95% confidence are drawn above each histogram. Eigenvalues (Xmax, "Cim, '^min) directly 

relate to eigenvectors (kmax, kim, kmin), so overlap in the 95% confidence bars of the 

histograms suggests statistically indistinct data. When interpreting data, magnetic 

foliations were plotted as the kmax-kint plane and lineations were plotted as kmax- 

Therefore, for uniaxial oblate sites, only foliations were included in the analysis, and for
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T

dj 3

Figure B.l Bootstrap statistical analysis lower hemisphere stereonets and histograms. Figures a, c and e: 
squares = kmax^^^^n eigenvector, triangles = kjnt mean eigenvector, circles = k min mean eigen-vector; 
bootstrapped error ellipses surround each axis. Figures b, d and f: Fraction = fraction of bulksusceptibility, 
T = eigenvalue; bootstrapped 95% confidence bars above each histogram.
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Site No. Sample No. Shape kmax kint kmin bulkk
2 2 triaxial 161.4, 63.1 50.8, 10.1 316.1,24.6 7.28E-05
3 3 oblate 169.0, 13.4 73.8, 20.8 289.7, 64.9 9.42E-05
4 4 prolate 174.7, 54.8 70.8, 9.6 334.4, 33.5 6.43E-05
10 10 triaxial 306.4, 32.3 190.8, 34.3 67.2,39.1 1.12E-04
48 24 sphere 113.5, 6.5 18.4, 37.9 211.6,51.4 5.10E-05
49 25 triaxial 119.5,35.9 226.4,21.9 341.1,46.0 1.06E-04
50 26 sphere 141.4, 34.1 257.4, 32.9 18.6,38.7 1.70E-04
52 28 triaxial 246.7, 23.5 154.5, 4.9 53.5, 65.9 4.68E-05
56 31 triaxial 3.7, 40.4 246.7, 28.1 133.2,36.7 5.97E-05
57 32 triaxial 102.5,23.6 227.7, 52.9 359.7, 26.9 7.06E-05
60 35 triaxial 33.8,39.3 222.0, 50.4 127.1, 4.0 7.89E-05
61 36 triaxial 114.0, 23.7 303.5, 66.0 205.6, 3.5 8.74E-05
62 37 triaxial 98.6, 36.7 284.1,53.2 190.5, 2.6 1.02E-04
63 38 triaxial 333.2, 17.4 79.9, 42.5 226.7, 42.4 1.27E-04
66 41b sphere 139.8, 18.1 284.6, 68.2 45.9, 11.7 2.79E-05
72 46 triaxial 99.5, 45.7 261.1,42.8 359.8, 9.3 1.14E-04
73 47 sphere 61.6,33.3 190.3,43.6 311.0, 28.2 7.57E-05
74 48ab triaxial 86.3, 37.0 198.7, 26.9 315.1,41.2 6.99E-05
75 49b triaxial 294.8, 8.2 197.0, 43.2 33.2, 45.6 l.OlE-04
76 50 triaxial 81.7, 3.0 174.2, 40.2 348.1,49.6 9.40E-05
80 54 triaxial 329.1, 2.3 237.3, 37.0 62.1,52.9 1.60E-04
81 54a triaxial 291.0, 12.7 189.5,41.6 34.4, 45.7 1.03E-04
82 55ab triaxial 121.0, 6.2 213.9, 24.8 17.9, 64.3 8.59E-05
83 56ab triaxial 287.9, 16.4 184.2, 38.9 36.0, 46.5 8.43E-05
85 58 triaxial 91.6, 15.8 198.9,46.3 348.2, 39.4 1.14E-04
86 59 triaxial 91.4, 3.2 185.5,51.6 358.9, 38.2 1.04E-04
95 65 triaxial 335.5, 6.6 219.5,75.1 66.8, 13.3 l.OOE-04
97 66 triaxial 144.3, 13.9 13.5,69.3 238.2, 15.0 1.34E-04

101 68 triaxial 94.2, 17.1 311.8, 68.8 188.0, 12.1 1.72E-05
102 69 prolate 106.5, 19.9 217.3,44.6 359.6, 38.7 1.42E-04
112 75 triaxial 199.0, 13.5 300.8, 40.3 94.3, 46.6 6.30E-05
114 76 triaxial 113.9, 25.0 248.1,56.2 13.4,21.2 1.03E-04
122 83 triaxial 327.2, 18.5 208.7, 54.9 67.7,28.6 6.91E-05
123 84 triaxial 311.1,27.3 201.1,33.6 71.1,44.1 6.08E-05
124 85 triaxial 319.5, 25.6 182.4, 56.8 59.4, 19.7 2.10E-04
125 86ab triaxial 306.8,21.0 193.1,46.2 53.2, 36.3 7.16E-05
127 88 triaxial 306.2, 5.5 212.1,36.7 43.5, 52.7 1.09E-04
128 89 triaxial 323.6, 1.2 229.4, 73.9 54.0, 16.1 1.21E-04
176 114 triaxial 254.7, 87.4 12.5, 1.2 102.5, 2.3 6.73E-05
178 116 triaxial 126.4, 25.7 35.5, 1.9 301.5,64.2 6.87E-05
179 117 triaxial 141.9,30.3 25.3, 37.4 258.9, 37.8 8.01E-05
181 118 triaxial 298.3, 6.0 29.6, 12.0 182.2, 76.6 9.51E-05
182 119b prolate 137.3, 4.6 46.3, 12.3 247.3, 76.8 8.18E-05
184 120 oblate 92.2, 17.8 354.0, 23.9 215.3, 59.5 3.55E-05
185 121 prolate 104.8,41.6 215.1,21.4 324.8, 40.8 8.57E-05
187 123 triaxial 105.5, 24.4 360.0, 30.5 227.1,49.1 8.09E-05
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Site No. Sample No. Shape kmax kint kmin bulk k

188 124 triaxial 105.8, 45.1 351.4, 22.4 243.6, 36.4 1.29E-04
189 125 prolate 104.9, 80.5 235.1, 6.2 325.9, 7.2 1.27E-04
190 126b triaxial 143.7, 57.0 315.6, 32.7 48.0, 3.7 1.40E-04
192 128 triaxial 167.4, 64.1 5.9, 24.8 272.6, 7.3 9.59E-05
199 133a triaxial 73.0,31.0 338.2, 8.0 235.3, 57.8 7.87E-05
200 134a triaxial 48.3, 45.4 161.3,21.1 268.2,37.1 7.58E-05
202 135 121.0, 27.0 349.0, 52.0 224.0, 24.0 l.OlE-04
205 137a triaxial 144.3, 11.5 256.6,61.8 48.8, 25.4 7.19E-05
209 139 prolate 123.6, 46.6 325.5,41.3 225.6, 11.1 8.92E-05
213 142 triaxial 231.1, 19.2 133.9, 20.0 1.5,61.7 1.34E-04
214 143 triaxial 154.3, 37.0 339.0, 52.7 247.0, 2.0 1.66E-04
236 157b sphere 14.2, 69.9 118.6, 5.2 210.4, 19.4 1.19E-04
240 160 triaxial 142.5, 47.6 351.6,38.6 249.4, 14.9 1.09E-04
300 200 triaxial 114.3, 8.2 251.7, 78.9 23.2, 7.4 8.80E-05
301 201 triaxial 177.8, 67.5 50.9, 14.0 316.4, 17.3 1.49E-04
302 202 triaxial 300.4, 34.0 156.0, 50.3 43.0, 17.9 1.39E-04
303 203 triaxial 295.7, 35.5 148.9, 49.5 38.2, 16.8 7.40E-05
304 204ab oblate 104.8, 17.9 228.8, 59.9 6.8,23.3 8.87E-05
305 205 oblate 307.0,51.4 209.0, 6.3 114.1,37.9 2.14E-04
306 206 triaxial 106.2, 17.3 10.0, 19.1 235.4, 63.8 1.02E-04
308 208 triaxial 291.0, 12.0 28.4,31.0 182.4, 56.3 2.76E-04
310 209b triaxial 187.6, 23.2 286.4, 19.6 52.0, 58.6 6.29E-05
312 210 triaxial 143.6, 8.7 242.9, 46.7 45.7, 42.0 1.46E-04
313 211 triaxial 163.3, 1.2 253.5, 11.6 67.3, 78.4 3.86E-05
316 213 triaxial 153.0, 17.8 260.5,43.2 46.6,41.5 6.02E-05
318 214 triaxial 297.0, 11.5 200.2, 30.3 45.4, 57.2 2.09E-04
320 215 triaxial 110.0, 45.4 221.7, 20.0 328.1,37.8 1.75E-04
321 216 ♦ 307.0, 23.0 56.0, 37.0 192.0, 44.0 1.19E-04
322 217 triaxial 267.5, 26.8 112.1,60.9 2.8, 10.4 2.16E-04
325 219a oblate 5.4, 59.7 246.2, 15.9 148.6, 25.0 7.68E-05
327 220 triaxial 306.1,56.5 64.6, 17.5 164.1,27.5 1.16E-04
345 228 triaxial 331.1,27.7 181.0,58.8 68.2, 13.2 8.73E-05
346 229 triaxial 358.8, 67.6 203.5, 20.5 110.2, 8.7 7.59E-05
347 230 triaxial 300.6, 1.0 31.0, 24.8 208.4, 65.2 7.70E-05
353 234 triaxial 305.1,32.9 207.9, 11.0 101.8, 54.8 l.OOE-04
354 235 triaxial 315.1,33.0 180.7, 47.1 62.0, 24.0 8.77E-05
355 236 triaxial 295.3, 52.8 198.2, 5.3 104.2, 36.6 8.87E-05
358 239 triaxial 359.7, 62.5 193.9, 26.7 101.0, 5.8 7.84E-05
360 241 oblate 303.5, 16.9 177.2, 62.8 40.1,20.6 6.64E-04
362 243 oblate 156.7, 1.3 249.0, 60.0 66.0, 29.9 2.21E-05
363 244 triaxial 168.3,21.9 328.1,66.8 75.3, 7.2 8.49E-05
364 245 prolate 78.8, 14.3 174.5,21.2 317.3,64.0 1.84E-04
365 246 triaxial 146.1,45.3 298.2,41.1 41.1, 14.3 8.24E-05
366 247 triaxial 120.5,35.6 347.4, 43.6 230.5,25.4 9.75E-05
367 248 triaxial 139.1,45.3 0.8, 36.5 253.4, 22.1 9.78E-05
368 249 triaxial 140.3, 17.4 15.2,61.5 237.5,21.9 1.79E-04
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Site No. Sample No. Shape kmax kint kmin bulkk
370 251 oblate 304.6, 63.5 133.9, 26.2 42.0, 3.7 1.07E-04
371 252 triaxial 62.3, 73.9 318.2, 4.0 227.1, 15.6 1.02E-04
372 253 prolate 182.4, 62.3 333.2, 24.6 68.7, 11.9 1.13E-04
373 254 sphere 19.0, 77.6 174.1, 11.2 265.1, 5.1 1.27E-04
374 255 triaxial 110.8, 54.7 340.6, 24.6 239.1,23.7 1.15E-04
375 256 triaxial 112.5,50.5 205.0, 2.1 296.8, 39.4 7.92E-05
377 258 triaxial 120.8,35.5 353.6, 40.3 234.8, 29.6 7.46E-05
378 259 triaxial 138.2,41.7 240.2, 13.2 344.0, 45.3 3.10E-04
379 260 triaxial 153.1, 55.9 34.1, 18.2 294.1,27.8 1.15E-04
380 261 triaxial 146.7,36.1 282.6, 44.6 38.1,23.6 1.06E-04
381 262 triaxial 161.0, 44.2 296.2,36.1 45.3,24.1 9.68E-05
382 263 triaxial 144.5, 39.3 341.3,49.4 241.4, 8.4 9.49E-05
383 264 prolate 139.5,29.3 341.7,58.7 235.1, 9.9 6.40E-05
384 265d triaxial 346.0, 9.3 248.0, 40.5 86.4, 48.0 9.64E-05

Table B. 1 AMS data table. Shape = shape of the AMS ellipsoid based on bootstrap statistical analysis; 
kmax = axis of maximum susceptibility; kj„, = axis of intermediate susceptibility; kmi„ = axis of minimum 
susceptibility; * = only one specimen available for this site, therefore bootstrap ellipsoids do not apply, 
fabric plotted directly.
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uniaxial prolate sites, only lineations were included. In all, foliation data from 14 sites 

and lineation data from 13 sites could not be determined. Foliation, lineation and 

indeterminate site data are listed in Table B.l.

MAGNETIC ANISOTROPY DATA

P- (Nagata 1961) and T-parameters were used to quantify shape (Jelinek 1981). P

= kmax/kmin dcpicts how anisotropic a sample is. T-values provide a sense of shape for the 

AMS ellipsoid that can be related to the strain ellipsoid (T = -1 is uniaxial prolate, T = 1 

is uniaxial oblate, T = 0 is spherical). P- and T-data are in the .asc files with specimens 

grouped by site, on the accompanying compact disc. See Figure 8.

DETERMINING WHAT MINERALS CONTRIBUTE TO THE AMS 

It is important to know what minerals contribute to the AMS signature of a 

specimen to know how the fabric orientations should be interpreted. For few minerals, 

such as single-domain magnetite, kmax corresponds to the crystallographic short of the 

mineral and kmin corresponds to the crystallographic long (just the opposite of what is 

expected) resulting in the fabric appearing to be inverse (Potter and Stephenson 1988). 

Typically, for specimens with a low magnetic susceptibility (less than 5x10’"^), the 

paramagnetic minerals are the dominant contributors to the AMS (Hrouda and Jelinek 

1990). To confirm this, a variety of experiments were performed to determine whether 

the AMS had a strongly paramagnetic (biotite) or ferromagnetic (magnetite) component,
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Partial Anhysteritic Remanent Magnetization (pARM)

pARM can be used to determine the size range of magnetic minerals in a 

specimen. It is imparted to a specimen in the presence of an alternating magnetic field 

with a direct field applied over discreet windows (ranges) of coercivity. The D-2000 

A.F. Demagnetizer was used for this procedure with a bias field of 0.1 mT. For example, 

large, multi-domain magnetite has a low coercivity (tens of millitesla) so when a 

specimen with multi-domain magnetite is subject to alternating field magnetization 

between, say, 20 and 10 mT, the magnetite grains will be coerced into acquiring a 

magnetization. However, if magnetized between, say, 100 and 80 mT the same multi- 

domain minerals will not acquire a magnetization. Such multi-domain magnetite grains 

produce fabrics in proportion to their own shapes and these fabric orientations should be 

interpreted as being “normal.” Meaning, AMS data should be interpreted as kmax = 

lineation and kmin = pole to foliation. However, single-domain magnetite grains acquire 

magnetization over a high coercivity range (hundreds of mT up to 300 mT) and fabric 

orientation should be interpreted as “inverse.” Meaning, AMS data should be interpreted 

as ki = pole to foliation and ks = lineation. A limitation of this method is that it does not 

determine the alignment of magnetic minerals, it only demonstrates if the minerals are 

present or not.

Forty-nine specimens were analyzed using this method to determine if multi- 

domain or single-domain magnetite grains were present. Data for these specimens are 

included on the accompanying compact disc. Figure B.2 is an example of specimens 

containing multi-domain and single-domain magnetite. In general, pARM results support 

a variety of magnetite sizes.
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a. Specimen 114-c2-b

b. Specimen 258-c2-a

Figure B.2 Two pARM specimens. The x-axis is magnetization windows in mT; 200 demag = the 
specimen was demagnetized to 200 mT. The y-axis is magnetic moment.

65



Anhysteritic Remanent Magnetization (ARM)

ARM measurements were made to determine ferromagnetic mineral alignment. 

Specimens were demagnetized along +z, +y and +x axes at 200 mT with an alternating- 

field (AF) machine to remove most remanent magnetic field. Then each specimen was 

magnetized with a bias field of 0.1 mT applied over an alternating field of 200 mT in nine 

different orientations, with remanence measured after each magnetization. Limitations of 

this method involve using the D-2000 A.F. Demagnetizer. The D-2000 A.F. 

Demagnetizer can only magnetize and demagnetize specimens to 200 mT while some 

minerals (such as single-domain magnetite) have magnetic coercivities up to 300 mT. 

Also, at measurement time a standard specimen holder was not available for this 

procedure and specimens were oriented less percisely by hand. Figure B.3 shows 

specimen orientations. ARM data is included on the accompanying compact disc.

Six specimens were so processed. Specimen 145-c2-a was measured three times 

to see if the data were repeatable. The results were not repeatable and the data proved 

inconclusive. ARM measurements were, therefore, not included in final analysis.

0/0

Figure B.3 Lower-hemisphere equal 
area projection of ARM orientations. 
The specimens were magnetized in each 
of these orientations and subsequently 
measured for remanence. The 0/90 
position corresponds to the +z axis of a 
specimen, the 0/0 position corresponds 
to the +x axis of a specimen and the 
90/0 position corresponds to the +y axis 
of a specimen.
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Isothermal Remanent Magnetization (IRM)

IRM was measured to determine ferromagnetic mineral alignment. IRM was used 

in addition to ARM because the pulse magnetizer used (IM-10-30 Impulse Magnetizer) is 

capable of producing magnetic fields to 300+ mT. Therefore, it is able to magnetize 

single-domain magnetite. Limitations of this method include machinery and inability to 

demagnetize the specimen between magnetization steps. The Impulse Magnetizer 

operates by storing an electrical charge, and on operator command, discharging it thru a 

coil, which generates a magnetic field. However, it is up to an operator to trigger it, 

which leads to some uncertainty. Also, once specimens are magnetized at voltages 

relative to > 200 mT they cannot be demagnetized with the machinery available. So 

measurements might have components of remanence from previous magnetization steps. 

As of analysis time there was no equipment available to deal with these problems.

Three specimens were analyzed in this fashion. Data are included on the 

accompanying compact disc. Specimen 145-c2-a was analyzed three times with this 

method to determine if the IRM method was repeatable. Results showed that the IRM 

were not repeatable and, therefore, probably not valid. IRM data were not used in the 

final analysis.

Low Temperature Thermomagnetic Experiments in a Low Field 

Another method used to determine what minerals contribute to the AMS was low 

temperature thermomagnetic experiments. Sixteen specimens were analyzed for bulk 

susceptibility changes as the specimens were slowly heated from -192°C (liquid nitrogen 

temperature) to 10°C (approximately room temperature). Data were acquired with the
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Kappabridge CS-L. Specifications: accuracy of temperature sensor = ± 2°C, sensitivity 

to susceptibility changes =1x10’^ (SI). The sixteen specimens were chosen to represent 

the range of susceptibility observed. Figure B.4 is a histogram of susceptibility for all the 

sites measured in the Cooper Mountain pluton. Included on the histogram are the number 

of sites per category and number of specimens measured in each category using low 

temperature thermomagnetics. Specimens were measured using the Kappabridge CS-3. 

Specifications: accuracy of temperature sensor = ± 2°C, sensitivity to susceptibility 

changes =1x10'^ (SI). Calculations of the paramagnetic and ferromagnetic 

contributions to bulk susceptibility were made using equations from Hrouda (1994) and 

Hrouda et al. (1997). Results are listed in Table B.2. Eleven out of 16 specimens (69%) 

were dominated by paramagnetic contributions, four out of 16 specimens (25%) 

displayed bulk ferromagnetic susceptibility and one out of 16 (6%) showed paramagnetic 

and ferromagnetic contribution approximately equal. Example graphs of dominant 

paramagnetic versus ferromagnetic contributions are in Figure 9. Raw data are included 

on the accompanying compact disc.

For those sites with a non-paramagnetic AMS component, the magnetic fabric 

was similarly oriented to either magnetic or field fabric measurements from adjacent sites 

(see Figure 10). This suggests that the ferromagnetic minerals are oriented parallel to the 

paramagnetic ones.

Low Temperature Thermomagnetic Experiments in a High Field

The magnetic susceptibility of five specimens were measured in a high field at 

low temperatures to determine what minerals contribute to the anisotropy. Figure 11
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Frequency of Bulk Susceptibility
70

Bulk Susceptibilty (k)

Figure B.4 Frequency of bulk susceptibility. This is a histogram of all the specimens used in the AMS 
study. Above each column is x/y; x = number of sites in each bulk susceptibility grouping, y = number of 
sites analyzed using low temperature thermomagnetic experiments in that grouping. See Table B.2 for low 
temperature thermomagnetic data.

Site
Number

Sample
Number Kt Kp

Hrouda (1994) 
Sp Kf Sf

Hrouda et al. (1997)
Kp Sp Kf Sf

Temp, range 
calculated

188 124-C2-C 2.18 1.44 0.02 0.75 0.03 1.35 0.06 0.79 0.07 -190 toO
214 143-cl-a 1.70 1.79 0.03 -0.09 0.04 2.31 0.08 -0.40 0.09 -190 toO
304 204a-cl-a 0.29 0.86 0.01 0.43 0.02 0.62 0.04 0.58 0.05 -190 to 0
306 206-cl-a 1.21 1.10 0.01 0.11 0.12 0.91 0.04 0.22 0.05 -190 to 0
310 209b-c3-a 0.96 0.82 0.01 0.15 0.02 0.90 0.03 0.10 0.04 -190 to 0
366 247-c2-a 1.39 1.18 0.01 0.21 0.01 1.13 0.03 0.24 0.03 -190 to 0
373 254-c2-a 1.70 1.95 0.01 -0.25 0.02 2.23 0.02 -0.42 0.03 -190 to 0
378 259-cl-a 0.94 0.47 0.01 0.46 0.01 0.38 0.03 0.53 0.04 -180 to 0
101 68-C2-C 1.18 0.26 0.02 0.92 0.03 0.13 0.09 1.03 0.10 -150 toO
127 88-cl-a 3.41 1.16 0.02 2.25 0.03 1.97 0.09 1.59 0.10 -150 toO
179 117-cl-d 0.92 1.31 0.01 -0.39 0.02 1.55 0.04 -0.53 0.04 -192 to 0
305 205-cl-d 1.30 2.08 0.01 -0.78 0.03 2.51 0.04 -1.02 0.04 -192 to 0
325 219a-cl-a 0.55 0.83 0.01 -0.28 0.01 0.90 0.03 -0.32 0.03 -192 to 0
360 241-c3-a 3.00 1.11 0.01 1.89 0.03 0.67 0.04 2.13 0.04 -192 to 0
364 245-cl-a 0.91 1.29 0.01 -0.38 0.02 1.61 0.02 -0.56 0.03 -192 to 0

76 50-cl-a 4.71 1.34 0.02 3.37 0.03 2.02 0.12 2.82 0.14 -140 to-10

Table B.2 Low temperature thermomagnetic data. Kt = total susceptibility, Kp = paramagnetic 
contribution to susceptibility, Sp = paramagnetic contribution error, Kf = ferromagnetic contribution to 
susceptibility, Sf = ferromagnetic contribution error. Calculations made using equations from Hrouda 
(1994) and Hrouda et al. (1997).

69



shows an example of a specimen using this technique. The specimen is first cooled to 20 

K and then it is slowly warmed to 300 K while the magnetic susceptibility is measured in 

a zero-field environment every five or ten degrees (lower curve in Figure 11). The 

specimen is then cooled and warmed again, but now the susceptibility is measured in a 

2.5 T magnetic field (upper curve in Figure 11). An increase in susceptibility at 

temperatures below 120 K is due to single-domain magnetite (Dunlop and Ozdemir 

1997). Data files are on the accompanying compact disc.

Hysteresis Loops

The final technique used to determine minerals contributing to anisotropy was to 

acquire hysteresis loops. Eight specimens were magnetized to saturation magnetization 

in order to determine if the magnetite grains present were multi-domain or single-domain. 

Seven of the eight showed straight lines (no ferromagnetic minerals present) and only one 

specimen (specimen number 183-204a) contained multi-domain magnetite. This 

specimen reached saturation magnetization by 100 mT (0.1 T). Data files are the 

accompanying compact disc.
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APPENDIX C

PALEOMAGNETISM

Paleomagnetism is magnetization in rocks that was acquired at some time in the 

past. Paleomagnetic methods measure the magnetic direction of minerals in a specimen. 

From that direction, a paleomagnetic pole for a body of rock can be determined. If the 

magnetic direction for the specimen is different from the direction expected for that age 

of magnetization and location, then something had to have happened to reorient the body 

of rock since its magnetization was acquired. The following is a description of 

procedures and lists of the data for the paleomagnetic study on the Cooper Mountain 

pluton.

SAMPLE COLLECTION

Oriented hand samples were collected for an AMS study and cores were drilled 

from those hand samples in the lab. Because the hand samples were originally collected 

for an AMS study, an average of two cores was drilled for each site. Only one specimen 

per site was used. Criteria for determining specimens: directions for components and 

maximum angular deviation (MAD) were obtained with principal component analysis 

(Kirschvink 1980), specimens with MAD greater than eight were filtered out, then 

multiple-specimen sites were reduced to one specimen by choosing a high N (number of 

points on a line-fit or plane-fit) or by comparing angle to origin to MAD. The specimens 

are listed in Tables 1 and 2.
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THERMAL DEMAGNETIZATION

Over 90 sites were analyzed in this study. Data are listed in Tables 1 and 2. Raw 

data are included by site in the .dat and .ngu files on the accompanying compact disc.

Specimens were thermally demagnetized using an RFB-2 oven. The magnetic 

remanence for each specimen was measured with a cryogenic magnetometer. The 

accuracy of the cryogenic magnetometer is ± 1.99 x 10'^* Am’^ (based on the standard 

deviation of magnetic moments measured for an empty specimen holder ten times).

MAGNETIC VECTOR COMPONENTS 

Two magnetic directions were resolved from the demagnetization paths. 

Discussion of these directions is in Chapter 1. Line-fit data are included in the .gsl files 

on the accompanying compact disc. These files are compatible with program lAPD.

WHAT MAGNETIC MINERALS CARRY THE REMANENCE?

It is helpful to know what magnetic minerals carry the remanence because it can 

reveal something about the temperature at which the remanence was acquired and 

possibly help to decipher to geologic history of the body of rock in question. Looking at 

the unblocking temperatures of the magnetizations can provide a simple answer. The 

unblocking temperature is the demagnetization temperature at which a specimen loses 

most of its magnetization. There were two groups of unblocking temperatures for 

specimens in the Cooper Mountain pluton. The high imblocking temperature, ~580°C, 

corresponded to the Curie temperature of magnetite. However, the ~370°C unblocking 

temperature was more anomalous. Blocking temperatures in the 370°C range suggest the

72



presence of pyrrhotite or titanomagnetite. High temperature thermomagnetic experiments 

were conducted to determine what magnetic minerals were present.

High temperature thermomagnetic experiments measure bulk magnetic 

susceptibility above room temperature. The temperature at which a specimen loses most 

of its susceptibility directly corresponds to its Curie temperature, which is characteristic 

for each magnetic mineral. For example, the Curie temperature of magnetite is 580°C, 

pyrrhotite is ~320°C and titanomagnetite has a large Curie temperature range (-150°C to 

580°C) determined by titanium content. The specimens were measured with the 

Kappabridge CS-L. Specifications: field intensity = 300 Am , sensitivity = 3 x 10" (SI) 

(for bulk susceptibility). A constant flow of argon at 60 mL/min was run through the 

specimen to provide a low-oxygen environment so that the specimen would not oxidize 

and new magnetic minerals would not be created. Data are included on the 

accompanying compact disc. High temperature thermomagnetic experiments showed 

magnetite as the only remanence-carrying mineral present (see Figure 14). This is 

consistent with reflected light microscopy (see Appendix A). See Chapter 1 for 

interpretation of mineral content. Examples of high and low unblocking temperature 

specimens are in Figure 14.

The Lowrie method (Lowrie 1990) of demagnetization was then used to further 

investigate a possible pyrrhotite component. The RFB-2 oven and cryogenic 

magnetometer were used in this evaluation. See the “Thermal Demagnetization” section 

of this appendix for the specifications of these two instruments. Explanation of the 

procedure is provided in Chapter 1 and raw data are included on the accompanying 

compact disc.
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