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Abstract 

 

The Stillaguamish River in northwest Washington State, USA, provides water resources to local 
agriculture, industry and First Nations Tribes, and provides crucial habitat for several endangered 
species of salmonids.  The watershed experiences a mild maritime climate and high relief, with 
rain and snowmelt dominating the streamflow.  In anticipation of shifts in snowpack, streamflow, 
and stream temperature, I use projected global climate scenarios and numerical models to 
examine future climatic variability on streamflow and stream temperatures in the snow-melt 
dominated North Fork of the Stillaguamish River.  I calibrated the physically based Distributed 
Hydrology Soil Vegetation Model (DHSVM) and River Basin Model (RBM) to gridded 
historical meteorological data in the basin and then applied downscaled, gridded projected 
climate data to predict streamflow and stream temperature changes through 2090 in this basin.  

Forecast modeling indicates that the North Fork watershed will transition from a snow- to rain-
dominated basin into the 21st century as a result of increasing air temperatures.  More 
precipitation in the winter will fall as rain rather than snow, resulting in up to a 43% increase in 
streamflow and a 56% decline in basin-wide snowpack.  The reduced snowpack will melt out 
earlier and cause a decrease in spring and summer streamflow. Simulations of stream 
temperature indicate rising temperatures in every stream segment in the basin by the end of the 
21st century as a result of higher air temperatures, declining snowpack, and lower summer 
streamflow.  Monthly average stream temperatures could increase by up to 7.4 oC.  In addition, 
the temperature thresholds for every life cycle of endangered salmon species are increasingly 
exceeded through time, putting at risk already endangered salmon species.  By the end of the 21st 
century, the main stem may experience up to a 10-fold increase in number of days per year 
exceeding salmon temperature thresholds.  Reach-scale predictions of stream temperature trends 
through the basin offer water resource managers a tool for focusing riparian and groundwater 
restoration efforts.           
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1.0 Introduction 

The Stillaguamish River in Washington State, USA, provides water resources to regional 

agriculture, industry and First Nations Tribes, and is an important salmon habitat (Figure 1).   

The Stillaguamish Tribe relies on the Stillaguamish River for both traditional and economic 

salmon fishing and for promoting cultural environmental stewardship practices.  In anticipation 

of shifts in snowpack, streamflow, and stream temperature as a result of forecasted climate 

change, there is a rising demand from local and regional stakeholders for stream hydrology and 

stream temperature projections to predict the timing of detrimental conditions for aquatic 

ecosystems.  

Because of the mild maritime climate of the Pacific Northwest (PNW), the Stillaguamish 

River basin experiences winter precipitation as both rain and snow.  In Washington State, rain-

snow transitional basins such as the Stillaguamish are projected to be most sensitive to climate 

warming as subtle temperature fluctuations dictate whether precipitation falls as rain or snow 

(Elsner et al., 2010; Mantua et al., 2010).  Orographic effects caused by the steep relief of the 

Stillaguamish basin can produce precipitation magnitudes in excess of  350 cm/year (PRISM 

Climate Group, 2014).  The basin receives approximately 75% its precipitation between October 

and March (SIRC, 2005).  Precipitation falls primarily as rain in the fall months, producing rapid 

runoff to streams when snowpack is limited. Snow accumulation develops in the winter when 

temperatures decrease, and historically reaches a peak around April 1.  About 46% of the basin is 

300-900 m elevation and could experience rain or snow in the winter months (SIRC, 2005).  

Spring and early summer streamflow in the Stillaguamish is currently supported by snowmelt, 
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which, in part, buffers summer stream temperatures.  Stream temperature is influenced by a 

variety of factors, including air temperature, solar and longwave radiation, streamflow, channel 

width, and riparian cover.     

My study focused on predicting hydrology and stream temperature changes in the North Fork 

tributary due to climate warming into the 21st century. The North Fork contributes about half of 

the total discharge in the Stillaguamish River, the fifth largest river draining to the Puget Sound.  

The North Fork drains an area of 734 km2 with relief ranging from 55 m to 2100 m.  The annual 

mean discharge recorded at a USGS stream gauge near the mouth of the North Fork is about 57 

cms with peak flows on the order of 280 -1,400 cms, typically in the fall and winter (Figure 1—

2; USGS, 2017).  Low flows of about 11 cms occur in the dry season between July and October 

(USGS, 2017).  The Washington Department of Ecology (WADOE) installed a streamflow and 

stream temperature monitoring station in the main stem of the North Fork of the Stillaguamish in 

2004, upstream of the USGS gauge (Figures 1—2).   Between 2004-2012, the average daily 

temperature was 8.6 oC.  The minimum average daily temperature occurred on December 20, 

2008 at 0.2 oC and the maximum average daily temperature occurred on July 28 and 29, 2009, 

both at 19.2 oC.   

Increasing levels of carbon dioxide and other greenhouse gases in the Earth’s atmosphere 

have and will continue to increase average global air temperatures through the greenhouse effect 

(Diffenbaugh et al., 2017).  Global and regional weather patterns will also continue to change as 

a result of changes to Earth’s energy budget. In a 2014 report, the U.S. Global Change Research 

Program predicted the average annual air temperature to increase by 3.4 oC in the PNW by 2099 

(Mote et al., 2014). To date, annual mean air temperatures in the PNW have increased by 0.6 - 
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0.8 oC from 1901 to 2012 (Abatzoglou et al., 2013).  Projected trends are expected to show an 

increase in frequency and intensity of winter precipitation events in western Washington 

(Mauger et al., 2016), though annual precipitation shows variable trends that seem to relate more 

to year-to-year variations in climate than any long term trends (Abatzoglou et al., 2013). The 

University of Washington Climate Change Impact Group (UW-CIG) estimates that the early 

spring snow pack will decrease by 59% by the 2080s, and that as a consequence, seasonal 

streamflow peaks will likely shift significantly in their timing and magnitude (Littell et al., 

2009).  Projected increases in air temperature will not only negatively influence the magnitudes 

of melt water and amount of flow but will also directly increase stream temperatures.   

Forecasted climate data used in this study were generated from different Global Climate 

Models (GCMs) developed by various organizations such as NASA Goddard Institute for Space 

Studies, the Meteorological Research Institute, and the Institute Pierre Simon Laplace (Rupp et 

al., 2013). GCMs produce numerical estimations of the climate-driven thermodynamic changes 

that are likely to occur based on different simulations of Earth’s ocean and atmospheric 

circulation.  Historic gridded climate data developed by Livneh et al. (2013) was used for 

hydrologic and stream temperature model calibration. 

Previous modeling investigations in the region have used the Distributed Hydrology Soil 

Vegetation Model (DHSVM) to predict streamflow (e.g., Dickerson-Lange and Mitchell, 2014; 

Murphy 2016; Cao et al., 2016) and the River Basin Model (RBM) to predict stream temperature 

(e.g., Sun et al. 2014; Cao et al., 2016; Truitt, 2018). To the north of the Stillaguamish, the South 

Fork of the Nooksack River is physically and geographically similar to the North Fork 

Stillaguamish.  Employing DHSVM, Dickerson-Lange and Mitchell (2014) and Murphy (2016) 
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predicted an increase in winter flow, a decrease in summer flow, and an earlier and lower spring 

peak streamflow corresponding with a decrease in basin-wide snowpack.  In particular, Murphy 

(2016) found that DHSVM simulations predicted that winter median streamflow will more than 

double by 2075 as a result of increased precipitation falling as rain in place of snow.  Truitt 

(2018) modeled stream temperature in three Nooksack basins with RBM and found that the 

highest simulated stream temperatures near the end of the 21st century occur in the unglaciated 

South Fork Nooksack basin, the basin most comparable to the North Fork Stillaguamish.   

Cao et al. (2016) used the DHSVM and RBM to examine streamflow and temperature of 

fifteen major streams discharging to the Puget Sound at a 150 m gridded resolution.  Based on 

forecasted climate data, Cao et al. concluded that the Stillaguamish basin will have an average of 

over 50 days per year where the maximum daily temperature recorded at the river outlet that will 

exceed 20 oC by the mid-21st century, the highest of any river draining into the Puget Sound. 

While different salmon species will have varying responses to stream temperature based on their 

life cycle stage (Beechie et al, 2013; Mantua et al., 2010), the optimal range for adult Chinook 

salmon migration is between 3.3 and 13.3 oC (Black et al., 2003), and the lethal threshold for 

adult Chinook is consistent temperatures around 22 oC (WADOE, 2008). The 50 days 

approaching this threshold are predicted to occur in the warmest months (August/September) 

which correspond to the timing of the Chinook summer runs.  Cao et al. also found that summer 

stream temperatures could be buffered by riparian shading, but acknowledged that the riparian 

input parameters used for their model were assumed to be uniform throughout the study area 

with tree heights of 10 m, buffer width of 5 m, a Leaf Area Index (LAI) of 5, and a bank to 

canopy height of 0.01 m.  Although Cao et al. used uniform riparian values, they likely vary 
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considerably along the stream channels.  Air temperatures differences between open and below 

canopy locations typically vary by 5 oC (Leach et al., 2016), and fluctuations in canopy cover 

will directly impact the stream temperature. 

Forecasted streamflow and stream temperature trends are expected to inform salmon habitat 

restoration decisions made by the Stillaguamish Tribe and other water resource interests. The 

Stillaguamish basin contains critical habitat for eight salmonid species, three of which have been 

listed as threatened by the Endangered Species Act since 1999.  In particular, the endangered 

Chinook salmon species are of high cultural and economic importance to the Stillaguamish 

Tribe, and it is estimated that salmon populations returning to the Stillaguamish River decreased 

90% through the 20th century (SIRC, 2005).  The summer-run Chinook mainly use the North 

Fork Stillaguamish tributary, enter the river after late May and spawn in late August-late October 

(PSIT & WDFW,  2017).  Summer stream temperature increases can cause salmon species to be 

more at risk to disease, and is linked to loss of salmon migration capabilities, and lowers the 

dissolved oxygen content of the water endangering developing salmon embryos (Wade et al., 

2013; Cao et al., 2016).  A 2005 report outlining salmon recovery recommendations includes a 

list of habitat goals for the Stillaguamish River, and states that stream temperature should ideally 

not exceed 12-14 oC (SIRC, 2005).   

An extensive Total Maximum Daily Load (TMDL) water quality study of the Stillaguamish 

basin was conducted by Snohomish County, with investigations of factors such as groundwater 

seepage, stream temperature, flow analyses, and riparian conditions (SCSWM, 2015).  

Recommendations to improve stream temperature for aquatic health in the watershed include 

constructing engineer log jams that scour deep pools and provide cold-water refuge for aquatic 
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species, planting riparian corridors along key river segments, and restoring vegetation that has 

been de-forested (Leonetti et al., 2015).  In the Stillaguamish basin, land use is estimated as 76% 

forestry, 17% rural, 5% agriculture, and 2% urban.  Of the forested land, about half is federally 

owned and managed for timber production.  In the North Fork, this translates to 45 km2 of 

forestry land.  While still a productive industry, logging activity has decreased since the early 

1990s as a response to changing markets and the implementation of environmental laws (SIRC, 

2005).  

I applied historical and forecasted climate data to force the DHSVM and RBM in the North 

Fork Stillaguamish basin in order to examine streamflow and stream temperature trends over the 

21st century.  Both models are physically based and distributed and have been applied in 

mountainous terrain in the PNW (e.g., Vano et al., 2010; Cuo et al., 2011; Dickerson-Lange and 

Mitchell, 2014; Murphy, 2016; Cao et al., 2016; Truitt, 2018).  To account for the effects of 

landscape heterogeneity on hydrologic systems, I modeled hydrology at a higher (50 m) spatial 

resolution, and to account for stream temperature fluxes because of vegetation variability, I used 

more detailed riparian inputs than Cao et al. (2016).  To predict which reaches could most benefit 

from vegetation restoration and improved riparian conditions, I compared stream temperature 

forecast results generated with present-day riparian and vegetation conditions with stream 

temperature forecasts based on pre-industry forest conditions using the 1883 land cover and 

riparian conditions of Cao et al. (2016).  Pre-industrial vegetation conditions represent the upper 

bounds of the remediation potential of the basin and was used as a demonstrative tool.  My 

results identify reaches that are most at risk of temperature increases and highlight areas where 

habitat rehabilitation funds could be allocated.    
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2.0 Methods 

I applied the DHSVM and RBM models to assess changing hydrology and stream 

temperatures in the North Fork of the Stillaguamish River basin resulting from projected climate 

change with the goal of identifying stream reaches at risk of becoming less hospitable to salmon.  

I accomplished this objective with the following scope of work.   

1. Created a 50 m gridded digital basin using inputs from government agencies and ArcGIS 

software.   

2. Constructed a riparian buffer along all stream reaches using lidar data to quantify vegetation 

height.  Created vegetation file to inform riparian conditions along each individual stream 

reach. 

3. Calibrated and validated the DHSVM using the gridded historical meteorological data and 

historic USGS gauge streamflow data.  

4. Conducted field work to measure stream discharge, temperature, and morphology, used to 

determine the Mohseni and Leopold parameters required as inputs for the RBM. 

5. Calibrated and validated RBM using gridded historical meteorological data and historic 

WADOE historic temperature data and calculated Mohseni and Leopold parameters from 

field work. 

6. Performed DHSVM and RBM simulations using gridded downscaled forecasted 

meteorological data to determine projected stream temperature.  Performed simulations a 

second time with 1883 vegetation conditions. 
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7. Processed and statistically analyzed data using the software R.  Determined stream sub-

basins that are particularly at-risk for temperature increases and significant streamflow 

changes.  

2.1 Digital Spatial Characterization 

Both the DHSVM and RBM are spatially distributed and require digital basin attributes. 

Detailed procedures for processing the digital inputs using ArcGIS are outlined in previous MS 

theses (e.g., Dickerson, 2010; Murphy, 2016).  For the North Fork, light detection and ranging 

(lidar) data available from the Washington State Department of Natural Resources at 0.9 and 1.8 

m resolutions were merged and resampled to a 50 m resolution.  Land cover at a 30 m resolution 

from the National Oceanic and Atmospheric Association (NOAA) was resampled to 50 m and 

converted to DHSVM classes; soil types were acquired from the United States Department of 

Agriculture STATGO data base; and a soil thickness layer and stream network was generated 

using a Python-ArcGIS script developed for the DHSVM (Ning Sun, personal communication, 

2017).  A 150 m land cover layer from Cao et al. (2016) was resampled to a 50 m grid and used 

as an estimation of an 1883 land cover. The stream network contains 1730 individual stream 

segments.   

2.2 Riparian Conditions 

Riparian vegetation parameters for each of the 1730 stream segments are required as input for 

the DHSVM which produces energy outputs required for the RBM.  Parameters include 

vegetation height along the stream, buffer width, or the width of the vegetation that provides 

shade to the stream, monthly extinction coefficient, a measure expressing the structure of the 
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canopy and the amount of light that is able to penetrate it, bank-to-canopy distance, or how close 

to the vegetation is to the stream edge, stream width, and overhang coefficient, which is the ratio 

of the stream width that is effected by shading (Table 1).  Riparian buffer zone conditions were 

determined by a combination of lidar data, land cover data from NOAA, and Cao et al. (2016).  

Lidar data are collected by airborne laser scanners that analyze landscapes below using reflection 

calculations to determine the canopy height of vegetation and the structure of the terrain (“bare 

earth”) below that (Kim et al., 2009).  A Digital Surface Model (DSM) is generated by the “first 

return” reflections from the plane and models the tops of trees and other vegetation.  A Digital 

Terrain Model (DTM) is generated by the beams that can penetrate the vegetation and reflect 

back to the plane (“last returns”).  The DSM and DTM lidar data exist for the majority of the 

North Fork Basin at a 0.9 to 1.8 m resolution, respectively. The height of the vegetation at a 1.8 

m resolution is determined by subtracting DTM data from DSM data.    

A 10 m-wide riparian buffer around each stream segment in the network was generated, and 

this buffer was used to extract the lidar tree height in this area using a geoprocessing tool that I 

developed in ArcGIS Model Builder (Appendix A).  A Python script was used to estimate the 

average height of vegetation within the buffer at each stream segment (Appendix A).  Based on 

Sun et al. (2014), the extinction coefficient (k) was estimated as: 

𝒌𝒌 = 𝑳𝑳𝑳𝑳𝑳𝑳
𝟔𝟔𝟔𝟔

                   ( 1 ) 

LAI was determined at each individual stream segment based on the DHSVM land cover 

vegetation type that was most dominant at each stream segment.  Channel width was estimated to 

be 5 m in the tributaries, and 10 m along the main stem of the North Fork.  A basin-wide average 
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of the overhang coefficient and the bank-to-canopy distance was used based on 2002 values used 

in Cao et al. (2016) (Table 1).  The 1883 riparian conditions were estimated using basin-wide 

averages following Cao et al. (2016) values for a thick forest of mostly old-growth Douglas Fir 

trees in the upper reaches and mixed forest along the main stem.  Tree height was input as 62 m, 

buffer width as 50 m, and LAI as 9.  These values are consistent with quantitative measurements 

of Douglas Fir forests (Parker et al., 2002).   

2.3 DHSVM Hydrology Calibration 

The DHSVM was developed by Wigmosta et al. (1994) at the University of Washington and 

the Pacific Northwest National Lab and has been used extensively in mountainous terrain in the 

PNW (e.g., Vano et al., 2010; Cuo et al., 2011; Dickerson-Lange and Mitchell, 2014; Murphy, 

2016).  I used DHSVM 3.1.2 which was modified to produce the energy and streamflow inputs 

required for the RBM (PNNL, 2018). The spatially distributed model performs an energy and 

water balance on a gridded basin defined by a digital topography model, soil type, soil depth, 

vegetation cover, and stream network.  The DHSVM uses physical relationships based on the 

gridded spatial inputs and meteorological data to simulate hydrology variables such as snow 

accumulation and melt, evapotranspiration, soil storage, and overall streamflow.  The high level 

of spatial resolution allows for variability in topography, soil and land cover, and meteorology, 

resulting in a more accurate representation of the hydrology of a basin.   

I used gridded historical meteorological datasets developed by Livneh et al. (2013) for the 

calibration. The resolution of the historical data is 1/16th of a degree latitude/longitude and 

contains daily time series of climate variables at gridded points (hereafter referred to as “Livneh 
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nodes”) from 1950-2013.  The daily Livneh node data (minimum and maximum temperature, 

precipitation, and wind speed) were bias corrected, processed into variables required for the 

DHSVM, and disaggregated into 3-hr times steps by the UW-CIG (Mauger et al., 2016). 

Required DHSVM meteorological variables include air temperature (oC), wind speed (m/s), 

humidity (%), solar radiation (W/m2), longwave radiation (W/m2), and precipitation (m). The 

data were validated against measured observations from the Finney Creek, Gold Hill, and 

Arlington weather stations that encompass the North Fork basin.   

Calibration of DHSVM was achieved by forcing the model with the gridded historic 

meteorological data and adjusting model parameters one parameter at a time based on 

comparisons to observed streamflow data from USGS gauging station (12167000) located along 

the lower main stem of the North Fork Stillaguamish near Arlington, WA (Figure 1).  Following 

the cross-validation method described in Bennett et al. (2013), the streamflow data were split 

into two groups.  I used a ten-year period from 2003-2012 for model development and 

calibration.  The second group of data, from 1983-2002 was used to verify the model and 

validate calibration results.  The gauge was moved to its present location in 1989 and was in a 

downstream location from 1928-1989.  The average discharge of the ten-year calibration period 

that I chose is most representative of the average discharge over the 1989-2013 period that is 

suitable for calibration selection.  Reported USGS discharge data before 1989 was adjusted by 

the agency to account for the new location so all data can be used congruently and is suitable for 

validation of the DHSVM calibration. 
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Simulated model accuracy was measured by the Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970), which compares daily mean observed streamflow (O) to simulated daily mean 

streamflow (P). 

 𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟏𝟏.𝟎𝟎 −  ∑ (𝑶𝑶𝒊𝒊−𝑷𝑷𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊−𝟏𝟏

∑ (𝑶𝑶𝒊𝒊−𝑶𝑶�′)𝟐𝟐𝒏𝒏
𝒊𝒊−𝟏𝟏

            ( 2 ) 

Additional statistically tests were evaluated based on the calibration guidelines of Moriasi et 

al. (2007, 2015).  Besides NSE, I examined Pearson’s coefficient of determination (R2), percent 

bias (PBIAS), and root mean square error standard deviation ratio (RSR) to compare simulated 

and observed data.  Each test compares the observed to the predicted data.  R2 is a measure of 

variance in the dependent variable that is explained by the independent variable, RSR is a 

measure of the standard deviation within the data, and PBIAS is the percent bias of the data.  

Based on Moriasi et al. (2007, 2015), performance evaluation criteria (PEC) of Very Good, 

Good, Satisfactory, and Not Satisfactory were used as model performance indicators, with my 

aim being to achieve at least a “Satisfactory” result for each statistical recommendation. 

In addition to adjusting parameters to improve the statistical results of the full ten-year 

calibration time frame, I prioritized improving the statistical results of daily mean flows only in 

the May-September months when the streamflow is the lowest and when stream temperatures the 

warmest.  I also examined Snow Water Equivalent (SWE) maps of the basin output by DHSVM 

and compared them to observed regional SWE.  I also output the mean April 1 SWE at every cell 

in the North Fork basin over the calibration period and, extracted all the cells that fell within +/- 

50 m of the Skookum Creek SNOTEL (SNOwpack TELemetry) station elevation (1009 m).  The 

mean of these data was compared to observed mean of April 1 SWE at the Skookum Creek 
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SNOTEL.  The Skookum Creek SNOTEL is about 80 km southeast of the centroid of the North 

Fork basin. It was chosen as a comparable proxy because it is also on the west side of the 

Cascades, removed from Cascade volcanoes that could alter the local weather, and at lower 

elevation than surrounding SNOTELS which make it a better approximation to conditions in the 

relatively low elevation North Fork basin.   

After the statistical standards were met and suitable basin-wide SWE was achieved, I 

validated the calibrated DHSVM with a longer historical time series at the USGS gauge (Figures 

1—2; 1983-2002).   

2.4 Estimation of Mohseni and Leopold parameters 

The RBM requires initial headwater conditions, which are estimated using a non-linear 

regression model that relates headwater temperature to air temperature as follows: 

𝑻𝑻𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = 𝝁𝝁 +  𝜶𝜶−𝝁𝝁

𝟏𝟏+𝒉𝒉𝜸𝜸�𝜷𝜷−𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉�
          ( 3 ) 

where α is an estimation of the maximum stream temperature (oC), β is air temperature at the 

inflection point of the function (oC), γ is the steepest slope of the function (ratio), and μ is the 

estimated minimum stream temperature (oC) (Mohseni et al., 1998).   A smoothing parameter 

(Tsmooth, unitless) is used to attenuate high frequency fluctuations in air temperature (Tair, oC) as 

follows: 

        𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉 =  𝝉𝝉 ∗  𝑻𝑻𝒉𝒉𝒊𝒊𝒂𝒂(𝒔𝒔) + (𝟏𝟏 −  𝝉𝝉) ∗  𝑻𝑻𝒉𝒉𝒊𝒊𝒂𝒂(𝒔𝒔 − 𝟏𝟏)                         ( 4 

) 
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where, 

𝝉𝝉 =  𝟏𝟏
(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒊𝒊𝒏𝒏𝒔𝒔 𝒑𝒑𝒉𝒉𝒂𝒂𝒊𝒊𝒔𝒔𝒉𝒉)

=  𝟏𝟏
(𝟕𝟕 𝒉𝒉𝒉𝒉𝒅𝒅𝒔𝒔∗𝟖𝟖 𝒔𝒔𝒊𝒊𝒔𝒔𝒉𝒉𝒔𝒔𝒔𝒔𝒉𝒉𝒑𝒑𝒔𝒔 𝒑𝒑𝒉𝒉𝒂𝒂 𝒉𝒉𝒉𝒉𝒅𝒅)

           ( 5 ) 

The Mohseni parameters were estimated with a least squares minimization algorithm using 

observed stream temperature measurements collected from the field and observed air 

temperature. Publicly available gridded climate data were used to estimate air temperature at 

sites in the basin where air temperature data were not available (PRISM Climate Group, 2017).  

During the summer of 2016, employees of the Stillaguamish Tribe Natural Resources 

Department installed 32 HOBO Onset TidbiT v2 water temperature data loggers with a 0.2 oC 

accuracy in various reaches throughout the North Fork Basin.  The general installation methods 

of the US Environmental Protection Agency  (Stamp et al., 2014) and Isaak et al. (2013) were 

followed, but an improved sensor mounting method was used to decrease the installation time 

and eliminate the use of an epoxy compound known to be harmful to aquatic species (Killebrew 

and Freeman, 2018).  Of these 32 sites, the ten most upstream sensors were chosen to determine 

the Mohseni parameters for headwater conditions (Figure 2).  The data loggers were visited to 

download the data and to check battery levels.  Logger temperature datasets ranged between 6-14 

months and included a temperature measurement every 30 minutes.  Available gauge data from 

the WADOE Ciero gauge (decommissioned in 2012) and Oso gauge were also used in the 

Mohseni parameter calculations.   

The RBM also requires Leopold parameters that are used to estimate stream velocity and 

depth for each stream segment in the basin using discharge values from the DHSVM. The 

parameters are used in relationships described by Leopold and Maddock (1953): 
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𝑫𝑫 = 𝒉𝒉𝑸𝑸𝒃𝒃           ( 6 ) 

𝒖𝒖 = 𝒄𝒄𝑸𝑸𝒉𝒉           ( 7 ) 

where Q is discharge (cms), u is velocity (m/s), D is depth (m), and a, b, c, and d are empirical 

constants.  Field measurements of depth, width, and discharge were made at ten sites throughout 

the North Fork basin to estimate the empirical constants.  Measurement sites occasionally 

corresponded with the temperature sensor locations (Figure 2).  Stream discharge measurements 

were calculated at two different times during the summer of 2017 using the USGS stream 

gauging measurement technique (Turnipseed and Sauer, 2010).  Care was taken to avoid times in 

late summer when headwaters could be dry.  To determine discharge, measurements of stream 

depth and width was made with a wading rod and surveying measuring tape, and stream velocity 

was measured with a FlowMate 2000 flow meter.  Minimum stream speed and depth were 

estimated using measured values.  Flow data from the USGS 12167000 gauge and the WADOE 

Oso and Darrington gauges were also included in the Leopold parameter calculations. The 

Mohseni parameters and the Leopold parameters were adjusted to maximize the calibration 

efficiency of the model.   

2.5 RBM Stream Temperature Calibration 

The RBM is semi-Lagrangian, one-dimension model that is scalable in space and time 

(Yearsley, 2009, 2012; Sun et al., 2014). Initiated by headwater temperatures, the model tracks 

parcels of water through the river basin and estimates stream segment temperatures using heat 

exchanges from net solar radiation, net longwave radiation, sensible heat flux, latent heat flux, 

groundwater, and advected heat from adjacent tributary segments that are produced by the 
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DHSVM.  Many factors contribute to overall stream temperature including climate, snowmelt, 

flow rate, basin topography, channel morphology, and riparian vegetation (Yearsley, 2012; Sun 

et al., 2015).  The RBM has been used to model stream temperatures in the PNW by Yearsley 

(2009, 2012), Sun et al. (2015), and Cao et al. (2016), and Truitt (2018).   

The RBM was calibrated to eight water years (2005-2012) of  historical stream temperature 

data from the WADOE Oso gauge (WADOE, 2018; Figures 1—2) using the NSE coefficient 

method (Nash and Sutcliffe, 1970), and the statistical guidelines outlined by Moriasi et al. (2007, 

2015). Although stream temperature is not specifically included in the Moriasi et al. (2007, 

2015) evaluations of criteria to measure hydrologic (as with the DHSVM) and water quality 

outputs, I used the “General” criteria (Moriasi et al., 2015) to determine PEC for RBM results.   

The 7-day average daily maximum (7-DADMax) is the mean of the maximum daily 

temperatures over a 7-day period, and is used as a measure of consistent stream temperatures that 

may be detrimental to aquatic species (Mantua et al., 2010).  Following Washington State water 

quality standards, I determined the number of observed and simulated days exceeding the 16 oC 

7-DADMax temperature standard for core summer salmon habitat (WADOE, 2017).  During the 

calibration process, I tried to match observed versus simulated percent of days exceeding this 

threshold. In addition, the NSE and other statistical standards were examined in the May-

September months to ensure reasonable model fit in the warmest months.  Validation was 

achieved by comparing model output with stream temperature data taken at the now-

decommissioned Deer Creek DOE gauge (Figure 2; 2005-2010). 
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2.6 Forecasted Simulations 

The calibrated DHSVM and RBM were used to simulate the hydrology and stream 

temperatures in the North Fork of the Stillaguamish River basin for water years 2008-2098.  I 

forced DHSVM with forecasted data from 10 GCMs and two emission scenarios following the 

methods of Murphy (2016) and Truitt (2018) for a total of 20 climate simulations. The 10 GCMs 

were recommended by Rupp et al. (2013) as the most suitable for climate prediction in the PNW 

(Table 2).  Two emission representative concentration pathways (RCP) were chosen as simulated 

climate scenarios.  RCP 4.5 is a medium-low warming scenario associate with moderate 

anthropogenic climate action.  RCP 8.5 is a high warming climate scenario associated with 

minimal anthropogenic action and continued high emissions.  The 20 climate scenarios were 

statistically downscaled to the basin using a multivariate adaptive constructed analogs (MACA) 

technique trained by the Livneh et al. (2013) data used in the calibration (Abatzoglou and 

Brown, 2012). The MACA method of downscaling takes the coarse, horizontal resolution of the 

global models and applies it to spatial complexities of smaller regions while accounting for local 

weather variables such as rain shadows, humidity, and local winds (Abatzoglou and Brown, 

2012).  The MACA data were bias-corrected, processed for the required DHSVM inputs, and 

disaggregated to 3-hr time steps by the UW-CIG.  The projected climate data are at the same 

resolution the Livneh nodes (historic climate data).  Both can be seamlessly applied across the 

basin and through time.    

Historical land cover grid simulations mimic tree growth in the basin, and the potential 

reclamation of forested lands.  I ran a secondary set of forecasted simulations of DHSVM and 

RBM using the calibrated models and the 1883 forest cover grid and riparian inputs to compare 



18 

 

modern vegetation to pre-industrial conditions (Cao et al., 2016).  All other variables remained 

unchanged from the calibrated models.  Pre-industrial vegetation conditions represent the upper 

bounds of remediation potential of the basin and is used as a demonstrative tool.   

2.7 Data Analysis 

Climate trends are often defined as 30-year “normals” to ensure the capture of natural climate 

oscillations such as El Niños and La Niñas which occur on sub-decadal to decadal frequencies.  

As such, simulation results are generated and analyzed over 30-year intervals centered on the 

years 1996 (hindcast), 2025, 2050, and 2075.  The results of these forecasts represent a range of 

potential streamflow and stream temperature trends that were statistically evaluated using R, an 

open-source software for statistical and graphical computations.  I examined median flows, 

median SWE, and median stream temperatures.  The 7-DADMax was determined and the 

number of days stream temperatures exceeded safe temperatures for salmonid spawning, rearing, 

and migration (16 oC) were counted and averaged over the 30-year normals.  Any 7-DADMax 

temperatures exceeding 22 oC, the lethal threshold for adult salmon species, were reported.  Daily 

maximum (1-DMax) temperatures exceeding 17.5 oC are averaged and reported, as this is the 

salmon embryo lethality threshold (WADOE, 2017).  My analysis followed, in part, the format 

of studies conducted in the near-by Nooksack River basin (Murphy, 2016; Truitt, 2018) in order 

to allow comparisons to the geographically similar South Fork Nooksack River.   

To observe the change in temperature at individual stream segments from the hindcast to a 

future scenario, I compared mean temperatures in August, the hottest month of the year, at every 

stream segment between the hindcast and the 2075 centered 30-year normal using data from the 
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CSIRO-Mk3-6-0 GCM at the RCP 8.5 scenario, following the methods of Murphy and Rossi 

(2018).  I repeated these simulations with the 1883 land cover and riparian conditions to 

determine which reaches have the potential to be most positively affected by improving the 

riparian conditions or vegetation cover.   
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3.0 Results 

3.1 DHSVM Calibration 

There are 42 Livneh nodes in and surrounding the North Fork basin that contain the historical 

meteorological time series used as input to the DHSVM. Although the time series at each Livneh 

node were biased corrected by the UW-CIG to account for orographic effects produced by 

variability in topography, the time series at any given location can still be unrealistic.  Bias 

corrected data imposes temperature and precipitation lapse rates to gridded data to account for 

variability in local topography, and it is possible that the 1/16-degree grid does not resolve the 

high elevation areas at the head of the watershed because of its rapidly changing relief 

(Guillaume Mauger, personal communication, 2018).  To identify biased nodes, I plotted the 

precipitation and air temperature time series for individual Livneh nodes and grouped them 

based on elevation and spatial location. Once grouped, nodes that showed excessive variability 

based on elevation or location were discarded as outliers.  I ran DHSVM simulations using 

combinations of the remaining node locations until the DHSVM produced reasonable streamflow 

magnitudes and snow-water equivalent distributions. I eventually isolated five node locations 

that I used to further refine the calibration of the DHSVM (Figure 2).   

Key DHSVM calibration parameters are the precipitation and air temperature lapse rates that 

can be defined as constant or vary by month; and the thickness and the vertical and lateral 

hydraulic conductivities of the soils in the watershed (Table 3).  Again, I experimented with 

adjusting these until I achieved realistic simulated streamflow and a basin-wide SWE. The 

months that most effect the amount of snow available for melt and initial snow accumulation are 
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April and October, respectively.  Adjusting the air temperature lapse rates in these months 

proved to be important for simulating the appropriate amount of snow accumulation (Table 3).  

Results from SWE comparisons between simulated output from the DHSVM and the Skookum 

Creek SNOTEL station showed good agreement.  The Skookum Creek SNOTEL is at an 

elevation of 1009 m, about 80 km southeast of the North Fork basin.  The average SWE on April 

1 at the SNOTEL for the calibration period of 2002-2011 was 0.798 m.  The average SWE on 

April 1 in the North Fork basin between 959-1059 m elevation was 0.758 m during the 

calibration period.       

Streamflow calibration was achieved for water years 2003-2012 with an overall daily mean 

flow NSE of 0.55 and monthly NSE of 0.83, meeting the PEC standards of Satisfactory and 

Good (Figure 3; Table 4).  The overall daily R2 was 0.55 and monthly R2 was 0.85, meeting 

Moriasi et al. (2015) guidelines of Not Satisfactory and Very Good, respectively. The lower 

overall daily R2 result is likely the result of under-estimates of the winter peak flows.  Because 

high stream temperatures are partially a result of low summer flows, I focused on improving 

statistical measures of model fit from May to September, resulting in daily mean NSE of 0.71 

and R2 of 0.65 that met PEC of Good and Satisfactory, respectively (Figure 3; Table 4).  

The DHSVM validation was achieved by comparing simulated flow to observed flow from 

the USGS gauge (Figure 2) over twenty years of the hindcast period (1982 – 2001). The NSE of 

the overall daily mean streamflow was 0.54 and 0.52 in the summer months (Figure 4; Table 5), 

slightly less than those over the calibration period, but still meeting Satisfactory criteria.  The 

monthly mean NSE and summer NSE met Good and Satisfactory criteria, respectively.  Daily 
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mean R2 values of 0.55 overall and 0.68 in May-September showed similar PEC results to the 

calibration period (Table 5). 

3.2 RBM Calibration 

To calibrate RBM, Mohseni parameters were calculated from the water temperature logger 

data (Figure 2) and PRISM Climate Group (2017) air temperature data, and manually adjusting 

the Tsmooth and  parameters (Table 6).  The Mohseni parameters that were most impactful in the 

calibration were α and β.  Truitt (2018) used Mohseni parameters from the highest elevation site 

for stream temperature calibration of the South Fork Nooksack River.  I tried several parameters 

inputs including high elevation parameters, averages across parameters gained from loggers, 

gauges, and both.  The selected Tsmooth of 0.01 is similar that used by Truitt (2018) for the South 

Fork Nooksack (i.e., 0.018).  Mantua et al. (2010) used the Mohseni regression method to 

estimate weekly stream temperatures across basin in the PNW and the α parameter used for the 

Stillaguamish River at the Arlington WADOE gauge (26.44 oC) is similar to the α parameter I 

use in this study (27.0 oC).  During the spring and early summer when snowmelt was highest, the 

Mohseni method over estimated stream headwater temperatures, which produced warmer stream 

temperatures than observed values at the Oso gauge.  As such, I invoked a snowmelt algorithm in 

the RBM similar to that applied by Truitt (2018).  The algorithm uses the basin-average 

snowmelt output from the DHSVM. When the average basin snowmelt reached a predefined 

magnitude (0.0002 m3/3hrs) the RBM snowmelt algorithm fixed headwater temperatures to 7 oC.   

I experimented with Leopold parameter magnitudes, and ultimately used average values from 

my field discharge measurements and the USGS and WADOE gauges. The calibration improved 
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using minimum stream depth and speeds of 1.0 m and 1.0 m/s, respectively, through the whole 

basin (Table 6).   

I achieved RBM calibration with an overall daily mean NSE of 0.83, and R2 of 0.85, both with 

PECs of Very Good (Figure 5; Table 7).  Monthly mean NSE of 0.90 and R2 of 0.91 also met 

Very Good criteria.  The May and September daily mean NSE of 0.58 and R2 of 0.65 met PEC of 

Satisfactory.  I assessed the fit of extreme stream temperatures by comparing the mean number 

of days per year over the calibration period that are over the 7-DADMax threshold temperature 

of 16 oC between the observed (57) and predicted (45). 

During the calibration process, sensitivity tests were run on the main riparian inputs to the 

RBM: tree height, buffer width, and LAI.  Sensitivity tests were run at the WADOE Oso gauge 

which is a low order, wide stream channel described by Sun et al. (2014) to be most influenced 

by improving riparian conditions due to the solar gain that these channels can experience.  All 

these parameters were found to have an inverse relationship with temperature where increases in 

the parameters caused decreases in stream temperature.  For example, decreasing LAI by an 

order of magnitude caused the stream segment to experience an average of 15 more days per year 

exceeding the 16 oC 7-DADMax threshold (Table 8).  Consistent with sensitivity tests conducted 

by Sun et al. (2014), tree height values greater than 30 m did not decrease stream temperature 

much.  Similarly, increasing the buffer width to more than 10 m had negligible effects on 

lowering stream temperature.  Sun et al. (2014) also tested the bank to canopy distance and found 

that stream temperature decreased with decreased bank to canopy distance.  The canopy 

overhang coefficient was not tested in this study, however increased overhang increases 

decreases the solar gain to the stream and likely decreases stream temperature.   
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Validation of RBM was achieved by comparing the observed streamflow at the Deer Creek 

WADOE gauge (Figure 6; 2005-2010).  Validation results achieved Satisfactory or better 

standards (Table 9), despite summer temperatures generally being underestimated (Figure 6). 

Validation had an overall daily mean NSE of 0.80, and R2 of 0.83, both meeting PEC of Very 

Good.  The daily mean stream temperature in the summer months had a NSE of 0.50 and a R2 of 

0.60 (Figure 6; Table 9). 

An anomalous year (2011) shows higher stream temperatures than expected during model 

calibration (Figure 5).  I investigated different possibilities to account for this; for example, I 

validated the observed stream temperature trends in the North Fork Oso gauge with observed 

stream temperature in the South Fork Stillaguamish.  I also determined that the DHSVM air 

temperature inputs followed the same trends as the observed stream temperature in 2011.  I 

suspect it is related to isolated snowmelt in high-relief basins. Despite the unexplained anomaly, 

I still achieve PEC calibration standards (Table 7).   

3.3 Forecasted Hydrology 

Simulated streamflow at the USGS stream gauge over the 30-year hindcast period (1982-

2011) peaked in November and decreased slightly through the winter (Figure 7; Table 10).  

Streamflow increased in the late spring with a second peak in May and decreased sharply 

through the months of July and August with lowest mean monthly flows in September.  Through 

the 21st century, 30-year intervals, or “climate normals”, centered on the years 2025, 2050, and 

2075 were compared to historical medians.  Simulated streamflow magnitudes generally 

increased in the fall and winter and decreased through the spring and summer with lowest 
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summer flows still occurring in September by the 2075 climate normal under RCP 8.5 

conditions.  The median projected flow of RCP 4.5 and 8.5 in the 2025 climate normal had a 

similar trend to the hindcast with peak flows in November, but slightly less than historic flow 

through the spring and summer.  By the 2075 climate normal, the median of RCP 8.5 showed 

higher peak flows and lower low flows than that of the median RCP 4.5 scenario (Figure 7; 

Table 10).   

SWE decreased sharply into the 21st century, with the lowest values of median daily SWE 

present in the RCP 8.5 scenario by the 2075 climate normal (Figure 7).  The timing of peak SWE 

shifted from around April 1 for the hindcast, to around February 15 by the 2075 climate normal 

(Figure 7).  Mapped output of the average April 1 SWE extent in the basin illustrates a recession 

of snow into the highest portions of the basin by the 2075 climate normal (Figure 8).     

Modeling with the 1883 land cover altered the hydrology slightly.  Generally, winter peaks 

were slightly less than the 2011 land cover results, and summer flows slightly more.  By the 

2075 climate normal, 1883 land cover resulted in a 4% decrease in median December flow for 

RCP 4.5 and a 6% decrease in median December flow for RCP 8.5.  In the 2050 and 2075 

climate normals, September flow is slightly lower under the 1883 land cover scenario than the 

2011 land cover scenario for both RCPs (Table 11).   

3.4 Forecasted Stream Temperature 

Simulated stream temperature at the WADOE Oso gauge over the 30-year hindcast (1982-

2011) displayed minimum median monthly temperatures in January (4.2 oC) and median 

monthly temperatures peaks in August (15.2 oC; Figure 9; Table 12).  By the 2025 climate 
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normal, monthly median temperatures increased slightly, with June showing the largest increase.  

Stream temperatures continued to rise by the 2050 normal, with median temperatures above 16.0 

oC in July and August for both RCP 4.5 and 8.5.  By the 2075 normal, all median monthly stream 

temperatures were on average 0.9 oC higher for the RCP 8.5 scenario than for the RCP 4.5 

scenario, and RCP 8.5 has median temperatures above 18.0 oC in July and August (Table 12).  

There was no significant shift in timing for peak temperatures throughout the 21st century as the 

peak temperatures consistently occurred between July and August (Figure 9).  Snowmelt became 

less of an influence on stream temperature by the 2075 climate normal, as evidenced by the 

warmer spring and early summer stream temperatures compared to the hindcast (Figure 9; Table 

11).   

The hindcast at the WADOE Oso gauge averaged 32 days per year exceeding the 16.0 oC 7-

DADMax threshold for core summer salmon habitat (Table 13).  By the 2075 normal, the 

number of days per year exceeding the 7-DADMax threshold had increased close to 3 times for 

the RCP 4.5 scenario, and over 3.5 times for the RCP 8.5 scenario.  I also examined the most 

extreme GCM, HadGEM2-ES under the RCP 8.5 emission scenario to test the upper bounds of 

threshold exceedance.  Over a third of the year experiences stream temperatures above the 16.0 

oC under this GCM by the 2075 climate normal (Table 13).  The 7-DADMax reaches lethal 

temperature (22 oC) for adult salmon in 2069 under this extreme climate scenario, but lethal 

conditions are not met in the RCP 4.5 or 8.5 median scenarios.  The 17.5 oC 1-DMax for salmon 

embryo lethality was exceeded an average of 8 days per year over the hindcast period, increasing 

7.5 times under the RCP 4.5 and over 10 times under the RCP 8.5 scenario by the 2075 climate 

normal (Table 14).   
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Average August stream temperature increased in every stream segment throughout the basin 

between the hindcast and the 2075 climate normal using the CSIRO-Mk3-6-0 GCM under RCP 

8.5 conditions.  I chose this GCM as it represents the median stream temperature for the RCP 8.5 

emission scenario in the 2075 climate normal (Figure 10).  Individual segment temperature 

increases ranged from 2.6 oC to 6.2 oC.  Basin-wide, stream segments increased an average of 4.8 

oC (Figure 11).  The same analysis was conducted using 1883 land cover and riparian values.  

Historical vegetation resulted in lower mean August stream temperatures by the 2075 climate 

normal at almost every stream segment when compared to the mean August temperatures by the 

2075 climate normal under the modern land cover and riparian values. Restoring the basin to pre-

industrial vegetation conditions decreased the mean August stream temperatures at individual 

stream segments as much as 1.6 oC, with an average decrease of 0.2 oC basin-wide.  Although it 

is unlikely that the basin will be restored to land cover conditions similar to those in 1883, 

running these simulations verifies that impact of vegetation on stream flow and stream 

temperature (e.g., Table 8), and gives an upper bound of the change possible in the basin if re-

forestation efforts were implemented. 
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4.0 Discussion 

4.1 Forecasted Hydrology 

Consistent with other regional forecast modeling studies of PNW rain-snow transient basins 

(e.g., Murphy, 2015), my results indicate streamflow into the 21st century in the North Fork 

Stillaguamish River increases in the winter months and decreases in the spring and summer as a 

result of a reduced snowpack. Historically, the basin streamflow peaks in the fall in response to 

increased rainfall and storm events, decreases in the winter when snowpack develops, peaks 

again in the spring as a result of snowmelt runoff, and slowly decays into the summer as 

precipitation decreases (Figure 7; Table 10).   Through the 21st century, increased air 

temperatures caused the basin to transition to a rain-dominated basin. In the winter months more 

precipitation falls as rain rather than snow, which results in a reduced basin average SWE 

(Figures 7–8).  The snowpack develops later in the season and melts out earlier.  As a result, 

simulated streamflow magnitudes increased in the winter.  Note that historic and forecasted 

median streamflows consistently decrease in December and rise again in January. The lower 

streamflows in December are in response to a distinct low-precipitation bias that is prevalent in 

the gridded Livneh data.  Bias in the gridded data may result in lower runoff and rain-on-snow 

snowmelt (Figure 12).  The December bias is also evident in the forecasted streamflow because 

the Livneh data were used to train the downscaled MACA data (Abatzoglou and Brown, 2012).  

While the December bias may effect forecasted snowpack and winter runoff, it will likely have 

little effect mid-to-late summer stream temperatures which are the focus of this study. 
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Streamflow magnitudes decreased through the spring and summer with less snowmelt 

sustaining summer flow and increased air temperatures causing drier summers (Figure 7; Table 

10).  Higher air temperatures in the RCP 8.5 scenario results in a highly reduced winter 

snowpack by the end of the 21st century, and no SWE supporting summer flow (Figure 7).  The 

effects of climate warming on hydrology in the North Fork basin became more pronounced later 

in the century and with the RCP 8.5 scenarios. The above trends are consistent with forecasted 

simulations in the Nooksack River (Murphy, 2015), including the low streamflow trends in 

December because of the same biases in the gridded Livneh data (Figure 12).  However, the 

forecasted winter streamflow in the North Fork Stillaguamish increased up to 63% through the 

21st century (Table 10), while median winter flows forecasted in the Nooksack more than double.   

Like previous modeling studies (e.g., Dickerson-Lange and Mitchell, 2014; Murphy, 2016), 

there are not large differences in streamflow and SWE between the RCP 4.5 and RCP 8.5 GCM 

scenarios during the first half of the 21st century (Figure 7; Figure 9).  By the 2075 climate 

normal, streamflow and SWE trends vary more between the two emission scenarios.  Though 

global greenhouse gas emissions are curbed under the RCP 4.5 scenario, the atmospheric 

concentrations of greenhouse gases do not stabilize until well into the 21st century (Hansen et 

al., 2005).  From the present forward, any effects of either the acceleration or curbing of global 

emissions will likely not be fully realized until later in the 21st century.   

The unusual geology of the North Fork Valley made calibrating the DHSVM challenging.   

The valley formerly drained the upper Skagit River, the upper Sauk  River, and the Suiattle River 

before they were re-routed by the retreat of the Cordillean ice sheet and subsequent damming by 

lahars from near-by Glacier Peak (Booth et al., 2003, 2017).  The present-day valley is wider 
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than most western Cascade river valleys and consists of unconsolidated alluvial and glacial 

deposits ranging from fine silt and clay glaciolacustrine sediments to coarser outwash gravels 

and till.  The unconsolidated deposits store and discharge groundwater to the North Fork 

(Leonetti, 2015).  Although the DHSVM accounts for groundwater input in to the streamflow 

system, the model initially under predicted low flows in the summer months, likely due to 

difficulties quantifying groundwater contributing to streamflow in the glacial deposits in the 

valley regions.  To increase soil storage and groundwater input, I increased the maximum soil 

depth to 5 m and adjusted the soil vertical and lateral conductivities.  Lower lateral conductivities 

delayed groundwater flow to streams and increased the spring and summer flows. I also 

increased snow accumulation in part to bolster summer streamflow for calibration.  

Consequently, my calibration may underestimate forecasted summer flow as the snowpack 

diminishes.   

To increase simulated spring and summer streamflow to better match observed streamflow, I 

tried increasing the basin-wide SWE.  Because of the lack of SNOTEL stations in the North Fork 

basin, I used SWE data from nearby SNOTELs to gauge magnitudes in the basin.  The lowest 

nearby SNOTEL, Skookum Creek, showed good fit with my model accounting for 94% of the 

average April 1 SWE at similar elevations in the North Fork basin. Other SNOTELs in the 

vicinity did not match my results as well, primarily because of their locations.  The Lyman Lake 

SNOTEL is due east of the North Fork basin, but it is on the east side of the main east-west 

Cascades divide.  This may make it unsuitable for comparison to a watershed that flows west. 

The Elbow Lake Station, while being lower in elevation than the Skookum Creek basin, is close 

to Mt. Baker, a Cascade volcano of 3286 m elevation. Mt Baker could cause more snow at 
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Elbow Lake than what I predicted in the North Fork Stillaguamish basin because of enhanced 

orographic precipitation.  A SNOTEL station installed in the North Fork basin may improve 

calibration but calibrating to a single point is not as reliable as estimating a basin-wide SWE by 

matching the spring snowmelt runoff to the streamflow.  Calibrating to snowpack extent from 

satellite imagery could be possible using the distributed method of Revuelto et al. (2018), but 

such a comparison is beyond the scope of my study. 

Groundwater is expected to remain a source of input to the North Fork Stillaguamish River 

(Leonetti et al., 2015) and may increase in the future. Winter precipitation magnitudes are 

forecasted to be greater than historical magnitudes (Abatzoglou et al., 2013), meaning 

precipitation falling as rain in winter will be recharging aquifers to a greater extent or aquifers 

will reach saturation earlier. Groundwater contribution to the river could become increasingly 

important to the spring and summer streamflow.  However, drier summers and an increase in 

evapotranspiration in the future could lower the summer groundwater levels. Georgiadis (2018) 

predicts that evapotranspiration in the Puget Sound will increase due to warming air 

temperatures, recession of snowpack, and growth of forests following logging impacts of the 

latter half of the 20th century.  This increase in evapotranspiration could also be the reason that 

September streamflow is lower under the 1883 land cover scenario than the present-day scenario 

(Tables 9 and 10).   

Mantua et al. (2010) predicts that the rain-snow transient basins of the Cascades such as the 

Stillaguamish will show the highest increases in 20-year flood returns in all the PNW.  While 

flood frequency is a concern to water managers and property owners, the inability of my 

calibration of the DHSVM to properly capture winter peak flow suggests that it may be under-
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predicting peak flow in future simulations.  Despite the care given to the site selection process of 

Livneh sites, and the adjustment of precipitation and temperature lapse rates, there are still 

problems with the disaggregated meteorological data.  The DHSVM under-estimates peak flows 

in the fall and winter, likely in part because of the disaggregation of daily precipitation into 3-

hour time steps (Figures 3–4).  Precipitation magnitudes of storm events are spread over a 24-

hour period, so the water volume during precipitation events at individual time-steps is 

underestimated. Lower intensity rainfall results in less rapid runoff and lower peaks, resulting in 

lower daily NSE and R2 statistics over the course of the calibration duration (Figures 3–4).   

Other modeling studies in the region (e.g., Dickerson-Lange and Mitchell, 2014; Murphy, 2016) 

also experience this under-estimation of peak flows.  However, because stream temperature 

extremes occur during May-September, I focused my calibration on those months rather than on 

winter peaks (Figure 9; Table 12). A more in-depth peak flow analysis would be necessary in the 

Stillaguamish basin to quantify the increase winter flood risks. More winter rainfall and higher 

intensity storms will also increase the risk of mass wasting resulting in increased sediment 

transport to the river, further jeopardizing salmon habitat (Krosby et al., 2016; Knapp, 2018).   

4.2 Forecasted Stream Temperature 

Simulated stream temperatures at the WADOE Oso gauge increased into the 21st century in 

response to forecasted increasing air temperatures and changes in basin hydrology (Table 11).  

Warmer air temperatures at higher elevations will increase the initial headwater temperatures 

through the Mohseni relationship, which in turn are propagated downstream as the water gains 

heat, primarily from radiation and sensible heat fluxes.  Warmer air temperatures have an effect 

in all months of the year (Table 12). The greatest increase in monthly median stream temperature 
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under both the RCP 4.5 and 8.5 scenarios is in June, likely due to the reduction in snowmelt 

buffering stream temperature during the late spring (Table 12; Figures 7–9).  The warmest 

predicted stream temperatures are in the late summer months, in part due to warmer headwater 

temperatures, but also a result of lower stream discharges. Because of less snowmelt and summer 

precipitation in general in the 21st century, stream discharge wanes in the summer, resulting in 

slower moving and shallower water that is more responsive to heat inputs.  

Forecasted increased year-round stream temperatures will cause additional stress to already 

endangered aquatic species such as Chinook salmon and Steelhead trout.  Consistent high stream 

temperatures are known to cause disease, death, pose migration barriers, and otherwise 

negatively affect fish populations (Mantua et al. 2010).  The Chinook salmon that use the stream 

in the warmest months are at highest risk to the effects of warming temperatures.  My simulated 

trends show increasing temperatures exceeding WADOE fresh water quality thresholds for 

salmon embryo lethality and adult salmon summer habitat (Tables 12—13). Using the WADOE 

7-DADMax adult salmon lethal standard of 22 oC, lethal temperatures were not reached under 

median RCP 4.5 or RCP 8.5 conditions.  However, using the GCM with the most extreme air 

temperature warming (HadGEM2-ES and RCP 8.5) lethal temperatures were reached in the year 

2066, with an average of 9 days per year during the 2075 climate normal exceeded.  My results 

are comparable to habitat assessment modeling studies conducted in the Stillaguamish River 

(e.g., Mantua et al., 2010; Krosby et al., 2016).  Mantua et al. (2010), forecasted lethal 

temperatures to adult salmon in the main stem Stillaguamish by the 2080s.  Likewise, Krosby et 

al. (2016) categorize Chinook salmon as ‘Extremely Vulnerable’ by the 2080s due to their 

thermal sensitivity.  Because the Mantua et al. (2010) and Krosby et al. (2016) studies used a 
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gauge along the main stem of the Stillaguamish, downstream of the North Fork and South Fork 

confluence, my results are likely consistent with their findings under median RCP 4.5 and 8.5 

emission scenarios as stream temperatures will increase with distance from the headwaters.  

Similarly, the Cao et al. (2016) study found more than 50 days per year above a 7-DADMax of 

20 oC by the 2050 climate normal, though they used the outlet of the mainstem Stillaguamish as 

their reference point. 

The summer-run Chinook that inhabit the Stillaguamish mostly spawn between the Deer 

Creek outlet and Swede Heaven bridge and occupy these areas through the hottest months of the 

year (SIRC, 2005).  Salmon populations are known to be adaptable to high stream temperatures 

by inhabiting cold deep pools on the order of several meters to tens of meters wide during the 

summer (SIRC, 2005).  Stream temperature anomalies studied by Leonetti et al. (2015) using 

2001 Infra-Red thermal mapping of the main stem of the North Fork river channel noted many 

areas along the stream channel where water temperatures were up to 2 oC colder than the stream 

segment immediately upstream.  These sites were classified by the anomaly cause (e.g., 

confluence, groundwater input) and have been identified as cold-water refugia, suitable for 

salmon refuge from the time they enter the stream in the late spring and summer until they spawn 

in mid to late summer and early fall (summer-run Chinook).  Compared to the whole 

Stillaguamish basin, including the lower main stem and the South Fork (Figure 1), the North 

Fork held more than half of the observed cold-water anomalies.   

The coldest cold-water anomalies along the North Fork described by Leonetti et al. (2015) are 

related to groundwater seeps and springs, which are therefore underestimated or not fully 

captured by the DHSVM. As such, my forecasted summer stream temperatures may be higher 
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than what may occur.  As discussed above, the groundwater contribution to the river may 

increase in the future as a result of increased winter precipitation, possibly resulting in increased 

spring and summer discharge to the river that would help maintain localized cold-water refugia 

for salmon. For example, in the summer of 2015, after a winter of average precipitation but 

minimal snow due to warm air temperatures, the Stillaguamish Tribe Natural Resources 

Department did not witness or receive reports of any salmon deaths in any life cycle stage (Jason 

Griffith, personal communication, 2018).  This could be the result of above normal winter 

aquifer recharge from rainfall that sustained summer stream discharge and cooler stream 

temperatures in localized pools.  Although isolated pools could remain cool, average stream 

temperatures may remain higher. Stream temperatures recorded at the Oso stream gauge since 

2004 were highest in the summer of 2015 (WADOE, 2018).  By determining which cold-water 

refugia pools are in areas at most risk to summer temperature increases (Figure 11), riparian 

restoration can be prioritized accordingly through the basin. 

Improving land cover and riparian conditions also has the capacity to counteract warming 

stream temperatures.  The stream segments where stream temperatures are most moderated by 

the 1883 vegetation conditions are generally the stream segments with little or no vegetation 

under the present-day scenario (Figure 13).  Under the 1883 conditions, bare mountain tops and 

logged areas were given vegetation characteristics of old-growth Douglas Fir, and along the main 

stem valley, areas of grass or cropland were converted to mixed forest.  Both scenarios resulted 

in a large decrease in forecasted mean August stream temperatures when compared to the 

forecasted mean August stream temperatures under present-day land cover.  Localized 

improvement of riparian conditions resulting in decreased stream temperatures is consistent with 
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several observation-based reach-scale studies (e.g., Roth et al., 2010; Ryan et al., 2013).  While 

areas above present-day tree line are not realistically going to develop forested land cover, the 

difference between bare ground and forested cover demonstrates the importance of vegetation 

cover in moderating stream temperature.  

Many previous modeling studies used generalized riparian inputs (e.g., Cao et al., 2016; Sun 

et al., 2015).  Because riparian cover is influential on stream temperature, using high-resolution 

lidar data to determine average tree height at every stream segment improved the accuracy in the 

identification of reaches at risk for elevated temperatures.  While Cao et al. (2016) use a basin-

wide tree height of 10 m and a constant LAI value, the lidar analysis indicates that the basin-

wide average tree height within the riparian buffer zone was 15.7 m (Table 1).  As a result, the 

prediction of 50 days per year over a 7-DADMax of 20 oC by the 2050 climate normal may be an 

overestimation.  My results show <1 day per year over a 7-DADMax of 20 oC at the WADOE 

Oso gauge through the 21st century.  Moreover, the Cao et al. results are for the outlet of the 

Stillaguamish River into the Puget Sound (Figure 1) which is about 50 km downstream of the 

WADOE Oso gauge.  While stream temperature does increase with distance from the 

headwaters, some of the difference between the two predictions is because of the 

underestimation of tree height through the basin by Cao et al.  Because this basin typifies rain-

snow transitional watersheds common in the PNW, my method for riparian characterization 

(Appendix A) could be used to inform other modeling ventures in the region.  Kate Clarke, a MS 

graduate student at Western Washington University, is currently applying my methods to the 

South Fork Stillaguamish Basin (Figure 1) to provide the Stillaguamish Tribe with a 

comprehensive analysis of the whole Stillaguamish River watershed.   
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4.3 Uncertainty and Model Limitations 

Both the DHSVM and RBM models have limitations as to the extent of natural processes that 

they simulate.  For example, RBM does not account for water turbidity which can increase 

absorb energy and increase stream temperatures.  Additionally, while RBM does estimate inputs 

to stream temperature from the hyporheic zone of the stream where mixing of groundwater and 

surface water occurs, and where water is often cooler than the water at the stream surface 

(Conant, 2004), there is a lack of data needed to properly characterize this source.  DHSVM does 

not account for vegetation growth over the simulation period which may cause the model to 

under estimate evapotranspiration and stream shading over time.  Like any spatially distributed 

model, there are also limitations due to the resolution and accuracy of the spatial data used to 

define the basin characteristics at the scale of the North Fork basin.  

There are also limitations in the available data used or estimated in this study, such as stream 

geometry, snowmelt timing, and the meteorological forcing data. Because of the complex 

topography of the PNW, high resolution historic and futuristic climate data are inherently 

imperfect in their computation. e.g., downscaling from low resolution, monthly GCM data to a 

localized grid scale at 3-hr time steps.   Although the downscaled meteorological data are bias-

corrected, not all biases can be accounted for (Climatology Lab, 2018).  For example, a low-

precipitation bias was discovered in the forecasted meteorological data (Figure 12), consistent 

with the results of Murphy (2016).  Advances in developing and expanding these types of 

downscaled and disaggregated gridded meteorological datasets are in progress by the UW-CIG 

using outputs from the Weather Research and Forecasting regional climate model (Guillaume 

Mauger, personal communication, 2018). These historical and forecasted data have better-quality 
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precipitation magnitudes that will allow for an improved quantification and assessment of peak 

flows and peak temperatures in the basin. Although uncertainties exist in my modeling 

approaches, trends can be extracted using statistically summaries of many climate realizations 

that can inform water managers.  
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5.0 Conclusions 

Forecasted modeling with the DHSVM indicates that increasing air temperatures predicted 

into the 21st century will cause significant decreases in precipitation falling as snow, leading to 

an increase in winter rainfall runoff and higher streamflows, and a decrease in SWE that results 

in lower spring and summer flows.  The effects will be more pronounced later in the century, 

particularly with the RCP 8.5 scenarios. Greater winter runoff and streamflows will likely 

increase sediment loading to streams that will further endanger salmon habitat and increase flood 

risks, requiring a more in-depth peak flow analysis in the Stillaguamish basin. My calibration of 

the DHSVM may not fully capture the groundwater discharge to the main stem in the valley and 

thereby may underestimate forecasted summer flow as the snowpack diminishes into the 21st 

century. Given that summer discharge magnitudes have a large influence on stream temperatures, 

further exploration of forecasted groundwater recharge and the identification of localized 

groundwater discharge that supports cold-water refugia would benefit salmon restoration efforts.  

Stream temperatures simulated with the RBM increase into the 21st Century and correlate to 

forecasted increased air temperatures and changes in basin hydrology. The greatest stream 

temperature increases are in late spring, related to the reduction of snowpack, and subsequent 

spring snowmelt runoff.  The warmest stream temperatures occur in mid to late summer, and 

WADOE fresh water quality thresholds for salmon embryo lethality and adult salmon summer 

habitat will continue to be exceeded. Compared to historic conditions, there was up to a fourfold 

increase in days exceeding 16 oC 7-DADMax temperatures at the end of the century for the most 

extreme GMC scenario, putting at risk already endangered species such as Chinook salmon and 
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Steelhead trout.  Lidar differencing in ArcGIS allowed characterization of the riparian conditions 

along stream segments improved prior modeling efforts in the Stillaguamish basin by more 

accurately capturing vegetation characteristics that effect stream temperature. As such, ArcGIS 

maps showing projected stream temperatures changes along segments will better inform 

watershed managers in their restoration efforts in the North Fork.   
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7.0 Tables 

Table 1.  Riparian conditions input in DHSVM for use in RBM temperature simulations, the 
method of parameter selection for the present-day vegetation conditions, and comparison to 
parameters used by Cao et al. (2016). 

 
 

Parameter Method Description Range Cao value 
Tree height Computed for each 

individual segment 
with python script 
and ArcGIS 

Lidar data were used to 
determine the average 
tree height in a 10 m 
buffer around each 
stream segment 
(Appendix A) 

0 - 44 m 
 
(15.7 m basin-
wide mean) 

10 m 

Buffer 
Width 

Basin-wide average Used sensitivity tests to 
determine and basin-
wide estimation 

10 m 5 m 

Extinction 
Coefficient 

Manual, based on 
LAI values of land 
cover file  

In ArcGIS, I created 
extracted a land cover 
file that only contained 
cells that touched the 
stream file.  I opened 
the attribute table and 
clicked through each 
segment, populating the 
rveg file with the 
appropriate monthly 
extinction coeff based 
on input values in the 
DHSVM configuration 
file. 

0 - 0.13  
 
(LAI 
equivalent of 
0-8) 

0.08  
 
(LAI 
equivalent of 
5) 

Overhang 
Coefficient 

Basin-wide average This value was used by 
Cao et al (2016). 

0.01 0.01 

Canopy 
Bank 
Distance 

Basin-wide average This value was used by 
Cao et al (2016). 

0 m 0 m 

Channel 
Width 

Manual, based on 
stream segment 
type 

A value of 10 m was 
assigned to reaches 
along the main stem NF, 
a value of 5 m was 
assigned to all other 
segments. 

5 m or 10 m  
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Table 2. GCMs used to forecast meteorological inputs for both the RCP 4.5 and 8.5 scenarios, 
modified from Rupp et al. (2013). 
 

Model Center Number of 
Ensemble 
Members: T/P/ 
Tmin/Tmax 

Atmospheric 
Resolution 
(Lon. x Lat.) 

Vertical 
Levels in 
Atmosphere 

BCC-CSM1-1-
M 

Beijing Climate Center, 
China Meteorological 
Administration 

3/ 3/ 3/ 3 1.12 x 1.12 26 

CanESM2 Canadian Centre for 
Climate Modeling and 
Analysis 

5/ 5/ 5/ 5 2.8 x 2.8 35 

CCSM4 National Center of 
Atmospheric Research, 
USA 

6/ 6/ 6/ 6 1.25 x 0.94 26 

CNRM-CM5 National Centre of 
Meteorological Research, 
France 

10/ 10/ 10/ 10 1.4 x 1.4 31 

CSIRO-Mk3-
6-0 

Commonwealth Scientific 
and Industrial Research 
Organization/ Queensland 
Climate Change Centre of 
Excellence, Australia 

10/ 10/ 10/ 10 1.8 x 1.8 18 

HadGEM2-ES Met Office Hadley 
Center, UK 

5/ 5/ 5/ 5 1.88 x 1.25 38 

HadGEM2-CC Met Office Hadley 
Center, UK 

1/ 1/ 1/ 1 1.88 x 1.25 60 

IPSL-CM5A-
MR 

Institute Pierre Simon 
Laplace, France 

3/ 3/ 1/ 1 2.5 x 1.25 39 

MICROC5 Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), 
National Institute for 
Environmental Studies, 
and Japan Agency for 
Marine-Earth Science and 
Technology 

5/ 5/ 5/ 5 1.4 x 1.4 40 

NorESM1-M Norwegian Climate 
Center 

3/ 3/ 3/ 3 2.5 x 1.9 26 
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Table 3. Notable DHSVM calibration parameters. 
 

Description Value 
Minimum rain temperature threshold 1.0 oC 
Maximum snow temperature threshold 1.0 oC 
Snow water capacity 0.03 
Temperature lapse rate 

Nov-Mar 
April and October 
May-September 

 
-0.0055 oC/m 
-0.0045 oC/m 
-0.004 oC/m 

Precipitation lapse rate 0.0003 m/m 
Soil lateral conductivity 

Loamy sand 
Sandy loam 
Silt 

 
0.0005 m/s 
0.0008 m/s 
0.001 m/s 

Soil vertical conductivity 
Loamy sand 
Sandy loam 
Silt 

 
0.005 m/s 
0.001 m/s 
0.005 m/s 

Soil maximum depth 
Soil minimum depth 

5 m 
0.76 m 

Stream network source area 22000 m2 
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Table 4. Performance evaluation criteria of the validation of DHSVM to streamflow measured at 
the USGS stream gauge (station 12167000) from water years 2003-2012.  
 

 
* Daily RSR criteria are not provided in Moriasi et al (2007).  However, the other PEC included 
the same value ranges for both monthly and daily mean values, so it was assumed that the 
monthly ranges given by Moriasi et al. (2007) could be used as guidelines for daily criteria as 
well. 
  

 All data May - Sept only 
 Daily mean Monthly mean Daily mean Monthly mean 
NSE 0.55 0.83 0.71 0.85 
R-Squared 0.55 0.85 0.74 0.88 
RSR * 0.67 0.41 0.63 0.39 
PBIAS 8.46 8.41 8.84 0.80 
     
PEC rating: Very Good Good Satisfactory Not Satisfactory 
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Table 5. Performance evaluation criteria of the validation of DHSVM to streamflow measured at 
the USGS stream gauge (station 12167000) from water years 1982-2001. 
 

 
* Daily RSR criteria are not provided in Moriasi et al (2007).  However, the other PEC included 
the same value ranges for both monthly and daily mean values, so it was assumed that the 
monthly ranges given by Moriasi et al. (2007) could be used as guidelines for daily criteria as 
well. 
 
  

 All data May - Sept only 
 Daily mean Monthly mean Daily mean Monthly mean 
NSE 0.54 0.78 0.52 0.61 
R-Squared 0.55 0.78 0.68 0.87 
RSR * 0.68 0.47 0.67 0.59 
PBIAS 2.59 2.67 -25.96 -25.95 
     
PEC rating: Very Good Good Satisfactory Not Satisfactory 
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Table 6. Mohseni and Leopold parameters used in the calibration of RBM and their source. 

Parameter Value Source 
Mohseni α 27.0 oC Adjusted 
Mohseni β 13.3 oC Mean of field sites 
Mohseni γ 0.2 Mean of field sites 
Mohseni μ 0.8 oC Mean of field sites 
Mohseni Smoothing 0.01 oC Adjusted 
Leopold a  0.63 Mean of field sites and agency gauges 
Leopold b 0.4 Mean of field sites and agency gauges 
Leopold c 0.2 Mean of field sites and agency gauges 
Leopold d 0.4 Mean of field sites and agency gauges 
Leopold min depth 1.0 m Adjusted 
Leopold min speed 1.0 m/s Adjusted 
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 Table 7. Performance evaluation criteria of the calibration of RBM to stream temperature 
measured at the WADOE Oso gauge from water years 2005-2012. 
 

 
* Daily RSR criteria are not provided in Moriasi et al (2007).  However, the other PEC included 
the same value ranges for both monthly and daily mean values, so it was assumed that the 
monthly ranges given by Moriasi et al. (2007) could be used as guidelines for daily criteria as 
well. 
  

 All data May - Sept only 
 Daily mean Monthly mean Daily mean Monthly mean 
NSE 0.83 0.90 0.58 0.66 
R-Squared 0.85 0.91 0.65 0.73 
RSR * 0.42 0.32 0.64 0.57 
PBIAS -3.42 -3.43 -3.71 -3.72 

     
PEC rating: Very Good Good Satisfactory Not Satisfactory 
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Table 8. Sensitivity tests of days exceeding 16 oC 7-DADMax threshold over the 8-year 
calibration period (2005-2012) under different LAI (and corresponding extinction coefficient) 
conditions at the North Fork Stillaguamish WADOE Oso gauge and average days exceeding the 
16 oC 7-DADMax threshold per year. 

  

LAI (Extinction Coefficient) Days exceeding Average days per year 

0.5 (0.008) 435 54 

5 (0.08) 292 36 

50 (0.8) 199 25 
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Table 9. Performance evaluation criteria of the validation of RBM to stream temperature 
measured at the WADOE Deer Creek gauge from water years water years 2005-2012. 
 

 
* Daily RSR criteria are not provided in Moriasi et al (2007).  However, the other PEC included 
the same value ranges for both monthly and daily mean values, so it was assumed that the 
monthly ranges given by Moriasi et al. (2007) could be used as guidelines for daily criteria as 
well. 
 

  

 All data May - Sept only 
 Daily mean Monthly mean Daily mean Monthly mean 
NSE 0.80 0.86 0.50 0.56 
R-Squared 0.83 0.90 0.60 0.68 
RSR * 0.45 0.37 0.68 0.63 
PBIAS 0.87 0.81 9.61 9.64 

     
PEC rating: Very Good Good Satisfactory Not Satisfactory 
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Table 10. Modeled monthly median streamflow in cubic meters per second (cms) at the USGS 
gauge (station 12167000) in the North Fork Stillaguamish River for median GCM results over 
30-years surrounding 2025, 2050, 2075, and the historic (hindcast) period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month Historic RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
(cms) 2025 2050 2075 

January 51.0 63.6 71.7 79.1 78.8 80.7 88.2 
February 44.5 52.0 55.0 57.2 60.7 63.9 71.2 
March 45.9 58.2 57.7 61.4 61.9 62.8 63.7 
April 56.9 61.1 60.7 60.0 61.6 58.3 52.5 
May 67.3 54.4 52.7 42.8 43.1 37.1 30.0 
June 46.9 33.6 32.2 25.7 24.6 21.2 16.9 
July 19.9 14.4 14.1 11.3 10.7 10.0 8.7 
August 9.5 7.5 7.3 6.2 5.9 5.9 5.2 
September 8.4 6.6 6.9 6.0 5.4 5.4 5.1 
October 27.1 22.4 23.6 24.2 20.7 24.1 23.2 
November 76.3 76.5 79.8 74.2 81.7 90.5 86.8 
December 52.6 62.0 66.2 76.7 76.9 80.7 92.2 
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Table 11. Modeled monthly median streamflow in cubic meters per second (cms) at the USGS 
gauge (station 12167000) in the North Fork Stillaguamish River under 1883 land cover and 
riparian conditions for median GCM results over 30-years surrounding 2025, 2050, 2075, and the 
historic (hindcast) period. 

 

  

Month Historic RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
(cms) 2025 2050 2075 

January 51.0 61.2 68.8 75.9 76.3 77.2 81.5 
February 44.5 50.8 52.9 55.2 58.0 59.6 66.1 
March 45.9 54.2 53.6 57.2 56.9 57.7 58.0 
April 56.9 54.3 52.7 51.9 52.2 49.5 46.6 
May 67.3 42.7 41.2 34.7 35.0 30.7 26.8 
June 46.9 30.8 29.6 24.5 23.9 20.6 16.7 
July 19.9 15.7 15.7 11.8 11.3 10.5 8.8 
August 9.5 8.3 8.2 6.6 6.2 6.0 5.3 
September 8.4 6.9 7.3 5.9 5.4 5.3 4.8 
October 27.1 20.0 20.3 20.6 17.5 21.1 19.3 
November 76.3 69.1 71.9 67.3 73.4 81.2 78.1 
December 52.6 60.9 63.2 73.6 73.2 77.8 86.5 
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Table 12. Modeled monthly median stream temperature in degrees Celsius at the WADOE Oso 
gauge in the North Fork Stillaguamish River for median GCM results over 30-years surrounding 
2025, 2050, 2075, and the historic (hindcast) period. 

 

 

  

Month Historic RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 
°C 2025 2050 2075 

January 4.2 4.4 4.5 4.7 5.0 5.0 5.8 
February 4.8 5.0 4.9 5.3 5.4 5.6 6.3 
March 5.5 5.8 5.8 6.2 6.2 6.7 7.2 
April 6.7 7.4 7.3 7.7 7.8 8.1 8.6 
May 8.1 8.7 8.9 9.5 9.8 10.6 11.8 
June 9.4 11.7 11.7 13.3 13.8 14.6 15.8 
July 13.8 15.4 15.5 16.6 17.0 17.4 18.4 
August 15.2 16.2 16.2 16.9 17.2 17.4 18.3 
September 13.6 14.5 14.5 15.3 15.6 15.7 16.7 
October 10.1 11.1 11.3 12.1 12.5 12.5 13.8 
November 6.1 6.7 6.8 7.2 7.6 7.7 8.6 
December 4.4 4.7 4.9 5.2 5.6 5.5 6.4 
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 Table 13. Average days per year at the North Fork Stillaguamish WADOE Oso gauge 
exceeding 16 oC 7-DADMax temperatures per climate normal for each median RCP emission 
scenario and the GCM with most extreme climate projection, HadGEM2-ES (RCP 8.5). 

  

Emission Scenario Historic 2025 2050 2075 

Moderate (RCP 4.5) 32 58 79 95 
Severe (RCP 8.5) 32 59 88 117 
GCM HadGEM2-ES (RCP 8.5) 32 68 97 136 
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Table 14. Average days per year at the North Fork Stillaguamish WADOE Oso gauge exceeding 
17.5 oC 1-DMax temperatures per climate normal for each median RCP emission scenario and 
the GCM with most extreme climate projection, HadGEM2-ES (RCP 8.5). 

  

Emission Scenario Historic 2025 2050 2075 

Moderate (RCP 4.5) 8 21 45 60 

Severe (RCP 8.5) 8 24 56 87 

HadGEM2-ES (RCP 8.5) 8 32 60 105 
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8.0 Figures 

Figure 1.  The Stillaguamish River basin (WRIA 5) in northwest Washington State, USA.  
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Figure 2.  Field sites, agency stream gauges, and location of input sites for disaggregated 
meteorological data in the North Fork Stillaguamish River basin in northwest Washington State, 
USA. 
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Figure 3.  Calibration of the DHSVM to daily mean flow at the USGS stream gauge (station 
12167000) over water years 2003-2012. 
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Figure 4.  Validation of the DHSVM to daily mean flow at the USGS stream gauge (station 
12167000) over water years 1983-2002. 
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Figure 5. Calibration of the RBM to mean daily stream temperature at the WADOE Oso gauge 
over water years 2005-2012.    
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Figure 6. Validation of the RBM to mean daily temperature at the WADOE Deer Creek gauge 
over water years 2005-2010. 
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Figure 7.  Monthly median streamflow and snow water equivalent over three 30-year climate 
normals centered on the years 2025, 2050, and 2075 at the USGS gauge.  Median hindcast values 
(30-year climate normal centered on the year 1996) are represented by the black line, the median 
RCP 4.5 values as the blue line, the median RCP 8.5 value as the red line, and individual GCMs 
by the grey lines. 
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Figure 8.  Average April 1 SWE extent over three forecasted 30-year normals in the North Fork 
Stillaguamish basin.  
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Figure 9.  Monthly median stream temperature over three 30-year climate normals centered on 
the years 2025, 2050, and 2075 at the WADOE Oso gauge.  Median hindcast values (30-year 
climate normal centered on the year 1996) are represented by the black line, the median RCP 4.5 
values as the blue line, the median RCP 8.5 value as the red line, and individual GCMs by the 
grey lines.  The horizontal dashed line represents the 1-DMax for salmon embryo mortality. 
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Figure 10.  Verification that the CSIRO-Mk3-6-0 GCM under RCP 8.5 conditions (green line) is 
representative of the median of the 10 RCP 8.5 GCMs (red line) over the 30-year climate normal 
centered on 2075.  The blue line is the median of the RCP 4.5 GCMs, the black line represents 
the hindcast, and the grey lines represent individual GCMs. 
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Figure 11.  Average August stream temperature increase at every stream segment in the North 
Fork Stillaguamish River between the hindcast and the 2075 climate normal under CSIRO-Mk3-
6-0 GCM and RCP 8.5. 
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Figure 12.  Monthly median sum of precipitation and snowmelt in the North Fork Stillaguamish 
basin over three 30-year climate normals centered on the years 2025, 2050, and 2075.  Median 
hindcast values (30-year climate normal centered on the year 1996) are represented by the black 
line, the median RCP 4.5 values as the blue line, the median RCP 8.5 value as the red line, and 
individual GCMs by the grey lines.  
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Figure 13.  Average August stream temperature decrease at every stream segment in the North 
Fork Stillaguamish River between the CSIRO-Mk3-6-0 GCM under RCP 8.5 at the 2075 climate 
normal under present day riparian and land cover conditions, and the CSIRO-Mk3-6-0 GCM 
under RCP 8.5 at the 2075 climate normal under historic (1883) land cover and riparian 
conditions. 
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9.0 Appendix A 

Riparian classification 

By Kyra Freeman, June 2018 

Part 1- Lidar set up 

1. Download custom dataset using the polygon tool from the DNR LiDAR portal 

(http://lidarportal.dnr.wa.gov/).  Create a polygon around your study area. Check just the DSM 

and DTM features to download.   

E.g., LiDAR data in the North Fork Stillaguamish Basin 

Dataset Year Resolution (feet) Mosaic Operator 
Darrington 2003 6 15 
Glacier Peak 2010 3 8 
Glacier Peak 2015 3 2 
North Puget 2017 3 1 
North Puget 2006 3 9 
Puget Lowlands 2005 6 13 
Snohoco Hazel 2006 3 11 
Snohoco Oso- a 2014 3 4 
Snohoco Oso- b 2014 3 5 
Snohoco Oso- c 2014 3 6 
Snohoco Sauk River 2005 6 14 
Snohoco West 2006 3 10 
Snohomish  2005 3 12 
Stillaguamish 2014 3 3 
Tualip 2013 2013 3 7 

 

2. Mosaic them all together to a 6ft resolution: Data Management > Raster > Raster Dataset > 

Mosaic to new Raster 

Input Rasters: DSM datasets entered following the order of mosaic operator above.  
This was based on age of data collection, with the most recent datasets assumed to be 
the highest quality 
Output Location: E:\\WWU\ThesisGIS.gdb 
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Raster Dataset Name with Extension: DSM_6ft.tif 
Pixel Type: 32_Bit_Float 
Cell Size: 6 (should be the size of the largest dataset you are mosaicking) 
Number of Bands: 1 
Mosaic Operator: First (If you entered the datasets youngest first, enter Last if you 
started with the older datasets) 
Mosaic Colormap: *leave blank*  
 

*Note: The above operation will take a long time to process.   

3. Repeat the above step with the DTM data in the same order. 

Input Rasters: DTM datasets entered following the order of mosaic operator above.   
Output Location: E:\\WWU\ThesisGIS.gdb 
Raster Dataset Name with Extension: DTM_6ft.tif 
Pixel Type: 32_Bit_Float 
Cell Size: 6  
Number of Bands: 1 
Mosaic Operator: First (If you entered the datasets youngest first) 
Mosaic Colormap: *leave blank*  
 

4.  Once you have both datasets, clip them to your basin.   
 

WARNING!  Do not do this with a raster layer of your basin.  Use a polygon, otherwise the 6 ft 
resolution you had will be overwritten with the 50m resolution of your basin.  In addition, it is 
important to do the same operations to both the DTM and DSM datasets, otherwise you will not 
be able to subtract them.  The rows and columns of the DTM and DSM must match in order to 
determine tree height. 

 
 Spatial Analysis > Extraction > Extract by mask 
 Input: NF_DSM_6ft 
 Input mask: NF_mask (polygon file) 
 Output: NF_DSM_6ft 
 

5. Repeat with DTM 
 
 Spatial Analysis > Extraction > Extract by mask 
 Input: NF_DTM_6ft 
 Input mask: NF_mask (polygon file) 
 Output: NF_DTM_6ft 
 

6. Subtract the two datasets. Subtract the digital terrain model (DTM) from the digital surface 
model (DSM) 
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 Spatial Analysis > Map Algebra > Raster Calculator 
 Expression: “NF_DSM_6ft” – “NF_DTM_6ft” 
 Output: NF_treeheight 
 

7.  Take a look at outliers.  What is the range of your new “treeheight” layer?  Ideally it will be 0 
to ~300ft.  Outliers are possible because of power lines, birds, etc.  Double click on the layer, go 
to symbology, and change the stretched values to have 2 breaks.  Manually change so that values 
below 0 are a separate color than 0-300, and >300 is a third color.  Check how common outliers 
are.  Are they concentrated to one area?  If so, consider redoing the above steps without that 
section of the data, as long as there is older data that is also in that region.  See file 
“LiDAR_DNR_correspondence.pdf” for more information about outliers from contacts at the 
DNR.  If the outliers are few and have little chance of affecting your data, you can reclassify 
your treeheight file.  Determine the average of the file by double clicking the layer, go to source, 
scroll down and record the mean. 

 
Spatial Analysis > Reclass > Reclassify 
Input: NF_treeheight 
Old Value: -(lowest value) – 0 New Value: 0 
Old Value: 300 (highest value) New Value: (basin average) 

(Leave other values the same) 
Output: NF_treeheight_r 
 

Part 2- Create stream riparian buffer 

Determine buffer width that you will use.  You can experiment with several using the following 
steps and determine how the average tree height within each buffer changes.  In ArcGIS, open 
the stream network that was developed from the soil depth file generation.   

Geoprocessing > Buffer 
Input Features: streamfile 

Output Features: NF_buffer10m.shp 
Distance: 10 Meters 
Side Type: FULL 
End Type: ROUND 
Method: PLANAR 
Dissolve Type: NONE 

 
This will generate a file that has the same number of elements as stream segments.  Each element 
will be a buffer of an individual stream segment. 

 
 

Part 3- Use Model Builder Tool to extract tree height from each stream segment buffer 

area 
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1. Create a folder to direct individual stream segment rasters to.  E.g., 
.../WWU/RBM/Riparian/seg_treeheight.  This folder should be totally empty and only used 
for directing output from the next few steps. 

2. Open ArcCatolog and navigate to tree_height.tbx Toolbox (supplied by Bob Mitchell).  Right 
click on the Extract_stream_treeheight tool and click Edit. 

3. Double click on the first element in the model builder.  Navigate to your buffer, 
NF_buffer10m.shp as input. 

4. Double click on the other element used as input, connecting to the Extract by Mask box.  
Navigate to your basin-wide LiDAR data file, NF_treeheight 

5. Double click on the last element output called “Extr_%Value%”.  Do not change the name of 
the output but change the folder it goes to the folder you created in Step 1.  E.g., 
.../WWU/RBM/Riparian/seg_treeheight/Extr_%Value%   

6. Click on Model drop down menu.  Click on Validate Model.  If all the elements become 
colored, the model is ready to run.  If not, go back and click through each one and ensure it is 
linked to the right field or folder. 

7. Model > Run Entire Model.  This may take hours, depending on how many stream segments 
there are. 

 

Part 4- Use Python Script to determine mean value of each segments tree height raster 

1. Navigate to “treeheight_mean.py” Python script.  Right click > Edit with IDLE 
2. Under Set environments, change the file path to the folder that you created in Part 3 
3. Change the file path under the Local Variables section. Keep the treeheight.txt file name, and 

just change the location where you would like it saved.  
4. Under the While True: loop, change the value in the except section to your basin-wide tree 

height average (in meters).  This is to prevent the script from crashing if it encounters any 
problems in calculating the raster mean and will instead use the basin-wide average.  This 
only happened in 3 instances in my script and may not be needed depending on if your 
LiDAR data has holes that encompass whole stream segments or not. 

*Note, this script assumes that the LiDAR data is in feet and will convert results to meters. 

5. File >Save, Run > Run Module 

This may take several hours.  When the script is done, you will have a file, treeheight.txt with 

two columns. First column is stream segment number, second column is the average tree height 

in a 10m area around that segment.  Use this second column to copy and paste into the 

rveg.basline file that is read into RBM.  
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