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Abstract 
 

Cations have been shown to modify a variety of properties of transition metals, including bite 

angle, isomerization, substrate control, and catalytic activation. Herein describes the synthesis of 

a novel stimulus responsive phosphine ligand. Ligand binding studies by NMR salt titration 

show a preference in the order of Na+ > Li+ > K+. Platinum dimethyl and dichloride complexes 

with the phosphine ligand were also synthesized. Isomerization of the platinum chloride complex 

between cis and trans is reported.  
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Introduction  

Since their discovery by Pedersen in 1967, crown ethers and polyethylene glycol chains 

have been shown to be useful for binding alkali metal cations.1 In the 1980’s, metallacrown 

ethers (crown ethers formed by chelating two ends of polyether ligand to a transition metal) were 

synthesized. Metallacrown ethers also selectively bind cations. This gives metallacrown ether 

complexes the ability to have cations influence the transition metal and its reactivity in unique 

ways. The general structures of crown ethers, polyethylene glycol chains, and metallacrown 

ethers are shown in Figure 1.1. Metallacrown ethers have been shown to have many applications 

in the field of asymmetric catalysis because of their tunability with the removal or addition of a 

cation.2-8 This introduction will discuss how crown ethers, polyethylene glycol chains, and 

metallacrown ethers can be influenced by cations for the purposes of catalytic control, substrate 

activation, geometric control, and isomerization.  

 

Figure 1.1. General structure of crown ethers, polyethylene glycol chains, and metallacrown 

ethers. 

Cations and catalyst control 

Catalysts are useful in a wide variety of fields for their ability to promote specific 

chemical transformations. In homogenous catalysis, ligands attached to a transition metal can 
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control the properties of the catalysis. Metallacrown ethers give catalysis an additional regulation 

site that can be controlled with the addition and removal of cations.  

Fan and coworkers successfully synthesized a rhodium catalyst with a bidentate polyether 

ligand (Figure 1.2).6 They found the enantiomeric excess varied depending on which salt was 

added (Figure 1.2). Without salt additive, they reported an ee of 84%. This is a lower ee% than 

when they added NaBArF (91%) or KBArF (93%) (BArF = [{3,5-(CF3)2C6H3}4B]−). They 

proposed the binding of the potassium or sodium ion is causing the change in selectivity.  When 

they added 18-crown-6 to the reaction, which binds to the K+ ion more tightly than their rhodium 

metallacrown ether, they saw the same reactivity as when they did not add the salt at all. In 

addition, they saw rate enhancement in the presence of salt. They observed full reaction 

conversion as monitored by 1H NMR at approximately 25 minutes with KBArF, versus 50 

minutes without the salt added. 

 

Figure 1.2. Structure of Rh catalyst (left) synthesized by Fan and coworkers. Asymmetric 

hydrogenation reaction of N-(1-phenylvinyl)acetamide using Rh catalyst (right). 

 

A palladium-based catalyst reported by Vidal-Ferran and coworkers saw an increase of 

up to 16% ee in their allylic substitution with the use of additives such as RbOAc or M(OTf)x (M 

= Mg2+, La3+, or Ho3+) (Figure 1.3).  
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Figure 1.3 Palladium metallacrown ether catalyst used for allylic substitution (M = Mg2+, La3+, 

or Ho3+).8 

Do and Cai synthesized a nickel polyethylene glycol catalyst able to yield polyethylene 

with varying molecular weight and branching depending on the cation and ligand structure 

(Figure 1.4).3 They also reported turnover frequencies between 1,000 and 439,000 g/((mol of Ni) 

hr) depending on the metal and exact ligand used. They generally saw more selective reactivity 

and more branching with NaBArF when compared to KBArF, which they believe has to do with 

the size of the glycol chain they used. They found LiBArF to inhibit polymerization, which was 

believed to be caused by its greater Lewis acidity inducing catalytically inactive extended 

structures.  

 

Figure 1.4. Structures of nickel catalysts synthesized by Do and Cai (left) and polyethylene 

polymerization reaction (right). 
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Fang and coworkers synthesized rhodium and iridium catalysts able to hydrogenate a 

variety of substrates including substituted quinolones and α-dehydroamino acid esters (Figure 

1.5).5 They found that Li+, Na+, and K+ all increased the ee of their catalyst, but adding Na+ 

cationic salts gave the highest ee. In addition, they observed better selectivity when using BArF 

as the counter anion when compared to PF6 and BF4,
 showing that the more weakly coordinating 

bulky anion performed better asymmetric catalysis. For example, using NaBArF achieved a 

>99% conversion and an ee of 93% in the hydrogenation of methyl-(Z)-2-acetamidocinnamate, 

while NaPF6 only resulted in 96% conversion and an ee of 83%.  

 

Figure 1.5. Structure of Rh catalyst by Fang and coworkers (left) and its catalytic reaction 

(right).5  

Cations and substrate activation 

Another way cations can influence transition metals is through substrate activation. This 

is demonstrated in two different matallocycle molybdenum carbonyl complexes. The first is cis-

(M(CO)4[Ph2P(OCH2CH2)3OPPh2]) (Figure 1.6).15 This metal complex will react with RLi (R = 

Me, Ph, tBu) or Et2N
- as shown in Figure 1.6.9 This is in stark contrast to cis-Mo(CO)4(PPh3) and 

cis-Mo(CO)4(PPh2OMe)2 which have no reactivity with RLi (R = Me, Ph, tBu) or Et2N
-. The 
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reason for the difference in reactivity is due to lithium being attracted to the metallocycle and 

making the carbonyl more nucleophilic (pulling electron density away). In addition, the Li+ acts 

to stabilize the benzoylate-acylate-type oxygen of the product (lowering its energy) and making 

the reaction as a whole favorable. 

 

Figure 1.6. Reaction of cis-(Mo(CO)4[Ph2P(OCH2CH2)3OPPh2]) with RLi (R = Me, Ph, tB), or 

Et2N
- 

 Similarly, Grey and coworkers reported that the addition of Li+ caused the carbonyl-

metal bonds on the molybdenum complex to weaken (Figure 1.7).10 They calculated a decrease 

of approximately 10% in the strength of the back bounding by monitoring the C≡O stretch by 

FT-IR. Interestingly, the decrease was the same for both cis and trans carbonyl ligands. They 

rationalized that the decrease in metal carbonyl bond strength is the result of the lithium cation 

being bound near the metal center and decreasing its ability to donate electrons into the 

carbonyl’s π* orbitals. A control experiment with a complex not having a metallacrown (cis-

Mo(CO)4{P(OPh)3}2) did not see a change in vco stretch with the addition of LiB(C6F5)4 · 2Et2O, 

indicating that the metallacrown ether is responsible for changing the CO ligands bond strength 

on the molybdenum. 



 

7 

 

 

Figure 1.7. Reaction of cis-(Mo(CO)4[Ph2P(OCH2CH2)6POP(2,2′-O2H8C12)2]) with LiB(C6F5)2 ·  

2 Et2O.  

 

Cations and geometry control 

The bite angle is the ligand-metal-ligand bond angle in a bidentate ligand. Changes in this 

angle can modify the properties of the transition metal.11 Similarly, switching from cis to trans 

isomer results in a complex with different properties. For example, cisplatin is a cancer treatment 

drug while the trans isomer (transplatin) is not (Figure 1.8).12 In addition, trans chelating 

bisphosphite palladium complexes often produce lower selectivity as catalysts relative to their cis 

isomer.8 The following sections will discuss how cation-responsive glycol ligands could be used 

to control bite angle and geometry. 

 

Figure 1.8. Structure of cisplatin (left) and transplatin (right). 

Significance of gold oxidative addition 

  Oxidative addition is a type of reaction in which the oxidation number and the 

coordination number of a metal center increases. This type of reaction is often involved in the 
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catalytic cycle of transition metals. Examples of Au(I) oxidative addition, especially of Caryl-

halogen bonds and C-C bonds, are relatively rare. Gold(I) is kinetically inert due to its preference 

for linear configuration, high redox potential (Au(I)/Au(III) Eo = +1.41 V)13, and relativistic 

effects (Figure 1.9).14  

 

Figure 1.9 Gold(I) is kinetically inert. 

Previous work has shown that reducing the bite angle of a Au(I) complex from the typical 

180o for a linear Au(I) complex can facilitate oxidative addition of Caryl-halide bonds (Figure 

1.10).15 

  

Figure 1.10. Oxidative addition to a bisphosphine gold complex. The phosphines are bound to 

ortho-carborane. 

The approach would be to form a metallocycle with gold and see if inserting a small 

cation would decrease the bite angle around gold and allow oxidative addition of Caryl-halide 

bonds to occur (Figure 1.11).  
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Figure 1.11. Possible route to reduce the activation energy barrier for oxidative addition of 

Au(I).  

The next section will discuss how cations could influence the isomerization of platinum 

complexes. 

Significance of platinum geometry 

As noted previously, the geometry of a metal complex can influence its reactivity. An 

example of the cis-trans isomerization of PtCl2{Ph2P(CH2CH2O)3CH2CH2PPh2-P,P′} is shown 

in Figure 1.12.16 The isomerization as monitored by 31P NMR would take place when a drop of 

12 M DCl was added to trans-[PtCl2{Ph2P(CH2CH2O)3CH2CH2PPh2-P,P′}] in D2O. The 

isomerization would not occur in 1,2-tetrachloroethane-d2 in temperatures up to 75 oC. 

 

Figure 1.12. trans‐[PtCl2{Ph2P(CH2CH2O)3CH2CH2PPh2-P,P′}] isomerizes to 

cis‐[PtCl2{Ph2P(CH2CH2O)3CH2CH2PPh2-P,P′}] in the presence of acid.16 

A question our research is trying to answer is: would the equilibrium of one of the 

isomers be more favored with the addition of a small cation? A cation may be able to interact 

more favorably with one isomer over another. In the example shown below, a cation could 
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interact with both glycol chains in the cis conformation but only one glycol chain in the trans 

isomer (Figure 1.13).  

 

Figure 1.13. Possible equilibrium change with addition of cation (E+). 

 This would make the equilibrium shift towards the cis isomer when the salt is added. The 

next chapter will discuss the synthesis of the glycol chain used.  

 

Notes to Chapter 1 
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 Previous phosphine ligands with glycol chains  

Ligands are often divided into two groups based on the type of bond they make with a 

transition metal. If the atom is attached to a transition metal by a coordinate-covalent bond, it is 

called an L-type ligand. If the atom is attached to a transition metal by an ionic or covalent bond, 

it is called an X-type ligand. The vast majority of previously reported metallacrown ethers are 

LL types. In addition, most are symmetrical due to better synthetic accessibility. Some examples 

of metallacrown ethers with platinum and palladium are shown below (Figure 2.1). 

 
Figure 2.1. Examples of palladium and platinum metallacrown ethers.1,2  

A rare example of an asymmetric metallacrown ether ligand prepared by Fang and 

coworkers is shown in Figure 2.2.3 The synthesis requires 3 steps with only 52% yield in the 

final step (Figure 2.2). 
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Figure 2.2. Fang and coworkers synthesis of a phosphine-phosphite ligand.3 Their Rh metal 

complex is shown in Figure 1.2.  

 

In contrast, many of the symmetric ligands can be made in a 1 step reaction. An example 

of the synthesis of a bisphosphate ligand is shown in Figure 2.3.  

  
Figure 2.3. Synthesis of bisphosphate ligand by Vidal-Ferran and coworkers. Their palladium 

metal catalysis is shown in Figure 1.3. 

Ligand design consideration for phosphine ligand 

As mentioned in chapter 1, previous gold(I) chelating complexes were able to achieve 

gold(I) oxidative addition of Caryl-halides by reducing the bite angle. The previous models were 
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LL bidentate ligands on gold, but this has the disadvantage of the metal complex being positively 

charged. By using an LX ligand, the gold(I) complex would be neutral and could be more 

susceptible to oxidation. For this reason, and the novelty of these ligands, an LX design was 

used.  

The next choice was what glycol chain length to use. This would determine the size and 

the number of atoms involved in an eventual metallacrown ether. In addition, the chain length 

dictates what isomers a metal complex could have. Crystal structures have shown glycol chains 

of tetraethylene glycol or longer have been shown to span the cis and trans isomers of platinum 

complexes so tetraethylene glycol was used for the linker.4  

The last choice was what atoms would be attached to the metal. For the L-type, we chose 

a triphenyl phosphine as it would coordinate readily with a late transition metal. For the X-type 

ligand we wanted an alkoxide to attach to the transition metal. An alcohol would bind to a 

transition metal as a L-type and need to be deprotonated first to act as an X-type ligand. In 

addition, the oxygen could not contain β-hydrogens as it could undergo β-hydride elimination.5 

This is especially the case for square planar late transition metals as having only 16 electrons and 

a coordination number of 4 can accommodate the transition state more readily.6 A mechanism of 

this is shown in Figure 2.4. To avoid this problem, the X-type ligand used was a phenoxide as it 

contains no β-hydrogens. 
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Figure 2.4. β-hydride elimination of methoxide on platinum.  

Ligand Synthesis7 

The structure of ligand target 1 and 2 is shown in Figure 2.5.  

 

Figure 2.5. Structure of phosphine ligand target 1 and 2. 

 An outline of the scheme for target 1 is shown below (Figure 2.6). The first step was a 

tosylation of one of the alcohol groups. Mono tosylation was accomplished by keeping the 

concentration of tetraethylene glycol in 10-fold excess.8 The second step was an SN2 reaction 

with a deprotonated catechol serving as the nucleophile to displace the tosyl group. The third 

step was adding a silyl protecting group to both the phenolic and alkyl alcohols. The forth step 

was selectively removing the silyl protecting group on the alkyl alcohol.9 
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Figure 2.6. Synthetic plan for target 1.  

While tosylation in the step one worked well, it was difficult to get the desired product 

from the tosylation reaction in step five. However, after switching the base to DMAP and 

following a different procedure, the reaction ran smoothly. 
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The sixth step was the step that made us abandon this synthetic path. An earlier test 

showed that the tosyl group could be replaced by diphenyl phosphine (Figure 2.7). This gave us 

good reason to believe that the reaction would work. However, step six led to a product with 

peaks in the alkene region, suggesting we did not make the desired product. 

 

Figure 2.7. Model diphenylphosphine reaction.  

At this point, we decided to modify the ligand (target 2, Figure 2.5). The aryl ring would 

also make the molecule more stable (PPh3 compounds are usually more stable to water/air 

compared to PRPh2 compounds). We then planned out two synthetic schemes, Route A (Figure 

2.8) and Route B (Figure 2.9). 

For both routes, the first step was the same as with the original phosphine ligand (step 1, 

Figure 2.8 and Figure 2.9). For Route A, the second step was a cross coupling reaction to replace 

the iodine with a diphenyl phosphine,10 and the third step was a modification of the condensation 

step from before from the second step in Figure 2.6.  

Literature showed that in order to tosylate phenolic alcohols in the presence of a 

phosphine, the phosphine must be borane protected (Figure 2.10).11 The first route had the 

disadvantage of having to first protect the phosphine with a borane group before tosylation of the 

alcohol could occur as has been shown by others (step 4, Route A).11  
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 Figure 2.8. Route A to phosphine ligand synthesis in Figure 6. 
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Figure 2.9. Route B to phosphine ligand synthesis in Figure 6. 
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Figure 2.10. Mamat and coworkers method to tosylate in the presence of a phosphine11    

We attempted a small scale tosylation of the product from step 3 of Route A without a 

protecting borane to see if this was true for alkyl alcohols as well, but the NMR of the material 

did not match the desired product. Since this would add 2 extra steps to Route A and the 

protection, sequential tosylation, and removal of the BH3 would all require a column, we put this 

synthetic Route A on hold and decided to focus on Route B (Figure 2.9). 

The first step in Route B was the same as Route A with the monotosylation of 

tetraethylene glycol (step 1, Route B). The next step was a condensation reaction to combine the 

glycol chain with 2-iodophenol (step 2, Route B).12 The third was a tosylation of the primary 

alcohol (step 3, Route B).13 The fourth step was another condensation reaction with catechol 

(step 4, Route B). The low yield of pure material was due to a difficult chromagraphic separation 

and unknown side products being formed. Catechol was used in 6 fold excess to try to prevent 

some possible side products such as two glycols chains connecting to the same catechol. The 

fifth step was a cross coupling reaction with palladium that produced the desired phosphine 

ligand (step 4, Route B).10 The yield was also low due to similar separation issues and trace 
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amounts of water in the reaction. Yields improved from 23% to 33% when using more rigorous 

water-free precautions such as thoroughly drying the reactants on molecular sieves beforehand.  

The phosphine ligand was characterized by proton, carbon, and phosphorus NMR (Figure 

2.11, Figure 2.12, and Figure 2.13). The proton NMR was consistent with the proposed structure 

by having 16 protons in the glycol region and 18 in the aryl region (Figure 2.11). Carbon NMR 

also matched well with 18 aryl peaks and 8 peaks in the ethylene region (Figure 2.12). The 

phosphorus NMR showed at singlet at -15.5 ppm which is very close to the reported compound 

diphenyl(2-methoxyphenyl)phosphine which has a peak at -16 ppm in CDCl3
 (Figure 2.13).14 

 

Figure 2.11. 1H NMR of phosphine ligand target 2. 
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Figure 2.12. 13C NMR of phosphine ligand target 2. 

 

Figure 2.13. 31P NMR of phosphine ligand (δ = -15.5 ppm) target 2. 

The five step template we developed could be used to access other similar LX ligands by 

changing the glycol chain length. In addition, substituents could be added to the benzene rings or 
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a different phosphine such as di-tert-butyl phosphine could be used instead of diphenylphosphine 

with likely only minor changes to the synthesis plan. The next chapter will present binding 

studies with the phosphine ligand. 

 

Notes to Chapter 2 

                                                
1 Owens, S. B.; Smith, D. C.; Lake, C. H.; Gray, G. M. Eur. J. Inorg. Chem. 2008, 30, 4710–

4718. 

2 Smith, D. C.; Gray, G. M. Inorg. Chem. 1998, 37, 1791–1797. 

3 Song, F.-T.; Ouyang, G.-H.; Li, Y.; He, Y.-M.; Fan, Q.-H. Eur. J. Org. Chem. 2014, 30, 6713–

6719. 

4 Organo, V. G.; Sgarlata, V.; Firouzbakht, F.; Rudkevich, D. M. Chem. Eur. J. 2007, 13, 4014–

4023. 

5 Ng, S. M.; Zhao, C.; Lin, Z. J. Organomet. Chem. 2002, 662, 120–129. 

6 Felix, R. J.; Munro-Leighton, C.; Gagne, M. R. Acc. Chem. Res. 2014, 47, 2319-2331. 

7 Full procedure and characterization are in Chapter 5 

8  Ballardini, R.; Balzani, V.; Dehaen, W.; Dell’Erba, A.; Raymo, F. M.; Venturi, M. Eur. J. Org. 

Chem. 2000, 591–602. 

9  Lipshutz, B. H.; Keith, J. Tetrahedron Lett. 1998, 39, 2495–2498. 



 

25 

 

                                                                                                                                                       
10 Ren, G.; Zheng, Q.; Wang, H Org. Lett. 2017, 19, 2462–2462. 

11  Mamat, C.; Köckerling, M. Synthesis 2014, 47, 387–394. 

12   Marsden, D. M.; Nicholson, R. L.; Skindersoe, M. E.; Galloway, W. R. J. D.; Sore, H. F.; 

Givskov, M.; Salmond, G. P. C.; Ladlow, M.; Welch, M.; Spring, D. R. Org. Biomol. Chem. 

2010, 8, 5313. 

13  Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. 

Med. Chem. 2002, 45, 3984–3999 

14 Horner, L.; Simons, G. Phosphorus and Sulfur and the Related Elements 1983, 14, 189–209. 



 

26 

 

Chapter 3:  
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Measuring binding constants 

The binding affinity of different salts to a crown ether or glycol chains is often calculated 

and expressed as an equilibrium of bound to non-bound salt.1 The equilibrium is written in terms 

of hosts (in this case glycols) and guests (in this case cations) (eq 3.1 and eq 3.2).  

          (3.1) 

         (3.2)   

      

One common method for quantifying salt binding is through NMR titration. This method 

is effective when the binding constant is less than 105 M-1.1 By adding a small known amount of 

the desired salt to a known amount of a glycol chain, a shift in the NMR spectrum will be 

observed if there is binding. A shift is seen instead of observing the bound and unbound salt 

complex because, in general, the association and dissociation of a salt is usually faster than the 

NMR time scale (≈ms).2 After adding more and more salt and observing a shift in the NMR, the 

shift can be correlated with how strongly the salt is binding. 

Solving for the binding constant (Ka) is often challenging. All of the values in the 

equilibrium expression in eq. 3.2 are unknown. The [HG] can’t directly be measured due to the 

fast exchange rate of binding and unbinding of cations. The [H] can’t be measured for the same 

reason as the [HG] and only the initial concentration of host ([H]o) is known. The [G] doesn’t 

give a distinct NMR signal so is also unknown. However, using the mass balance equations of 

[H] (eq 3.3) and [G] (eq 3.4) yields a new expression for Ka (eq 3.5).Solving for [HG] yields a 

quadratic equation with unknowns Ka and [HG] (eq. 3.6).  
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         (3.3) 

       (3.4) 

      (3.5) 

    (3.6) 

Since the change in the NMR chemical shift (Δδ) is proportional to the mole fraction of 

[HG] multiplied by some constant (eq 3.7), eq 3.6 can be rewritten as eq 3.8. This equation has 3 

unknowns, but something that can be measured (Δδ). Using a program such as BindFit,1 a non-

linear regression can be fit to the titration of data. 

        (3.7) 

     (3.8) 

The main factors determining what cation will bind most strongly are the size of the 

crown, the size of the cavity, and the number of oxygen atoms available to donate electron 

density. Table 3.1 summarizes the four most common crown ether sizes and the cations they 

prefer.3 The cavity size can vary, however, by substituents attached or if there is strain on the 

molecule. In addition, even cations too big/small for a crown will usually still bind. For example, 
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15-crown-5 will bind K+ in the absence of sodium and even surround a K+ cation in a 2:1 

stoichiometry if there is excess glycol.8  

Table 3.1. Common crown ethers and the cations they prefer. 

Cation Ion diameter (Å) Crown ether Cavity diameter (Å) 

Li+ 1.36 12-crown-4 1.2-1.5 

Na+ 1.94 15-crown-5 1.7-2.2 

K+ 2.66 18-crown-6 2.6-3.2 

Cs+ 3.34 21-crown-7 3.4-4.3 

 

The solvent used can play a significant role in how tightly a metal binds as salts can also 

interact with the solvent. For example, the binding constant of K+ to 18-crown-6 was over 

500,000 M-1 in acetonitrile and methanol, but only 15,000 M-1 in DMF and 2,239 M-1 in DMSO.4 

Generally, when changing to a more coordinating solvent (such as dichloromethane to THF or 

acetonitrile), a decrease in the binding constant of approximately 3 orders of magnitude is 

observed.5 This is because the solvent is competing with the glycol chain or crown ether for the 

salt. The solubility of the salt in the solvent can also play a factor as too low a solubility can 

make it impossible to reach the inflection point of the titration and get a binding constant.6  

Binding between free phosphine ligand and cations 

As mentioned earlier, we had strong reason to believe the phosphine ligand and its 

corresponding metal complexes would be able to bind small cations to its polyethylene glycol 

chain. The ligand should not bind cations as tightly as crown ethers due to the macrocycle 

effect.7 This is because the entropic cost is much larger for a glycol chain than for a crown ether.  
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For example, the binding constant of K+ to 18-crown-6 is 6000 times stronger than its open-

chained equivalent in anhydrous methanol (Figure 3.1).8 

 

Figure 3.1. Binding constant of K+ 18-crown-6 (left) and pentaethylene glycol dimethyl ether in 

dry MeOH. 

 

Based on the size and number of oxygen atoms in the phosphine ligand, we expected 

either Li+ or Na+ to bind the most strongly. These binding studies would tell us how strongly the 

ligand was binding a cation and what type of binding motif was present. The most common types 

of binding modes are 1:1, 1:2, and 2:1 host-guest (ligand-salt). An example of these on the 

phosphine ligand is shown in Figure 3.2. Previous work of cation binding to open chain glycols 

shows 1:1 binding in the vast majority of glycol chains, salts, and solvents.9  

 

Figure 3.2. Three possible binding motifs for a cation interacting with the phosphine ligand. 
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For our salts, we chose NaBPh4, KBPh4, and LiBPh4 · 3CH3O(CH2CH2)OCH3 to get a 

variety of cation sizes with a common non-coordinating anions. It is also more economical than 

using the most non-coordinating anionic salts such as the BArF salts.  

The binding studies were monitored by proton NMR. Resonance shifting was expected to 

occur upon binding of the cation to the glycol chain.10 Binding of salts to similar glycol chains 

has been shown to be dynamic on the NMR timescale and so no new peaks were expected to be 

observed, just shifting of the protons in the glycol chain.  

Deuterated benzene was originally tried for monitoring cation binding. However, the 

tetraphenylborate salts have very low solubility in benzene. This made the process much more 

time consuming trying to get the salt to fully dissolve. In addition, a brown oil precipitated out of 

solution in the NMR tube after adding only 0.5 equivalents of NaBPh4. These results caused us 

to change the solvent we used to acetonitrile, which had the advantage of salts being very soluble 

in it. In addition, it is a common solvent others have used to quantify binding of cations in crown 

ethers.  

After drying the NMR solvent and the phosphine ligand overnight on molecular sieves, a 

solution of the salts and a solution of the phosphine ligand were prepared. A small amount of 

anhydrous DCM was added before each titration to use as an internal reference. 

Titration of NaBPh4 into an NMR tube containing phosphine ligand in MeCN-d3 caused 

shifts in the NMR spectrum. The greatest shift was seen in the alkyl region, which is to be 

expected as they are the closest protons to where the cation would bind. A stack plot of the 

titration is shown in Figure 3.3. 
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Figure 3.3. NMR titration of phosphine ligand with NaBPh4 in MeCN-d3.  

Using the program Bindfit,11,12 we were able to fit the data to different types of host-guest 

(glycol-cation) binding systems. In choosing which protons to track the changes of the NMR 

resonance, we picked protons that showed large movement and were not overlapping with other 

protons. We chose to use the triplet at 3.98 ppm to monitor the cation binding in all of the salts. 

Previous work has shown that this proton is in the middle of the glycol chain.13 This is ideal 

since small amounts of water could, in theory, interact with the cation binding of protons near the 

end of the glycol chain but would not influence the peaks near the middle of the glycol chain. 

Inputs of the proton NMR shift with the concentration of the salt and phosphine ligand fit best to 

a 1:1 binding system. Binding constant was calculated to be 133 M-1 and 119 M-1 in two trials 

(Table 3.2). 
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Table 3.2. Binding constant of cation to Phosphine ligand 

Salt Binding constant (M-1) % Errora Binding mode 

Li+ 45 ± 7.2 % 1:1 

Li+ 54 ± 10.5 % 1:1 

Li+ 44 ± 10.0 % 1:1 

Na+ 133 ± 4.4 % 1:1 

Na+ 119 ± 3.4 % 1:1 

K+ 14 ± 20.2 % 1:1 

K+ 17 ± 11.7 % 1:1 

a 95% confidence integral. 

Following the same proton signal at 3.98 ppm, we observed a shift in the NMR resonance 

with the addition of LiBPh4 · 2Et2O. The binding also fit well with a 1:1 host-guest binding 

model. For lithium, we calculated a slightly weaker interaction than sodium with binding 

constants of only 44, 45, and 54 M-1 in three trials. This result was expected as lithium can only 

accommodate 4 oxygen donors and our phosphine ligand has 5 ethylene oxygen atoms, one 

phenolic oxygen, and a phosphine atom that could all in theory have a favorable interaction with 

a cation. If the lithium cation cannot accommodate all of the donors, then we would expect the 

shift in resonance to be smaller, as is observed. Stack plot of the NMR titration is shown in 

Figure 3.4. 
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Figure 3.4. NMR titration of phosphine ligand with LiBPh4 
. 3(1,2-Dimethoxyethane). 

The last salt used was KBPh4. We again observed shifting in the NMR resonances with 

the titration of the salt. Being much larger than the other cations, we expected the potassium 

cation to not bind as tightly to the phosphine ligand. The proton NMR of the titration is shown in 

Figure 5. The 1:1 binding model again fit best, but the error is much higher than previous salts 

(Table 3.2). There are a couple of possible reasons for this. The first is the salt has a much lower 

solubility than the other salts. This required having to add KBPh4 as a weighed solid to get to 

high equivalent values and would not be as consistent as micro pipetting from a solution. 

Another possible reason is even though other binding models tested (1:2 and 2:1) gave even 

greater error, it is possible another binding system is the true stoichiometry of the binding. In 

addition, a more complicated binding system (such as a mixture of different binding interactions) 
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could be happening. While this is unlikely based on previous work of cation binding in 

polyethylene glycols,9 it cannot be completely ruled out. 

 
 

Figure 3.5. NMR titration of phosphine ligand with KBPh4 in MeCN-d3. 
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Chapter 4:  
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Synthesis of platinum complexes1 

With the phosphine ligand in hand, the next goal was to put the ligand on a metal. Before 

pursuing gold complexes, platinum was used as a model metal. Approximately 33% of platinum 

is NMR active (195Pt) and so the reactions would be easier to monitor by 31P NMR as the P-Pt 

coupling constant will vary based on what other ligands are attached to the platinum. In addition, 

a phosphorus peak with no satellites would give us clear evidence that the phosphine is not 

attached to platinum.   

L2PtCl2 (L = phosphine ligand) 

When PtCl2(NCPh)2 is stirred with 2 equivalents of the phosphine ligand in DCM, the 

trans platinum chloride product readily forms (Figure 4.1). The trans isomer was confirmed 

based on the P-Pt coupling constant from literature (Table 4.1).2 The compound then slowly 

equilibrates with the cis isomer after sitting in a DCM solution for several days (Figure 4.2 and 

Figure 4.3) as monitored by 31P NMR. The trans isomer can be isolated with column 

chromatography using 1:1 DCM/EtOAc.  

 

Figure 4.1. Formation of Pt(phosphine ligand)2Cl2.  
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Table 4.1. Phosphorus NMR resonance and coupling constants of platinum chloride complexes. 

Compound 31P Chemical Shifta J
P-Pt

a
 

trans-PtCl
2
(PPh

3
)

2
 17.3 ppm2 2560 Hz2 

cis-PtCl
2
(PPh

3
)

2
 12.0 ppm2 3677 Hz2 

trans-PtCl2(phosphine ligand)2 13.9 ppm 2698 Hz 

cis-PtCl2(phosphine ligand)2 8.46 ppm 3801 Hz 

a in CDCl3   

 

 

Figure 4.2. Isomerization of trans-PtCl2(phosphine ligand)2 to cis-PtCl2(phosphine ligand)2. 

 

Figure 4.3. 31P NMR showing the conversion of the free phosphine ligand (bottom) to trans-

Pt(phosphine ligand)2Cl2  (middle, JP-Pt = 2698 Hz) and to a mixture of cis and trans isomers 

(top, cis-Pt(phosphine ligand)2Cl2
 JP-Pt = 3801 Hz)     
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L2PtMe2 (L = phosphine ligand) 

Platinum methyl complexes with the phosphine ligand were also synthesized. The 

precursor for this reaction was synthesized in a two-step process. First, K2PtCl4 was reacted with 

diethyl sulfide in water under argon to generate PtCl2(SEt2)2 (Figure 4.4). After extracting the 

product with DCM and drying the product, the platinum compound was treated with methyl 

lithium from a literature procedure to produce [PtSEt2Me2]2 after crystallization from acetone 

(Figure 4.4).3 The Pt complex was then reacted with the phosphine ligand in toluene to yield the 

methyl version of the platinum complex (Figure 4.5). It was identified to be the cis isomer by 31P 

NMR based on its JP-Pt value of 1940 Hz (cis-Me2Pt(PPh3)2 which appears at 27.7 ppm with JP-Pt 

= 1900 Hz in CD2Cl2)
4 (Figure 4.6). 

 

Figure 4.4. Formation of [PtSet2Me2]2 

 

 

Figure 4.5. Formation of cis-Me2Pt(phosphine ligand)2. 
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Figure 4.6. 31P NMR of cis-Me2Pt(phosphine ligand)2 

 

Cyclometalating the phosphine ligand on platinum 

With Cl2Pt(phosphine ligand)2 and Me2Pt(phosphine ligand)2 in hand, the next step was 

to cyclometalate the phosphine ligand on platinum. First attempts included the addition of an 

organic base to Cl2Pt(phosphine ligand)2 based on previous work showing trimethylamine and 

DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) were able to create Pt-phenoxide bonds (Figure 4.7 

and Figure 4.8).5,6  
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Figure 4.7. Formation of Pt-O bond with DBU.5 

 

Figure 4.8. Formation of Pt-O bond with trimethylamine.6 

The idea was to deprotonate the phenol on the end of the phosphine ligand, which could 

then displace the chloride and attach to the platinum center (Figure 4.9).  

 

Figure 4.9. Cyclometalation attempts of trans-Cl2Pt(phosphine ligand)2 with DBU, Et3N, 

DMAP, or 2,6-di-tert-butylpyridine in C6D6 or CDCl3 

Bases such as NEt3, 4-dimethylaminopyridine, DBU (1,8-diazabicyclo[5.4.0]undec-7-

ene), and 2,6-di-tert-butylpyridine were used but did not lead to the desired product. 31P NMR of 

the reaction of Cl2Pt(phosphine ligand)2 with DBU in C6D6 is shown below (Figure 4.10). The 

peaks at -15.5 and 13.8 ppm corresponded to free phosphine ligand and trans-Cl2Pt(phosphine 
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ligand)2 respectively. The largest peak was seen at 23.1 ppm and had no platinum satellites, 

perhaps corresponding to a phosphine oxide (triphenylphosphine oxide appears at 24.4 ppm in 

C6D6).
7 The sterically hindered base 2,6-di-tert-butylpyridine did not give free ligand but left 

some starting material and the same peak at 24.4 ppm. 

 

Figure 4.10. 31P NMR of trans-Cl2Pt(phosphine ligand)2 with DBU in C6D6. 

Another method using carbonate salts was then attempted. The rationale was using 

Ag2CO3 would lead to the formation of CO2 (g) and AgCl (which would precipitate out of 

solution as a solid) which would drive the reaction forward.8,9 Heinicke and coworkers showed a 

similar method worked with other carbonate salts such as K2CO3 to cyclometalate a phenoxide 

group on palladium (Figure 4.11).10 The results of Ag2CO3 led to a large mixture of products 

with possibly one 31P NMR peak corresponding to what we would expect for the cyclometalated 

phosphine ligand on platinum (though in very low intensity). After getting the same results with 
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K2CO3, we decided to abandon this method, as purifying would be difficult because the complex 

is likely not stable to silica.   

 

Figure 4.11. Cyclometalating a phosphine phenoxide on palladium 

 

Figure 4.12. Cyclometalation attempt of trans-Cl2Pt(phosphine ligand)2 with Ag2CO3 

Another method tried was heating the PtMe2(phosphine ligand)2 with a salt. NaBPh4 or 

LiPF6 were attempted with the rational that constraining the crown would lower the entropic cost 

of cyclometalating. However, after heating in NMR tubes with several solvents (C6D6, DMSO, 

and toluene), the desired product was not formed and the platinum complex decomposed.   

Another group reported the method of putting the ligand in its sodium salt deprotonated 

form first and then reacting the ligand with a metal (Figure 4.13).11 The first step was reacting 

the phosphine ligand with NaH (Figure 4.14). This seemed to work well with crude NMR having 

broader peaks and the phosphorous NMR shifting slightly (31P NMR = -15.2 for deprotonated 

form vs. -15.5 for protonated form.) 
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Figure 4.13. Do and coworkers cyclometallation through a salt molecule 

 

Figure 4.14. Formation of sodium salt form of phosphine ligand. 

The next step is to react the sodium salt version of the phosphine ligand with a platinum 

chloride with two good leaving groups. This reaction is currently in progress and has promising 

results as monitored by NMR and is the next step in future work for this project. 
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Chapter 5:  
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General Considerations 

Reagents were used as received unless otherwise noted. Reactions under nitrogen were set up in 

a glovebox and sealed with a Teflon adapter. Reactions under argon were done using standard 

Schlenk line techniques. Column chromatography was performed with 230-400 mesh silica gel. 

When anhydrous reagents were needed, the reagent was left over 3Å sieves overnight. 31P NMR 

was reference with external 75% H3PO4
 in D2O.  

Synthesis  

2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate 

 

To a solution of tetraethylene glycol (42.1 g, 217 mmol) with triethylamine (5.1 g, 50 mmol) in 

dichloromethane (75 mL) at 0 oC was added tosyl chloride (6.19 g, 32.3 mmol) in approximately 

100 mg portions over 1.5 h. The reaction mixture was warmed to room temperature (25 oC ) and 

stirred for 24 h. The organic layer was washed with 3 × 50 mL of H2O followed by 3 × 50 mL of 

a 7.5 g of citric acid in 150 mL H2O solution. The organic layer was then dried over Na2SO4 and 

the volatiles were then removed in vacuo to yield (9.2 g, 81%) as a slightly yellow oil. 1H NMR 

(300 MHz, CDCl3) δ 7.76 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 4.18 – 4.08 (m, 2H), 3.73 

– 3.48 (m, 14H), 2.63 (s, 1H), 2.41 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 144.87, 132.97, 

129.87, 127.98, 72.50, 70.73, 70.65, 70.47, 70.33, 69.31, 68.70, 61.70, 21.65. 
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2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethan-1-ol 

 
This synthesis is based on a literature procedure.1 A 100 mL sealed reaction vessel was charged 

with cesium carbonate (4.14 g, 12.7 mmol),  2-iodophenol (2.00 g, 9.08 mmol), and mono tosyl 

tetraethylene glycol (3.16 g, 9.08 mmol) in MeCN (50 mL) under N2 (g). The reaction vessel was 

then heated to 105 oC and stirred for 24 hours. The reaction mixture was then cooled to room 

temperature and the solvent was removed in vacuo. The remaining material was extracted with 

DCM (3 × 75 mL). The extracts were filtered, and then washed with brine (3 × 200mL). The 

volatiles were then removed in vacuo to yield a slightly yellow oil (3.16 g, 88%) 1H NMR (500 

MHz, CDCl3) δ 7.76 (1H, dd, J = 7.77 and 1.63 Hz), 7.27 (1H, ddd, J = 8.43, 7.47, and 1.74 Hz), 

6.83 (1H, dd, J = 8.26 and 1.37 Hz), 6.70 (1H, td, J = 7.60 and 1.39 Hz), 4.20-4.14 (2H, m), 

3.97-3.89 (2H, m), 3.86-3.78 (2H, m), 3.78 – 3.57 (m, 10H), 2.51 (1H, br) 13C NMR (75 MHz, 

CDCl3) δ 157.58, 139.58, 129.57, 122.87, 112.56, 86.76, 72.60, 71.32, 70.81, 70.75, 70.46, 

69.63, 69.23, 61.85.  
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2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate 

 

This synthesis is based on a literature procedure.2 A suspension of 2-(2-(2-(2-(2-

iodophenoxy)ethoxy)ethoxy)ethoxy)ethan-1-ol (1.3 g, 3.3 mmol) and tosyl chloride (1.9 g, 9.8 

mmol) were dissolved in pyridine (22.5 mL) and stirred at room temperature (23 oC) for 4 hours. 

1M HCl (175 mL) was then added and the reaction was stirred for another hour. The reaction 

mixture was then diluted with DCM (200 mL). The DCM extracts were then washed with 1M 

HCl (4 ×150 mL) and brine (2 ×150 mL). The organic layer was then dried over MgSO4 and 

solvent removed in vacuo to yield the slightly yellow oil 2-(2-(2-(2-(2-

iodophenoxy)ethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (1.4 g, 78% yield) 1H NMR 

(500 MHz, CDCl3) δ 7.83 – 7.71 (m, 3H), 7.33 (dd, J = 8.5, 0.8 Hz, 2H), 7.31 – 7.26 (m, 1H), 

6.83 (dd, J = 8.2, 1.4 Hz, 1H), 6.71 (td, J = 7.6, 1.4 Hz, 1H), 4.16 (dt, J = 6.9, 4.8 Hz, 4H), 3.96 – 

3.89 (m, 2H), 3.84 – 3.76 (m, 2H), 3.71 – 3.63 (m, 4H), 3.62 – 3.56 (m, 4H) 2.44 (s, 3H) 13C 

NMR (75 MHz, CDCl3) δ 157.54, 144.85, 139.52, 133.07, 129.89, 129.55, 128.04, 122.82, 

112.53, 86.72, 71.26, 70.84, 70.82, 70.63, 69.59, 69.34, 69.19, 68.74, 21.72. 
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2-(2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenol 

  

A 100 mL Teflon sealed reaction vessel was charged with 2-(2-(2-(2-(2-

iodophenoxy)ethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (2.5 g, 4.5 mmol),  catechol 

(3.4 g, 31 mmol), and cesium carbonate (5.0 g, 15 mmol) and dried acetonitrile (60 mL). The 

mixture was stirred under nitrogen gas at 95 oC for 36 hours during which time a solid formed. 

The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. 

The reaction mixture was then extracted with DCM (4 × 50 mL) and filtered. The mixture was 

purified by column chromatography on silica, 6:4 hexanes/ethyl acetate to 3:7 hexanes/ethyl 

acetate to yield 2-(2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenol (0.798 g, 

36%) as a yellowish oil. 1H NMR (500 MHz, CDCl3) δ 7.76 (dd, J = 7.8, 1.6 Hz, 1H), 7.30 – 

7.25 (m, 1H), 6.96 – 6.88 (m, 3H), 6.85 – 6.77 (m, 2H), 6.74 – 6.67 (m, 2H), 4.21 – 4.13 (m, 

4H), 3.93 (dd, J = 5.5, 4.4 Hz, 2H), 3.86 – 3.79 (m, 4H), 3.76 – 3.66 (m, 6H). 13C NMR (126 

MHz, CDCl3) δ 157.56, 147.59, 146.15, 139.53, 129.58, 122.94, 122.84, 119.87, 115.86, 115.04, 

112.61, 86.73, 77.41, 77.16, 76.91, 71.32, 70.77, 70.72, 70.54, 69.70, 69.64, 69.59, 69.15. 
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(2-(2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)diphenylphosphane 

 

A 100 mL Teflon sealed reaction vessel was charged with 2-(2-(2-(2-(2-(2-

iodophenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenol (0.5 g, 1.0 mmol), sodium acetate (0.092 g, 

1.1 mmol), Pd(OAc)2 (2.3 mg, 0.010 mmol), and diphenylphosphane (0.18 mL, 1.02 mmol) in 

DMA (40 mL) under N2 (g) and heated to 120 oC for 16 hours. In air the reaction mixture was 

then filtered through celite and DMA was removed by vacuum filtration. The mixture was 

purified by column chromatography on silica by DCM to 3:7 ethyl acetate to yield the yellow oil 

(2-(2-(2-(2-(2-(2-iodophenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)diphenylphosphane (180 

mg, 33%). 1H NMR (500 MHz, CDCl3) δ 7.35 – 7.26 (m, 11H), 6.94 – 6.74 (m, 7H), 6.65 (ddd, J 

= 7.5, 4.8, 1.7 Hz, 1H), 4.18 – 4.09 (m, 2H), 4.03 (t, J = 5.0 Hz, 2H), 3.84 – 3.74 (m, 2H), 3.73 – 

3.66 (m, 2H), 3.66 – 3.59 (m, 2H), 3.54 (dd, J = 5.4, 4.7 Hz, 2H), 3.46 (s, 4H). 13C NMR (126 

MHz,CDCl3) δ 160.26 (d, J = 14.8 Hz), 147.61, 146.16, 136.84 (d, J = 10.4 Hz), 134.05 (d, J = 

20.3 Hz), 133.52 (d, J = 2.0 Hz), 130.33, 128.70, 128.46 (d, J = 7.0 Hz), 126.10 (d, J = 12.6 Hz), 
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122.94, 121.32, 119.87, 115.85, 115.09, 111.39  (d, J = 1.6 Hz), 70.89, 70.67, 70.62, 70.42, 

69.73, 69.61, 69.34, 68.50. 31P NMR (202 MHz, CDCl3) δ -15.5 
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PtCl2(bis-phosphine ligand) 

 

A solution of PtCl2(NCPh)2 (28 mg, 0.073 mmol) and phosphine ligand (80 mg, 0.15 mmol) in 

DCM (15 mL) was stirred at room temperature for 24 hours. The solvent was then removed and 

the reaction mixture was washed with water (3 × 5 mL) to yield a yellow solid (76 mg, 81%). 

The trans isomer slowly converted to a mixture of cis and trans over a week. Trans isomer could 

be purified by column chromatography on silica by 1:1 DCM/ethyl acetate. 

NMR data of the trans isomer 

1H NMR (500 MHz, CDCl3) δ 7.88-7.76 (m, 4H), 7.42-7.29 (m, 7H), 7.13-7.05 (m, 1H), 6.97-

6.84 (m, 5H), 6.83-6.76 (m, 1H), 4.16 – 4.12 (m, 2H), 4.06 (t, J = 5.2 Hz, 2H), 3.80 – 3.76 (m, 

2H), 3.70 – 3.64 (m, 2H), 3.60 – 3.57 (m, 2H), 3.55 (t, J = 5.2 Hz, 2H), 3.35 (m, J = 6.0, 3.1 Hz, 

2H), 3.31 – 3.28 (m, 2H). 13C NMR (126 MHz, Benzene-d6) δ 160.74 (d, J = 4.1 Hz), 148.88, 

146.94, 135.99 (t, J = 5.7 Hz), 135.29, 132.74, 130.57, 130.34, 130.17, 130.11, 123.37, 120.71 (t, 

J = 8.4, 4.1 Hz), 119.80, 118.32 (t, J = 29.5 Hz), 116.64, 115.51, 112.18, 70.84, 70.78, 70.74, 

70.54, 69.68, 69.56, 69.52, 68.71. 13P NMR (202 MHz,CDCl3) δ 13.88 (trans  JP-Pt = 2698 Hz) 
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For cis isomer 

31P NMR (202 MHz, CDCl3) δ 8.46 (Cis JP-Pt = 3801 Hz) 
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Dichlorobis(diethyl sulfide)platinum(II)  

 

This synthesis is based on a literature procedure.3 To a round bottom flask with K2PtCl4 (630 mg, 

1.52 mmol) and water (20 mL) under argon was added diethyl sulfide (.475 mL, 4.41 mmol) and 

stirred at reflux for 2 hours. The reaction mixture was then extracted with DCM (2 × 70 mL) and 

dried over MgSO4. The solvent was then removed in vacuo to yield .6 g of the bright yellow 

solid dichlorobis(diethyl sulfide)platinum(II). (91%) 1H NMR (500 MHz, CDCl3) δ 3.22 (dq, J = 

12.0, 7.5 Hz, 2H), 2.68 (dq, J = 12.1, 7.3 Hz, 2H), 1.42 (t, J = 7.4 Hz, 1H), 1.38 (t, J = 7.4 Hz, 

5H). 

 [(SEt2)PtMe2]2  

  

To a solution of  dichlorobis(diethyl sulfide)platinum(II) (200 mg, .448 mmol) and dry ether (25 

mL) in an ice bath under argon gas was added methyl lithium (1.55 mL, 1.6 M) in ether. The 

reaction mixture was stirred overnight and slowly brought to room temperature and water (1.5 

mL) was added slowly. Then water (40 mL) was added to the reaction mixture and was extracted 

with DCM (2 × 60 mL) and dried over Na2SO4. The solvent was then removed in vacuo and 

product was recrystallized three times with acetone to yield the brown solid [(Set2)PtMe2]2. (67 

mg, 24%). 1H NMR (500 MHz, CDCl3) δ 3.07 (q, J = 7.4 Hz, 2H), 1.64 (t, J = 7.4 Hz, 3H), 0.52 

(d, JPt-H = 85.0 Hz, 3H).  

Pt(P)2Me2  

 

To a sealed reaction vessel was added [PtMe2SEt2]2 (3.32 mg, 0.0053 mmol) and the phosphine 

ligand (11.5 mg, 0.0210 mmol) in toluene was stirred at 70 oC under N2(g) for 45 min. The 

solvent was then removed in vacuo to yield of a brownish/black paste (10 mg, 77%). 1H NMR 

(500 MHz, C6D6) δ 7.76 – 7.64 (m, 4H), 7.59 (t, J = 9.6 Hz, 1H), 7.11 – 7.17 (m, 1H),  7.07 – 

6.90 (m, 7H), 6.90 – 6.79 (m, 1H), 6.80 – 6.61 (m, 3H), 6.42 (d, J = 6.6 Hz, 1H), 3.74 – 3.65 (m, 

2H), 3.62 (t, J = 5.8 Hz, 2H), 3.45 – 3.30 (m, 8H), 3.30 – 3.23 (m, 2H), 3.18 (t, J = 5.8 Hz, 2H), 
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1.11 (tt, JPt-H = 36.76 Hz, JH-H = 6.0 Hz, 2H). 31P NMR (202 MHz, C6D6) δ 24.72 (d, JPt-P = 

1940.0 Hz) 
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Sodium 2-(2-(2-(2-(2-(2-

(diphenylphosphaneyl)phenoxy)ethoxy)ethoxy)ethoxy)ethoxy)phenolate.  

 

To a solution under N2(g) was added phosphine ligand (12 mg, 0.0219 mmol) and NaH (1 mg, 

0.043 mmol) in THF (3 mL) and stirred for 2 hrs and then left to sit overnight. The reaction was 

then filtered through celite and solvent removed in vacuo. 1H NMR (500 MHz, C6D6) δ 7.49-

7.35 (m, 4H), 7.20-6.95 (m, 9H), 6.91 (ddd, J = 7.6, 4.6, 1.7 Hz, 1H), 6.82-6.72 (s br, 1H), 6.71 

(t, J = 7.4 Hz, 2H), 6.57 (td, J = 7.5, 1.7 Hz, 1H), 3.87 (s, 2H), 3.69 – 3.61  (m, 2H), 3.51 – 3.40 

(m, 2H), 3.31 – 3.06 (m, 11H). 31P NMR (202 MHz, CDCl3) δ -15.2 
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