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Abstract 

Anecdotal evidence suggests that frontal plane kinematics of the lower extremity may be an 

important aspect of bicycle fit, however, frontal plane adjustments are often overlooked during 

common fit procedures. The purpose of this study was to manipulate pedal stance width through 

the use of pedal spacers to determine their influence on frontal plane kinematics of the hip, knee, 

and ankle during cycling. Twenty-four young healthy subjects (12 female) recreational cyclists 

completed five minutes of pedaling at their preferred cadence and power output under three 

stance widths conditions: no spacer, 20 mm spacer, and 30 mm spacer. The pedaling cadence and 

power output were kept identical for all experimental conditions. Lower extremity marker 

position data were captured at 250 Hz for the last two minutes of each condition. Sixty 

consecutive crank cycles were analyzed to identify peak hip, knee, and ankle angles in the frontal 

plane. With an increase in pedal stance width, hip and knee peak abduction angles increased and 

peak adduction angles reduced (p<.05). The ankle joint position was not affected by the stance 

width conditions. Pedal spacers are an effective way of manipulating pedal stance width and 

frontal plane kinematics of the lower extremity.  

 

Keywords: knee adduction, bicycle fit 
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Chapter I 

Introduction 

  Cycling is a common activity used during rehabilitation in a variety of clinical settings as 

well as for fitness and recreation.1,2,3,4,5 A bicycle fit is performed with the goal to optimize the 

rider’s posture to enhance performance, reduce incidence of injury, and increase comfort.6,7,8,9,10 

Bicycle fits commonly include manipulations of the handlebars, seat height, and saddle fore-aft 

position.6 These adjustments are generally used to optimize trunk angle and knee joint range of 

motion (ROM).11,12 

Cycling motion of the lower extremity primarily occurs in sagittal plane. Hence, joint 

motion in this plane has been studied extensively 7,12,13,14 and when performing a bike fit, focus 

has traditionally involved manipulations in the sagittal plane.6,15 Previous research has 

recommended certain bike fit criteria (i.e., certain joint positions and ROM) to optimize rider 

posture for performance and increased comfort.12 These common bike fit criteria include a trunk 

angle of 45°, when hands are placed on top of the handlebars,6,12,16 and knee flexion angle of 30° 

at the bottom dead center (BDC) of a crank cycle.8,12,15,17,18  

Range of motion at the lower extremity joints in the frontal plane during the bike fit is 

under-researched and often overlooked. Knee abduction and adduction angles have been recently 

suggested to be important aspects of bike fit 1,19 as changes in frontal plane motion at this joint 

influence comfort at the knee joint during cycling.20,21 For example, individuals with medial 

compartment knee osteoarthritis demonstrate a varus deformity at the knee joint 2,22 and this 

posture increases compressive forces on the medial side of the knee joint. For these individuals 

with knee osteoarthritis, a strategy to reduce the varus posture at the knee involves walking with
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wider stance width, which has shown to improve comfort and favorably change frontal plane 

joint motion acutely.2,23  

An effective and convenient method to manipulate stance width on a cycle ergometer is 

through the use of pedal spacers.24 Pedal spacers are machined components that insert between 

the crankset and the pedal. Interfacing pedal spacers between the pedal and crank effectively 

increases pedal stance width and thus could favorably influence frontal plane knee joint motion 

and postural alignment (i.e., reduce knee adduction angles). Pedal spacers can be purchased in 

multiple lengths to manipulate stance width on a cycle ergometer to different extents. Currently, 

there are several pedal spacer options available commercially with claims that these pedal 

spacers could make a favorable change in frontal plane knee position during cycling; however, 

there is no research supporting claims of favorable changes to knee joint motion in the frontal 

plane.  

There is a need to show the feasibility of changing knee joint frontal plane motion 

through the use of pedal spacers in young healthy adults during cycling before such research is 

conducted on individuals with medial compartment knee osteoarthritis. Therefore, the purpose of 

this study was to examine the effect of pedal stance manipulation, via different lengths of pedal 

spacers, on lower extremity frontal plane joint motion in healthy young adults. We hypothesized 

that: 1) the peak knee adduction angle would decrease with increased stance width (i.e., spacers; 

20 mm and 30 mm) compared to no spacer stance width, and; 2) peak knee adduction angles 

would be lower for longer spacer condition (30 mm) compared to the shorter spacer condition 

(20 mm).  

                                                                Methods 

  Participants: Twelve female (Mean (SD): 24.5 (3.7) years; 167.4 (5.0) cm; 60.8 (6.9) kg) 
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and 12 male (22.3 (3.5) years; 183.8 (7.0) cm; 84.2 (15.7) kg) participants were recruited from 

the campus of Western Washington University and the local community. The appropriate sample 

size was determined using G*Power 3.1 software. 25,26 A sample size of 24 participants was 

needed to achieve a statistical power of 0.8 to detect a medium effect size main effect (Cohen’s f 

= 0.25) of pedal spacers on lower extremity joint angles at an alpha level of 0.05. Recreational 

cyclists were classified as people they self-reported that they had ridden a bicycle for recreation, 

transportation, and/or exercise throughout the majority of the past year.27,28,29 Participants with 

pain or recent injuries to the lower extremity were excluded. 2,23,30 The Western Washington 

University Institutional Review Board approved the study design and procedures and all subjects 

provided an informed consent document. 

  Data Collection: Each participant completed one testing session that lasted approximately 

60 minutes. Prior to the arrival of the participants, the capture volume for a six-camera Vicon 

system (Vicon Vero, Centennial, CO, USA) was calibrated and the calibration error always 

remained under 0.5 mm.31 All cycling tests were carried out on a Velotron Dynafit ergometer 

(Racer-Mate Inc, Seattle, WA), which allowed for seat and handlebar position adjustment as well 

as the ability to control power output as cadence varied. The cycle ergometer was also calibrated 

prior to all data collection sessions by executing the Accuwatt calibration check test (Racer-

Mate, Inc, Seattle, WA).27,32 The ergometer calibration deviated no more than 0.5% from the 

factory settings across all data collection sessions.  

Participants completed the informed consent and a health history and cycling experience 

questionnaire upon arrival to determine if they met the inclusion and exclusion criteria for the 

study.23,27 Each participant was provided with lycra cycling shorts, a tank top, and appropriately 

sized cycling shoes (Giro, Santa Cruz, CA) that clipped into the pedals (Shimano, Sakai, Japan). 



4 
 

Twenty-four retroreflective 14 mm markers were placed on both lower extremities using a 

modified lower extremity Plug-in Gait model from Vicon. The modification to the model 

included adding 2 markers each to the pelvis, thigh, shank, and foot segments to recreate markers 

that were likely to be covered as the participants adopted a cycling posture and to identify 

individual crank cycles. Using the Vicon motion capture system, marker position data were 

captured at a sampling frequency of 250 Hz. Static trials were collected with participants 

standing in motorcycle pose according to the plug-in gait guidelines.33  

A cycling ergometer fit procedure was implemented next in order to standardize the 

cycling posture of the participants and minimize effects observed due to influences other than 

manipulations in pedal stance width.27,30,34 A handheld goniometer was used to determine all 

static angles. Seat height was set with the crank positioned at bottom dead center and the knee 

flexed to 30°. 6,7,8,35,36 Seat fore-aft position was set so the pole of the patella was located directly 

superior to the pedal axle in the sagittal plane when the crank was forward and parallel to the 

ground.27,37,38 Finally, handlebar position was adjusted to achieve a trunk angle of 30° from the 

vertical plane to make cycling more comfortable. 6,12,15,27 Participants then performed a 5-minute 

warm-up and familiarization on the ergometer at their self-selected power and cadence. This 

familiarization also served to determine the preferred power output and cadence of the 

participants, which was used for the three experimental conditions. The pedal stance width of the 

no-spacer condition was 262.8 mm wide from pedal center to pedal center as per manufacturer 

specifications, which was confirmed with digital calipers (Vinca, Clockwise tools, CA).  

Each participant performed three experimental stance width conditions (no pedal spacers, 

20 mm pedal spacers, and 30 mm pedal spacers), with the order of completion randomly 

assigned. Subjects completed each condition by pedaling at their preferred power output and 
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cadence (determined in the familiarization session) for five minutes. The preferred power outputs 

and cadences for female and male participants were 91.1 (31.4) Watts (W) and 73.5 (12.3) 

revolutions per minute (rpm) and 120.7 (34.5) W and 69.8 (7.8) rpm, respectively. Marker 

position data during the experimental conditions were captured during the last two minutes of the 

five minutes of each condition.7,14 A 3-5-minute rest interval separated the conditions during 

which the pedals were prepared for the subsequent condition. After each fitting, the pedals were 

tightened to a torque of 45 Nm with a calibrated torque wrench based on the manufacturer 

guidelines.39  

 Data analysis: Marker position data were filtered at 4 Hz using a 4th order Butterworth 

filter. 26,27,40, 41,42 The dynamic plug-in gait pipeline was executed to determine the frontal plane 

hip, knee, and ankle joint angles.33 Top dead centers (TDC) of individual crank cycles were 

identified using markers positioned on the feet in close proximity to the left and right pedal 

spindles. Using the computed TDC positions, joint angle data for 60 consecutive crank cycles 

were identified to attain stable kinematic data. For each crank cycle, peak and minimum values 

were determined for hip, knee, and ankle frontal plane angles and averaged across 60 cycles for 

the statistical analysis. 

 Statistical analysis:  First, two-way (sex x condition) mixed model analysis of variance 

(ANOVA) with repeated measures were performed to determine the effects of sex and condition 

on the dependent variables. If no such differences existed, then one-way ANOVAs with repeated 

measures were used to evaluate the effects of stance width manipulation via pedal spacers (3) on 

the frontal plane hip, knee, and ankle peak and minimum angles. Alpha level was set a priori at 

0.05. A Greenhouse-Geisser correction was performed if the assumption of sphericity was 

violated. For significant main effect of condition and sex-condition interaction, post-hoc analyses 
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were performed with t-tests. Effect size was calculated as partial eta squared (ηp
2). Partial eta 

squared was interpreted using guidelines provided by Vincent where, ηp
2 > 0.01 was small,ηp

2 > 

0.06 was medium, and ηp
2 > 0.15 was large.43 Statistical analyses were conducted using SPSS 

(version 21; IBM Corporation, Armonk, NY). 

   

Results 

Hip frontal plane motion 

 For the hip frontal plane motion, the thigh remained in an abducted position throughout 

the crank cycle. The hip position at TDC had a small magnitude of abduction and moved towards 

adduction during the first 60º of the crank cycle. It then moved toward an abducted position at 

BDC before returning to a less abducted position at TDC (figure 1; right panel).  

For hip frontal plane ROM, there was a sex-condition interaction (F2,44=3.269; p=.047; 

ηp
2=.129; Table 1). Post-hoc comparisons showed that there were no differences in male and 

female participants’ hip frontal ROM for any of the conditions. In addition, for male participants 

there was no change in frontal ROM across the conditions. However, for female participants 

there was a 0.4º difference in hip ROM between no spacer and 20 mm spacer condition for 

female participants (p = .040). For maximum and minimum hip adduction angles, there was no 

sex-condition interaction or a sex main effect (p > .05). There was a significant main effect of 

condition. Hip frontal plane minimum (F2,44=46.068; p<.001; ηp
2=.677) and maximum 

(F2,44=36.271; p<.001; ηp
2=.622) values became systematically more abducted as pedal stance width 

increased from the no spacer condition to 20 mm and 30 mm spacer conditions. The magnitude 

of this shift in frontal plane peak values ranged from 1.4-1.6 º.  
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Knee frontal plane motion 

 For knee frontal plane motion, the shank moved from an adducted positon at TDC to an 

abducted position at BDC and then returned to an adducted position when the crank cycle was 

completed (figure 1, middle panel). There were no sex-condition interactions for the knee frontal 

plane peak values or ROM (p > .05). However, there were a significant main effect of sex for 

both peak and minimum knee adduction values. For male participants, the peak adduction angle 

was 8.5º more than females (F1,22 = 10.548; p = .004; ηp
2=.324). Conversely, the female peak 

knee abduction angle was 5.8º more than males (F1,22 = 6.241; p = .020; ηp
2 = .224). There was 

also a significant main effect of condition for peak knee frontal plane values (F2,44 = 20.786; p < 

.001; ηp
2 = .486). Similar to hip motion, the shank position became systematically less adducted 

as pedal stance width increased from no spacer condition to 20 mm (p = .003) and 30 mm (p < 

.001) spacer conditions. The magnitude of decrease in the peak knee adduction values across 

conditions ranged from 1.1-2.1 º. There was also a reduction in knee adduction angle from 20 

mm to 30 mm spacer conditions (p = .012). Conversely, knee abduction angles increased with 

increase in pedaling stance width (F2,44 = 19.261; p < .001; ηp
2 = .467). Compared to the no 

spacer condition, the magnitude of peak knee abduction values were 1.2 º greater for the 20 mm 

spacer (p = .002) and 1.8º greater for the 30 mm spacer conditions (p < .001). With increase in 

stance width from 20 mm to 30 mm spacer condition, the magnitude of peak knee abduction 

increased 0.5º, but this difference was not statistically significant (p = .078).  
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Ankle frontal plane motion 

 The foot remained in a slightly inverted position throughout the crank cycle (figure 1, left 

panel). There was no effect of sex or pedal spacer conditions on the frontal plane ankle peak and 

minimum angles. For the ankle frontal plane ROM, a sex main effect was observed (F1,22 = 

7.191; p = .014; ηp
2 = .246). The feet of female participants were slightly more adducted (~0.6º) 

compared than male participants. A condition main effect was also observed for ankle frontal 

plane ROM (F2,44 = 4.254; p = .020; ηp
2 = .162). Compared to the no spacer condition, the 30 mm 

spacer condition was 0.062º more everted (p = .020). Also, 30 mm spacer was 0.062º more 

everted (p = .011) than the 20 mm spacer conditions.  
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Table 1.  Effect of stance width condition on lower extremity frontal plane joint kinematics 

* Values are Mean (SD); negative values are abduction and positive values are adduction; * statistically significant condition main 

effect; # statistically significant sex main effect; ^ statistically significant sex-condition interaction.   

 

 

Female Male 

No spacer 
20 mm 

spacer 

30 mm 

spacer 
No spacer 

20 mm 

spacer 

30 mm 

spacer 

       

Maximum Hip adduction (º) * -7.8 (2.8) -8.7 (2.3) -9.5 (2.5) -8.1 (4.1) -8.9 (4.3) -9.3 (4.2) 

Minimum Hip Adduction (º) * -3.4 (2.9) -4.7 (2.7) -5.2 (3.0) -4.5 (4.2) -5.1 (3.9) -5.9 (3.9) 

Hip Frontal ROM (º) ^ 4.5 (1.3) 4.0 (1.2) 4.3 (1.6) 3.6 (1.3) 3.8 (1.5) 3.4 (1.4) 

       

Maximum Knee Adduction (º) #, * 1.7 (5.6) 0.3 (6.1) -0.4 (5.9) 9.9 (6.7) 9.2 (7.8) 7.9 (6.3) 

Minimum Knee Adduction (º) #, * -4.7 (6.1) -6.3 (6.8) -6.8 (7.0) 0.6 (4.2) -0.3 (5.2) -0.8 (4.1) 

Knee Frontal ROM (º) 6.3 (2.4) 6.5 (2.4) 6.5 (2.4) 9.4 (4.9) 9.5 (4.9) 8.6 (4.8) 

       

Maximum Ankle Inversion (º) 2.6 (1.8) 2.5 (1.9) 2.5 (1.9) 1.8 (1.5) 1.7 (1.6) 1.8 (1.5) 

Minimum Ankle Inversion (º) 1.0 (1.9) 0.9 (1.9) 0.9 (2.0) 0.7 (1.7) 0.7 (1.8) 0.8 (1.7) 

Ankle Frontal ROM (º) #, * 1.6 (0.6) 1.6 (0.5) 1.6 (0.6) 1.1 (0.5) 1.1 (0.5) 1.0 (0.4) 
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Figure 1.  Frontal plane joint angles ensembled over 60 consecutive crank cycles for all participants (male and female). Positive values 

represent ankle inversion and knee and hip and adduction. Negative values represent ankle eversion and knee and hip abduction.
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Discussion  

The purpose of this study was to examine the effect of pedal stance manipulation, via 

different lengths of pedal spacers, on lower extremity frontal plane joint motion in healthy young 

adults. Our hypotheses were that: 1) peak knee adduction angles would be lesser for the 

increased stance width conditions (i.e., spacers; 20 mm and 30 mm) compared to no spacer 

traditional stance width, and; 2) peak knee adduction angles would be lower for larger spacer 

condition (30 mm) compared to the shorter spacer condition (20 mm). The data support both of 

these hypotheses. Peak knee adduction angle was significantly decreased with increases in pedal 

stance width (peak knee adduction angle: no spacer > 20 mm spacer > 30 mm spacer; Table 1). 

These differences had large effect sizes but were small in magnitude (in degrees).  

The data demonstrated that overall the lower extremity moved into a more abducted position 

with increase in pedal stance width. Because the feet were clipped into the pedals, there was little 

to no change in position or ROM of the feet at the ankle joint across the stance width conditions. 

21,44,45 The majority of the increases in the lower extremity abduction positions were observed at 

the hip and knee joints. When the data were examined together for both sexes, the magnitude of 

increase in the hip abduction angle was 1.4-1.6 º. Although this change does not appear to be 

large, compared to the no spacer condition, these were 20% greater for the 20 mm spacer 

condition and 40% greater for the 30 mm spacer condition. Similarly, the knee adduction angle 

decreased with the stance width conditions by 1.1-2.1 º. Compared to the no spacer condition, the 

knee was 18 % and 36 % less adducted during the 20 mm and 30 mm spacer conditions, 

respectively. Overall, these changes appear to be very subtle in overall angle magnitude, but they 

account for a large percent change in peak values.14,24,46 To the authors’ knowledge, this is the 
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first study to systematically examine lower extremity frontal plane joint positions and ROM for 

cycling at different stance widths.  

The frontal plane joint ROM data showed that pedal spacer conditions affected the knee joint 

ROM most, followed by the hip and the ankle joint ROM. This hierarchy of effect on lower 

extremity joint ROM is understandable because the feet are fixed at the pedals and the proximal 

ends of the thighs are semi-fixed at the seat.45 The knees are the least constrained joints during 

the pedaling motion, which perhaps explains the relatively larger effect on the frontal plane 

ROM at this joint. Indeed, the largest increase in joint abduction position (in degrees) with 

increased stance width was also in the same order; the largest change in peak angles occurred at 

the knee followed by the hip. The frontal plane joint angle data for the no spacer condition 

observed in the current study are comparable to data reported previously. 26,41,44 In the current 

study, hip abduction peak values ranged from 4º to 8º which are comparable to 2º to 8º reported 

by Umberger and Martin.44 The knee frontal plane peak values in the current study ranged from 

6º of adduction to 2º of abduction with a frontal plane ROM of 8º. Previous research reported 

similar peak values with ROM ranging between 10-12º. 26,41,44 In the current study, the 

participants’ feet were clipped into the pedals and therefore, ankle frontal ROM was under 2º, 

which was slightly lower than other studies (3-6º). 26,44 

The pedal spacers are speculated to influence frontal plane knee joint posture which could 

reduce knee pain in individuals such as those with knee osteoarthritis.47,48,49 The data from the 

current study show that pedal spacers subtly affect frontal plane knee angles systematically with 

increases in pedal stance width. Although the changes in frontal plane joint angle data are subtle, 

all of the participants self-reported that pedaling at each specific stance width condition felt 

distinct from one another. To elucidate the effect of stance width on frontal plane knee joint 
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mechanics and to determine its influence on knee comfort, future researchers should consider 

examining 3-D reaction forces and frontal plane knee joint kinetics.  

The focus of the current study was primarily to examine the effect of different pedal stance 

width conditions, manipulated via pedal spacers, on frontal plane kinematics during cycling.  To 

allow for our data to be generalizable to both sexes, we recruited young male and female 

participants.2,26,30,44 The male participants’ shank was more relatively adducted at the knee 

compared to female participants throughout the crank cycle. The stance width conditions 

systematically affected frontal plane kinematics at the knee joint for both the sexes in a similar 

manner. Our data show that frontal plane knee joint angles differ based on sexes and therefore, 

when increasing stance width, the natural knee joint position of an individual should be taken 

into account. For example, adult males whose knees are in a relatively more adducted position 

during cycling could benefit from increasing stance width.  

In conclusion, stance width condition systematically affected frontal plane knee joint 

position. Compared to the no spacer condition, the knee angle was less adducted for the 20 mm 

and 30 mm spacer conditions. In addition, the knee was less adducted for the 30 mm compared 

to the 20 mm spacer condition.  
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Chapter II 

Review of literature  

The modern bicycle is used commonly for transportation, exercise, and outdoor 

recreation.50,51,52 Benefits of cycling are accessible to both young people and older adults and 

have been well documented.53,54,55 Benefits of cycling include improved VO2max, decreases in all-

cause cardiovascular disease and coronary heart disease, as well as reductions in obesity and 

other metabolic diseases.56,57,58 Considering the benefits and popularity of cycling, efforts are 

being made to prevent injury  and make the activity more comfortable through proper bike 

fit.59,35,13,12  

The use of stationary bicycle ergometers as a rehabilitation tool is recommended for 

patients with knee osteoarthritis, people with Parkinson’s disease, and anterior cruciate ligament 

repair.5,3,60,4,61,62,63,64,65 Researchers have suggested that cycling produces favorable knee joint 

motion (i.e. joint range of motion) during recovery for subjects that have received total knee 

replacements.66 Despite these therapeutic benefits, comfort during cycling greatly varies among 

individuals due to lack of a proper bike fit. There are many variables that can be manipulated to 

customize a bicycle fit to an individual. One such variable that has gained popularity amongst 

clinicians but has been limitedly researched is pedal stance width. Anecdotal evidence suggest 

that widening pedal stance width can improve comfort and knee joint frontal plane range of 

motion in individuals with knee pain, however the empirical basis for these observations has not 

yet been established.  

In this literature review, components of the bike fit and how they affect lower extremity 

range of motion is discussed. Special emphasis is placed on the suggested role of pedaling stance 
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width and its impact on frontal plane kinematics.  In summary, the purpose of this review is to 

assess the effects of pedal stance width manipulation on lower extremity frontal plane kinematics 

on a cycle ergometer. 

1. Bicycle fit 

The geometry and design of a bicycle gives a starting point to cycling fit. Bicycles are 

also offered in multiple sizes to give cyclists choices to optimize fit. Fit can be manipulated 

through component exchange and adjustment. The three touchpoints on a bicycle are sometimes 

called the 3 pivots and include the handlebar, saddle, and pedals.67 Many bicycle users purchase 

components to adjust fit as well as bicycle performance. Components of interest to road cyclists 

include stem length and height, bar width and angle, seat width and other seat characteristics, 

crank q-factor (width of crank from pedal insert to pedal insert) and length, and pedal type and 

axle width.40,46 These component adjustments are primarily made to improve performance 

through optimized biomechanics and physiology.68  
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Figure 2. Bicycle fit can be manipulated through component adjustment or replacement.37 

In road cycling and cross-country mountain biking specifically, effort is placed on decreasing air 

resistance, which can be accomplished through aerodynamic bicycle and componentry design as 

well as rider position.11,69 In addition, there are numerous disciplines within road cycling that 

may affect the goals of fit and available biomechanics. One example is the rear cassette cluster 

on a geared bicycle. The wider spacing of the rear wheel axle and gears affect how narrow the 

bottom bracket is and related crank q-factor.46 The crank and pedals dictate the total pedal stance 

width. Bottom bracket width on single-speed road bicycles designed for track racing may have 

narrower spacing and subsequently a narrower total stance width.  

Of more recent interest to both road cycling and mountain biking is pedal stance-width, 

which is determined by the combination of crank width, pedal axle, and platform width.24 Many 

variables affect component choices and subsequent bicycle fit. Crank length of normal 
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componentry does not affect performance metrics such as power output, and should therefore be 

selected based on fit and injury reduction through changes in hip, ankle, and knee motion.42,70 

Sagittal plane adjustments are often of primary consideration when fitting a bicycle in order to 

optimize the position of the trunk and knee, with greater importance placed on the latter.7,12,59 

Trunk flexion angle is an important component of bike fit related to comfort and should be 

accounted for when applying changes in seat position.12 This variable is most easily manipulated 

through adjustment in handlebar height, but is affected by seat fore-aft, seat height, and seat 

angle. Some researchers suggest that a bicycle fit should be performed by first making 

adjustments at the shoulders and trunk prior to inferior manipulations such as knee and ankle 

position.15 Bicycle fit is important to increase comfort and it may influence factors such as injury 

development and physiological performance.11,17 

A. Seat height and knee angle 

The saddle height and fore-aft position has a great influence on knee flexion angle and is 

easily manipulated.8 The most common fitting techniques to determine seat height utilize a 

goniometer to measure knee angle at bottom dead center (BDC) of the crank cycle, although 

traditional static measurements do not always correlate with dynamic techniques.7,8 Researchers 

have investigated inseam length to saddle height ratios and suggest a range of seat positions such 

as 108.6–110.4% of inseam length, although these calculations do not account for individual 

anthropometrics and may lead to knee angles outside of the commonly accepted knee angle 

range of 25-35°.8,17 For people with knee pain, increasing saddle height to decrease knee flexion 

angle may make cycling more comfortable.37 Dynamic techniques such as 3-D recording or 2-D 

motion capture are more valid than static measurements and should be used when available 

during bike fitting, however, these are not used as frequently in the literature currently.7,44  
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Although alternate methods are available for determining sagittal plane fit and movement, 

motion capture through video is considered the gold standard.71 Researches interested in 

integrating kinematic and kinetic data should use pedals with the capability of capturing 3-D 

forces.72 

The saddle of a bicycle may be moved superiorly or inferiorly along the angle of the seat 

tube and must be considered concomitantly with saddle fore-aft position in order to attain an 

optimal knee flexion angle of 25-35° at BDC of the crank cycle. 8,35,73 The variation of seat tube 

angles across cycling disciplines, manufacturers, and models of bicycles makes this point highly 

relevant when making vertical adjustments to seat height. Common seat tube angles used in road 

cycling range from 72-74°, whereas triathlon bikes are steeper at 78-82°.74 Modern suspended 

mountain bikes at the present fall within that total range. There is an important distinction to be 

made in this regard.  Manufacturers typically report effective seat tube angles rather than actual 

seat tube angles on published geometry documents. The effective seat tube angle can be 

measured from the bottom bracket center to the point on the seat tube that intersects with a 

horizontal line drawn from the top of the head to the seat tube.66  

Effective top tube is measured from top of the head tube posteriorly to the theoretical 

intersection of the seat tube and varies by size.75 This measurement is an indication of how far a 

rider will sit posterior to the handlebars. On commuting bicycles and many road bicycles this 

information is fairly helpful as the actual seat tube angle matches the effective angle due to the 

use of a straight seat tube.76 The situation becomes more complicated as frame design caters to 

suspension design or specialized frame characteristics such as aerodynamics. Mountain bikes 

often have interrupted seat tubes in order to accommodate suspension designs.77 The 

consequence of this design is that the actual seat tube angle may be very different from the 
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effective seat tube angle. Because seat height is of primary interest during a bike fit, seat tube 

angle must be considered when adjusting both seat height and fore-aft position, as both changes 

may affect sagittal plane ranges of motion such as hip angle.8,74,78  

While the knee angle of 25-35° during a bicycle fit is commonly accepted, the 

methodology of fit is highly variable.7,17 It has been suggested that greater knee flexion angles 

may lead to discomfort and patellofemoral joint pain, which is a common injury due to 

cycling.12,18 Knee angles closer to 25° fall within the suggested range of common bicycle fit and 

may be more effective in maximizing performance variables such as cycling economy, mean 

power, and peak power when compared to 35°.17 

It is common to implement a saddle fore-aft position in relation to knee position in the 

sagittal plane.  The pole of the patella in the forward leg should be directly superior to the pedal 

spindle when crank arms are parallel to the ground.38 This common fit idea prevents many 

cyclists from experimenting with saddle fore-aft position and does not seem to be based on 

scientific research, although time trial cyclists often position their knee anterior to the pedal 

spindle.6  
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Figure 3. An illustration of knee over pedal position.37  

Saddle fore-aft manipulates the distance from the seat to the handlebars, which is related 

to the effective top tube in the sagittal plane. Saddle fore-aft position is actually an extension of 

seat tube angle, and should be considered based on biomechanical fit, physiological 

performance, and intended use of the bicycle. Changes in fore-aft may affect economy and lower 

limb position through creating differences in hip, knee, and ankle angles.79 Resultant changes in 

seat height due to the adjustment of saddle fore-aft must also be considered during bicycle fit.6 

For the purpose of scientific experimentation, the knee over pedal spindle method should be used 

during research to remain consistent in bicycle fit unless used as a research variable.7  

Other manipulations that affect bike-fit in the sagittal plane include saddle tilt, stem 

length and height, handlebar geometry, and cleat position. Saddle tilt should be close to level on 

a road bike, and slightly downward on most mountain bikes with full-suspension so that when 

seated the weight of the rider causes the seat to be approximately level. 6,18 During seated uphill 
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cycling, greater downward saddle tilt increases comfort and mimics muscle activation patterns of 

cycling on level ground with a level seat.13  

B. Handlebar position and trunk angle 

Lower handle bar position is related to increased lumbar flexion and may be related to 

over-use injury.80 Changes in saddle tilt and design may affect weight distribution and trunk 

angle.40 It has been demonstrated that more upright trunk angles are more comfortable than 

increased trunk flexion.12 The utilization of greater trunk flexion is commonly adopted for 

aerodynamic advantages in competitive cyclists.69 Increased lumbar flexion concomitant with 

high volumes of cycling due to a low handlebar position may contribute to spinal adaptations 

that are unfavorable and may be related to low-back and neck pain.11,29  

Researchers have demonstrated that there are no statistically significant differences in 

kinematics of the leg and foot when comparing upright posture and increased trunk flexion 

conditions.70,81 In regards to their research, controlling for trunk angle may not be required for 

the purpose of assessing differences in lower leg kinematics. Hip flexion angles may be affected 

during adjustments to saddle fore-aft position.74 One study examining the relationship of seat 

tube angle, trunk flexion angles, and resulting differences in sagittal plane movement 

demonstrated that the preferred position of the cyclist is more effective in cycling economy than 

any of the experimental combinations, which may also be related to comfort.12,70 

2. Normal 3-D kinematics 

A. Sagittal plane kinematics and relevant bike fit to reduce incidence of injuries 

Cycling injuries are commonly due to chronic stresses from over-use, and improper bike-

fit has been implicated as a contributing factor.12,15,73 The repetitive nature of riding a bicycle 
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with improper fit or technique may lead to discomfort and pain.37 Sagittal plane fit and 

kinematics affect comfort and the development of non-traumatic injury through chronic stresses, 

some of which are developed from non-pedal related work.82,83 More upright angles, such as 55° 

trunk flexion, seem to elicit a more comfortable position than 35° trunk flexion, although 

experienced cyclists were comfortable in the position with greater flexion.12 Increased trunk 

flexion is related to over-use injury and reformation of the lumbar spine.11 To reduce the risk of 

injury in the present study and for uniformity during data collection, trunk flexion angles of 30° 

from vertical will be used.6,27,73 

The suggested optimal knee angle is widely varied and is likely the most important factor 

to consider when fitting a bicycle.12,15,17,37,73 Greater knee flexion angles such as 40° are 

associated with acute discomfort and knee pain, while seats fitted too high may lead to hip pain 

such as trochanteric bursitis and iliotibial band issues.12,37 Increases in seat height are positively 

correlated with increases in knee extension angles and plantar flexion angles during the bottom 

of the crank cycle, although excessively high saddles may lead to perineal numbness and 

tingling.15,74  
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Figure 4. Seat height measured at crank BDC37 

Moreover, low saddle positions may lead to Achilles tendonitis, which may worsen with 

anterior foot fore-aft position on the pedal.15 More forward saddle positions, which influence seat 

height and are dependent to a large degree on the geometry of the bicycle, may lead to anterior 

knee pain as well.37 Whereas posterior knee pain is associated with a saddle position too far 

back.15 There are several injuries and discomforts associated with poor bicycle fit in the sagittal 

plane. Neck pain is associated with a low or forward handlebar position, which may lead to 

lower back pain from increased trunk flexion.15  The present study will utilize knee flexion 

angles of 30° to reduce the risk of injury and remain consistent with the literature.37 
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Figure 5. Definition of the sagittal plane angles during cycling.68 

Sagittal plane range of motion  of the hip, knee, and ankle in healthy non-injured young 

adults while cycling have been reported as follows: Maximal hip flexion angles recorded were 

29° ± 2°, with maximal hip extension angles of 60°± 9°; maximal knee flexion angles of 

77° ± 11°, maximal knee extension angles of 133° ± 13°;peak dorsiflexion angles of 19° ± 11° 

and peak plantarflextion angles of 3° ± 7°. .84 Normal ranges of motion (ROM) of the knee and 

ankle have been reported at 66° and 27°, respectively.36 Others have reported knee and ankle 

angle ranges of motion to be 57 ± 10° and 21 ± 2°, respectively.84 Increased ROM such as 75° in 



25 
 

the knee joint and 20° in the ankle joint are considered normal.9

 

Figure 6. Sagittal plane position traces of the hip, knee, ankle. Frontal plane motion of the 

foot.84 

Sagittal plane bicycle fit is critical to achieve comfort, maximize economy, and decrease 

incidence of injury.10 Due to the importance of proper bicycle fit in the sagittal plane, frontal 

plane bike-fit is sometimes overlooked, and further research is warranted to quantify frontal 

plane kinematics and fit.7,12  
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B. Frontal plane kinematics and relevant bike fit to reduce incidence of injuries 

Little research has been performed to examine frontal plane kinematics of cycling.21,46 

Overuse injuries may be related to poor biomechanics that primarily affect the knee joint.21,24,85 

Incorrect fit may negatively affect knee alignment through excessive knee abduction or 

adduction, especially during the recovery phase of the crank cycle.21,85  

Quadriceps angle (Q-angle) in relation to human anatomy is a description of the 

mechanical action of the patello-femoral joint.86 It is defined by the intersection of the line drawn 

from the anterior superior iliac spine to the patella and the line drawn from the patella to the 

tibial tubercle.24 Subjects with Q-angles over 10° may be at increased risk of knee pain or injury 

such as patellofemoral syndrome.37,86 Q-angles that cause excessive valgus or varus 

misalignments of the leg have been identified as contributors to knee pain and reductions of knee 

valgus may be beneficial in the reduction of injury incidence.85,87 

 Frontal plane joint motion such as knee adduction in healthy subjects show a large 

standard deviation of movement in healthy subjects. Researchers found no statistically 

significant differences as workload increases at the same cadence or during a constant workload 

with increases in cadence.1 While pedaling at 60 RPM, healthy cyclists demonstrated knee 

adduction angles with a range of 5.89 - 7.16° ± 6.44 - 5.96°, suggesting a large variability within 

frontal plane kinematics at the knee.1  Knee abduction and adduction ROM of approximately 12° 

during a study comparing 2-D and 3-D kinematic analysis.44 Knee adduction angles such as 8.6° 

± 6.7° further define normal frontal plane joint motion during the crank cycle (see figure 6 for 

traces).26 Injured cyclists differ from healthy cyclists in frontal plane at the point of maximal 

knee adduction angles, and had a more abducted position.19  
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Figure 7. Mean knee adduction angles during cycling. Middle sample is neutral foot 

placement without a toe clip.26 

Q-factor should not be confused with Q-angle, as Q-factor is a measurement of the 

bicycle crank and is related to pedal stance width. It is defined as the width from pedal insert to 

pedal insert and ranges from about 150 mm on road bikes to 180 mm on mountain bikes, and 200 

mm on fat bikes depending on the bicycle in question.46 Q-factor plus the pedal axle length 

makes up the total stance width. However, pedal stance width may affect Q-angle, making the 

interaction of the two factors notable.35 Variables such as foot position on the pedals, hip 

rotation, and pelvic width may affect Q-angle and subsequent frontal plane kinetics.1 

Healthy subjects display different frontal plane kinematics than injured cyclists.35 

Changes in pedal stance width through cleat position, crank q-factor, and pedal spindle length 

may positively affect knee alignment.24,35 Incorrect alignment of the patella and the intercondylar 

groove may contribute to patella-femoral knee pain, which may be related to cleat position.88 The 

foot-shoe-pedal interface manipulations through orthotics is a common practice, yet it has been 

criticized in its effectiveness and needs further investigation.89  
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Researchers have identified range of motion changes in the frontal plane using novel 

pedal solutions that allow or guide the cyclist through lateral translation of the ankle on the pedal 

spindle throughout the crank cycle. Ankle and knee motions were better correlated when cycling 

with laterally translating pedals, which may improve alignment of the knee and angle and 

decrease varus and valgus moments.90 Although interesting, the practicality of using this type of 

pedal is poor in most applications. It may be beneficial for use in a bicycle ergometer for 

rehabilitation purposes. Notably, frontal plane knee motion did not increase to a statistically 

significant degree with increased ankle translation.90 This differs from the present study, in 

which ankle placement will be placed in differing fixed positions laterally rather than free 

moving or guided translation during the crank cycle.   

3. Strategies to decrease injuries through bike fit 

There are a number of bicycle fitting manipulations that are used commonly to reduce 

injury in cycling.6, 73,80,91 These manipulations should begin with making changes to the bicycle 

fit through manipulations of seat height, seat fore-aft and angle, handlebar height and roll, and 

cleat position.15 To be considered concomitantly with these adjustments further include stem 

length, crank length, shoe inserts or cleat wedges, and pedal stance width.6,89 It has been 

previously discussed that seat height may be the most important factor when fitting a bicycle and 

that bicycle fit should be performed directionally from superior manipulation to inferior.15   

A. General methods 

Saddle height should be high enough to avoid or diminish discomfort at the knee, but not 

so high as to develop hip pain or perineal discomfort.12,74 Seat height adjustments are made to 

elicit changes in knee flexion and extension angles. Commonly accepted knee flexion angles at 
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BDC of the crank cycle range from 25°-35°.8,10 Saddle fore-aft adjustments may be used to affect 

knee angle and trunk angle. Less extreme trunk flexion angles are more comfortable, and should 

be used unless otherwise necessitated by specific needs such as the reduction of air resistance 

during road cycling.12 Trunk angle can easily be adjusted by moving the handlebars superiorly or 

inferiorly.1  

The foot-shoe-pedal interface (FSPI) is popular area of adjustment, however the efficacy 

of manipulations is controversial. Cleat angle rotation may be helpful in counteracting tibial 

torsion and reducing knee pain (see figure 8 for neutral cleat position).35 Shoe wedges may affect 

knee position in the frontal plane and economy, although the limitations in past research prevents 

definitive conclusions in this regard.87,89,92 Custom orthotics have been used to create individual 

adaptations in frontal plane knee motion to decrease knee mediolateral excursion.87  

 

 

Figure 8. Shimano™ SPD SL cleats can be adjusted 5 mm medio-laterally and 22 mm 

antero-posteriorly and can also be rotated.39
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Manipulation of stance width 

Stance width in cycling is a debated topic in the industry related to fit and performance. It 

is sometimes considered a fixed variable pre-determined by bicycle design.26 Many cyclists and 

professional fitters do little or nothing to address stance width, which may be in part related to 

the limited research available to quantify how stance width affects cycling kinetics and 

kinematics.93 Stance width can be manipulated in a number of ways, although the bike and its 

intended use does impact the starting point. Different ways to manipulate stance width are 

discussed below following an introduction describing the factors affecting the starting point of 

stance width dependent on bicycle design.  

The rear gear cluster, commonly called a cassette on a bicycle, affects the rear hub 

spacing and subsequent chainstay width. Rear wheel tire clearance also has an effect on 

chainstay width.94 Cranksets are fixed close to the bottom bracket and have are flared outward to 

clear the chainstay.95 The amount of flare combined with the spindle length make up what is 

called q-factor. Single speed bicycles may have reduced q-factor when compared to geared 

bicycles due to the narrower chainstay design. Road bikes and mountain bikes have developed 

increasingly large rear gear clusters that often include 11 or 12 sprockets in the cassette. Fat 

bikes are growing segment of bicycles that use even wider rear axle spacing to allow for large 

voluminous tires that can be 4” wide in order to float on snow and sand. These bicycles have 

larger crank spindles in order to increase q-factor to clear the chainstay.  

B. Crankset 

Once the bicycle has been selected, the appropriate selection of a crank is the next step in 

determining stance width.14 Each bicycle type and model will have a minimum available q-factor 
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crankset that will fit. Wider cranksets are often available and are dependent on brand and model 

selection. While it is common to purchase a different crankset from the original equipment, it can 

be expensive and factors other than fit, such as weight and material, are of primary interest to the 

consumer rather than comfort.  

C. Pedals 

After the crank has been selected, pedals are the next variable that can be manipulated 

due to axle length. Shimano™ (Sakai, Osaka, Japan) is a leading bicycle component 

manufacturer that makes pedals for all kinds of bikes. The brand offers SPD-SL road bicycle 

clipless pedals that allow cyclists to mechanically affix their shoes to the pedals in two different 

axle widths, 52 mm and 56 mm (see figure 9).  

 

Figure 9. Axle length is measure from crank insertion to pedal centerline.48 

They advertise that the extended pedal allows cyclists with wider hips to maintain correct 

leg and foot alignment on the pedals. Another popular brand named Speedplay™ (San Diego, 

California, USA) offers clipless pedals with three different axle lengths that allow cyclists to 

change stance width by up to 12.5 mm per pedal, with 53mm being standard. Pedals made by the 

brand Issi (Bloomington, Minnesota, USA) are 52.5 mm and can be purchased with +6 mm or 
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+12 mm axles, and axles can be purchased separately and installed. The limited choices for 

cyclists make it expensive and challenging to experiment with pedal axle length. Therefore, the 

simplest solution is use of a pedal spacing system. 

D. Pedal spacers 

After crank selection, pedal and axle selection, pedal spacers provide the largest gains in 

stance width that can be easily manipulated. One popular brand named Kneesavers™ offer +20 

mm and +30 mm options (see figure 10). These large adjustments allow for pedal stance width to 

cover a broad range of fits when combined with other component choice. Realistically, an axle 

extender such as the Kneesavers™ (North Hills, California, USA) product is an elegant solution 

to provide simple manipulations without consideration of crank and pedals based on fit and can 

be applied to any pedal. 

 

Figure 10. Kneesavers™ Pedal spacers effectively extend pedal width by increasing 

distance from crank to pedal centerline.47 
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Limited research and anecdotal evidence 

There is limited research in the field that quantifies frontal plane mechanics in cycling, 

especially in relation to pedal stance width. Few studies to date have discussed how pedal stance 

width affects cycling, and none of them have specifically studied changes in frontal plane 

kinematics. Researchers found that there was no statistically significant difference in Q-angle or 

oxygen cost while cycling using +20 mm or + 30 mm pedal spacers from control.24 A follow-up 

study found that gross mechanical efficiency (GME) improved slightly using a narrower Q-

factor, one component of pedal stance width, however they did not publish a kinematic 

analysis.46 Using a hanging test to identify self-selected Q-factor, researchers found that there 

were no statistically significant differences in GME and knee variability between Q-factors.14  

There are multiple manufacturers and products that suggest the importance of knee 

alignment, however these claims appear to be based on anecdotal evidence rather than scientific 

research. Component manufacturers advertise favorable leg and foot alignment and reductions of 

knee pain, and these should be supported or refuted based on studies using sound 

methodology.48,49 Changes in frontal plane kinematics due to increases in pedal stance width 

should be quantified so cyclists and fitters can take advantage of this potential adjustment. 

Cycling kinematics when seated differ from pedaling while standing, and the influence of pedal 

stance width while out of the saddle warrants further study.91 

Pedal spacers change frontal plane kinematics 

Pedal stance width can be manipulated through the use of pedal spacers.14,35 Previous 

research has identified some physiological and biomechanical factors related to increases in 

pedal stance width, although the impact of these changes on frontal plane joint motion in the 
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lower extremity is unknown.62,89 One study using manipulations of pedal stance width from a 

starting point of self-selected Q-factor based on a hanging test. There were no statistically 

significant differences in gross mechanical efficiency or knee variability across different Q-

factors.62  A study using pedal spacers to increase pedal stance width demonstrated no 

statistically significant difference in Q-angle or Oxygen consumption using different widths.24 

The ease of use and low cost of pedal spacers makes them appealing for study and 

implementation if found effective. 

 

Summary 

In this review of literature, important gaps in the research relevant to understanding how 

pedal stance width interacts with frontal plane kinematics have been identified. The purpose of 

this study is to examine the effects of increased pedal stance widths on frontal plane kinematics 

of the hip, knee, and ankle during stationary cycling while seated. We hypothesize that frontal 

plane kinematics of the knee will systematically correlate with changes in pedal stance width.  
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APPENDIX A 

Western Washington University Informed Consent 

The effects cycling with wider pedal stances on joint motion and comfort in young 

recreational cyclists  

We are asking you to be in a research study. Participation is voluntary. The purpose of this form 

is to give you the information you will need to help you decide whether to participate. 

Please read the form carefully. You may ask questions about anything that is not clear. 

When we have answered all of your questions, you can decide if you want to be in the 

study or not. This process is called “informed consent.” 

Purpose and Benefit: 

This research aims to examine the effects of different widths on cycling stance (i.e. cycling with 

feet more apart) on joint motion and comfort in young recreational cyclists. There is 

anecdotal evidence to suggest that cycling with wider stance increases knee joint comfort 

in people with knee pain, however, there is no research data to support this claim. The 

study will increase our current understanding of the effects pedal stance widths on joint 

motion and comfort in young recreational cyclists.  

 

The participant understands that: 

 Participation will require approximately a 1-hour time commitment. 

 To be eligible for this research, participants should: 

 be between the ages of 18 and 35 years 

 be a recreational cyclist: during the majority of the past year, have cycled, 

(indoors or outdoors) for transportation, recreation, and/or exercise 

 not have any recent injuries or pain in the legs that would make cycling 

uncomfortable  

 Participant is aware that the testing session at Western Washington University will begin 

with completing the informed consent document. Participant will also complete a health 

history questionnaire. The healthy history survey will help researchers confirm that he or 

she qualifies for the project. 

 Participant’s height and weight, leg length and girth will be measured. 

 Testing session will be conducted while the participant is wearing spandex clothing and 

cycling shoes and reflective markers placed on the shoes, clothes and the skin.  

 Next the stationary cycle will be adjusted according to the participant’s body size.  

 The participant will then perform a 5-minute warm-up at a comfortable resistance and 

speed.   
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 Next the participant will complete 3 cycling trials each lasting 5-minutes. The participant 

will have the freedom to select the pedaling resistance and the speed. This resistance and 

speed will be kept the same for the three cycling trials.  

 The three pedaling trials are: 

a. Cycling with feet in normal cycling position 

b. Cycling with feet apart. Pedal spacers (2 cm spacers and 3 cm spacers) will be 

placed on the pedal such that they make the pedals go slightly more apart from the 

center of the bicycle.  

 During the cycling trials, the researcher will collect data from the cameras (regarding the 

movement of the markers), and also ask the participant to gauge their comfort from 0-10 

during the cycling trials.  

 A 3-5 minute rest period will separate the cycling trials. If needed the participants can 

rest longer than 5 minutes between trials.   

 There are minimal risks from participation in this research. Participant may experience 

some mild fatigue from the cycling trials. 

 The participant understands that there are no potential direct benefits from participation 

in this study. 

 Participation is completely voluntary. Participants are able to withdraw from this research 

at any time without penalty or loss of benefits to which they are otherwise entitled.  

 All information is confidential. Participants will be given an ID number for this study, 

which will be used to label their data. The link between this ID number and the 

participant’s name and other identifying information will be stored separately. Only the 

primary investigators will have access to the data collected from this study. After the 

study ends, the link between the participant’s name and their study ID will be deleted.  

 Participant signature on this form does not waive any legal rights of protection. 

 A physical copy of this informed consent form will be provided to the participant upon 

arrival at the laboratory.  

 

This research is conducted by Andrew Fife under the supervision of Dr. Harsh Buddhadev. Any 

questions that you have regarding the study or your participation may be directed to 

Andrew Fife at fifea@wwu.edu or Dr. Harsh Buddhadev at harsh.buddhadev@wwu.edu.  

 

If you have any questions about your participation or your rights as a research participant, you 

can contact the WWU Office of Research and Sponsored Programs (RSP) at 

compliance@wwu.edu or (360) 650-2146. If during or after participation in this study you 

suffer from any adverse effects as a result of participation, please notify the researcher 

directing the study or the RSP.  

mailto:fifea@wwu.edu
mailto:harsh.buddhadev@wwu.edu
mailto:compliance@wwu.edu
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By signing below you are saying that you have read this form, that you have had your questions 

answered, that you understand the tasks involved, and volunteer to take part in this 

research. 

I have read the above description and agree to participation in this study. 

 

Participant’s Signature:__________________________________________ Date: _________ 

Participant’s Printed Name:_______________________________________ 
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APPENDIX B 

Table 2.  Effect of stance width condition on lower extremity sagittal plane joint kinematics 

* Values are Mean (SD); * statistically different

 Female Male Sex main effect Condition main 

effect 

Sex-condition 

interaction No 

spacer 

2 cm 

spacer 

3 cm 

spacer 

No 

spacer 

2 cm 

spacer 

3 cm 

spacer 

          

Hip flexion 

maximum (º) 

87.6 

(5.1) 

87.5 

(5.5) 

88.1 

(5.2) 

86.3 

(6.2) 

85.9 

(5.9) 

86.1 

(5.7) 

F1,22=0.56; p=0.464; 

ηp
2=0.025 

F2,44=0.81; p=0.453; 

ηp
2=0.035 

F2,44=0.77; p=0.471; 

ηp
2=0.034 

Hip flexion 

minimum (º) 

40.2 

(6.3) 

39.6 

(6.5) 

39.8 

(6.4) 

43.8 

(6.6) 

42.8 

(6.8) 

43.1 

(6.3) 

F1,22=1.64; p=0.213; 

ηp
2=0.069 

F2,44=3.78; p=0.043; 

ηp
2=0.147* 

F2,44=0.22; p=0.804; 

ηp
2=0.010 

Hip Sagittal 

plane ROM (º) 

47.4 

(2.4) 

48.0 

(2.9) 

48.4 

(3.1) 

42.5 

(2.3) 

43.1 

(2.6) 

43.0 

(2.6) 
F1,22=21.92; 

p<0.001; ηp
2=0.499* 

F2,44=10.85; 

p=0.001; ηp
2=0.330* 

F2,44=1.65; p=0.210; 

ηp
2=0.070 

          

Knee flexion 

maximum (º) 

112.8 

(4.1) 

112.6 

(4.2) 

112.1 

(4.0) 

108.9 

(4.3) 

108.6 

(4.3) 

108.4 

(4.1) 
F1,22=5.24; p=0.032; 

ηp
2=0.192* 

F2,44=7.59; p=0.002; 

ηp
2=0.257* 

F2,44=0.65; p=0.528; 

ηp
2=0.029 

Knee flexion 

minimum (º) 

33.6 

(7.4) 

33.3 

(8.0) 

32.4 

(7.5) 

35.6 

(6.5) 

34.5 

(6.0) 

35.4 

(5.7) 

F1,22=0.55; p=0.468; 

ηp
2=0.024 

F2,44=3.75; p=0.029; 

ηp
2=0.151* 

F2,44=4.76; p=0.013; 

ηp
2=0.178* 

Knee Sagittal 

plane ROM (º) 

79.3 

(5.2) 

79.3 

(5.4) 

79.7 

(5.1) 

73.4 

(3.7) 

74.1 

(3.5) 

73.1 

(3.3) 
F1,22=10.60; 

p=0.004; ηp
2=0.325* 

F2,44=2.42; p=0.100; 

ηp
2=0.099 

F2,44=7.08; p=0.002; 

ηp
2=0.243* 

          

Ankle 

dorsiflexion 

maximum (º) 

7.9 

(8.5) 

7.0 

(7.8) 

7.3 

(8.3) 

9.7 

(7.5) 

9.3 

(8.5) 

8.7 

(8.4) 

F1,22=0.32; p=0.580; 

ηp
2=0.014 

F2,44=1.54; p=0.225; 

ηp
2=0.065 

F2,44=0.43; p=0.633; 

ηp
2=0.019 

Ankle 

plantarflexion 

minimum (º) 

13.2 

(6.3) 

12.8 

(5.8) 

12.8 

(5.8) 

11.5 

(6.5) 

11.2 

(6.7) 

11.7 

(6.2) 

F1,22=0.34; p=0.568; 

ηp
2=0.015 

F2,44=0.49; p=0.618; 

ηp
2=0.022 

F2,44=0.32; p=0.729; 

ηp
2=0.014 

Ankle Sagittal 

plane ROM (º) 

21.1 

(4.1) 

19.7 

(4.2) 

20.1 

(4.1) 

21.2 

(5.8) 

20.5 

(6.4) 

20.4 

(7.3) 

F1,22=0.03; p=0.857; 

ηp
2=0.002 

F2,44=3.02; p=0.059; 

ηp
2=0.121 

F2,44=0.23; p=0.795; 

ηp
2=0.010 
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APPENDIX C 

 

 Instructions for Authors  
 

Journal of Applied Biomechanics  
The Journal of Applied Biomechanics (JAB) disseminates the highest quality peer-reviewed studies 

that utilize biomechanical strategies to advance the study of human movement. Areas of interest 

include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular 

biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that 

explicitly generalize to broader activities, contribute substantially to fundamental understanding of 

human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of 
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