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Abstract 

 

This study developed a Rangeland Degradation Risk Model for the Peruvian Andes based on 

the Unit Stream Powered Erosion Deposition Model using globally available datasets.  A 

supervised land cover classification was conducted to identify suitable grazing areas and to 

conduct a regional analysis of susceptibility to erosion.  Field data were collected from two 

different study sites, Huascaran National Park and Nor Yauyos Cochas Landscape Reserve,  

and were used to assess the model’s accuracy in different ecosystems and land use types.  

Field data were also leveraged to identify additional data needs and other potential drivers of 

degradation not taken into account by the model.  The accuracy assessment showed that while 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer Digital Elevation 

Model (ASTER DEM) was adequate for estimating slope and aspect, data sets used for 

estimating vegetative cover and soil properties were unable to capture spatial heterogeneity 

seen in the field.  A correlation analysis among field data suggested that topographic forcing 

was a major driver of degradation, but discrepancies between modelled and observed field 

condition suggested that the effects anthropogenic factors need to be better accounted for in 

order to improve the model’s accuracy.  The integration of a supervised land cover classification 

with a soil erosion and deposition model allows for areas at risk for degradation due to 

topographic forcing to be identified for further analysis and monitoring.  Additional research is 

needed to predict soil properties and vegetative cover at a higher spatial resolution to better 

understand their influence on rangeland condition as well as to further investigate other drivers 

of degradation. 
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Introduction 

 

Rangelands 

Rangelands, which cover 40% of earth’s terrestrial surface, are described by the Society of 

Range Management as native plant communities that are managed ecologically rather than 

agriculturally (Society for Range Management 2019).  In addition to their ecological value, 

rangelands are a valuable economic resource. Rangelands are commonly used as grazing land 

for livestock, the world’s most common land use practice, as well as for recreational and 

aesthetic values (Krausman et al. 2009).   

 Rangeland degradation can be described as a reduction in land quality or productivity 

due to natural or anthropogenic factors (Eswaran et al. 2001).  This can include overgrazing, 

fire, or climatic changes.  Changes in soils, including accelerated erosion or change in 

composition, are the main driver of physical, chemical, and biological land degradation 

(Eswaran et al. 2001).   

Anthropogenic rangeland degradation can be mitigated by land owners and managers. 

Rangelands should be managed to optimize the sustained yield of economic and ecological 

resources.  Effective management of grazing lands requires that land use reflects the quality of 

the land to minimize the negative effects of overgrazing (Milton et al. 1994).  This includes soil 

compaction, loss of vegetation and biodiversity, and accelerated erosion.  Rangelands are 

dynamic ecosystems that lack a single climax state, but have several potential states that can 

change due to anthropogenic or climactic events (Westoby et al. 1989).  Management should 

reflect these processes and focus on constantly cataloging, monitoring, and assessing 

rangeland condition to inform management decisions (Westoby et al. 1989).  Management 

actions should be based on spatial distribution of rangeland condition and rate of degradation. 

Land managers and researchers alike shape their understanding of the environment 

through personal experiences and use them to construct a mental template of their reality.  
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Since the experiences of various stakeholders vary, so do their mental models of 

rangeland processes (Abel et al. 1998).  In order for communication of information between land 

managers and researchers to be effective, one must understand the concerns and 

circumstances of the other (Abel et al. 1998).  This can be achieved by simplifying the 

underlying theory and focusing on providing land managers with practical and simple 

management tools geared toward their needs (Abel et al. 1998). 

  

Predicting Soil Erosion 

The universal soil loss equation (USLE) was developed using several decades of soil erosion 

data and can be used to empirically estimate erosion rates based on six environmental factors, 

including land cover, rainfall, soil properties, topography, and support practices (Wischmeier 

and Smith 1978).  Developed by the USDA, USLE and its revisions, known as the revised 

universal soil loss equation (RUSLE), traditionally have been used for long term estimates of 

erosion rates to improve management of agricultural lands (Renard et al. 1991).   

The Unit Stream Power-Based Erosion Deposition Model (USPED) is a sediment 

transport model that calculates erosion and deposition rates, expressed in tons/acre/year 

(Warren et al. 2005). Unlike the RUSLE model, the USPED model spatially delineates sediment 

deposition as well as erosion by accounting for upslope water movement and sediment 

transport, making it a favorable model for predicting erosion across topographically complex 

landscapes (Warren el al. 2005). The USPED model differs from RUSLE in its method of 

calculating slope length and steepness, or the LS factor (Pricope 2009). The USPED model 

takes into account the upslope contributing area when calculating the LS factor. Studies that 

have validated and compared results of the models have shown that the USPED model is more 

accurate than RUSLE, claiming that the latter overestimated soil erosion (Warren et al. 2005). 

Traditionally, erosion models have been used for lumped estimates of erosion rates for 

large areas.  However, recent developments in GIS and availability of high resolution elevation 
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models and satellite imagery has allowed for soil erosion rates to be assessed at a large scale 

with greater accuracy (Mitasova et al. 1996).  

Unmanned aerial systems (UAS) technology in the last decade has improved the 

efficiency of the collection of high resolution aerial imagery.  These new advancements in 

remote sensing can reduce the cost and time required to collect high resolution data in large 

areas or remote places.  UAS technology has the potential to improve monitoring, modelling, 

and assessment of heterogeneous areas when the resolution of globally available datasets are 

not sufficient.  High resolution data collected by UAS can also be used for determining plant 

structure and biodiversity, assessing human impacts, and constructing high resolution digital 

elevation models (Gallacher 2015).   

 

Study Area 

The Andean puna lies at an elevation between 3,500 and 5,500 meters and covers over 

100,000 square kilometers stretching from southern Peru to northern Bolivia.  The primary 

ecosystems are upland grasses and wetlands in valley floors (Baied and Wheeler 1993).  The 

dry puna averages just 30 to 50 centimeters of rainfall annually, which limits the vegetation to 

primarily grasses and shrubs.  This lack of rainfall and cold temperatures limits agriculture to 

below 4,000 meters (Baied and Wheeler 1993). 

Bofedales are wetland plant communities located in the Peruvian Andes characterized 

by constant, year-round humidity, and can be indicated by the presence of peat or organic soil 

(Fonken 2014).  Bofedales are generally located in riparian floodplains and are an important 

component in the movement of water in these highlands.  They receive water from glacial melt, 

groundwater, or rainfall at higher elevations, and store and regulate the movement of water 

downslope.  Drenkhan et al. (2015) discusses the fragility of these ecosystems, asserting that 

climate change can accelerate fragmentation of these ecosystems and alter water storage in the 

area.   
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Andean ecoregions provide many valuable ecosystem services.  Most importantly, glaciated 

regions of the tropical Andes are an essential water source for surrounding communities 

(Drenkhan et al).  In the Andean puna, bofedales are an important aspect of highland grazing, 

as they provide a reliable source of food and water to grazing animals and the surrounding 

communities.  Grazing in the Peruvian Andes is an essential part of the economies of Andean 

countries, as the vast majority of grazing animals in high Andean regions are located in Peru 

(Millones 1982).  

Semi arid rangelands are fragile ecosystems that are particularly susceptible to 

projected climate change scenarios.  Projected changes in temperature and precipitation will 

alter habitat of endemic high Andean and may result in accelerated desertification and a loss of 

biodiversity (Feely and Filman 2010).  It may also adversely affect quality of soils by increasing 

decomposition rate of organic matter and altering soil structure (Kumar and Das 2014).  Semi 

arid rangelands are complex ecosystems, and their response to climate change is difficult to 

predict. Furthermore, uncertainties in future temperature, rainfall patterns and land use pose 

many challenges for land managers. 

Much of the puna is used as grazing land for llamas, alpacas, cattle and sheep.  

According to Millones (1982) there are an estimated 19 million hectares of naturally occurring 

grazing land in elevations above 2,500 meters.   In contrast to llamas and alpacas, cattle and 

sheep pose a much greater threat to rangeland degradation.  The hooves of sheep disrupt the 

fragile groundcover, unlike llamas and alpacas padded feet.  Sheep also eat plants down to the 

root, whereas llamas and alpacas are able to clip off the desired part without disrupting the root 

structure (Baied and Wheeler 1993).   

The majority of grazing livestock are owned either by small communities or families, 

known as campesino communities.  Around one third of Peru’s grazing land is held in 

cooperative institutions known as Sociedad Agricola de Interes Social, or SAISs, which 

generally have a much lower stocking rate and are better managed than community held lands 
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(Lodaza 1991).  It is estimated that the number of grazing animals in Peru exceeds the amount 

that can be supported by the land by 17% (Lozada 1991).  The use of technology is limited in 

most grazing and agricultural communities.  They rely primarily on human and animal labor for 

herding, planting, and harvesting and use compost or manure as fertilizers (Millones 1982).  

 

Huascaran National Park 

The Cordillera Blanca is the highest tropical mountain range in the world and is protected by 

Huascaran National Park, which cover 3,400 km2 (UNESCO). It is located north of Lima in the 

Ancash province of Peru (Figure 1). The region’s climate is largely dependent on altitude, with 

an annual average temperature of 18 C in the valleys and below 0 C in the highest areas, and 

receives 770 mm of annual precipitation in the north and 470 mm annually in the south 

(UNESCO). 

While the park itself is home to less than 1,000 people, the surrounding buffer zone, 

which encompasses an additional 5,710 km2, is home to 226,500 people (Byers 2000). Nearly 

three quarters of these people live in rural campesino communities, relying on subsistence 

agriculture and cattle grazing to maintain their livelihood (SERNANP 2012, Byers 2000). The 

cultural practices of these communities and their dependence on communally held land has 

been recognized in the management plan for Huascaran National Park (SERNANP 2012). 

Campesino communities have been granted the right to continue to use park lands for cattle 

grazing in designated special use zones, primarily in the low lying pastures including those in 

Ulta and Quilcayhuanca valleys (SERNANP 2012). 

Overgrazing in these pastures has led to increased soil erosion, compaction, and a loss 

of vegetation, as the number of animals grazed has exceeded the land’s sustainable carrying 

capacity (SERNANP 2012). 
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 The main population centers are located to the west of the Park and include the city of 

Huaraz and Caraz, which hold 90,000 and 15,000 people respectively.  Huaraz is the tourism 

hub for the park and sees over 100,000 visitors annually (Byers 2000).   

The proposed soil erosion model was applied to the Ulta and Quilcayhanca valleys in 

Huascaran National Park (Figure 2).  The two respective drainage basins are delineated below 

using an ASTER digital elevation model from 2011 and the hydrology toolset in ArcGIS. 

 

Nor Yauyos Cochas Landscape Reserve 

The Nor Yauyos Cochas Landscape Reserve covers over 221,000 hectares in the foothills of 

the Peruvian Andes and is located in the provinces of Yauyos and Jauja (Shoobridge 2005). It 

was created in 2001, but has no on site land managers or rangers, and no plan was 

immediately put in place to manage the area (Shoobridge 2005).  The most recent management 

plan, put into place in 2016, has environmental, economic, and social components that focus on 

restoring the ecosystem to 2014 conditions as well as promoting sustainable tourism in the area 

(Shoobridge 2005). 

The landscape reserve has a population of 5,550 people. Since agriculture becomes 

impractical at high altitudes, communities in this regions rely primarily on grazing animals. The 

landscape reserve is home to 6,750 cattle, 89,200 sheep, 13,000 alpacas, 3,700 llamas, and 

200 vicunas (Shoobridge 2005).  Two campesino communities within the park, Thomas and 

Canchayllo, were used as study sites to implement and analyze the rangeland degradation risk 

model (Figure 3).   
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Methods 

 

The Rangeland Degradation Risk Model was created based on the USPED model using GIS.  

This model attempted to spatially delineate rate and volume of sediment flux as well as erosion 

and deposition rate. These values were then used as a basis for assessing risk for rangeland 

degradation.  The USPED model is based on the Revised Universal Soil Loss Equation, which 

calculates annual average soil loss (ASL) using the equation  

 

ASL=R*K*C*P*LS  

 

where R is rainfall erosivity, K is soil erodibility, C is land cover management, P is support 

practices, and LS is slope length and steepness (Renard et al. 1991).  The USPED model 

replaces the LS factor to account for upslope contributing area, making it a favorable model for 

computing soil erosion and deposition rates at the landscape scale (Pricope 2009).  The 

USPED model calculates relative erosion and deposition rates using the following equation: 

 

ED = div (qs) = d(qs cos a)/dx + d(qs sin a)/dy 

 

where a is the aspect angle and 

 

qs=R*K*C*P*Amsinnb 

 

Model inputs are derived from the sources shown in Table 1 and are described below. 
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Rainfall Erosivity (R Factor) 

The rainfall erosivity factor measures the erosive effect of precipitation amount and intensity.  It 

takes into account both the detachment of soil particles from raindrop impact as well as the rate 

and volume of soil movement from surface runoff (Renard et al. 1991).  Traditionally, the R 

factor value is derived from the EI parameter, calculated by multiplying the total storm energy by 

the maximum 30-minute precipitation rate in inches per hour (Renard et al. 1991).  In order to 

accurately derive this value, it is recommended that precipitation intensity data be used from at 

least 22 consecutive years (Renard et al. 1991).  Nor Yauyos Cochas and Huascaran National 

Park lack sufficient rain gauge precipitation data, so alternative ways of estimating rainfall 

erosivity were used.  The R factor was calculated using Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) data.  The CHIRPS program uses infrared satellite data to 

estimate monthly precipitation from 1981 to 2017 at a scale of 0.05° (Funk et al. 2015).  This 

information can be particularly useful in areas where weather stations are sparse.   

The CHIRPS data were analyzed using Python scripts derived from tools in ArcMap.  

The global monthly CHIRPS data sets were clipped to the study area.  The datasets were 

resampled to the size of a Landsat pixel as well as a MODIS pixel to allow the model to be run 

at two different scales.  Annual average precipitation was calculated by averaging the annual 

rainfall values from 1981 to 2017.  Averages of each month for the same years were used to 

calculate monthly precipitation averages.  These values were entered into the equation  

 

F=SUM((Monthly Precipitation)2/(Annual Average Precipitation) 

 

The Modified Fournier Index (Renard and Freimund 1994) was used to calculate the R 

factor for the study areas with the processed CHIRPS data as inputs.  The Modified Fournier 

Index was developed to calculate rainfall intensity using monthly and annual precipitation data, 

and is particularly useful when detailed rainfall data are unavailable (Renard and Freimund 
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1994).   Previous studies have shown that the Modified Fournier Index has a strong linear 

correlation with rainfall erosivity (Renard and Freimund 1994).  The Modified Fournier Index 

values were transformed to reflect R factor values using the equation  

 

R=3.82F1.41   

 

 

Soil Erodibility (K Factor) 

Soil erodibility can be described as the amount of soil loss per unit of energy applied.  This 

value is influenced by properties of the soil, and several equations attempt to draw a 

relationship between soil properties and K factor values (Renard 1997).  One equation, 

developed from a database of global soils, uses mean particle size, derived from sand silt and 

clay percentages, to estimate K factor values.  However, this equation can only be used for soils 

with less than 10% rock fragments. 

The K factor was calculated using soil information from the International Soil Reference 

and Information Center (ISRIC).  The ISRIC has recently developed SoilGrids, an information 

system of predicted global soil properties at various depths based on machine learning (Hengl 

et al. 2017).  Among other properties, SoilGrids includes surface percentage of sand, silt, and 

clay at a 250 square meter resolution.  These values were used to calculate the mean particle 

size of the soils using the equation  

 

Dg=exp(0.01(SUM(fi ln m))  

 

where fi is the particle size fraction and m is the mean particle size for clay, silt, and sand.  The 

m values used for clay, silt, and sand were 0.001, 0.026, and 1.025 respectively (Renard et al. 
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1991).  The mean particle size value (Dg) was entered into the equation below to derive the K 

factor.   

 

 

 

Land Cover Management (C Factor) 

Land cover management can be defined as the ratio of soil loss under a certain plant cover type 

to the amount of soil loss on bare soil.  This value, which ranges between 0 and 1, accounts for 

the prevention of detachment of soil particles due to vegetation cover (Renard et al. 1991).  The 

C factor can be broken down into several sub-factors to estimate the soil loss ratio.  These 

factors include cropping impacts, vegetative canopy, and surface cover (Renard et al. 1991).  

The Normalized Differential Vegetation Index (NDVI) is calculated using the infrared and near-

infrared reflectance using the equation (NIR-Red)/(NIR+Red) and is an indicator of vegetation 

health and productivity (Durigon et al. 2014). NDVI is a ratio of radiant energy emitted by 

vegetation to the total energy emitted from the vegetation contained within a pixel, and has been 

used in previous studies as a way to estimate the cover management factor (Erencin 2000, 

Durigon et al. 2014). 

The NDVI values were calculated from both MODIS and Landsat imagery.  A composite 

raster dataset was created using maximum NDVI values derived from Landsat imagery from the 

dry season (April to November) in the years 2014 to 2018.  A maximum value composite was 

also created from MODIS imagery from the years 2015 to 2018.  

The NDVI values were normalized to estimate percent cover of green vegetation (Fg) as 

described by Gutman and Ignatov (1998).  The NDVI values corresponding to bare soil 
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(NDVIbare soil) and fully vegetated areas (NDVIvegetated) are used to more accurately reflect 

vegetative cover for the specific study area.  These values were used to calculate percent of 

vegetated cover using the equation: 

 

Fg= NDVI-NDVIbare soil /NDVIvegetated - NDVIbare soil  

 

Values for NDVIvegetated and NDVIbare soil were derived from a previous study that 

compared field plot data to NDVI values for bare and vegetated areas in the High Andean 

rangelands (Pizarro 2017).  Values of of 0.1275 for bare soil and 0.63 for fully vegetated areas 

were used for the FCV calculation. 

All resulting values greater than 1 were set to 1, and all values less than 0 were set to 0.  

The fraction of green vegetation map was transformed to reflect C factor values using the 

equation (1-NDVI)/2. 

 Two iterations of the model were run with two different inputs for the C factor.  The first 

used Landsat imagery, which has a scale of 30 meters, and the second used a MODIS 

maximum value composite, which has a scale of 250 meters.  This allows for the model results 

to be compared at two different scales.  All other factors were resampled to match the C factor 

layer resolution.  The MODIS maximum value composite was derived by calculating the 

maximum value for each pixel from MODIS for the years 2015 to 2018, and was used as the 

input for the above C factor equation. 

 

Slope Length and Steepness (LS Factor) 

Slope length and steepness were derived from an Advanced Spaceborne Thermal Emission 

and Reflection Radiometer Digital Elevation Model (ASTER DEM).  This sensor, developed by 

the United States and Japan, has been collecting high resolution multispectral imagery from 

NASA’s Terra satellite since 2000 (Tachikawa et al. 2011).  Validations of the elevation model 
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showed that the most recent version of the ASTER DEM had a root mean square error of 6.1 

meters when compared to geodetic references (Tachikawa et al. 2011) 

The LS factor was calculated with the ASTER DEM using the equation Amsinnb, where b 

is the surface slope in degrees and A is upslope contributing area (Pricope 2009).  m and n are 

coefficients to account for prevailing erosion type, and were set to 1.6 and 1.3 for prevailing rill 

erosion (Pricope 2009).  

 

Model Processing  

A supervised land cover classification was conducted in ENVI to identify areas that were 

suitable for grazing, as these will be the main focus of the analysis.  Regions of interest (ROIs) 

were collected at the study sites in Nor Yauyos Cochas and Huascaran National Park, which 

included information on ground cover type and vegetation structure.  These ROIs were collected 

by Laboratorio de Ecología y Utilización de Pastizales at the National Agrarian University in 

Lima, Peru in 2016 and have nearly 650 training sites.  They contain data on land cover and 

vegetation structure.  These ROIs were used to identify areas of Landsat Imagery from July 

2017 with similar spectral signatures throughout the entire study area.  They were then 

classified as tallgrass, shortgrass, bofedales, water, snow, bare rock, bare soil, forests, or 

moraine.   

Lands were classified based on elevation, humidity regime and the land cover 

classification mentioned above.  An ASTER DEM was used to create four different elevation 

classes.  The elevation classes used were 3,500-4,000 meters, 4,000-4,500 meters, 4,500-

5,000 meters, and > 5,000 meters.  Humidity regime was divided into five classes and was 

derived from an ecological map developed by the Peruvian National Office for the Evaluation of 

Natural Resources (ONERN 1976).   

After these three classifications were combined into one ecosite map, a mask was 

created to eliminate areas that are not suitable for grazing.  This included developed areas, 
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such as urban or mining areas, unvegetated areas, and areas with slope greater than 60%.  

Small polygons were then aggregated to nearby larger ones, and ecosites smaller than 4 

hectares were filtered out.  The resulting map predicts areas within the study site that are 

suitable for grazing (Figure 4).  This map was used to inform field sampling locations to assess 

the accuracy of the model. 

 

Rangeland Degradation Risk Model 

The results of the USPED model using Landsat imagery for the C factor were used to conduct 

an assessment of erosion and deposition rates for each ecoregion suitable for grazing using the 

land cover classification map.  For Nor Yauyos Cochas, the same assessment was conducted 

using the watersheds within the study area.  Assessing erosion and deposition by region or 

watershed will make it easier to identify grazing areas at risk of degradation and will also 

facilitate communication with land managers.  The USPED model results using landsat imagery 

were separated into two different layers, one representing erosion (negative values) and one 

representing deposition (positive values).  The sum of these two layers was then calculated 

separately for each ecosite and watershed.  These values were used to create a ratio of 

deposition to erosion.  Values greater than one indicate higher rates of deposition, and values of 

less than one indicate higher values of erosion.  These values can be used to assess the 

severity of landscape change in each ecoregion as well as within each watershed. 

A supervised classification was conducted based on the results of the erosion to 

deposition ratio calculated for each watershed and ecosite.  Natural breaks were used to 

separate the data into three classes, one to represent areas of predominantly high erosion, one 

for areas of predominantly high deposition rates, and one for stable areas.   
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Field Methods 

Data on slope, aspect, elevation, land cover, vegetation, and soil properties were collected in 

the field and were used to assess the accuracy of each of the model inputs.  This allowed for 

potential sources of error to be identified.   

Fieldwork was conducted in two campesino communities in Nor Yauyos Cochas 

Landscape Reserve, Thomas and Canchayllo, and in Ulta and Quilcayhuanca Valley in 

Huascaran National Park in July and August of 2018. Additional ground control points were 

taken in October of 2017 in Nor Yauyos Cochas.  The goal of this work was to collect data on 

the physical characteristics, vegetation, and ecosystem health to inform and ground truth a soil 

erosion model for the area.  These data were also used to assess correlations of site properties 

to better understand drivers of rangeland degradation. 

 

Data Collection 

A total of 93 ground control points were collected to use for analysis.  Thirty ground control 

points were collected in Tomas and 30 were collected in Canchayllo in July.  An additional 33 

points were collected in October of 2017, 18 in Canchayllo and 15 in Thomas. Sampling 

locations were selected based on the ecosite map created for the study area.  Within each 

ecosystem, replicate points were taken to represent varying rangeland conditions within each 

ecosystem.  The location and elevation of each point along with the associated error was 

collected using a Garmin 60CS GPS.  The points collected had an average error of 6 meters.  

Slope and aspect were measured with a clinometer and a compass, respectively.  Percent land 

cover, including percentage of grasses, shrubs, water, and soil, were visually estimated and 

recorded in the surrounding area within a 10 meter radius.  The species present were recorded 

and photographed in order of dominance.  Condition of the rangeland was assessed based on 

the visual impacts of soil erosion and grazing.  Panoramic photos were taken of each point.  Soil 
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samples were collected and labelled for select sites.  A total of 35 soil samples were collected 

and analyzed for particle size distribution as well as percent of organic matter. 

 

Data Analysis 

Kendall’s rank correlation analysis (R version) was conducted for each individual model input 

that had corresponding field data.  This includes MODIS and Landsat derived vegetative cover, 

soil properties, slope, aspect, and elevation. The absolute mean error was calculated for each 

model input and corresponding field dataset to determine at what scale each input is accurate 

to.  Finally, the model and field data were plotted to identify systematic biases.   

A correlation analysis was also conducted among data collected in the field to better 

understand how they relate to one another.  This can provide valuable information on potential 

drivers of rangeland degradation. 

 

Results 

 

Model Processing 

The sediment transport rates given by the USPED model for both Ulta and Quilcayhuanca 

valleys showed a similar spatial distribution.  High rates of deposition were located in valleys, 

with the highest concentration being where the main rivers flow out of the valleys.  High rates of 

erosion were seen in the steeper slopes surrounding these valleys (figure 5).  This pattern is 

easily visible in Quilcayhuanca valley, as the watershed is dominated by one river that trasects 

the entire valley.  Although Ulta valley has several different basins feeding into the main river, 

the same pattern was still visible at a slightly smaller scale.  The USPED results modelled at the 

MODIS scale had a similar spatial distribution to the Landsat resolution for both valleys (figure 

6).  The main difference seen was that the river basins are relatively stable, whereas the 
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surrounding slopes had high rates of erosion.  This is most likely a result of the coarser spatial 

resolution. 

The topography of Nor Yauyos Cochas differs from the valleys of Huascaran National 

Park in that the landscape is composed of gradual rolling foothills rather than being dominated 

by larger mountains and glacial valleys.  However, a similar spatial pattern was seen at a 

smaller scale with areas with high rates of deposition concentrated around major rivers within 

the study area (Figure 7).  This pattern was more easily visualized at the MODIS scale,  

particularly in the rivers in the southwest portion of Thomas (Figure 8). 

Both MODIS and Landsat scale model results showed a similar spatial pattern in relation 

to topography.  High rates of erosion were seen on steep hillslopes, whereas high rates of 

deposition were seen in valleys and river basins.  However, MODIS scale results showed larger 

concentrations of areas with low sediment transport rates.  While these were also present in the 

Landsat scale model results, they were distributed more evenly amongst areas with higher 

erosion or deposition rates.  This can be seen when comparing the two scales in the north and 

central portion of Canchayllo and the eastern portion of Thomas.  At the MODIS scale, these 

areas were dominated by very low sediment transport rates, whereas the Landsat scale showed 

a uniform distribution of high erosion, high deposition, and rates near zero.  This were most 

likely due to the higher resolution model being able to discern and calculate erosion rates on 

smaller topographical features.   

 While having higher resolution sediment transport information may be more desirable, all 

model inputs should show an acceptable level of accuracy at the determined scale in order for 

the given rates to be meaningful.  It is also important to consider the needs of land managers 

and to summarize the information given by the model in a way that relates to their information 

needs. 

The supervised land cover classification in Nor Yauyos Cochas resulted in 22 different 

cover types in the two study areas, covering 32,931 hectares or 57% of the two study areas.  



 17 

Shortgrass and tallgrass made up 29% and 24% of the study area respectively, while bofedales 

made up just 4.3%  (Figure 9).  Canchayllo is characterized by large uninterrupted ecosites 

suitable for grazing as seen in the image in Figure 10.  The northern part of the study area was 

predominantly shortgrass whereas the southern portion was mainly tallgrass.  The majority of 

the bofedales were located in the southwest portion of the study area.  Grazing areas in 

Thomas were much smaller in size and were segmented by the complex topography of the 

area, including steep hillsides and rocky outcrops.  The photograph in Figure 11 was taken in 

the southwest portion of the park, and is a visual example of the topographic features that 

segments rangelands.   Bofedales were more frequent and more uniformly distributed 

throughout Thomas.   

In Ulta and Quilcayhuanca valleys, the land cover predicted by the supervised 

classification seemed to be largely dependent on elevation.  Areas of lower elevation were 

dominated by bofedales, shrubs, and tallgrasses (Figure 12).  Shortgrass dominated higher 

elevation areas along with polylepis, a high elevation shrub.  The photograph in Figure 13 

shows how land cover changes with an increase in elevation.  The low lying areas surrounding 

the rivers were bofedales and store most of the water.  The surrounding slopes were composed 

of shortgrass, tallgrass, shrubs, and bare rock and soil depending on elevation and slope. 

The tallgrass ecosites in the southeast portion of Canchayllo were mainly classified as 

stable after the erosion deposition analysis was conducted and the values classified into 

categories.  The northeast portion of Canchayllo, dominated by shortgrass, was predicted to be 

an area of high erosion.  Nearly all classified deposition areas were relatively small ecosites 

located adjacent to major rivers (Figure 14).  Compared to Canchayllo, there were more erosion 

prone ecosites in Thomas.  A high concentration of them were located in the river valleys in the 

western portion of the park. There were also many erosion classified areas on the northeast 

border of the study area. 



 18 

The observed rangeland condition for each ground control point was compared to the 

ecosite condition predicted by the Rangeland Degradation Risk Model (Table 3).  The location 

of the ground control points in relation to the predicted rangeland condition can be seen in 

Figure 15.  91.4% of the ground control points collected were located in areas that were 

predicted to be suitable grazing areas, and the majority of the points outside of these areas 

were in poor or very poor condition.   

The vast majority of points observed to be in very poor condition were located in 

ecosites predicted as erosion areas, suggesting that areas prone to erosion are at greater risk 

of rangeland degradation.  Figure 16 Shows an ecosite in the southeast portion of Thomas 

predicted to be an area of erosion.  The corresponding photograph, taken from point 44, shows 

the effects of topography on vegetative cover and rangeland condition on the surrounding 

hillsides. 

Nearly half of the points in stable ecosites were in poor condition, while the other half 

were in either regular, good, or excellent condition.  Since erosion rate is mainly a function of 

topography, stable ecosites are usually located in flatter areas.  While this minimizes the effects 

of erosion on land degradation, these easily accessible areas are prone to overgrazing, which 

may help explain the high concentration rangelands in poor condition in these ecosites 

predicted to be stable.  Figure 17 shows an example of an ecosite predicted to be stable which 

was observed to be in poor condition.  Effects of fire as well as grazing sheep can be seen in 

the nearby area.  These anthropogenic factors, not directly accounted for in the model, may 

contribute to a decline in rangeland condition not attributable to erosion rate.   

The results of erosion and deposition analysis by ecosite were also compared visually to 

ground control points to better understand how rangeland condition varies spatially.  Figure 18 

shows two points taken in a shortgrass ecoregion.  One point is taken at the base of a valley 

and one taken on the steep hillslope.  The latter point has large areas of bare soil and rock from 

accelerated erosion.  Footpaths from grazing animals can be seen on the hillslope. A visual 
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comparison of the soil at the two sites shows that the steep hillslope has a higher concentration 

of large particles whereas the area at the base of the valley is composed of finer sediment 

(Figure 19).  This is a visual example of how topography can alter soil properties over a 

relatively small area.   

 Classification of erosion rate by ecosite for Huascaran National Park was similar to the 

spatial distribution seen in Nor Yauyos Cochas.  However, since each study site is transected 

by one main river and there in less complexity in the distribution of ecosites, the pattern can be 

seen on a much larger scale (Figure 20).  Areas of deposition are seen in the low lying areas 

surrounding the rivers.  Although areas at mid elevation are classified as stable, I would 

hypothesize that it would be more accurate to categorize them as erosion prone areas.  The 

rate of deposition in reality would most likely be lower than the value given by the model, as it 

fails to account for the large areas of glacier and bare rock that dominate the higher elevations.  

Visible effects of erosion can be seen in an area classified as stable in Figure 21.   

The modelled rates of erosion and deposition given by the USPED model using Landsat 

imagery for Nor Yauyos Cochas were analyzed for the relative effects of different driving factors.  

Four different iterations of the model were calculated.  Sediment transport rate was calculated 

as a function of topography, topography and soil erodibility, topography soil erodibility and land  

cover, and topography, soil erodibility, land cover, and precipitation.  Since the output sediment 

transport rate is a unitless value, the results of the model were standardized by calculating the 

z-score (value-mean/standard deviation).  The resulting histogram can be seen in Figure 22. 

The addition of the soil erodibility factor and land cover factor reduced areas with high 

erosion and deposition values.  The area of Z score values between -1 and 1, which are 

relatively stable values, increased with the addition of these factors.  The more extreme values 

representing higher erosion or deposition rates decreased when soil erodibility and land cover 

were added.  The addition of precipitation had the greatest effect on the distribution of values.  

Values representing high rates of erosion and deposition saw the most dramatic increase, 
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whereas the majority of values representing lower erosion and deposition rates reduced in area.  

The distribution of values between the topographic forcing model and the model containing all 

four factors are the most similar, suggesting that erosion rate is primarily a function of 

topography.   

 

Accuracy Assessment 

The slope and aspect data for both study sites were derived from a 30 meter ASTER DEM.  The 

measured slope was significantly correlated with slope values derived from the DEM and had a 

mean error of 5.93 degrees.  This is consistent with the average error of the GPS used to collect 

the ground control points as well as the error associated with the ASTER DEM.  A visual 

analysis of the relationship between measured and derived values shows that the measured 

values are consistently less than those derived from the DEM (Figure 23).  This may be due to 

biases in field slope measurements. 

The measured and derived aspect values display a strong linear relationship, with the 

exception of values approaching 360 and values approaching 0 (Figure 24). The mean error 

was 75 degrees, which may be an overestimation as the error of misclassified values around 

360 or 0 degrees is not accurately accounted for in this calculation.  Regardless, the two 

datasets had a significant relationship.   

 Percentage of vegetated cover measured in the field and estimated vegetation cover 

using fractional cover vegetation (FCV) were significantly correlated but showed little meaningful 

relationship (Figure 25).  Based on a visual analysis of the plotted results, the landsat derived 

vegetation data failed to capture the variability in vegetative cover seen in the field.  The mean 

error between the two was 67 degrees, which is inadequate for providing meaningful information 

for land cover.  MODIS fractional cover vegetation and vegetative cover measured in the field 

showed little linear relationship, and had a mean error of 66.44 percent (Figure 26).  Within pixel 

variability makes it difficult to accurately predict vegetative cover at the individual pixel scale.  
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However, these data can be useful in conducting regional analysis of vegetative cover to identify 

suitable grazing lands. 

 None of the soil properties measured in the field were significantly correlated with 

estimated soil properties from ISRIC (Figure 27).  The variation seen in organic matter and soil 

composition in the field at the surface level was not accounted for in the estimated data set.  

The discrepancies between the field data and derived data for soil and vegetation properties 

could be attributed to within pixel variability. The estimated dataset used is not based on 

collected field data, but on machine learning, and captures on average 61% of the variation in 

soil properties at a scale of 250 meters (Hengl et al. 2017).  Previous studies have shown that 

soil properties in semi arid rangelands vary significantly among cover types, and that grazing 

further increases spatial heterogeneity (Stavi et al. 2008).  Based on this information, it would be 

expected that the ISRIC data would not account for all of the spatial variability in soil properties 

seen in the field.  

 

Field Data Correlation Analysis 

Although some of the modelled datasets do not accurately reflect field conditions at the desired 

scale, looking at relationships within field data can give valuable information for predicting field 

conditions and better understanding drivers of rangeland degradation.   

 For the dataset including all points from Huascaran National Park and Nor Yauyos 

Cochas, slope was negatively correlated with herb percent, water percent, and rangeland 

condition (figure 28).  Slope was also positively correlated with percent rock.  This is consistent 

with the visual assessment of the images from both parks in figures 11 and 13.  Flat areas at the 

base of the valley are the main area of water storage and are rich in organic matter.  On the 

surrounding steeper slopes, vegetative cover appears to be thinner, and areas of exposed rock 

or eroded soil are visible on steeper slopes.  The negative association with rangeland condition 

suggests that these steep areas are particularly vulnerable to degradation due to accelerated 
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erosion rates.  These results are consistent with the analysis of the model’s driving factors, 

showing that erosion and deposition rates are primarily a function of topographic forcing. 

 Slope, herb and soil cover were all significantly correlated with rangeland condition.  

Condition was positively correlated with herb cover and negatively correlated with slope and soil 

cover.  This suggests that degraded ecosystems can be characterized by larger percent areas 

of soil and occur on areas with steeper slopes, as these areas are more vulnerable to erosion.  

Although herb cover is positively associated with rangeland condition, condition is largely 

dependent on the type of plant, as a rangeland dominated by noxious or invasive plants would 

be considered to be in worse condition than one dominated by species that are desirable to 

grazers.  Further research is needed to develop a method of predicting vegetation type and 

structure using remotely sensed data.  

Several inconsistencies were seen when separating the data and running a correlation 

analysis for each park separately (figure 29 and figure 30).  Nor Yauyos Cochas has more 

significant correlations with elevation than Huascaran National Park, the most notable being 

percent herb and percent soil.  I would expect the opposite to be the case, as the land cover 

classification for Huascaran National Park suggested that land cover type was largely 

dependent on elevation.  This may be due to the fact that samples were collected mainly in 

lower elevation grazing areas, leaving out bare rock and glaciated areas from the field data set.   

A separate analysis was conducted by using only ground control points with data on soil 

properties from Nor Yauyos Cochas (Table 4).  The resulting significant Kendall’s tau values 

can be seen in table 4.  Soil organic matter is significantly correlated with elevation.  Organic 

matter is also positively correlated with sand content and negatively correlated with clay content.   
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Conclusions 

 

Erosion and deposition values from the USPED model are mainly a function of topography for 

the study area.  This can be seen in the distribution of values from the different model results.  

Distribution of values from the model using only topographic forcing closely resemble those 

using all USPED variables.  Field data supports these results, as rangeland condition and 

percent cover types are all negatively correlated with slope.  The ASTER DEM used for the 

model was successful in capturing spatial variability of slope and aspect across the study areas, 

as the correlation analysis between observed and measured values showed a significant 

meaningful relationship.   

  Methods used in this study for estimating percent vegetative cover were unable to 

capture spatial heterogeneity of vegetative cover seen in the field.  Each ground control point 

estimated vegetative cover within a 10 meter radius, and the scale of the remotely sensed 

vegetative cover estimates were 30 meters by 30 meters.  The discrepancies between observed 

and predicted percent of vegetated cover is most likely a combination of within pixel variability 

and human error in estimation.  Temporal variability in vegetation cover may have also played a 

role in the inaccuracies seen, as some of the data were collected in October, which is the 

beginning of the rainy season, while the rest was collected in July and August, toward the end of 

the dry season.  The satellite imagery used is from the dry season so as to minimize effects of 

cloud cover. 

Methods for estimating soil properties were also unable to accurately reflect measured 

field conditions.  Since soil properties have been seen to vary with cover type in semi arid 

rangelands, it would be expected that predicting soil properties at this scale using a dataset with 

a resolution of 250 meters by 250 meters would yield little meaningful relationship.   

Additional research is needed to develop a more accurate method of estimating soil 

properties and vegetation structure at a finer scale to better account for their role in determining 
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rangeland condition.  UAS could be used to gather high resolution aerial imagery for at risk 

areas to determine vegetation cover and type.  This information could also be useful in 

predicting soil properties based on vegetation to better account for the soil erodibility factor in 

the calculation of sediment transport rate.  More quantitative assessments of vegetation cover 

and rangeland condition in the field would be useful to predict rangeland condition and better 

understand the drivers of rangeland degradation.  

External drivers of degradation such as fire, roads, and stocking rate should also be 

evaluated further and incorporated into the model.  This may help explain areas in poor 

condition that are classified as stable by the model.  

While vegetative cover estimates were unable to predict localized field conditions, they 

were useful in conducting a regional analysis of vegetative cover for the entire study area.  This 

information is an important component in creating a land cover classification for the study area.  

This provides a basis to conduct a regional analysis of the susceptibility of suitable grazing 

areas to rangeland degradation.   

Based on the results of the study, the rangeland degradation risk model appears to be 

more effective in the Andean puna than in the Cordillera Blanca.  This was determined by 

comparing observed rangeland condition to the predicted condition at the ecosite scale.  The 

larger mountains in the Cordillera Blanca resulted in a more homogenous land cover 

classification, as the grazing areas are much larger.  This makes it much more difficult to 

generalize erosion rate or rangeland condition based off of ecosite.  Furthermore, the bare rock 

and glaciers seen at higher elevations provide an additional source of water not accounted for in 

the calculation of erosion rate and behave differently than rangelands.  This makes it more 

difficult to estimate erosion rates based on topography in absence of reliable soil and vegetation 

data.  In contrast, the smaller foothills of the Andean Puna give way to a more heterogeneous 

landscape with smaller ecosites, making it easier to identify localized areas at risk of rangeland 

degradation.  The two study areas are subject to different stressors, as the grazing lands in 
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Thomas are mainly used by llamas and alpacas, Canchayllo is mainly sheep and cattle, and 

Huascaran National Park is all cattle.   

While the Rangeland Degradation Risk Model was unable to predict degradation at the 

scale of a Landsat pixel due to spatial heterogeneity, it can provide a regional analysis of 

degradation risk based on the topographic forcing on sediment transport.  This can be used to 

identify grazing areas that are at risk of rangeland degradation for future monitoring and to 

inform management decisions in these locations.  Another shortcoming of the model is that it 

does not account for degradation due to heavy land use in absence of accelerated erosion.  Flat 

areas may be classified as stable due to low sediment transport rate, but may be degraded due 

to heavy land use.  Being able to remotely sense changes in vegetative cover would allow this 

to be accounted for in the model. 
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Tables and Figures 

 

 

Figure 1: Location of study areas in Peru. 
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Figure 2:  Ulta and Quilcayhuanca Valleys in Huascaran National Park 
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Figure 3:  Canchayllo and Thomas communities within Nor Yauyos Cochas Landscape Reserve 
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Table 1: Data sources and resolution for model inputs. 

Data Inputs for USPED Model 

Data Parameter Source Resolution Period 

Slope, Aspect, and 

Elevation 

ASTER DEM 30 Meters 2011 

Vegetative cover Landsat 30 Meters November to April 

2014 - 2018  

Vegetative cover Moderate 

Resolution Imaging 

Spectroradiometer 

(MODIS) 

250 Meters 2015-2018 

Rainfall Climate Hazards 

Group InfraRed 

Precipitation with 

Station data 

(CHIRPS) 

0.05 decimal degrees Monthly 1981-2018 

Surface percentage of 

sand, silt, and clay 

SoilGrids 250 Meter 2017 
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Table 2: Data sources used to create supervised land cover classification 

Data Inputs for supervised Land Cover Classification 

Data Source 

Elevation 2011 ASTER DEM (Tachikawa et al. 2011) 

Humidity Regime ONERN 1976 

Land Cover July 2017 Landsat 8 Imagery obtained from 

the U.S. Geographical Survey 

Regions of Interest Universidad Nacional Agraria La Molina 

Laboratorio de Ecología y Utilización de 

Pastizales 2016 
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Figure 4: Flowchart detailing process of development of Rangeland Degradation Risk Model 



 37 

 

Figure 5: Results of USPED model at the Landsat pixel scale for Huascaran National Park  
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Figure 6: Results of USPED model at the MODIS pixel scale for Huascaran National Park 
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Figure 7: Results of USPED model at the Landsat pixel scale for Nor Yauyos Cochas 
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Figure 8: Results of USPED model at the MODIS pixel scale for Nor Yauyos Cochas 
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Figure 9: Supervised land cover classification for suitable grazing areas in Thomas and 

Canchayllo communities in Nor Yauyos Cochas Landscape Reserve.  
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Figure 10: Example of tallgrass ecosystem in Canchayllo.  Looking north from GCP 112 toward 

a large shortgrass area.  Gentle, undulating topography results in uninterrupted 
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Figure 11: Shortgrass and tallgrass ecosites in Thomas.  Photo taken from GCP 130.  Steep 

slopes and rocky outcrops segment areas suitable for grazing 
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Figure 12: Supervised land cover classification for Ulta and Quilcayhuanca valleys in Huascaran 

National Park.  
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Figure 13: Visual example of how land cover and species composition changes with elevation.  

Photo taken from northern slope of Quilcayhuanca valley. 
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Figure 14: Erosion deposition rate calculated by ecosite for Nor Yauyos Cochas 
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Figure 15: Erosion deposition rate calculated by ecosite for Nor Yauyos Cochas with location of 

ground control points.  
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Table 3: Confusion matrix of observed rangeland condition and predicted ecosite condition for 

all ground control points. 

  Predicted Ecosite Condition  

  Erosion Stable Deposition NA Total Percent 

Total 

 

 

 

Observed 

Rangeland 

Condition 

Very Poor 15 0 1 2 18 11.7% 

Poor 23 27 13 5 68 44.2% 

Regular 9 22 7 6 44 28.6% 

Good 5 7 2 0 14 9.1% 

Excellent 2 6 2 0 10 6.5% 

 Total 54 62 25 13 154  

Percent 

Total 

35.1% 40.3% 16.2% 8.4%  100% 
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Figure 16: Predicted ecosite conditions for southeast portion of Thomas and photograph of 

rangelands, taken from point 44.   
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Figure 17: Predicted ecosite conditions for southeast portion of Canchayllo and photograph of 

rangeland, taken from point 7.   
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Figure 18: Eroding hillside catalyzed by heavy grazing.  Footpaths for grazing animals can be 

seen in bare rock section. Differences in type and amount of vegetation can be seen between 

the two points.   
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Figure 19: Soil samples from point 36 (left) and point 37 (right). 

 

 

Figure 20: Erosion to deposition ratio calculated for each ecosite in Ulta and Quilcayhuanca 

valleys 
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Figure 21: Image looking northwest from the southeastern slope of Ulta Valley.  Glaciers and 

bare rock are visible above visibly eroding hillsides in the far valley.     
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Figure 22: Histogram showing distribution of standardized values for erosion and deposition 

rates as a function of different variables. 
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Figure 23: Measured slope compared to slope derived from DEM. 
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Figure 24: Measured aspect compared to aspect derived from DEM 
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Figure 25: Landsat FCV values compared to estimated vegetated cover in the field 
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Figure 26: MODIS FCV values compared to estimated percent vegetative cover in the field 
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Figure 27: Percentages of sand, silt, and clay compared to values predicted by the ISRIC 

database at the surface level. 
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Figure 28: Visualization of Kendall’s tau values for correlations among field properties in Nor 

Yauyos Cochas and Huascaran National Park 
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Figure 29:   Visualization of Kendall’s tau values for correlations among field properties in Nor 

Yauyos Cochas  
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Figure 30:   Visualization of Kendall’s tau values for correlations among field properties in 

Huascaran National Park 
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Table 4:  Kendall’s Tau values for significant correlations among soil properties for ground 

control points in Nor Yauyos Cochas. 

 

 Organic 

Matter 

Sand Silt Clay 

Organic Matter     

Sand 0.405    

Silt  -0.54   

Clay -0.439 -0.605   
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