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ABSTRACT 

 

 Members of the Archaeal genus Thermococcus are sulfur-dependent hyperthermophiles 

found in hydrothermal vents throughout the world. Previous analysis of a Thermococcus culture 

collection containing isolates from the Juan de Fuca Ridge, Gorda Ridge, and South East Pacific 

Rise using amplified fragment length polymorphism analysis and multilocus sequence typing 

revealed a distinct clade of Thermococcus isolated from the 1996 megaplume event at Gorda 

Ridge, indicating that they originated from a deep-subsurface habitat. The aim of this study was to 

elucidate the functional adaptations that allow for the survival of the Gorda Ridge clade in a deep-

subsurface habitat as compared to representative Thermococcus isolates from shallow subsurface 

environments. This was accomplished through a pangenomic analysis of representative isolates in 

this clade and others from this culture collection. The Gorda Ridge megaplume group was enriched 

for genes relating to DNA repair and stabilization including a predicted endonuclease distantly 

related to Archaeal Holliday junction resolvase, DNA mismatch repair ATPase mutS, CRISPR/Cas 

elements, and dnaK (hsp70). The group was also enriched for ABC-type branched-chain amino 

acid (BCAA) transport system, enzymes for the Shikimate pathway for aromatic amino acid 

synthesis, as well as TupA for tungstate transport. These findings suggest that Thermococcus 

inhabiting deep-subsurface fluid reservoir require the added ability to prevent and repair damage 

to their DNA, presumably due to the energy demands of DNA replication. The enrichment in 

BCAA and tungstate transporters may indicate the use of an amino acid catabolism pathway 

followed by fermentation catalyzed by the tungstopterin containing enzymes aldehyde ferredoxin 

oxidoreductase and alcohol dehydrogenase, suggesting a preference for peptides over 

carbohydrates as an energy source in the deep-subsurface.   
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INTRODUCTION 

The classical view of microbial biogeography is that “everything is everywhere; 

environment selects” (Baas-Becking, 1934), meaning microbial populations exhibit high dispersal, 

but are shaped by environmental parameters into habitat specific ecotypes and species. However, 

not all microbial populations follow this pattern. For example, geographic barriers isolate regional 

populations of Sulfolobus leading to region specific differentiation that is independent of 

environmental parameters (Whitaker et al., 2003). Furthermore, other microorganisms such as the 

bacterioplankton Pelagibacter ubique are well known for having a global geographic range 

(Morris et al., 2002). Complicating matters further are hyperthermophiles such as Thermococcus. 

While these organisms exhibit biogeographic patterns of high dispersal, niche adaptations have led 

to incidences of habitat specific divergence and speciation (Price et al., 2015). Microorganisms do 

not adhere to simple models of broad dispersal or allopatric speciation (Whitaker, 2006). 

Therefore, in order to gain a more complete understanding of microbial evolution it is important 

to interrogate individual populations for unique biogeographic signals, such as functional 

adaptations that may indicate region or habitat specific ecotypes which could signify the first step 

to species differentiation. 

Adaptations to an extreme environment have led to diverse microbial metabolisms and 

physiologies in hydrothermal vent systems (Mayer & Müller, 2014; Valentine, 2007). Deep-sea 

microorganisms are of interest not only because their collective biomass may be comparable to the 

biomass of all surface life (Gold, 1992; Whitman et al., 1998; McMahon & Parnell, 2013), but also 

because they play important roles in biogeochemical cycles by metabolizing nitrogen, sulfur, 

hydrogen, and hydrocarbon containing compounds into biologically accessible products (Lovely 

& Chapelle, 1995; Dick et al., 2013). Deep-sea microbes also have the potential to provide novel 

enzymes for biotechnology applications (Alma’abadi et al., 2015). For example, DNA polymerase 
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from Pyrococcus furiosus, a hyperthermophilic archaeon found in hydrothermal vents, was found 

to have higher fidelity than Taq DNA polymerase (Saiki et al., 1988) when used in PCR 

amplification due to its 3’ to 5’ proofreading exonuclease activity (Lundberg et al., 1991). 

Hyperthermophiles have also been studied for their use in the field of industrial bioenergy. P. 

furiosus and several strains of Thermococcus have the ability to produce large amounts of H2 gas, 

which could be applied in the conversion of organic feedstock into H2 for use as a fossil fuel 

alternative (Oslowski et al., 2011).  

Microorganisms from the order Thermococcales, which includes the genera Pyrococcus 

(Fiala & Stetter, 1986), Paleococcus (Takai et al., 2000), and Thermococcus (Zillig et al., 1983). 

Members of the order Thermococcales are diverse and show evidence of unique adaptations such 

as the structural variations of ATP synthase in the genera Pyrococcus and Thermococcus, the use 

of formate oxidation for carbon and energy by Thermococcus onnurineus (Kim et al., 2010), and 

ferredoxin reduction by Pyrococcus furiosus for sugar oxidation (Sapra et al., 2003). Of these 

genera, Thermococcus is found in particularly large numbers in hydrothermal vent systems 

(Pledger & Baross, 1991). Thermococcus spp. are hyperthermophilic anaerobic heterotrophs that 

ferment organic compounds and occupy a variety of niches. Some strains use elemental sulfur (S0) 

as an electron acceptor, resulting in the production of H2S (Robb & Place, 1995; Teske et al., 2009) 

and making them an integral part of the sulfur cycle. 

When vent fluids from the subseafloor are released during eruptions they bring with them 

microorganisms native to deep-subsurface habitats. These eruptions provide a rare opportunity to 

study organisms that originate at a depth normally only accessible through deep-sea drilling 

expeditions (Summit & Baross, 1998). One such seismic event happened in February 1996 in the 

North Gorda Ridge spreading center 300 km from the coast of Oregon and Southern California. 
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This event was associated with a dike intrusion that caused the sudden eruption of a large amount 

of hot hydrothermal vent fluid, also called a megaplume, rather than the slow leaking of fluid that 

is usually characteristic of these systems (Baker, 1998; Chadwick et al., 1998; Fox & Dziak, 1998). 

Megaplumes are a plausible mechanism of dispersal for microbes otherwise confined to the island-

like ecosystem of deep-sea hydrothermal vents (Dobbs & Selph, 1997). The pre-eruption fluid 

resides in the reservoir for months or years at a time (Lupton, 1996), providing adequate 

opportunity for a deep-subsurface ecotype to emerge (Summit & Baross, 1998). Thermococcus 

residing in the fluid reservoir are carried up to the water column during the eruption event by the 

buoyant plume fluid (Lupton et al., 1999). Thermococcus originating from the deep-subsurface 

fluid reservoir and brought up to the surrounding water column via the megaplume were isolated 

through serial dilution to extinction (Summit & Baross, 1998). Traits have been observed in 

Thermococcus and Pyrococcus that allow them to survive in cold, oxygenated seawater for 

extended periods of time (Jannasch et al., 1992) which could help them survive long distance 

dispersal as the plume travels thousands of kilometers from its source (Lupton et al., 1998).  

Ecological and metabolic diversity within Thermococcus has been observed in isolates 

from different habitats within the same vent site. Thermococcus isolates from the 1996 megaplume 

event were analyzed using amplification and sequencing of the small subunit rRNA gene and small 

and large subunit intergenic spacer region, showing that subseafloor isolates were phylogenetically 

distinct from their counterparts from sulfide chimneys in the same hydrothermal system (Summit 

& Baross, 2001). In addition, the subseafloor samples showed three phylogenetic groups whereas 

the sulfide associated samples showed five phylogenetic groups, suggesting that Thermococcus 

that inhabit subseafloor niches have diverged into populations with specific adaptations 

corresponding to the zone of the subseafloor that they inhabit. The existence of a unique 
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subseafloor population is further supported by physiological differences observed between the two 

groups. Samples from the sulfide chimney produced more proteases and could grow under higher 

zinc ion concentrations, temperature ranges, and salinity gradients than the subseafloor samples. 

Together, these phylogenetic and physiological differences indicate potential adaptations to an 

ephemeral sulfide chimney environment, which contrasts with the more static subseafloor 

environment. The presence of distinct groups within a hydrothermal system where there is mixing 

of fluids between habitats implies a strong habitat-related selective pressure which could lead to 

the formation of habitat-specific ecotypes within Thermococcus. 

Culture dependent techniques can allow for the growth of microbes with specific metabolic 

capacities but are insufficient when exploring an organism’s total metabolic potential.  Genomic 

techniques facilitate this exploration and can help illuminate the potential roles of microorganisms 

in their environments. The comparison of several genomes of closely related microorganisms to 

find metabolic adaptations unique to an individual strain or group of strains can be accomplished 

using a pangenome. A pangenome summarizes the full collection of genes for closely related 

microorganisms. The core of the pangenome is composed of required metabolic genes found in 

every genome of the group of microorganisms. For instance, genes for growth, reproduction, and 

homeostasis are part of the core genome. The remaining genes in the pangenome belong to the 

variable genome, which is composed of genes that are not found in every member of the group 

and are not essential for growth but do provide selective advantage, such as genes for alternate 

metabolic pathways (Tettelin et al., 2005; Medini et al., 2005; Rouli et al., 2015). A pangenome 

can therefore be used as a tool for examining niche adaptations. For example, genes coding for 

adaptations that allow a microorganism to survive in a deep-subsurface fluid reservoir for extended 

period of time are found in the variable genome. 
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A recent study on Thermococcus biogeography using multi locus sequence typing (MLST) 

and amplified fragment length polymorphism (AFLP) data characterized ninety isolates from vent 

sites throughout the Pacific Ocean, which resulted in at least ten distinct lineages, including one 

that contained the five isolates from the 1996 Gorda Ridge megaplume events (Price et al., 2015). 

The Gorda Ridge lineage also included the type strain Thermococcus onnurineus NA1, which was 

collected from the Manus Basin of the PACMANUS vent field via multiple corer at a depth of 

1,650 m (Bae et al., 2006). This strain possesses lithotrophic adaptations, the most noteworthy 

being the carbon monoxide dehydrogenase (CODH) gene cassette which allows the use of CO as 

a carbon and energy source (i.e. carboxydotrophy; Lee et al., 2008), therefore providing a growth 

advantage given the ubiquity of CO in hydrothermal fluids (Symondst et al., 1994). The presence 

of lithotrophic adaptations along with phylogenetic dissimilarity to other Thermococcus thought 

to originate at the surface of other hydrothermal systems provide evidence that the Gorda Ridge 

isolates and T. onnurineus are part of a deep-subsurface ecotype that was brought to the surface 

during the 1996 megaplume events. 

In order to address Thermococcus biogeography on a genomic level, a pangenomic 

approach was used to compare the genomes of Thermococcus isolates spanning ten lineages from 

seven geographic regions identified by Price et al. (2015), including the deep-subsurface lineage 

isolated from the aftermath of the 1996 seismic events at Gorda Ridge. It was hypothesized that 

the variable genomes from the Gorda Ridge isolates would exhibit diverse metabolic pathways 

that would allow for the use of a variety of carbon and energy sources. Examples of metabolic 

diversity in Thermococcus include the carboxydotrophic adaptations in T. onnunineus which allow 

lithotrophy as an alternative energy source (Lee et al., 2008), and the formate-driven anaerobic 

respiration that has been observed in the same organism (Kim et al., 2010).   
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METHODS 

Thermococcus isolates and culturing 

 

 Isolates were chosen (n=19) to optimally represent each of the ten lineages and seven 

geographic locations from Price et al. (2015). Isolates were derived from samples collected during 

research cruises between the years 1988 to 2008 and originated from the Juan de Fuca Ridge, 

Gorda Ridge, South East Pacific Rise, North East Pacific Rise, Mariana Arc, and Lōʻihi Seamount 

(Figure 1). Study sites and methods for serial dilution to extinction for isolation have been 

previously described (Davis & Moyer, 2008; Huber et al., 2006; Summit & Baross, 2001).  

Media formulations, stock solution formulations, and culturing techniques were prepared 

as previously described (Holden et al., 2001). The medium was transferred into pre-sterilized 

Balch tubes. The tubes were plugged with pre-sterilized butyl rubber stoppers (Bellco Glass Inc., 

Vineland, NJ) and sealed with aluminum seals (Bellco Glass Inc.) before the headspace was 

exchanged with argon gas through a 1 mL syringe fitted with a 0.2 µm filter and 25-gauge needle 

(Becton Dickinson, Franklin Lanes, NJ) using a gas manifold. A second 25-gauge needle was 

inserted into the stopper during this process to relieve positive pressure. After gas exchange, filter 

sterilized 2.5% Na2S•9H2O was added as a reducing agent via 25-gauge needle and 1 mL louver 

lock syringe (Becton Dickinson). A color change from pink to clear was noted before the tubes 

were inoculated with 0.2 mL of culture using a 25-gauge needle and 1 mL louver lock syringe.  

The headspace was exchanged with argon gas once again using a 25-gauge needle fitted with a 0.2 

µm filter. The pressure relief needle was removed at the end of this process to allow for a slight 

positive pressure in the tube before incubation. The inoculated Balch tubes were incubated in a 

sand bath at 70 to 90˚C for 12 to 36 hrs. To confirm growth, tubes were checked with fluorescence 

microscopy adding 4 µL of 0.25 mM Syto13 nucleic acid stain to four drops of liquid culture. 
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DNA extraction and analysis 

 

 DNA was extracted from the culture tubes using the methods in Price et al. (2015). Freshly 

grown isolates were transferred to 15 mL centrifuge tubes and centrifuged at 750 × g for 5 min to 

pellet the sulfur. The supernatant was then transferred to a clean centrifuge tube and centrifuged 

at 11,000 × g for 10 min in a chilled rotor (4 ˚C). DNA was extracted from this cell pellet using a 

DNeasy Soil Kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The 

resulting DNA concentration was determined with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, 

CA).  

 

Sequencing 

 

DNA from the nineteen Thermococcus isolates was sent to the University of Delaware 

DNA Sequencing & Genotyping Center for library preparation and high throughput sequencing. 

Libraries were prepared using a Quantabio sparQ Library Prep Kit (Qiagen) following 

manufacturer’s protocol and selecting for a 500 to 1000 base pair (bp) insert size. The libraries 

were sequenced using paired-end sequencing with 251 cycles per read on an Illumina HiSeq 2500 

(Illumina, San Diego, CA).  

 

Genome assembly and quality control 

 

 Trimmomatic (v0.38; Bolger et al., 2014) was used to remove the adapter sequences from 

the raw FASTQ files using the adapter sequences in Supplemental Table 1. To confirm adapter 

trimming and assess sequence quality, paired output files from Trimmomatic were analyzed with 

FastQC (v0.11.8; Andrews, 2010). SPAdes (v3.13.0; Bankevich et al., 2012) was used for genome 
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assembly. Assembly quality was analyzed with QUAST (v5.0.2; Gurevich et al., 2013). Genome 

data were screened for contaminants and contigs < 200 bp and uploaded to NCBI’s GenBank 

database under the BioProject ID PRJNA523072. Supplemental Table 2 lists accession numbers 

for each isolate.  

 

Pangenome analysis 

 

Pangenomic comparisons between the Gorda Ridge isolates and the shallow-subsurface 

isolates were visualized using Anvi’o (v.5.4; Eren et al., 2015) following the workflow described 

in Delmont & Eren (2018). Genomes were annotated within Anvi’o using NCBI’s Clusters of 

Orthologous Groups (COG) database (Tatusov et al., 2000). When creating the pangenome using 

the anvi-pan-genome command, NCBI’s BLASTp (Altschul et al., 1990) was used for higher 

accuracy, based on the developer’s suggestion. As suggested in the documentation, the inflation 

parameter for the MCL cluster algorithm (v.14-137; van Dongen, 2000), which is used to identify 

clusters in amino acid sequence similarity, was changed to ten from the default of two to increase 

sensitivity. This change was made because the genomes being compared are in the same genus, 

meaning that they already share high sequence similarity and so the algorithm must be more 

sensitive to pick up on differences. More distantly related genomes, such as those that are classified 

on the level of family, would require less sensitivity and therefore a lower MCL inflation 

parameter. Anvi’o was also used to create an average nucleotide identity (ANI) heatmap based on 

percent ANI similarity between isolates using the integrated PyANI software (Pritchard et al., 

2016).  

Functional annotation data were produced using the anvi-get-enriched-functions-per-pan-

group program within Anvi’o according to the instructions in the Anvi’o pangenome tutorial 
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(http://merenlab.org/2016/11/08/pangenomics-v2/#making-sense-of-functions-in-your-

pangenome), where groups of samples were defined based on geographic location. The resulting 

spreadsheet contained a list of COG functions present in the pangenome along with metadata 

including enrichment scores with associated p-values and corrected p-values, the number of 

genomes the function occurred in within and outside of the group associated with the COG 

function, gene cluster ID’s associated with the function, and a binary value indicating the 

presence/absence of the function in the core pangenome.  

Enrichment scores represent how unique a COG function is to a particular group. Because 

functional annotations are done at the gene level, Anvi’o’s algorithm first associates each gene 

cluster with a COG function. In this context, a gene cluster is a group of homologous sequences 

belonging to one or more genomes as identified by the Anvi'o software based on sequence 

similarity. If there are multiple functions associated with a single gene cluster, Anvi’o assigns the 

highest frequency annotation to the COG function. In instances where there is a function that is 

associated with multiple gene clusters, these gene clusters are all noted for the functional 

annotation. The latter scenario is more common for distantly related genomes which contain 

divergent gene clusters with similar functions and is therefore less of an issue for the closely 

isolates used in this study. Anvi’o builds a frequency table by associating functions with gene 

clusters as described above, which is used as an input for a functional enrichment test and heuristic 

analysis to determine which functions are found more frequently in each individual group than 

would be expected under a normal distribution where each function has an equal probability of 

occurring in genomes from all groups. This resulting metric, the enrichment score, is calculated 

using a two sample Z-test to compare its occurrence within a group vs. all other groups. The 

statistic is rescaled for group size and is more robust for larger groups. However, because it is 
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applied to many functions within Anvi’o, this metric does not produce a true test statistic and 

cannot be used for hypothesis testing. Therefore, enrichment scores are intended as a method for 

sorting data and were implemented in this manner. Positive scores indicate the functional 

annotation is found more often within the associated group than outside of it, and negative scores 

are given to functions that are more common outside of the group than within it. To determine 

which COG annotations are ecologically important functions for the Gorda Ridge group, the COG 

annotation data for this group were sorted by highest to lowest enrichment score and the highest 

scoring annotations were chosen for further exploration. 
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RESULTS 

Isolate draft genome statistics 

 

 The statistics for the isolate draft genomes are summarized in Table 1. The use of N50 and 

L50 statistics are an indicator of the contiguity of the assemblies. The N50 statistic is the weighted 

median point of the contigs. When the contigs are ordered from largest to smallest, N50 is the point 

that accounts for half of the length of the total genome as expressed in the base pair length for that 

particular contig. If the contigs ordered from largest to smallest are numbered using integers 

starting with 1, then L50 is the integer of the N50 contig. Therefore, more contiguous assemblies 

have larger N50 statistics with smaller L50 statistics because more of the genome sequence is 

contained within a few large individual contigs.  

The 19 isolates had an average genome length of 2,024,709 bp with an average contig size 

of 32, and an average N50 and L50 of 727,119 bp and 2, respectively. The largest genome was 

21S7 from the SE Pacific Rise at 2,368,070 bp in 17 contigs, an N50 of 255,961 bp, and an L50 

of 3. The smallest genome was CX2 from the Juan de Fuca Ridge at 1,795,681 bp in 9 contigs, an 

N50 of 512,482 bp, and an L50 of 2.  

 

Pangenome characteristics 

 

The pangenome for all 19 Thermococcus isolates is summarized by a circular plot 

generated using Anvi’o (Figure 2). The pangenome contains 43,381 genes grouped into 7,530 gene 

clusters with 10,234 unique COG annotations. The single copy core genome is relatively small in 

comparison and contains 12,246 genes grouped into 634 gene clusters with 5,565 unique COG 

annotations. Enrichment scores for the entire pangenome ranged from 3.18 to -3.00. The highest 

scoring (i.e., enriched) COG was identified as Ligand-binding SRPBCC domain (COG4276), 
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which was found in the isolate CX2 (Juan de Fuca Ridge). The lowest scoring COGs were part of 

the core pangenome because, by definition, they are found in every genome in all groups and 

therefore cannot be enriched in any one group.  

Enrichment scores for the Gorda Ridge group ranged from 2.98 to -2.98. The highest 

scoring function was labeled as a predicted endonuclease distantly related to archaeal Holliday 

junction resolvase, was found in isolates GR4, GR5, and GR7, and was absent from all other 

genomes in the pangenome. The highest scoring functional annotations in the Gorda Ridge group 

had enrichment scores > 2.00. There were twenty-eight high scoring COGs, with nine of these 

functions found in all four isolates within the Gorda Ridge group (Table 2).  These nine COGs 

result from fifty-two gene calls grouped into ten gene clusters. Their position within the 

pangenome is indicated on the outer edge of Figure 2.  

The dendrogram in Figure 2 organizes the isolates into four lineages which are analogous 

to the relationships ascertained from the average nucleotide identity (ANI) heatmap (Figure 3). 

The ANI heatmap relates the isolates in the pangenome to each other based on percentage ANI. 

The heatmap shows that the Gorda Ridge isolates, along with LS1 from Lōʻihi Seamount, exhibit 

a high level of similarity to one another and are moderately similar to isolates from the Mariana 

Arc, SE Pacific Rise, Mid Atlantic Ridge, and NE Pacific Rise, along with M36 (Lōʻihi Seamount), 

and MV11, JDF3, and ES12 from the Juan de Fuca Ridge. The Gorda Ridge isolates and LS1 are 

dissimilar to MV5 from the Juan de Fuca Ridge, and to M39 and LS2 from Lōʻihi Seamount.  The 

isolate CX2 from Juan de Fuca Ridge followed the same trend but is slightly more dissimilar to 

the Gorda Ridge and LS1 isolates than those isolates are to one another. MV5 is the most dissimilar 

to all isolates in this study. LS2 and M39 share a strong similarity to each other but are dissimilar 

to all other isolates. 9N3 (NE Pacific Rise) and 21S9 (SE Pacific Rise) are strongly similar to each 
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other and moderately similar to all other isolates excluding MV5, LS2, and M39. The isolates from 

the Mariana Arc, Mid Atlantic Ridge, 21S7 and 18S1, 21S9 (SE Pacific Rise), M36, 9N3, and 

ES12, JDF3, MV11 (Juan de Fuca Ridge) are moderately similar to each other, the Gorda Ridge 

isolates, LS1, and CX2, but dissimilar to MV5, LS2, and M39. 

 Anvi’o was also used to examine the genomic relationships exclusive to the four isolates 

from the megaplume event at Gorda Ridge (Figure 4). The pangenome for this subset of isolates 

contained 8,815 genes grouped into 2,544 gene clusters. In contrast to the full pangenome in which 

the single-copy core genome represented a small fraction of the total genes, the single-copy core 

genome for this subgroup contained the majority of the genes, with 6,060 genes grouped into 1,515 

gene clusters with 802 unique COG annotations. The dendrogram shows that GR4, GR5, and GR7 

are closely related and unique from GR6, which had a larger section of strain-specific gene clusters 

than the other Gorda Ridge isolates. In contrast, GR5 had the fewest strain-specific gene clusters 

and shared the majority of its genes with GR4, which it was most closely related to, and GR7. 

 

Enriched functions in the deep-subsurface lineage 

 

DNA repair. The only functional annotation with an enrichment score > 2.00 that was 

exclusive to the Gorda Ridge megaplume group was a predicted endonuclease distantly related to 

Archaeal Holliday junction resolvase (COG0792) which was found in three of the four isolates 

(GR4, GR5, and GR7). DNA mismatch repair ATPase MutS (COG0249) was found in all four 

members of this group (GR4, GR5, GR6, and GR7) along with two members of the Lōʻihi 

Seamount group (M36 and M39). Additionally, three of the four isolates from the megaplume 

group (GR4, GR5, and GR7) contained several proteins from the clustered regularly interspaced 

short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) system: Csm2 small 
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subunit (COG1421), Csx1 (Csm6) containing CARF domain (COG1517), Csm3 group 7 of RAMP 

superfamily (COG1337), Csm4 group 5 of RAMP superfamily (COG1567), and Csm5 group 7 of 

RAMP superfamily (COG1332). Csx1 was also found in LS1 and JDF3, belonging to the Lōʻihi 

Seamount and Juan de Fuca groups, respectively. Csm2, Csm3, Csm4, and Csm5 were also found 

in the LS2 and MVII isolates, belonging to the Lōʻihi Seamount and Juan de Fuca groups, 

respectively.   

Molecular chaperones. Molecular chaperone DnaK (Hsp70; COG0443) was found in 

three of the four Gorda Ridge isolates (GR4, GR5, and GR7) and was exclusive to this group. In 

contrast, chaperonin GroEL (Hsp60 family; COG0459) was part of the core pangenome for all 

isolates, including those from Gorda Ridge.  

Amino acids. The Gorda Ridge megaplume group was enriched for the ABC-type 

branched-chain amino acid transport system, with COG0411, COG0559 and COG0683 present in 

GR4, GR5, GR6, and GR7, along with LS2 and M39 from Lōʻihi Seamount. Additionally, all 

seven enzymes for the shikimate pathway, including chorismite mutase (COG1605), shikimate 5-

dehydrogenase (COG0169), 3-deoxy-7-phosphoheptulonate synthase (DHAP; COG2876), 

prephenate dehydrogenase (COG0287), 3-dehydroquinate synthase (COG0337), 3-

dehydroquinate dehydratase (COG0710), 5-enolpyruvylshikimate-3-phosphate synthase (EPSP; 

COG0128), and archaeal shikimate kinase (COG1685) were enriched for three of the four isolates 

from the megaplume group (GR4, GR5, and GR7) as well as LS2 and M39 from Lōʻihi Seamount.  

 

Molybdenum and tungsten transporters 

 

All isolates possessed a type of molybdenum (Mo) and/or tungsten (W) transporter, and 

the presence of one over the other appears to be location specific. ModABC enzymes, which are 



 

15 

 

Mo specific, were absent from the pangenome.  However, WtpA (COG0725), which can transport 

both Mo and W, was present in 13 of the 19 isolates. It was identified in four of the five Juan de 

Fuca isolates (CX2, MV11, JDF3, and ES12), three of four Lōʻihi Seamount isolates (LS1, LS2, 

and M39), and all remaining isolates excluding the deep-subsurface group from the Gorda Ridge. 

WtpB (COG0555) was found in all of the same isolates as WtpA, as well as one Gorda Ridge 

isolate (GR4). WtpC (COG3839) was absent from the entire pangenome. All four of the Gorda 

Ridge megaplume isolates were enriched for the ABC-type tungstate transport system (COG2998, 

COG4662). This annotation corresponds to the TupABC transport system and was also found in 

one isolate from the Lōʻihi Seamount group (M36) and one isolate from the Juan de Fuca Ridge 

group (MV5).  
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DISCUSSION 

 Hydrothermal vent systems provide a window into the mysteries of the deep-biosphere. 

The rare opportunity to sequence and compare genomes of Thermococcus isolates from the 1996 

megaplume eruption at Gorda Ridge has revealed several functional adaptations unique to isolates 

from the deep-subsurface habitat. These functions largely represent either DNA repair 

mechanisms, or strategies for amino acid utilization and synthesis.  

  

DNA repair machinery 

 

Double-strand DNA breaks. Holliday junction resolvase Hjc was originally isolated from 

P. furiosus and is an important enzyme in maintaining active double-strand break DNA repair 

systems in this hyperthermophilic archaeon (Komori et al., 1999), which is also known to be 

resilient to DNA breakage in environments with high temperatures (DiRuggiero et al., 1997) and 

ionizing radiation (Peak et al., 1995). A predicted endonuclease distantly related to Archaeal 

Holliday junction resolvase was enriched for and found exclusively within the megaplume group 

from Gorda Ridge. The presence of an endonuclease similar to Hjc suggests that the deep- 

subsurface isolates have prioritized double-strand DNA repair machinery as an adaptation to an 

extreme environment not encountered by their more shallow subsurface counterparts.  

DNA mismatch repair. The DNA mismatch repair (MMR) system finds mismatched base 

pairs caused by errors in DNA polymerase. This system is highly conserved in Bacteria and 

Eukarya, and typically involves the MutS enzyme identifying the mismatch in the strand, which is 

then acted upon by MutL and MutH to excise the incorrect base through endonuclease activity and 

replace it with the correct base (Acharya et al., 2003). mutS was also found within the deep-

subsurface group, as well as in two isolates from Lōʻihi Seamount; however, the pangenome did 



 

17 

 

not reveal annotations for MutL or MutH enzymes. It has been previously noted that MMR systems 

are not present in most archaea, although MutS and MutL homologues have been found in 

Halobacterium salinarum NRC-1 and are important for maintaining low mutation rates in this 

organism, although the exact pathway is unclear (Busch & DiRuggiero, 2010). Therefore, the 

presence of MutS within the megaplume group may still point to a mechanism of MMR which 

would function as an important adaptation to hyperthermophilic life in the deep-subsurface.  

CRISPR/Cas immune system. The CRISPR/Cas system has recently become of interest 

for its biotechnology applications; however, it first evolved as a microbial immune system and is 

found widely throughout the archaea (Haft et al., 2005; Godde et al., 2006, Jinek et al., 2012). The 

system works by translating short spacer sequences created from past invading genetic elements, 

such as those from phages, into small CRISPR RNAs (crRNAs) that can locate and eradicate 

invading nucleic acids with the help of Cas proteins (Garneau, et al. 2010; Hale et al., 2009). The 

first step in this system is the creation of crRNAs from the spacers, which requires Cas10, Csm2, 

Csm3, Csm4, Csm5, and Cas6 (Hatoum-Aslan et al., 2011). In type III systems, crRNA 

intermediates must be further processed to eliminate repeat regions and erroneous spacer 

sequences to produce a mature crRNA (Delcheva et al., 2011; Hale et al., 2008, Hatoum-Aslan et 

al., 2011). Hatoum-Aslan et al. (2011) found that Csm2, Csm3, and Csm5 are required for the 

crRNA maturation process in the type III-A system and operate together to create a ruler 

mechanism to ensure that the final crRNAs are of the appropriate lengths. A later study elaborated 

on these findings, discovering that Csm2, Csm3, Csm4, Csm5, and Cas10 form a Cas10•Csm 

complex, similar to the Cmr complex in P.furiosus (Hale et al., 2009), within which mature 

crRNAs are measured (Hatoum-Aslan et al., 2013). 
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The CRISPR/Cas proteins Csm2, Csm3, Csm4, Csm5, and Csm6 (Csx1) were enriched in 

isolates from Gorda Ridge (GR4, GR5, and GR7). Csm2, Csm3, Csm4, and Csm5 were also found 

in a Juan de Fuca Ridge isolate (MV11) and one Lōʻihi Seamount isolate (LS2). Csm6 was also 

found in a Juan de Fuca Ridge isolate (JDF3) and a Lōʻihi Seamount isolate (LS1). Annotations 

for Cas6 were found throughout the core pangenome, and Cas10 was found in three Gorda Ridge 

isolates (GR4, GR5, and GR7), two Juan de Fuca isolates (MV11 and JDF3), LS2 from Lōʻihi 

Seamount, MAR from the Mid Atlantic Ridge, Bubble Bath from the Mariana Arc, and 18S1 from 

the SE Pacific Rise. However, only GR4, GR5, GR7, and LS2 had all seven CRISPR/Cas proteins 

required for this system. Therefore, only these four isolates have the potential to use the complete 

type III-A CRISPR-Cas system for protection against invading phage DNA.  

The type III-A CRISPR-Cas system has been shown to provide superior protection from 

infecting phages as compared to type II-A systems. This could indicate that the GR4, GR5, GR7, 

and LS2 isolates may cope with a higher viral load than the other isolates examined in this study 

and therefore benefit from a more effective CRISPR immune system that would otherwise 

decrease their overall fitness. The efficacy of type III-A systems is limited due to increased cell 

toxicity, as compared to type II-A systems, which contributes to overall reduced fitness when the 

cell is not actively fighting phage infections (Pyenson et al., 2017, Niewoehner & Jinek, 2017). It 

has also been observed that type III systems are more abundant in thermophiles because surface 

modification, another viral defense mechanism, is unavailable due to the more rigid cell walls 

these organisms must possess to survive higher temperatures (Makarova et al., 2015). Given that 

deep-subsurface hydrothermal habitats tend to be hotter than the chimney habitats of the same 

systems, this is a plausible explanation for the enrichment of type III-A CRISPR-Cas enzymes in 

these isolates. 
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Molecular chaperones 

 

Molecular chaperones are proteins that ensure the correct folding of other cellular proteins 

but are not a part of their final structure (Ellis, 1993). The molecular chaperone DnaK (Hsp70) 

functions as a heat shock protein, stabilizing other proteins within the cell to prevent denaturation 

and assist in proper folding during times of stress caused by extreme temperatures or other toxic 

conditions. DnaK is relatively rare in archaea, which typically use the chaperonin Hsp60 (GroEL) 

instead (Large et al., 2009). This is reflected in this study in that all isolates from all locations 

contained Hsp60, but DnaK was found only within the megaplume group from Gorda Ridge. DnaK 

functions in conjunction with the co-chaperones DnaJ (Hsp40) and GrpE (Hartl & Hayer-Hartl, 

2002; Zmijewski et al., 2004); however, the two latter proteins were absent from the pangenome. 

It has been hypothesized that the acquisition of DnaK by select archaeal species occurred via lateral 

gene transfer from bacteria (Macario & de Macario, 1999). Therefore, the enriched presence of 

DnaK in the Gorda Ridge lineage may simply be a remnant from horizontal gene transfer and have 

no remaining function for these isolates. Further research is needed to determine the role, if any, 

for DnaK in this group of deep-subsurface isolates.  

 

Amino acids 

 

Amino acid catabolism has been observed in many Thermococcus species including 

Thermococcus litoralis (Neuner et al., 1990), Thermococcus kodakaraensis KOD1 (Fukui et al., 

2005), Thermococcus sibiricus (Mardanov et al., 2009), and Thermococcus strain ES-1 (Ma et al., 

1995). This process begins with the oxidative deamination of an amino acid, followed by the 

oxidative decarboxylation of the resulting 2-oxoacid, and finishing with the hydrolysis of acyl-
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CoA coupled to substrate level phosphorylation (Schut et al., 2001). The second step in this 

pathway can be accomplished with one of several enzymes collectively known as 

2-oxoacid:ferredoxin oxidoreductase (KOR) enzymes, reflecting the breadth of metabolic 

diversity apparent in Thermococcus (Blamey & Adams, 1993; Mai & Adams, 1994; Ozawa et al., 

2012; Mai & Adams, 1996; Mukund & Adams, 1991). An example of KOR is 2-ketoisovalerate 

ferredoxin:oxidoreductase (VOR) from Thermococcus litoralis which has been proposed to 

function both as a catalyst in the second step of peptide metabolism and in the biosynthesis of 

branched-chain amino acids under nutrient poor conditions (Heider et al., 1996). 

In some Thermococcus species, in the absence of S0 as a terminal electron acceptor, the 

final product of the amino acid catabolism pathway is fermented by another ferredoxin 

oxidoreductase enzyme called aldehyde ferrodoxin:oxidioreductase (AOR), followed by 

fermentation by alcohol dehydrogenase (Ma et al., 1997; Basen et al., 2014). AOR was first 

discovered in P. furiosus (Mukund & Adams, 1991), and its function was characterized in 

Thermococcus ES-1 (Heider et al., 1995). This enzyme has a tungstopterin structure composed of 

a [4Fe-4S] cluster surrounding a single tungsten (W) atom. Molybdenum (Mo) and W have similar 

atomic radii and therefore often play similar roles in molydopterin/tungstopterin enzymes. 

Although Mo is more common in seawater, W is often found in high concentrations in 

hydrothermal vent systems, is more stable than Mo at high temperatures (Adams, 1999), and is 

also less stable in aerobic conditions (Callis & Wentworth, 1977, Kletzin & Adams, 1996, Maia 

et al., 2016). Therefore, the use of tungstopterin enzymes, including AOR, rather than 

molybdopterin enzymes are more advantageous in a hot, anoxic deep-subsurface habitat. 

Substrates specific to AOR include acetaldehyde, isovaleraldehyde, phenylacetaldehyde, and 

indolealdehyde, which are derived from the oxidation of the amino acids alanine, leucine, 
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phenylalanine, and tryptophan, respectively (Heider et al., 1995). AOR is part of the core 

pangenome for the nineteen Thermococcus isolates used in this study. This may help explain the 

abundance of the molybdenum/tungsten transporters from the WtpABC and TupABC systems 

throughout the pangenome. The WtpABC system which was first discovered in P. furiosus and 

can utilize both W and Mo because it shares a domain with the Mo specific ModABC transporters 

(Bevers et al; 2006). TupABC, on the other hand, is W specific and was found to be enriched in 

all four of the deep-subsurface isolates from Gorda Ridge. This reflects an increased need for W 

over Mo in the deep-subsurface, likely due to increased temperature, decreased oxygen, and a lack 

of S0 which would necessitate the use of fermentation following amino acid oxidation given the 

absence of a terminal electron acceptor. 

Given that AOR may be part of an anaerobic pathway that allows the degradation of amino 

acids for energy, it is therefore appropriate that the Gorda Ridge megaplume group is enriched in 

W transporters, BCAA transporters, and shikimate pathway enzymes. The shikimate pathway 

allows for the synthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan 

(Herrmann, 1995). The W transporter TupA brings the nutrient into the cell to be incorporated into 

the tungstopterin component of AOR. BCAA transporters carry leucine, isoleucine, and valine into 

the cell, while the shikimate pathway synthesizes aromatic amino acids. The oxidized organic acids 

of leucine, phenylalanine, and tryptophan may then be oxidized for energy and, in some cases, 

their products further broken down through fermentation. Similar processes may occur with 

isoleucine, valine, and tyrosine; however, the oxidized organic acids resulting from these amino 

acids are not specific to AOR. It could be that these amino acids are less common in the deep-

subsurface habitat or, in the case of tyrosine, less easily synthesized in this environment. Given 
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the extreme limitations of energy production in the deep-subsurface, peptide catabolism and 

fermentation would be an advantageous adaptation for these microorganisms. 

It is interesting to note that the megaplume group was also enriched in molecular chaperone 

DnaK, which was found to influence the amount of tryptophanase transcribed in Escherichia coli 

(Sieńczyk et al., 2004, Grudniak et al., 2004). Tryptophanase catalyzes the conversion of the 

aromatic amino acid tryptophan to its indole. Tryptophan is also a substrate specific to AOR and 

is converted into indolealdehyde by this enzyme. Therefore, the DnaK may not function as a heat 

shock protein in the Gorda Ridge isolates but rather as a transcription regulator for tryptophanase 

which could, in turn, affect the synthesis and later degradation, via oxidation and fermentation, of 

the amino acid tryptophan. If energetically favorable, this process would allow for the storage of 

energy in the form of aromatic amino acids that are then later catabolized when the cell encounters 

energy-limited conditions, such as those found in a deep-subsurface fluid reservoir. An 

examination of tryptophan production, Shikimate enzyme activity, and AOR and alcohol 

dehydrogenase activity under high and low peptide availability, controlling for S0 availability, 

could help clarify this process. If tryptophan is being used for energy storage, high Shikimate 

enzyme activity and tryptophan production should be observed under high peptide conditions with 

little AOR and alcohol dehydrogenase activity. When peptide availability is lowered, tryptophan 

production should decrease along with Shikimate enzyme activity, and higher AOR along with 

alcohol dehydrogenase activity would be observed as the tryptophan is oxidized and fermented.  

  

Conclusions 
 

This pangenomic analysis has shown that the four Thermococcus isolates obtained from 

the megaplume event at Gorda Ridge in 1996 possess unique adaptations to life in a deep-
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subsurface habitat as compared to the remaining fifteen representative isolates originating from 

shallow subsurface habitats. The most highly enriched deep-subsurface adaptations relate to DNA 

repair machinery and protein stabilization. The Gorda Ridge group was enriched in a putative 

endonuclease which likely repairs double-strand DNA breaks, as well as the MutS enzyme which 

may be part of an MMR system to maintain low mutation rates. Additionally, three of the four 

members of this group contained elements of a type III-A CRISPR/Cas immune system which is 

more effective at fighting phage infections than type II systems but can lower the fitness of the 

organism by increasing cell toxicity. This trade-off may still be beneficial to the organisms if they 

must contend with a higher viral load than their counterparts from more shallow habitats, or if they 

are unable to utilize other phage defense mechanisms, such as surface modification, due to living 

in a high-temperature environment. Taken together, the enriched presence of DNA repair 

mechanisms suggests that Thermococcus in a deep-subsurface habitat may cope with unique 

stressors such as energy deficiency due to longer residence times in a fluid reservoir, as well as 

higher heat exposure than the isolates from more shallow habitats. Analogous adaptations are 

either found sporadically throughout the pangenome, or are completely absent, indicating that 

these functions are essential to these deep-subsurface organisms. 

 Additional adaptations of interest relate to this group’s potential to use amino acids as an 

energy source in an otherwise energy-limited environment. The Gorda Ridge isolates are enriched 

in tungsten transporters, BCAA transporters, and all seven enzymes of the shikimate pathway for 

aromatic amino acid synthesis. Tungsten is more thermostable, less oxygen tolerant, and is found 

in higher concentrations in hydrothermal fluid than molybdenum and is also used as the central 

catalytic site for the AOR enzyme, which is part of the core pangenome. AOR acts on the products 

of amino acid oxidation in preparation for a final fermentation that occurs in the absence of S0 as 
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a terminal electron acceptor. This pathway is therefore useful in environments where S0 is lacking 

and peptides are scarce, requiring the microorganism to extract as much energy as possible from 

what is bioavailable. The Shikimate pathway was also found to be enriched in the Gorda Ridge 

isolates. This pathway is used to synthesize aromatic amino acids, such as tryptophan. The 

genomes of these isolates were also enriched in dnaK, which has been found to act as a 

transcription regulator for tryptophanase in E. coli. DnaK may act in a similar manner in 

Thermococcus, rather than as a heat shock protein which would require the presence of DnaJ and 

GrpE, both of which are absent from the pangenome. Assuming it is energetically favorable, the 

synthesis and later catalysis of tryptophan by oxidation and fermentation may be a method of 

energy storage used by these isolates when there are no other options available for heterotrophy.  

 The presence of habitat specific adaptations in the post-megaplume event Gorda Ridge 

isolates along with their unique phylogenetic placement in relation to isolates from other locations 

provides evidence that this lineage is diverging from other Thermococcus populations from more 

shallow habitats. These changes are being driven by environmental forcing functions such as 

higher temperatures and a longer residence time within hydrothermal fluid reservoirs that are 

lacking in appropriate nutrients and energy inputs for sulfur-dependent heterotrophs. This 

divergence indicates the formation of a deep-subsurface specific ecotype within Thermococcus.  
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Figure 1. Vent system locations for the nineteen Thermococcus isolates used in this study. Site names are identified in bold and the 

isolates from that location are listed below. Image reproduced from the GEBCO world map, www.gebco.net. 
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Figure 2. Anvi’o pangenome plot for Thermococcus isolates (n=19) containing 43,381 genes, 7,530 gene clusters, and 10,234 COGs. 

A) Availability of COG annotations in the NCBI database for a given gene with green and red indicating the presence or absence of a 

COG, respectively. COGs with enrichment scores > 2.00 that are common to all four Gorda Ridge isolates are also shown outside the 

rings. B) Each ring represents the genome of a single isolate. Shaded regions of a ring represent the presence of a gene cluster, defined 

as a group of homologous sequences belonging to one or more genomes as identified by Anvi’o based on sequence similarity. C) 

Dendrogram relating isolates based on the similarity of gene cluster frequencies among genomes. D) Single copy core genome containing 

12,246 genes, 634 gene clusters, and 5,565 COGs. 
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Figure 3. Percentage average nucleotide identity (ANI) heatmap for Thermococcus isolates (n=19) created within Anvi’o using PyANI. 

Values range from 70% (white) to 100% (red) identity similarity across genomes. 
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Figure 4. Anvi’o plot for Thermococcus isolates from the Gorda Ridge (n=4) containing 8,815 genes and 2,544 gene clusters. A) 

Availability of COG annotations in the NCBI database for a given gene with green and red indicating the presence or absence of a COG, 

respectively. B) Each ring represents the genome of a single isolate. Shaded regions of a ring represent the presence of a gene cluster, 

defined as a group of homologous sequences belonging to one or more genomes as identified by Anvi’o based on sequence similarity. 

Strain-specific gene clusters unique to an individual isolate are also identified. C) Dendrogram relating isolates based on the similarity 

of gene cluster frequencies between genomes. D) Single copy core genome for this subset of isolates containing 6,060 genes, 1,515 gene 

clusters, and 802 COGs. 
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Tables 

Table 1. Summary of genome assembly data from QUAST (v5.0.2) for Thermococcus isolates (n=19).  

 

 

 

 

 

 

Isolate # contigs Total length (bp) N50 L50 Location # Gene calls # COG functions

9N3 10 1,988,207 1,229,293 1 NE Pacific Rise 2,213 3,404

18S1 3 1,996,045 1,989,976 1 SE Pacific Rise 2,104 3,292

21S7 17 2,368,070 255,961 3 SE Pacific Rise 2,585 3,878

21S9 24 1,901,945 1,870,011 1 SE Pacific Rise 2,207 3,382

Bubble Bath 26 2,033,901 357,032 2 Mariana Arc 2,324 3,478

CX2 9 1,795,681 512,482 2 Juan de Fuca Ridge 1,957 3,152

ES12 38 1,962,164 581,465 2 Juan de Fuca Ridge 2,303 3,580

GR4 123 2,020,650 76,437 7 Gorda Ridge 2,364 3,572

GR5 22 1,933,190 198,044 4 Gorda Ridge 2,147 3,342

GR6 3 1,815,275 1,111,285 1 Gorda Ridge 1,975 3,108

GR7 67 1,965,426 326,930 3 Gorda Ridge 2,337 3,528

JDF3 18 2,131,792 377,999 3 Juan de Fuca Ridge 2,345 3,560

LS1 7 2,000,362 618,524 2 Lōʻihi Seamount 2,211 3,436

LS2 28 2,292,563 323,104 3 Lōʻihi Seamount 2,519 3,968

M36 129 2,061,277 1,390,874 1 Lōʻihi Seamount 2,654 4,004

M39 26 2,271,597 466,036 3 Lōʻihi Seamount 2,506 3,966

MAR 8 2,009,736 1,390,887 1 Mid Atlantic Ridge 2,277 2,277

MV5 45 1,988,329 304,109 3 Juan de Fuca Ridge 2,259 3,584

MV11 7 1,933,257 434,813 2 Juan de Fuca Ridge 2,094 3,204

Totals: 43,381 65,715
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Table 2. Enriched COG functions (enrichment score > 2.00) for Thermococcus isolates from Gorda Ridge. Enrichment scores were 

calculated within Anvi’o representing how unique a COG function is to a group by comparing its occurrence within a group vs. all other 

groups. Positive scores indicate the function is found more often within the group than outside of it. Functions that are part of the core 

pangenome are excluded from this table. Functions in bold were common to all four isolates within the Gorda Ridge group.

 
 

 

 

 

 

 

COG Function COG Accession Enrichment Score Gene Cluster IDs

Predicted endonuclease distantly related to archaeal Holliday junction resolvase COG0792 2.98 GC_00002748

Di- and tricarboxylate transporter COG0471 2.98 GC_00002194

Molecular chaperone DnaK (HSP70) COG0443 2.98 GC_00002788

Shikimate 5-dehydrogenase COG0169 2.49 GC_00002190

ABC-type branched-chain amino acid transport system, ATPase component COG0411 2.49 GC_00001993, GC_00001979

CRISPR/Cas system CSM-associated protein Csm2, small subunit COG1421 2.49 GC_00005862, GC_00002776, GC_00006343

Chorismate mutase COG1605 2.49 GC_00002201

ABC-type tungstate transport system, permease component COG2998 2.49 GC_00001976

Transketolase, N-terminal subunit COG3959 2.49 GC_00001891

3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase COG2876 2.49 GC_00002223

CRISPR/Cas system-associated protein Csx1, contains CARF domain COG1517 2.49 GC_00005033, GC_00002769, GC_00004997

ABC-type branched-chain amino acid transport system, periplasmic component COG0683 2.49 GC_00001790

DNA mismatch repair ATPase MutS COG0249 2.49 GC_00002169, GC_00002830, GC_00006162

Prephenate dehydrogenase COG0287 2.49 GC_00002785, GC_00003432

3-dehydroquinate synthetase COG0337 2.49 GC_00002189

Chorismate synthase COG0082 2.49 GC_00002147

3-dehydroquinate dehydratase COG0710 2.49 GC_00003380, GC_00002802

5-enolpyruvylshikimate-3-phosphate synthase COG0128 2.49 GC_00002756, GC_00003368

Branched-chain amino acid ABC-type transport system, permease component COG0559 2.49 GC_00001971

CRISPR/Cas system CSM-associated protein Csm3, group 7 of RAMP superfamily COG1337 2.49 GC_00004136, GC_00002778

ABC-type branched-chain amino acid transport system, permease component COG4177 2.49 GC_00002021

CRISPR/Cas system CSM-associated protein Csm5, group 7 of RAMP superfamily COG1332 2.49 GC_00002750, GC_00005139, GC_00006021

ABC-type tungstate transport system, periplasmic component COG4662 2.49 GC_00002016

CRISPR/Cas system CSM-associated protein Csm4, group 5 of RAMP superfamily COG1567 2.49 GC_00007234, GC_00006196, GC_00002744

Archaeal shikimate kinase COG1685 2.49 GC_00002206

Predicted DNA-binding transcriptional regulator YafY, contains an HTH and WYL domains COG2378 2.11 GC_00002898

Uncharacterized conserved protein, contains ParB-like and HNH nuclease domains COG1479 2.10 GC_00006479, GC_00002730, GC_00004271, GC_00007041

Transketolase, C-terminal subunit COG3958 2.10 GC_00006940, GC_00003551, GC_00001901, GC_00003420
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Supplemental Tables 

Supplemental Table 1. Adapter sequences trimmed using Trimmomatic (v0.38). 

 
 

 

 

 

 

 

 

 

 

 

Description Sequence

TruSeq Adapter Index 1 GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 2 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 3 GATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 4 GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 5 GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 6 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 7 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAA

TruSeq Adapter Index 8 GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 9 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 10 GATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 11 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 12 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAA

TruSeq Adapter Index 13 GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 14 GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCGTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 15 GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 16 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCGATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 18 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCACATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 20 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCTTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 21 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTTCGGAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 22 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTACGTAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 25 GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

TruSeq Adapter Index 27 GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTCCTTTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA

Illumina Single End PCR Primer 1 GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAAAAA
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Supplemental Table 2. Thermococcus isolate (n=19) GenBank accession numbers for BioProject ID PRJNA523072. 

 
 

 

 

 

 

 

 

 

Isolate name GenBank accession number

9N3 SNUV00000000

18S1 SNUU00000000

21S7 SNUT00000000

21S9 SNUS00000000

Bubble Bath SNUR00000000

CX2 SNUQ00000000

ES12 SNUP00000000

GR4 SNUO00000000

GR5 SNUN00000000

GR6 SNUM00000000

GR7 SNUL00000000

JDF3 SNUK00000000

LS1 SNUJ00000000

LS2 SNUI00000000

M36 SNUH00000000

M39 SNUG00000000

MAR SNUF00000000

MV5 SNUE00000000

MV11 SNUD00000000
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