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ABSTRACT 

Retrograde signaling from downstream effectors (i.e., motor neurons) can modulate plasticity. 

Much research has focused on the learned association of closely timed sensory stimuli. By comparison, 

there is less research probing the potential influence of how or if activation at downstream neuromuscular 

junctions (NMJ) could modulate associative conditioning. Using channelrhodopsin activation of body 

wall muscle and different motor neuron subsets (cholinergic motor neurons that drive contraction and 

GABAergic motor neurons that drive relaxation of muscle) in the Caenorhabditis elegans (C. elegans)  

model system, we examined if concurrent excitation in these downstream circuits influences associative 

conditioning.  

Conditioning consisted of pairing two distinct sensory stimuli, mechanosensory (vibration) and 

blue light (~480nm). Each stimulus drives a locomotor response on its own and we have shown that 

pairing delivery of these two stimuli alters the subsequent locomotor response to vibration. Animals that 

expressed channelrhodopsin in the body wall muscle (pmyo-3::ChR2), excitatory motor neurons (punc-

17::ChR2) or the inhibitory motor neurons (punc-47::ChR2) received associative vibration-light 

conditioning. Thus, the blue light stimulus simultaneously functioned as both associating sensory 

stimulus and activator of channelrhodopsin, when the necessary cofactor was present, all-trans-retinol 

(ATR+).  

Results showed wild type C. elegans typically pause for a longer duration following associative 

vibration-light conditioning. Following vibration-light conditioning, pmyo-3::ChR2 exhibited a complete 

disruption of learning. While trained ATR+ punc-17::ChR2 and punc-47::ChR2 animals showed partially 

disrupted conditioned locomotor behavior, as compared to controls. Together, this data suggests that co-

activation of the downstream body wall muscle and motorneurons interferes with upstream associative 

conditioning. 
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GENERAL INTRODUCTION 

From C. elegans and Aplysia to mice and humans, animals can integrate multiple sensory inputs, 

such as smell, touch, and sight, into associative memories (Gawronski and Bodenhausen, 2014; Lattal and 

Delamater, 2014). For instance, people can have distant memories brought to our attention by the simplest 

of sensory cues. The smell of chocolate might remind you of grandmother’s famous chocolate cake even 

if she isn’t by your side or no chocolate cake is within sight. In an experimental context, an association 

can be formed between a harmless stimulus (ex. flash of light) and a painful stimulus (ex. electric shock), 

after a few quickly timed presentations (Cheng et al., 2003). This leads to a conditioned startle response at 

the flash of light in the absence of the shock. Thus, recall of the association is involuntary and reflexive.  

Given the involuntary nature of reflexive responses, model organisms are used to study 

associative learning in greater cellular and molecular detail. For example, the marine mollusk, Aplysia, 

shows a stronger siphon retraction response to touching of the animal’s gill after repeated pairings with 

electric shock (Carew, Walters, and Kandel, 1981). Another example, Caenorhabditis elegans (C. 

elegans). C. elegans can associate olfactory cues (smells) with the presence or absence of food and 

respond by moving towards (or avoiding) the olfactory cue as is contextually appropriate (Saeki, 

Yamamoto and Lino, 2001). These are examples of animals with simple nervous systems that 

demonstrate involuntary learning. Using model organisms like Aplysia and C. elegans, has allowed for 

studies to bridge the gap between how the nervous system changes in response to conditioning, and 

confirmed by behavioral phenotypes (Walters and Byrne, 1982). 

Changing behavior is a result of underlying neural plasticity. This plasticity is marked by physical 

changes in local connections (i.e. neuron to neuron, at the synapse), as well as more diverse rewiring in 

connectivity of larger circuits that are thought to represent the previous experiences, also known as an 

“engram” or “neural network” (Barron et al., 2017). Simply put, behavioral plasticity is a result of 

changing the strengths of synaptic connections between the sensory neurons and interneurons, which then 
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initiate a motor response, resulting in new behavior, that is quantifiable (Malinow and Malenka, 2002; 

Svoboda and Holtmaat, 2009). Investigation of plasticity in greater molecular detail highlights the 

abundance of signaling molecules, known as neurotransmitters and neuropeptides, which differentially 

affect how neurons “speak” to one another, and how they “wire” together in larger circuits. Specifically, 

the balance between excitatory and inhibitory keep these circuits “in-check” and allows for memories to 

be brought forth at the appropriate time (Barrows et al., 2017).  

Using C. elegans, researchers have a unique array of methods and techniques to understand how 

cellular and molecular changes in the nervous system can modulate learning and memory. These benefits 

include, but are not limited to, a fully sequenced genome (Hillier et al., 2005), a completely mapped 

nervous system (Varshney, et al., 2011), and transparent outer cuticle allowing for direct fluorescence 

imaging and optogenetics (Nagel et al., 2005; Kerr, 2006; Liu, Hollopeter and Jorgensen, 2009). Pairing 

the in-depth molecular and cellular knowledge of the worm, with well-known behavioral patterns and 

phenotypes (Yemini, et al., 2013), as mediated by a well-understood locomotor system (Liu, Hollopeter, 

and Jorgensen, 2009; Haspel, O’Donovan, and Hart, 2013), it is possible to gain a more complete 

understanding of what a nervous system can do in an intact and moving animal.  

In this study, we use a rapid associative conditioning assay to condition worms that vibration will 

precede the onset of blue light, henceforth known as vibration-light conditioning. After training, we 

present the vibration alone, one-, five- and ten-minutes after vibration-light conditioning, then measure 

changes to locomotor behavior, as compared to untrained controls. Since testing occurs within minutes 

after training, we are measuring locomotor behavior immediately following the period of learning. To 

quantify changes in locomotor behavior, which are our markers of learning, we measure time and distance 

ratios of various C. elegans motor patterns, such as forward swimming, backward swimming, pausing (no 

movement) and omega turns (complete change of direction). In this research, our assay successfully 

conditions the locomotor behavior of wild type animals, as being marked by increased time spent pausing 

and reduced forward and backward locomotion. To further assess how overstimulation of different neural 
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circuits could disrupt or enhance learning, we utilized optogenetic strains of C. elegans that activate body 

wall muscle (myo-3),  cholinergic (unc-17) or GABAergic (unc-47) sub circuits, at the exact time of 

vibration-light conditioning. Results showed overstimulation of the body wall muscles during 

conditioning ablated conditioned locomotor behavior. While overstimulation of GABAergic and 

cholinergic sub-circuits resulted in modified conditioned locomotor behavior. These experiments allow us 

to assess how learning is affected by downstream activation of locomotor responses.  
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INTRODUCTION 

 

PART I: CLASSICAL CONDITIONING 

 

Classical Conditioning 

Associative conditioning is what allows an organism to learn a sequential, cause and effect 

relationship of events. Allowing the organism to generate an appropriate response for any number of 

situations that may occur. Research into how organisms learn predictable relationships between stimuli to 

then eventually change their behavior is known as Classical Conditioning (Domjan, 2015).  

Classical Conditioning was first reported by the Russian physiologist, Ivan Pavlov. In Pavlov’s 

work, he noticed the dogs he worked with would salivate not only when food was available in their dish, 

but when the food was within sight or even when just seeing the person who usually fed them. After 

further investigation, Pavlov laid the framework for classical conditioning. During the conditioning 

period, a neutral stimulus (NS) is presented with an unconditioned stimulus (US) several times. 

Eventually, the NS will become associated with the US, and will then be known as the conditioned 

stimulus (CS). This CS will then elicit a conditioned response (CR) on its own. It is important to note that 

a US will always elicit an unconditioned response (UR) by itself, as it is an automatic response. For 

example, food (US) being placed in front of a dog will always elicit salivation (UR). On the other hand, 

the CS (bell) does not elicit any response before conditioning, but after several US-CS pairings (ie. food + 

bell), the CS alone will eventually elicit the CR (salvation). Since the change in behavior is due to an 

association between the CS and US, it requires no higher-level cognition, the CR is due to an involuntary 

physical process in the animal’s nervous system. From the work of Pavlov, many researchers have 

explored a wide variety of stimulus combinations and measures of several CRs, as discussed below. 

Conditioning Procedures 

Several options of conditioning procedures are employed in most learning and memory 

laboratories; delayed conditioning, trace conditioning, simultaneous conditioning, and backward 
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conditioning. The variation in timing and order in which the CS and US are presented lead to significantly 

varied results and rates of acquisition (or time it takes to fully learn the new association), as well as 

activating different behavioral and neuronal mechanisms (Bangasser et al., 2006). The optimal association 

typically follows delayed conditioning, where the CS is presented first, then with some delay, the US is 

presented. Delayed conditioning tends to be the most consistent, likely due to the distinct presentation of 

the CS alone, before the onset of the US. Some examples of delayed conditioning being; a tactile 

stimulation paired with electric shock (Antonov et al., 2001), odor paired with electric shock (Quinn, 

Harris and Benzer, 1974) or odor paired with tone and flavored pellet (Chang et al., 2015). All 

components of the classical conditioning assay are modifiable regarding intensity, salience, and timing. 

Thus, researchers must identify stimuli and procedural parameters that will be biologically appropriate for 

the organism, and produce a measurable change in response after conditioning. 

Conditioned and Unconditioned Stimulus 

The choice of stimuli for a classical conditioning procedure is important for the success of 

learning an association between the CS and the US. Most notably, the more intense or salient the US or 

CS, the faster the acquisition of the association (Imada, Yamazaki and Morishita, 1981). Some examples 

include varying intensity of foot shock and subsequent rate of inducing conditioned fear response 

(Olshavsky et al., 2013), or how intense the light is as a method of inducing eye blinks (Braggio and 

Putney, 1975). Another consideration when choosing stimuli is how biologically relevant the CS-US 

pairing are with one another (Öhman, A., & Mineka, 2001). The idea being that certain cues are important 

to an animal’s survival and thus are more likely to be noticed and associated faster. An example being rats 

are more likely to associate audiovisual cues with a foot shock, but not as well with taste (Garcia and 

Koelling, 1966). This is likely due to the audiovisual CS paired with the feeling of electric shock mimics 

the natural cause and effect relationship of a predator being seen or heard and then the animal being 

physically attacked. However, when the reinforcer is a sickness (done via radiation), the more appropriate 

CS-US pairing is with flavored pellets, as this mimics the cause and effect relationship of taste aversion, 
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where the animal avoids something due to a previous association with physical illness (Garcia and 

Koelling, 1966).  

Measured Conditioned Response 

Once the conditioning schedule has been chosen and pairings are presented several times, the 

animal will reach consistent responsiveness (More and Jensen, 2014). This is known as acquisition and 

would indicate the organism has learned the association between the CS and the US. However, to truly 

assess the association between the CS and US, one must test the organism’s response to the CS alone. 

This allows investigators to measure the CR without the influence of the US. Because the CR is due to the 

CS-US pairing, and thus mimics the UR, the resulting behavioral responses are involuntary and 

predictable. Some examples of measurable CR in model organisms include anything from a rabbit’s eye 

blink (Weeks, et al., 2007), an odor avoidance in Drosophila (Quinn, Harris, and Benzer, 1974), siphon 

contraction in Aplysia (Carew, Walters and Kandel, 1981) or increased freezing behavior in rats (Hobin, 

Goosens and Maren, 2003). Typically, the magnitude of the response (the robustness of response), 

probability (the likelihood of response occurring) and latency (time until onset of the conditioned 

response) is used as a measure of the CR and establishes a method of quantifying learning (Schreurs and 

Alkon, 1990). 

Brief Summary of Classical Conditioning and Associative Learning 

The CS-US relationship is dynamic, yet predictable when it comes to generating the CR. 

Observed differences in intensity and salience of the US, how biologically relevant the chosen CS, the 

order in which the CS-US is presented will affect the rate of acquisition. Once the CS alone begins to 

generate the CR, a newly learned behavior is acquired, but not by conscious thought, as associative 

conditioning and behavioral changes have been observed in many species (e.g., primates, dogs, rats, 

pigeons, sea slug, and fruit fly). Due to the involuntary nature of associative conditioning, it is the 

modifications to the nervous system that incorporates relevant information and shapes new responses. 

Hard evidence of underlying circuit plasticity was first recorded in the sea slug, Aplysia, where removal 
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of the ganglion (central nervous system) resulted in disruption of the conditioned siphon withdrawal 

reflex. Effectively providing hard evidence of the nervous system mediating the CS-US association 

(Carew, Walters, and Kandel, 1981). Behavioral observations paired with associative conditioning of 

model organisms allows investigators to further study the underlying dynamics of neural plasticity of 

conditioning in a laboratory environment.  

Connectivity and Signaling in the Nervous System after Associative Conditioning 

Research into the neurobiology of learning and memory focuses on changes in connectivity 

between neurons and of overall larger changes in the neural circuit. Generally, the pipeline of how a 

nervous system responds to the environment is as follows: sensory neuron (SN) responds to various 

environmental stimuli and synapses with downstream interneurons (IN) that summate the various inputs 

from many SNs and collectively send a signal to further downstream motor neurons (MN) that synapse 

with body wall muscle (BWM). Upon BWM activation or inhibition, a locomotor response (i.e., the 

measurable behavior) is generated. Considerable research has gone into uncovering the molecular and 

cellular details of how individual synapses and larger populations of neurons change in response to 

modifications in neuronal firing and allow for the learning and subsequent retention of new information 

(for review: Abel and Lattal, 2001). Physical storage of memories is dependent, in part, on regulation and 

remodeling of the synapse, which is sensitive to incoming information from the pre-synaptic neuron. 

Upon repetitive signaling from the same pre-synaptic neuron, increased connectivity and sensitivity 

occurs, this is known as long-term potentiation (Bliss and Lomo, 1973). For example, the memory of an 

event induces the strengthening of synapses (where one neuron projects onto another) by increasing 

glutamate receptor localization (AMPA-type and NMDA-type receptors) at the synapse in response to 

increased activity by pre-synaptic neurons, this is known as long-term potentiation (Bliss and 

Collingridge, 1993). Additionally, increased strength of synapses within a circuit, or neural network, 

allows for the memory to be encoded and recalled at the appropriate moment (Anderson, 1972; Barron, et 

al., 2017). It is generally well supported that there are physical changes in the nervous system that 
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underlie learning and memory, specifically with changes at the synapse, and with overall signaling 

patterns in the cortex (for review: Holtmaat and Svoboda, 2009). However, newer research suggests long-

term memory is stored and encoded by epigenetic modification in the DNA of trained cells (Bedecarrats, 

et al., 2018).  

 Early research elucidating neural plasticity favored Aplysia for its easily accessible nervous 

system and well-established siphon withdrawal response (Kriegstein, Castellucci and Kandel, 1974). To 

classically condition Aplysia, researchers would pair several intracellular activations of tail SNs (CS), 

mediated by the electrode implants, with a shock to the skin (the US), to then measure the CR (siphon 

withdrawal response). One notable benefit of the siphon withdrawal response in Aplysia, due to the easily 

accessible nervous system, it is possible to use electrophysiology to measure real-time changes in 

amplitude and frequency of neuronal firing in subpopulations of neurons that make up the CS-US pairing. 

Thus establishing the relationship between cellular changes in the nervous system and the acquisition of 

associative learning. In Aplysia, Walters and Byrne (1982) showed CS-US pairings resulted in enhanced 

excitatory postsynaptic potentials of the MNs, suggesting that changing neuronal firing patterns in MNs 

were due to experience; and these changing neuronal firing patterns predicted the CR. Looking deeper, 

investigation of how specific chemical modulators generate the CR, Ocorr, Walters, and Bryne (1985) 

used a modified conditioning protocol, by measuring levels of cyclic adenosine-monophosphate 

concentration (cAMP: a modulator of neuronal connectivity) following CS-US pairings of high potassium 

seawater (CS) and serotonin exposure (US) in SNs. Serotonin mimics the sensitizing electrical 

stimulation of the US (tail shock), and its effects were thought to be mediated by cAMP. Using this 

experimental setup, researchers showed for the first time that a chemical transmitter (serotonin) mediates 

activity-dependent modulation of cAMP; and that chemical neuromodulators are involved in managing 

the CR (Ocorr, Walters, and Bryne, 1985). Further dissection of the Aplysia central nervous system 

allowed for direct recording of specific neurons mediating the siphon withdrawal circuit. In Antonov, et 

al. (2001), the pre-synaptic activity of the SN modulated firing onto the downstream MNs; this change in 
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presynaptic potential was altered after conditioning with the CS-US pairing of tap to the siphon and shock 

of the tail. These recordings of presynaptic activity suggest that learning the CS-US association involves 

modulation of both pre- and postsynaptic sensitivity and connectivity to generate a CR.  

Looking to understand morphological and connective changes that mediate associative 

conditioning in mammals is harder, due in part to the complexity of the nervous system. Recent 

advancements in computer modeling have helped to shed light on nuanced control of associative 

conditioning in the rodent. Kim et al. (2015) identified competitive synaptic interactions that underlie a 

fear memory trace in the lateral amygdala of the rat. The amygdala is a brain region known for encoding 

fearful experiences (Campeau, Miserendino, and Davis, 1992). After modeling the region, it was found 

that the plasticity of synapses between different neuronal types (principle neuron or inhibitory 

interneuron) in the lateral amygdala determines how generalizable a conditioned fear response becomes 

(Kim et al., 2015). Notably, greater principle neuron plasticity shows less specific conditioned fear 

response, while greater inhibitory interneuron plasticity shows greater specificity of the conditioned fear 

response. These findings, both in Aplysia and in computer modeling of the rodent brain sub-regions, 

suggest that diversity in order and excitability, as well as chemical transmitter, makeup, and neuronal 

type, within the same brain region or neural trace, can lead to the specific acquisition and memory of 

classically conditioned events. 

Brief Summary of Connectivity and Signaling in the Nervous System 

This research highlights how structural remodeling mediates neuroplasticity which underlies the 

changes in connectivity that support CS-US pairings that are known as associative conditioning. 

Historically, there has been a heavy focus on connections between SN-IN connectivity, with the primary 

study of unidirectional flow of information in the nervous system, as it changes during and after 

conditioning. Yet, driving inhibition in specific brain areas of the rat disrupted the acquisition of a 

conditioned fear response to shock (Assareh et al., 2017) and that overexcitation of specific brain regions 

during a prediction assay increased subsequent prediction error (Chang et al., 2016). It is in this research 
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we focus on how learning in an associative conditioning assay is affected following targeted activation of 

downstream IN-MN and MN-BWM connections. Given the wide variety of experimental tools and the 

simpler nervous system, we use Caenorhabditis elegans (C. elegans) in our study of classical 

conditioning.  

PART II: LEARNING IN C. ELEGANS 

Caenorhabditis elegans as a Model Organism 

C. elegans was first proposed as a model organism by Sydney Brenner in 1963 and is now 

regularly used in cellular and molecular research. Their use has rapidly expanded due to their small size 

(~1mm in length), hermaphroditic nature that keeps a genetically consistent stock and growth to 

adulthood which takes 3-4 days (Stiernagle, 2006). In C.elegans, the hermaphrodite has 959 somatic cells, 

with 302 of those cells being neurons (White, Thomson and Brenner, 1986). Additionally, the animal has 

the first fully sequenced genome (Hillier et al., 2005). C. elegans have a transparent exterior cuticle which 

allows for easy fluorescence imaging of gene expression and protein localization (Kerr, 2006). 

Remarkably, C. elegans was the first multicellular organism to have green fluorescent protein (GFP), 

expressed in its nervous system, guided by the mec-7 promoter, resulting in specific GFP expression in 

the six touch receptor neurons (Chalfie et al., 1994). Further development of fluorescent imaging 

techniques of neuronal signaling, known as calcium imaging, where a fluorophore changes conformation 

in the presence of calcium, allows for tracking and monitoring of neuronal activity (Suzuki et al., 2003). 

Lastly, optogenetics is a non-invasive method of depolarizing (channelrhodopsin) or hyperpolarizing 

(halorhodopsin) specific populations of neurons by shining of blue or green light respectively (Nagel et 

al., 2005; Liu, Hollopeter and Jorgensen, 2009). These benefits have allowed laboratories to use this small 

nematode in many dynamic ways, especially in the field of neuroplasticity, as pertains to worm learning 

and memory (White et al., 1986).  
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Neurobiology of C. elegans 

C. elegans have only 300 neurons, of which they have the first and only Connectome. The 

Connectome is a complete map of all sensory, inter and motor neurons with identified connections 

between different neurons; these neuronal links consist of ~7,000 chemical and ~3,500 electrical 

connections (White et al., 1986; Varshney et al., 2011). This significant collection of work has allowed 

researchers to map specific sub-circuits that respond to distinct stimuli and initiate specific locomotor 

responses (Haspel, O’Donovan and Hart, 2010; Kato et al., 2015). For instance, the mechanosensory 

circuit (Wicks and Rankin, 1995), olfactory circuit (Chalasani et al., 2007) and thermosensory circuit 

(Mori and Ohshima, 1995). To respond to a dynamic environment, single neurons typically receive 

multiple signals and send out different signals to drive distinct, context-dependent locomotor responses 

(Li, et al., 2014; Tao, et al., 2019). For example, the sensory neuron ASH has olfactory and 

mechanosensory receptors, and either receptor activation drives the release of dual transmitters to change 

behavior appropriately (Maricq, et al., 1995). To drive reversals in response to gentle nose touch, 

glutamate is released onto downstream command interneurons driving locomotor behavior while 

olfactory sensation drives another transmitter to modulate behavior accordingly (Maricq, et al., 1995). 

This early work highlights the functionality of the C. elegans nervous system, as it is important to 

appreciate how basic neuronal function occurs so that the mammalian nervous system will eventually be 

better understood. Especially since many fundamental genes and proteins required for learning and 

memory in the C. elegans are homologous to many genes and proteins found in vertebrate systems (Stein 

and Murphy, 2014; Lakhina et al., 2015). 

Associative Conditioning in C. elegans 

Studying learning in C. elegans is common, as these animals exhibit context-specific behavioral 

plasticity. It is important to highlight that nonassociative learning, such as habituation (decreased 

responsiveness to a repetitive stimulus) and sensitization (increased responsiveness to repetitive 

stimulus), changes the magnitude of stereotypical response. For example, C. elegans will habituate to a 
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repetitive presentation of a single stimulus and decrease responsiveness after several presentations 

(Rankin, Beck and Chiba, 1990). Retention of this habituation is demonstrated 24 hours later (Beck and 

Rankin, 1997). This decrease in responsiveness is not a result of sensory adaptation (i.e., the sensory 

receptors are overwhelmed and cannot signal) or fatigue (i.e., the changed behavior occurring because the 

animal itself is too tired to respond). Unlike associative conditioning, changes in responsiveness are not 

caused by an association with a positive or negative, neutral stimulus, like you would expect with 

classical conditioning.  

C. elegans can associate two distinct stimuli, and change their behavior (usually observed by 

locomotor changes) depending on the nature of the association. Two common assays used to study 

associative conditioning in C. elegans are chemotaxis (association of a chemical with the US) and 

thermotaxis (association of temperature with the US). These procedures using this model organism allow 

researchers to bridge gaps between genes, nervous system circuitry and conditioned behavior. In 

chemotaxis assays, C. elegans are presented with a chemical CS, usually NaCl (due to the animal’s 

natural chemotaxis behavior towards NaCl) and presence or absence of food (US). Depending on how 

favorable the resulting association is, the animals either swim towards (positive chemotaxis) or avoid 

(negative chemotaxis) the conditioned chemical, based on if food is associated with that chemical CS. 

These subsequent behavioral changes can be seen soon after conditioned incubation with the chemical CS 

(~4 hours) and up to 24 hours later (Saeki, Yamamoto and Iino, 2001; Amano and Maruyama, 2011). To 

highlight how sensitive C. elegans are to chemical cues, by varying the concentration of NaCl used during 

cultivation will result in the animal seeking the specific NaCl concentration the animal was reared at 

(Lou, et al., 2014). This further supports the animal’s retention of the associative memory up to a day later 

and reinforces the notion that C. elegans can exhibit experience-dependent behavioral plasticity. 

C. elegans can also form associations with temperature. In thermotaxis assays, animals will move 

up, down or show no locomotive pattern, along a thermal gradient, usually 15ºC – 25ºC. In standard 

thermotaxis experiments, C. elegans exhibit associative learning with their cultivation temperature (CS), 
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as it will indicate food (US), in which the animals will migrate toward that cultivation temperature at 

testing (Hedgecock and Russell, 1975). Further assessment with learning mutants will show atypical 

thermotaxis behavior. If the animals are learning defective, they show reduced or no thermotaxis towards 

the cultivation temperature (Biron, et al., 2006) or otherwise atypical temperature responses - such as 

cryophilic behavior for colder temperatures or thermophilic behavior for warmer temperatures (Mori and 

Ohshima, 1995; Land and Rubin, 2017). Furthermore, these animals can “un-learn” associations 

previously made, if the thermal temperature is no longer presented with food for several hours, known as 

extinction (Li et al., 2013). Showing extinction supports the idea that C. elegans exhibit context-specific 

behavioral plasticity that is more dynamic than once thought. Research published by Gomez et al. (2001) 

showed animals that were presented with food in an environment at 25ºC, not the rearing temperature 

originally associated with food, exhibited thermotaxis behavior towards 25ºC when tested. However, 

when then introduced to food at 20ºC, the animals showed a lesser thermotaxis index at 25ºC, with greater 

thermotaxis towards 20ºC again, suggesting the previously learned association was updated with new 

information (Gomez et al., 2001). These data, as gathered by chemotaxis and thermotaxis experiments, 

support experience-dependent associative learning in the worm.  

It is important to clarify that chemotaxis and thermotaxis protocols require a minimum incubation 

period of one-hour, yet it is feasibly possible that learning occurs more rapidly. In this research, we 

demonstrate learning in C. elegans using a rapid associative conditioning assay. This assay consists of 

five delayed US-US pairings, not the usual CS-US pairings, which will be discussed later on. Of the 

delayed US-US pairings, a five-second mechanosensory vibration (US; 300Hz) is overlapped with a 

three-second blue light illumination (US; ~460nm) and both stimuli terminate together. Between pairings, 

there are 60 seconds between intertrial intervals. As established during testing, a single presentation of the 

five-second vibration, unless otherwise specified, is presented at different retention periods: one-, five- or 

ten-minutes postconditioning. These retention periods are closer in time to our training assay and thus 

focus on learning (< 1-hour post-training), as opposed to a short-term association (2+ hours) or long-term 
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memory (16-40 hours) (Kauffman, et al., 2011; Kauffman, et al., 2010). Changes in locomotive behavior - 

forward movement, backward movement, pauses and omega turns are quantified and used as our measure 

of learning. This vibration-light assay demonstrates that C. elegans are capable of conditioned locomotor 

behavior within minutes of learning.   

Mechanosensation and Photosensation 

Vibration and blue light are two distinct and aversive stimuli that result in competing locomotor, 

responses (CR). Repetitive non-specific mechanosensory stimulation results in increased reversal 

frequency and magnitude in wild type C. elegans (Wicks and Rankin 1995). The mechanosensory 

response is mediated by six mechanosensory neurons located at the anterior (ALMR/L, AVM) and 

posterior (PLMR/L, PVM) of the worm (Chalfie et al., 1985). Regarding photosensation, wild type 

animals are non-responsive to green light and most responsive to UV and blue light, showing increased 

forward locomotion under whole-body illumination (Edwards et al., 2008). Early work for this thesis 

showed wild type C. elegans had a similar lack of response to green light, data not shown. Within the 

Edwards et al. (2008) study, LITE-1 expressing interneurons (AVG and PVT) were identified as driving 

neurons, mediating the locomotive response.  An additional study by Ward et al., (2008) showed an 

avoidance response that depends on either head or tail specific activation, resulting in reversals or forward 

locomotion, respectively. More recent work by Bhatla and Horvitz (2015) shows LITE-1 expression in 

several additional sensory neurons and interneurons, suggesting a complex photosensitive circuit. (See 

Figure 3, for a schematic of converging mechanosensory and photosensory circuits driving differing 

locomotor behavior). 

We use a vibration-light associative conditioning assay and each stimulus is biologically relevant 

to C. elegans. Evolutionarily, there is a class of predacious fungi that form hyphal rings that upon touch, 

contract and ensnare the worm (Perri and Alkema, 2012). It is thought that the rapid escape response (e.g., 

reversal or acceleration) evolved as a method to escape being eaten, as animals with deficits in touch 

sensation show an increased probability of being trapped (Maguire, et al., 2011). On the other hand, 
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prolonged exposure (e.g., 20+ minutes) to UV light resulted in paralysis and eventual death of the animal 

(Ward et al., 2008). Since C. elegans are a soil-dwelling nematode photosensation likely evolved as a 

response to keep the animal safe from UV mutagenesis, by directing locomotor responses based on the 

anatomical location being exposed (Ward et al., 2008). Because both stimuli always result in a locomotor 

response (UR), this pairing is technically a US-US association, otherwise known as beta conditioning. 

Beta conditioning is a form of associative conditioning in which both stimuli will always generate a 

response (Schreurs and Alkon, 1990; Choi, et al., 2011). In this research, it is important to ensure the 

animal is detecting both stimuli, hence why conditioning with the traditional CS-US pairing would be 

impossible. Using our US-US (vibration-light) assay, we were able to verify that both vibration alone and 

light alone were being detected, as observed by immediate locomotor responses (observational data).  

The Motor Circuit and Neuromuscular Junction 

Understanding the C. elegans motor circuit is key to this research, especially since our measure of 

learning and conditioned behavior is the change in the proportion of time and distance the worm travels 

after vibration-light conditioning. To start, the motor circuit is comprised of parallel excitatory and 

inhibitory motor neurons that synapse with body wall muscles, and thus form the neuromuscular junction 

(NMJ) (Schuske, Beg, and Jorgensen, 2004). As body bends are initiated to produce forward or backward 

swimming, each segment initiates body wall muscle contraction by acetylcholine release, while the 

parallel segment relaxes the opposite body wall muscles by inhibitory GABA release (Richmond and 

Jorgensen, 1999; Bono and Maricq, 2005). This synchronized release of opposing neurotransmitters, 

mediated by graded synaptic transmission leads to a sinusoidal like swim pattern (Liu, Hollopeter, and 

Jorgensen, 2009).  

Regarding the identity of the motor neuron sub-circuits that make up the neuromuscular junction, 

there are A-type, B-type and D-type motor neurons. A-type and B-type are excitatory motor neurons that 

release acetylcholine into the neuromuscular junction upon activation, and further studies indicate A-type 

motor neurons mediate reversals and B-type mediate forward locomotion (Haspel, O’Donovan and Hart, 
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2010). D-type motor neurons cause the parallel body wall muscle to relax (Schuske, Beg, and Jorgensen, 

2003). See figure 1A for a schematic of connectivity of the neuromuscular junction and with respective 

input from upstream command interneurons. 

 It is the command interneurons (which receive multiple inputs from sensory neurons) that are the 

key to C. elegans generating appropriate locomotor behavior in an ever-changing environment (Xu, et al., 

2011). Command interneurons (AVB, AVA, PVC, AVD, and AVE) have been characterized and are 

shown to initiate specific locomotive responses due to their connectivity with A-, B- or D- type 

motoneurons (Bono and Maricq, 2005). Liu et al. (2017) demonstrated that the strength of acetylcholine 

signaling from AVA onto A-type motor neurons is modified by retrograde signaling via gap junctions 

from A-type motor neurons back onto AVA. Disruption of these gap junctions resulted in defective 

backward, but not forward, locomotion. Overall, circuit connectivity affects locomotor behavior and in 

this research, we assess if co-activation of body wall muscle, cholinergic or GABAergic circuits during 

conditioning effect learning in C. elegans. See part III, Optogenetics, for discussion of how to achieve 

temporally precise sub-circuit activation.  

PART III: NEURAL SIGNALING AND DYNAMICS 

Neurotransmitters in Learning 

Research into the specific roles of neurotransmission in the central nervous system has advanced 

learning and memory research, particularly with neural plasticity. For example, glutamate is a primary 

excitatory neurotransmitter that modifies synaptic plasticity throughout the nervous system, thus 

underling some cue responses (Reiner and Levitz, 2018). Other signaling molecules involved in both 

mammalian and C. elegans nervous systems are GABA, a common inhibitory neurotransmitter that 

causes hyperpolarization of the neuron, and acetylcholine (ACh), a common neuromodulator in the 

central nervous system. Defining a neurotransmitter as excitatory or inhibitory simply means the chemical 
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signal either increases or decreases the target cell’s chance of firing, while a neuromodulator can act as 

both am inhibitory or excitatory signal, depending on the target type (Iversen, et al., 2009).  

With long-term potentiation, different kinds of chemical transmission can alter the structure of the 

target post-synaptic membrane and thus neural plasticity. Cholinergic input from the amygdala into the 

hippocampus shows activity-dependent pre- and post-synaptic firing that leads to induction of long-term 

potentiation in rat hippocampal cultures (Adams, Winterer, & Müller, 2004). While GABAergic input 

from inhibitory interneurons in rat hippocampal neuron culture shows an inhibition of long-term 

potentiation of excitatory synapses, which is thought to flexibly tailor excitability in the hippocampal 

circuit (Chapman, Perez, & Lacaille, 1998). Since long-term potentiation and the modulation of synaptic 

connection is the basis of neural plasticity, understanding the different effects of neurotransmitters, 

especially glutamate, GABA and ACh in learning and memory is necessary. 

Glutamate: in Learning and C. elegans 

Glutamate is a prevalent neurotransmitter in the mammalian nervous system and glutamatergic 

signaling is known to promote excitatory signaling by activating ionotropic glutamatergic receptors 

and/or subsequent activation of metabotropic glutamate receptors on the post-synaptic neuron (Reiner and 

Levitz, 2018). Mechanistically, long-term potentiation, as mediated by glutamate signaling, is shown to 

initiate increased AMPA receptor localization on the postsynaptic neuron as mediated by CaMKII (a 

calcium indicator) (Kristensen, et al., 2011). Both receptor types, AMPA and NMDA, are common and 

work together to promote neuronal plasticity (Reiner and Levitz, 2018).  While glutamatergic-ionotropic 

NMDA receptors are involved in long term potentiation by inducing increased calcium levels in 

postsynaptic neurons, leading to higher excitability and synapse strengthening (Boehm and Malinow, 

2005). Glutamate signaling has been well characterized in its role of neural plasticity in mammalian 

nervous systems.  
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In C. elegans, GLR-1 is an AMPA type - ionotropic glutamate receptor (Hart et al., 1995) and is 

responsible for mediating noxious avoidance responses to a variety of stimuli (Bono and Maricq, 2005). 

Responses to noxious stimuli can be modified by changes in neuronal activity, primarily by varying 

localization and abundance of GLR-1 at the synapse. Examples of misregulation of the glutamate 

response, as shown by the loss-of-function mutant, unc-43 (a CaMKII homolog), show reduced 

localization of GLR-1 at the synapse, and subsequent accumulation of GLR-1 in the cell body. While 

additional loss-of-function mutants, unc-2 (a voltage-gated calcium channel) and eat-4 (a vesicular 

glutamate transporter), both required for plasticity, show overexpression of GLR-1 at the synapse 

(Grunwald et al., 2004). These changes in glutamatergic signaling processes by AMPA type glutamate 

receptors influence C. elegans behavior, such as reduced nose touch avoidance (Maricq, et al., 1995), 

while changes in eat-4, which medicates presynaptic glutamate release, results in initially rapid 

habituation, however, it is not retained 24 hours later (Rose, et al., 2002). Further study showed GLR-1 is 

required for long-term memory of habituation (Rose et al., 2003). NMR-1, another C. elegans glutamate 

receptor subtype is an ionotropic NMDA receptor homolog that is known to mediate locomotor behavior, 

as shown in Brockie, et al. (2001) nmr-1 mutants show reduced switching from forward locomotion to 

backward locomotion. Glutamate is a common signaling molecule that interacts with well-known learning 

and memory proteins in C. elegans.  

In addition to the role of glutamate in learning and memory, it is responsible for mediating both 

mechanosensory and phototaxis response. In mechanosensation, glutamatergic signaling mediated by eat-

4 affects touch cell sensitivity (Lee at al., 1998) and non-NMDA type receptors (GLR-1) are responsible 

for nose-touch driven locomotor behavior (Brockie et al., 2001). Further eat-4 and glr-1 mutation showed 

defective electrotaxis locomotor behavior (Gabel et al., 2007), which is important as electrosensation and 

photosensation are mediated by a similar set of neurons (Ward et al., 2008). Given these previous 

findings, we hypothesize the vibration-light pairing is driving by upstream glutamatergic signaling. 
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GABA: in Learning and C. elegans 

GABA is an amino acid neurotransmitter that inhibits mammalian neurons from generating an 

action potential, usually by increasing intracellular Cl- concentration, hyperpolarizing the post-synaptic 

neuron which results in synaptic inhibition (Werhahn, et al., 2004). Loss of GABAa receptor alpha5 

subunit in mice resulted in significantly improved hippocampal learning (i.e., better performance in a 

water maze task). Collinson et al. (2002) demonstrated this improvement was potentially due to decreased 

inhibitory postsynaptic currents and inversely increased excitatory postsynaptic potentials in the CA1 

region of the hippocampus. In the context of classical conditioning, GABAergic Purkinje cells of the 

rabbit cerebellum project onto interposed nuclei (i.e., a type of motorneuron) that initiates conditioned 

eye-blink response (Parker et al., 2009). In the same study, after injection of GABA receptor antagonist (a 

compound that interferes with receptor activity) into the interposed nuclei, the animals showed a dose-

dependent elimination of the conditioned eye-blink response. Suggesting down-stream GABAergic 

transmission is required to mediate the CR GABAergic signaling is also involved in conditioned olfactory 

learning in mice, as conditioned odor preference tests result in increased GABA and glutamate release in 

the olfactory bulb after the presentation of conditioned odor (Brennan, et al., 1998).  These results suggest 

the preferential release of neurotransmitters is required to encode meaningful odor cues, which is useful in 

directing the changing behavior in a meaningful, context-specific way.  

GABAergic signaling is present in the C. elegans nervous system and has been shown to have 

similar functional and sequence homology with mammalian GABAergic signaling (Eastman, Horvitz and 

Jin, 1999). UNC-30 (transcription factor) binds to promoters for UNC-25 (GAD; synthesizes GABA) and 

UNC-47 (Vesicular GABA reuptake transporter), thus regulating their transcription in D-type, 

GABAergic motor neurons. UNC-47 is further expressed in all GABAergic neurons. More recent work 

(Gendrel et al., 2016) has expanded the map of the GABAergic nervous system. Their work broadens the 

expression profile of UNC-47 to D-type motor neurons, as well as RME, RIS, AVL, DVB, RIB, SMD, 

ALA, and some other non-GABA releasing neurons. GABAergic signaling is important for several 
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behaviors in the animal, including escape behavior (Kagawa-Nagamura, Gengyo-Ando, Ohkura, & Nakai, 

2018), foraging deficits and locomotor behavior (Schuske, Beg, & Jorgensen, 2004).  

Acetylcholine: in Learning and C. elegans 

Acetylcholine (ACh) is expressed throughout the mammalian brain and has been established in 

modulating cognition, attention, and sensory processing (Picciotto, Higley, and Mineur, 2012). 

Acetylcholine has a modulatory effect on signaling since it can play excitatory or inhibitory roles, likely 

due to the large variety of receptor subtypes which fall into two classes: ionotropic nicotinic receptors or 

metabotropic muscarinic receptors (Picciotto, Higley, and Mineur, 2012). In rats, acetylcholine blocking 

both muscarinic and nicotinic receptors before reward-specific cue presentation modified motivation (e.g., 

increased lever presses) in response to drug reward (Collins et al., 2016). Also in rats, muscarinic 

acetylcholine receptors are necessary for long-term potentiation in hippocampal CA1 neurons (Adams, 

Winterer and Muller, 2004). 

Cholinergic transmission in the C. elegans nervous system widely expressed (Pereira, et al., 

2015). However, it is best studied at the neuromuscular junction (Richmond and Jorgensen, 1999; Francis 

et al., 2005; Liu, Hollopeter and Jorgensen, 2009). In regards to locomotion. A-type and B-type excitatory 

motor neurons of the neuromuscular junction release acetylcholine and mediate either backward or 

forward locomotion, respectively (Haspel, O’Donovan and Hart, 2010). Cholinergic signaling has been 

further studied in greater locomotive detail. For example, cholinergic signaling mediates behavioral 

output, such as changing direction (Li et al., 2014), and partially the response to injury signals (i.e., 

nociception) by harsh touch (Cohen, et al., 2014). Given these prior findings, we hypothesize cholinergic 

signaling may be necessary for mediating the locomotor response to our vibration-light assay. Especially 

given its role at the neuromuscular junction.   

Both GABAergic and acetylcholine signaling play a role in learning and memory, in other species 

as well as in C. elegans. As GABA and cholinergic signaling at the neuromuscular junction control 
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locomotor behavior we opted to assess how GABAergic and cholinergic signaling would affect learned 

locomotor behavior in C. elegans. To assess how different neurotransmitter subcircuits and body wall 

muscles affect learning, we utilized optogenetics to experimentally manipulate each subcircuit during 

conditioning.  

Optogenetics 

The field of optogenetics has provided researchers with a noninvasive method to depolarize or 

hyperpolarize the resting membrane potential of neurons (Fiala, et al., 2006). To depolarize a neuron 

means making the membrane potential more positive and more likely to signal to downstream neurons or 

body wall muscle; while hyperpolarizing the neuron makes it less likely to signal and thus decreases the 

membrane potential. Channelrhodopsin (ChR2) was first isolated from Chlamydomonas reinhardtii, a 

green alga (Nagel et al. 2003) in Xenopus oocytes and mammalian cells (HEK293), in which they 

successfully drove photocurrents. Later, ChR2 was used to successfully drive locomotor behavior in C. 

elegans when expressed in motor neurons and full-body contraction when expressed in body wall muscle, 

under the myo-3 promoter (Nagel et al., 2005). These experiments were the first to express ChR2 in a 

neuron-specific manner, as well as to control neuronal activity in a fully intact animal due to illumination. 

Exactly how ChR2 functions mechanistically are as follows: upon blue light illumination (460nm), these 

channels make a conformational change which allows for Na+ ions to enter the cell, thus depolarizing the 

membrane potential and eventual exocytosis of neurotransmitter cargo is achieved (Husson, Gottschalk, 

and Leifer, 2013). When expressing ChR2 in C. elegans, these animals are transparent and ChR2 can be 

activated externally using LED lights to dictate control of neuronal activation (Stirman et al., 2011). In 

combination with the genetic toolbox of C. elegans, ChR2 expression can be localized to specific 

neuronal types, by using known promoters.   

In this research, we used pmyo-3::ChR2 (pmyo-3 = body wall muscle promoter) and unc-47 and 

unc-17 promoters to express ChR2 in GABAergic or cholinergic neurons respectively, to specifically alter 

the activity of certain muscles and neuronal sub circuits during conditioning. In the dual activation of 
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endogenous photoreceptors driving the photosensitive response during delayed conditioning, the different 

ChR2-expressing circuits are simultaneously controlled with the onset/offset of the blue light during the 

conditioning procedure. The sensory integration thought to occur due to pairing is thought to proceed 

despite the manipulation of downstream neurons or muscle (See figures 6, 9 and 12 for expression 

profiles of ChR2 in the different strains of C. elegans used, in conjunction with the mechanosensory and 

photosensitive circuits that drive locomotion).  

Research Question 

Manipulating signaling in different sub-circuits during conditioning may affect learning. In this 

research, we describe a rapid associative conditioning assay in C. elegans that drives two distinct and 

competing circuits (mechanosensory and photosensitive) and measured locomotor output at retention 

periods close to the time of conditioning to assess learning. Our vibration-light conditioning protocol 

results in increased pausing in wild type animals, suggesting that dual activation of competing circuits 

prime the locomotor response to a paused state. However, when animals undergo the same conditioning 

procedure, but with simultaneous optogenetic activation of body wall muscle (pmyo-3::ChR2) or different 

neuronal sub-circuits, GABAergic (punc-47::ChR2) or cholinergic (punc-17::ChR2), at the same time of 

conditioning; we see a disruption of conditioned locomotor behavior. This suggests that the sequential 

activation of downstream neuronal and muscle components in C. elegans is important for learning.  
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METHODS 

Strains and strain maintenance 

All strains were acquired from the Caenorhabditis elegans Genetics Center (CGC). N2 (Wild 

Type), EG5025, ZX460, and EG5027. Each strain was maintained at 20ºC and fed OP50 E. coli, grown 

on NGM agar plates (Stiernagle, 2006). Before testing, the desired strains were age synchronized using a 

2:1 bleach to 1M NaOH solution and tested as four-day-old animals. For optogenetic strains, the cofactor 

(all-trans-retinol (ATR); Sigma Aldrich, 95%) was present for ChR2 to be in an active conformation. This 

was achieved by mixing ATR with OP50 E. coli (1:100) and allowing strains to grow egg to adult on the  

OP50+ATR lawns (Liu, Hollopeter, and Jorgensen, 2009). For control (ATR-), the ATR is replaced with, 

100% ethanol. Up until testing, C. elegans were maintained in light-proof containers with limited 

vibrational stimulation by placing on foam blocks. 

Behavioral assay and apparatus 

Behavior collection is conducted on seeded NGM plates, with ~20 C. elegans per plate.  Testing 

is conducted in the dark with blue light filters on all computer monitors and the microscope stage, to 

control for blue light from other light sources. See figure 2 and figure 5 for assay schematics of the 

training and testing protocols used for data collection. Changes in locomotive behavior measured as 

forward movement, backward movement, pauses, and omega turns are quantified as our measure of 

learning, figure 1A example. Each trial consisted of an NGM + OP50 plate with multiple animals, had a 

minimum of five replicates of each trial and each group has trials that were tested over a minimum of 

three different days with trained and untrained matched controls for every test day. This randomized any 

effects due to environmental fluctuations. For conditioning, a five-second vibration (300Hz, X-Vibe 

speaker) and three-second blue light exposure (470nm @1000mA; Mightex LED) were used. Behavioral 

data were observed using an Olympus SZ7 Stereoscope (@8X total magnification) with an AmScope 

MUB2003 CCD camera for recording. 
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Behavioral analysis - TierPsy 

All behavior videos were analyzed using TierPsy Multi-Worm tracker (V1.4.0). This program is a free 

download, found here: https://github.com/ver228/tierpsy-tracker. Total magnification and software allow 

for multiple animals to be analyzed at once. Behavioral scoring can be verified via wormbook.org, 

descriptions of output files for TierPsy are found here: https://github.com/ver228/tierpsy-

tracker/blob/master/docs/OUTPUTS.md.  

Of our response measures, we use the below criteria to define behavioral responses:   

Definition of Behavioral Response:  

Forward: The animal is moving in the “head direction” for at least 0.5 seconds and at least 5% of 

its length 

Backward: The animal is moving in the “tail direction” for at least 0.5 seconds and at least 5% of 

its length 

 Pause: The animal is moving neither in the head or tail direction for at least 0.5 seconds 

Omega Turns: The animal moves forward, the head side then turns back at a sharp angle to 

become even with the tail and swims off in the direction at which the animal was coming from in 

a forward motion 

 

Of the various metrics TierPsy generates, we have isolated only a few metrics of choice: time and 

distance ratio of forward, reverse, pause, and omega turns, as well as motion mode. Using these 

parameters, responses during the 10 seconds before test tone and 60 seconds post-test tone were 

calculated accordingly for each worm, in each trial, and a time and/or distance ratio of each response type 

was calculated by the software. Below descriptions are the TierPsy definitions of the calculated locomotor 

measures used. 

Time Ratio: (no units) ratio between the time spent at the event over the total trajectory time. This 

is calculated for forward, reversal, pause and omega turn behaviors 

Distance Ratio: (no units) ratio between the total distance traveled during an event and the total 

distance traveled during the whole trajectory. This is calculated for only forward and reversal 

behaviors 

https://github.com/ver228/tierpsy-tracker
https://github.com/ver228/tierpsy-tracker/blob/master/docs/OUTPUTS.md
https://github.com/ver228/tierpsy-tracker/blob/master/docs/OUTPUTS.md
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Motion Mode: vector indicating if the worm is moving forward (1), backward (-1) or is paused 

(0). This measure is unique for every animal, as it assigns a number for the above movements for 

every frame that animal is in.  

 

Statistical Analysis 

Analysis of wild type behavioral data consists of two-way ANOVAs, with post hoc comparisons 

to determine the effect of training, by comparing the results of vibration-light training, light-only and 

tone-only to the appropriate untrained group, of the same retention period (p<0.05 significance) (Stein 

and Murphy, 2014). Optogenetic experiments measured differences by two-way student’s t-tests between 

vibration-light trained and untrained/naive controls, of the same cofactor level (p<0.05 significance) 

(Donnelly et al., 2013; Ardiel et al., 2016). Because trained and untrained ATR- animals are superficially 

wildtype, these data were pooled across strains, to normalize the environmental effects of testing 

conditions on different days.  

All analyses were completed in R, using package “car” for analysis and “ggplot2” for data 

visualizations. Visualization of behavioral data for trained, light-only or tone-only animals is normalized 

to untrained data and presented as normalized mean +/- normalized standard error of the mean (SEM) 

(Hart, 2006; Li et al., 2013). Lucidchart was used to create illustrated diagrams and schematics. 
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RESULTS AND ANALYSIS 

Vibration-light conditioning of wild type C. elegans 

To establish how baseline locomotor behavior changes after a rapid classical conditioning 

protocol with vibration-light pairing, we conditioned wild type C. elegans (Fig. 2). Since the two stimuli 

drive opposing locomotor behavior, vibration (mechanosensation) drives reversals (White et al., 1985; 

Wicks and Rankin, 1995) and light (photosensation) drives forward locomotion (Edwards et al., 2008; 

Ward et al., 2008), we expected changes in locomotor behavior to reflect successful vibration-light 

conditioning - see figure 3 for the schematic of mechanosensory-photosensory circuitry in C. elegans. In 

addition to vibration-light pairing, it was important to establish baseline responsiveness to tone-alone, 

light-alone, as compared to untrained (naïve) responding (Fig. 2). This was to ensure that the changes in 

locomotor behavior were a response to the vibration-light pairing, not an artifact of the individual stimuli 

alone, nature of stimulus delivery, or an environmental factor (Schreurs, 1989). The following results 

(Fig. 4) suggest that vibration-light conditioned C. elegans increase their time spent pausing, with a 

significant decrease in forward and backward locomotion. While controls (untrained, light only and tone 

only), generally exhibit no response to testing across retention periods, with a couple of exceptions to be 

discussed later.  

Pause time ratio 

Pause time ratio is our measure of the proportion of time the worm is moving neither forward or 

backward, over the whole time it is being recorded, i.e.- the greater the value, the more time the animal is 

spending in a paused state. In figure 4A, a two-way ANOVA showed a significant interaction of condition 

and retention period on paused time ratio postconditioning (𝐹6,557=2.65, p=0.01), as well as simple main 

effects of condition (𝐹3,557=6.46, p<0.001) and retention period (𝐹2,557=6.89, p=0.001). Follow up 

analysis of the interaction suggest there is no difference of conditioning effect at one-minute 

postconditioning (𝐹3,179=0.15, p=0.92), but are differences in conditioning five-minutes (𝐹3,205=6.14, 

p<0.001) and ten-minutes(𝐹3,173=4.67, p=0.001) postconditioning. Follow up planned comparisons 
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suggest the effects of conditioning are due to training and the responsiveness is more robust at the longer 

retention period. Vibration-light conditioned animals (p<0.001) and tone-only animals (p=0.01) showed 

increased pause time at ten-minutes postconditioning compared to one-minute postconditioning, while 

untrained (p=0.72) and light-only C. elegans (p=0.94) showed no changes. To reiterate, at ten-minutes 

postconditioning trained and tone-only C. elegans increase their time spent pausing, while light-only and 

untrained (naïve) C. elegans showed no change.   

Forward time ratio 

Forward time ratio is a measure of the time the worm is moving forward, as a proportion of the 

whole duration the worm is being recorded - i.e., larger forward time ratios mean the animal is spending a 

greater duration of time moving forward. Assessing forward time ratio (Fig 4b), a two-way ANOVA 

showed no significant interaction of conditioning and retention period (𝐹6,633=0.60, p=0.72), but did 

measure significant simple main effects of condition (𝐹3,633=45.11, p<0.001) and retention period 

(𝐹2,633=11.04, p<0.001). Posthoc analysis reports the following differences of trained and control groups, 

as compared to untrained C. elegans: at one-minute postconditioning, light-only C. elegans move forward 

more frequently (p=0.03), tone-only C. elegans showed a trending difference (p=0.06) and trained C. 

elegans spent significantly less time moving forward (p<0.001). Then, at five-minutes postconditioning, 

light-only C. elegans show no difference (p=0.85), tone-only C. elegans move at a slightly greater 

forward time ratio than unpaired controls (p=0.06), while trained C. elegans spend significantly less time 

moving forward (p=<0.001). At ten-minutes postconditioning, paired C. elegans spend significantly less 

time moving forward (p<0.001), with tone-only animals still maintaining slightly more forward 

movement (p=0.05) and light-only C. elegans show no change in forward time ratio (p=0.23) as 

compared to untrained controls. Taken together, these data suggest that trained wild type C. elegans have 

significantly reduced forward time ratios, at all three retention periods. Meaning vibration-light 

conditioned animals spent a reduced proportion of time moving forward, across all retention periods. In 

response to light-only training, wild type C. elegans at one-minute postconditioning showed more 
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forward time ratio at a slightly higher proportion, but five-, and ten-minutes postconditioning forward 

locomotor behavior resembles that of untrained C. elegans. We can then assume blue light sensation does 

not affect underlying sensitivity to vibration only presentation. For the tone-only condition, the reported 

values were trending towards increased time spend moving forward, but only at ten-minutes 

postconditioning did a significant difference emerge. Taken together, untrained, light-only and tone-only 

wild type C. elegans maintain a fairly consistent proportion of forward movement across retention 

periods, while vibration-light trained C. elegans maintained a consistent decrease in forward movement 

across retention periods. 

Forward distance ratio 

Forward distance ratio is a measure of the distance the worm is moving forward, as a proportion 

of the whole trajectory the worm was recorded- i.e., the greater the value (proportion), the greater the 

distance is being covered in the forward locomotor state, suggesting the increased magnitude of forward 

responses. Assessing wild type forward distance ratio (Fig 4C), a two-way ANOVA showed no 

significant interaction of condition and retention period (𝐹6,633=0.35, p=0.90) but did find significant 

simple main effects of condition (𝐹3,633=43.72, p<0.001) and retention period (𝐹2,633=19.28, p<0.001). 

Follow up analysis suggests only vibration-light trained C. elegans maintained consistent decrease in 

forward distance traveled at one-minute (p=<0.001), five-minutes (p=<0.001) and ten-minutes (p=<0.001) 

postconditioning, as compared to the untrained groups. Tone-only animals showed a trending change in 

forward distance ratio across retention periods; one-minute (p=0.06), five-minutes (p=0.06) and ten-

minutes (0.17) postconditioning. Light only animals showed trending differences as compared to 

untrained controls at one-minute (p=0.08), but not at five-minutes (p=0.97) or ten-minutes (p=0.20) 

postconditioning.  Taken together, trained C. elegans showed a decreased magnitude of forward 

movement across retention periods. While untrained, light-only, and tone-only controls moved at a fairly 

consistent proportion of distance forward, and did so across retention periods.  
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Backward time ratio 

Assessing backward locomotion, backward time ratio is a measure of the time the worm is 

moving backward, as a proportion of the whole duration the worm is being recorded- i.e., greater 

backward time ratio indicates the worm is generating and performing more backward locomotor 

responses. Observing differences in backward time ratio (Fig 4D), a two-way ANOVA found no 

significant interaction between condition and retention period (𝐹6,483=0.50, p=0.80) or simple main effect 

of retention period (𝐹2,483=0.08, p=0.91). But did find a significant main effect of condition 

(𝐹3,633=26.30, p<0.001). Follow up analysis showed only trained wild type C. elegans had a significant 

decrease in backward time ratio as compared to untrained controls at one-minute (p=0.001), five-minutes 

(p<0.001) and ten-minutes (p=0.001) postconditioning. No significant differences between light-only 

(one-minute p=0.81, five-minute p=0.27, ten-minute p=0.61) or tone-only animals (one-minute p=0.10, 

five-minute p=0.25, ten-minute p=0.33) were present across retention periods.  

Backward distance ratio 

Backward distance ratio is a measure of the distance the worm is moving backward, as a 

proportion of the whole trajectory the worm is being recorded – i.e., greater backward distance ratio 

indicates more distance moved in the backward locomotor state. As for the backward distance ratio (Fig 

4E), there was no significant interaction of condition and retention period (𝐹6,483=1.12, p=0.34), nor any 

significant simple main effects of condition (𝐹3,483=2.230, p=0.08) or retention period (𝐹2,483=1.09, 

p=0.33). Thus no further analysis for changes in backward distance was performed. Overall, vibration-

light conditioned C. elegans spend less time moving backward across all retention periods, but of their 

overall trajectory, they maintained normal backward locomotion. Meaning, that when a backward motor 

sequence was initiated, it was performed normally, as we can see in the similar levels of backward 

distance ratio compared to controls. Regarding controls, untrained, light-only and tone-only C. elegans, 

maintain a consistent time spent moving backward, at a steady trajectory across retention periods.  
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Omega turn time ratio 

Omega turn time ratio is a measure of the time the worm performs an omega turn, as a proportion 

of the whole duration the worm is being recorded. Another way to state the omega turn time ratio is the 

greater the value (proportion), the more often the worm generated and performed an omega turn. The 

omega turn time ratio (Fig 4F) was measured using a two-way ANOVA. There was no significant 

interaction of condition and retention period (𝐹6,347=0.39, p=0.87), nor any significant simple main 

effects of condition (𝐹3,347=1.99, p=0.11) or retention period (𝐹2,347=1.01, p=0.36). No follow up 

analysis was performed, as it appears the vibration-light conditioning and controls have no effect on the 

proportion of time spent performing omega turns.  

It is important to discuss the caveats of wild type delayed pairing of the vibration-light training. 

Conditioned and control C. elegans underwent separate training conditions, yet were still exposed to the 

test vibration three times; one-, five-, and ten-minutes postconditioning. The repeated presentation of the 

vibration at testing could potentially prove to be a confound, but there was still an established difference 

in trained C. elegans locomotor behavior, as compared to the other controls. These findings support the 

need to look at more than just changes in one type of locomotor behavior, but in combination of the 

different locomotor possibilities. 

Additionally, testing at ten-minutes postconditioning resulted in most distinct locomotor 

responses by the trained group, thus the five-minute retention period was determined to be redundant. 

With that rationale, we are confident this assay is effective at quickly generating conditioned locomotor 

behavior in C. elegans. However, moving forward with subsequent optogenetic experiments, we ran 

separate groups of C. elegans at each retention period, one-, five- and ten-minutes. However, we only 

report conditioned behavior one- and ten-minutes postconditioning, the five-minute data is not shown. 
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Vibration-light conditioning with co-activation of body wall muscle interrupts learning 

We sought to discern how activation of body wall muscles during conditioning affected learning 

in C. elegans. Our rationale being that motor learning in primate studies shows activity-dependent use of 

the limb after spinal lesion, caused rewiring of the cortex (Kambi, et al., 2011). To test the degree to 

which performing a motor response affects the acquisition of multiple vibration-light pairings, we 

identified a strain of C. elegans that uses the myo-3 promoter to drive ChR2 expression in body wall 

muscle. Exposing this strain of C. elegans to the vibration-light pairing with ATR+ activates both the 

endogenous phototaxis response mediated by LITE-1, as well as the body wall muscles by ChR2 

activation (Fig 6). This co-activation and co-termination of both endogenous phototaxis and body wall 

muscle does not inhibit the sensory integration of upstream sensory neurons and interneurons, but only 

inhibits the automatic locomotor response the animal would naturally perform during the vibration-light 

pairings. This allowed us to further investigate the role (if any) of downstream effectors on learning.  

In these experiments, the vibration-light training was the same as with wild type C. elegans (Fig 

5). Except only trained (vibration-light paired) and untrained (naïve) animals were tested at one-, five-, or 

ten-minutes postconditioning against the five-second mechanosensory vibration (Five-minute data not 

shown). For blue light to drive ChR2 activation with temporal specificity, C. elegans must be fed all-

trans-retinol (ATR), this is done so by OP50 E. coli. Trained and untrained groups were run with or 

without cofactor, ATR+ or ATR- respectively. C. elegans with the transgene (e.g. - promoter::ChR2) but 

not fed ATR are superficially wild type and ChR2 is inactive; as non-active ChR2 (100% Ethanol + OP50 

E. coli) acts as the vehicle condition. Behavioral output from C. elegans of the different transgene 

backgrounds (pmyo-3::ChR2 + punc-47::ChR2 + punc-17::ChR2) that were exposed to ATR- were 

pooled and the subsequent performance was the baseline of learning. We expect any changes in the 

pooled trained ATR- C. elegans locomotor behavior, compared to untrained ATR- control, to be 

indicative of successful conditioning. While changes in trained ATR+ pmyo-3::ChR2 locomotor behavior, 

as compared to untrained ATR+ controls, are indicative of learning as well, but due to ChR2 activation of 
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the body wall muscles, specifically. Again, just as in wild type delayed pairing, the same metrics of 

forward, backward, pause and omega turn locomotor are assessed. A two-way student’s t-test was used to 

measure the differences between trained and untrained groups of the same cofactor treatments.   

Pause time ratio 

Pause time ratio is the proportion of time spent pausing over the whole length of recorded video. 

See figure 7A. At one-minute postconditioning, trained ATR- C. elegans showed no change in pause time 

ratio (t(239) = 1.34, p=0.18) compared to untrained ATR- controls. At one-minute postconditioning, we 

see no differences in trained ATR+ pmyo-3::ChR2 C. elegans compared to untrained controls; pause time 

ratio (t(70) = 1.66, p=0.24).  

Ten-minutes postconditioning, trained ATR- animals showed an 37% increase in pause time ratio 

(t(252) = -2.86; p=0.001), as compared to untrained controls. However, at ten-minutes postconditioning 

for trained pmyo-3::ChR2 ATR+, there are no differences compared to untrained controls; pause time 

ratio (t(119)=0.09, p=0.92). Vibration-light conditioned ATR- animals display conditioned paused 

behavior, while the same animals with co-activation of body wall muscle show no conditioned pause 

behavior. This suggests the ATR+ pmyo-3::ChR2 animals showed disrupted learning when the ability to 

respond was interrupted. 

Forward time and distance ratio 

Forward time ratio is the proportion of time spent moving forward over the whole length of time 

spent moving forward (Fig. 7B). While Forward distance ratio is the proportion of trajectory these 

animals spent moving in a forward manner (Fig. 7C). At one-minute postconditioning, trained ATR- C. 

elegans showed a 17% increase in forward time ratio (t(302)= -2.16, p=0.03) but no difference in  

forward distance ratio(t(302)= -1.52, p=0.12), as compared to ATR- untrained controls. The same is 

observed for, trained pmyo-3::ChR2 ATR+ C. elegans, forward time ratio (t(84)= -0.08, p=0.93), forward 

distance ratio (t(84)=0.18, p=0.85), as compared to ATR+ untrained controls, showed no change. 
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At ten-minutes postconditioning, trained ATR- C. elegans showed a 17% decrease in forward 

time ratio (t(382)=3.00, p=0.01) and a 15% decrease in forward distance ratio (t(380)=4.17, p<0.001), as 

compared to untrained ATR- controls. No differences in trained ATR+ pmyo-3::ChR2 C. elegans 

compared to untrained ATR+ controls were observed for forward time ratio (t(95)=0.14, p=0.89) or 

forward distance ratio (t(92)=0.20, p=0.83). These data suggest that conditioned locomotor behavior ten-

minutes after vibration-light training affects ATR- pmyo-3::ChR2 C. elegans forward locomotion, but not 

forward locomotion for trained ATR+ pmyo-3::ChR2 C. elegans. 

Backward time and distance ratio 

Backward time ratio is the proportion of time the animal spends moving backward, over the 

whole duration of the behavioral video (Fig. 7D), and backward distance ratio is the proportion of 

distance moved backwards, over the whole trajectory (Fig. 7E). At one-minute postconditioning, trained 

ATR- C. elegans showed no change in backward time ratio (t(259)=-0.65, p=0.51) or backward distance 

ratio (t(259)=-0.82, p=0.41), as compared to untrained ATR- controls. This is also observed in trained 

ATR+ pmyo-3::ChR2 C. elegans, backward time ratio (t(75)=0.67, p=0.50) and backward distance 

ratio(t(75)=0.61, p=0.54) show no change as compared to ATR+ untrained controls.  

 At ten-minutes postconditioning, trained C. elegans showed a 25% increase in backward time 

ratio (t(320)=-2.03, p=0.05), with a 24% increase in backward distance ratio (t(320)=-3.28, p=0.001). 

Meaning trained ATR- animals had an increased likelihood of a backward response, and when it does 

occur, that reversal is likely to be more robust. As for trained ATR+ pmyo-3::ChR2 C. elegans, there was 

no measured change for backward time ratio (t(99)=0.80, p=0.42)) or backward distance ratio 

(t(48)=0.81, p=0.41) as compared to untrained ATR+ controls. These data suggest that at ten-minutes 

post-vibration-light conditioning, ATR- animals had conditioned locomotor behavior that resulted in a 

more likely and dramatic reversals. While ATR+ animals showed no change in backward locomotion. 
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Omega turn time ratio 

Omega turn time ratio is the proportion of time spent making an omega turn (Fig. 7F). Otherwise 

known as a “pirouette” motion where the animal is moving forward, stops, initiates a reversal then the 

animal’s head swings back to touch its tail and then moves forward in a drastically different direction. At 

one-minute postconditioning, trained ATR- C. elegans show no change in omega turn time ratio (t(261)= 

-0.31, p=0.75) as compared to ATR- untrained controls. The same is seen with trained ATR+ pmyo-

3::ChR2 C. elegans, no change in omega turn time is observed (t(54)=0.99, p=0.32). 

 At ten-minutes postconditioning, trained ATR- C. elegans show no change in omega turn time 

ratio (t(240)=0.08, p=0.92) and trained ATR+ pmyo-3::ChR2 C. elegans show no change in omega turn 

time ratio (t(93)=1.23, p=0.22). Generation of the omega turn time locomotor pattern was unaffected by 

the vibration-light conditioning protocol, regardless of the presence or absence of cofactor or level of 

training. 

The main takeaway of pmyo-3::ChR2 vibration-light conditioning 

These data suggest that body wall muscle overactivation during conditioning effects learning in 

C. elegans. More specifically, overactivation of body wall muscle seems to inhibit learning as indicated 

by the lack of conditioned locomotor response seen at both one- and ten-minutes postconditioning, as 

compared to untrained ATR+ controls. This lack of conditioned response is not due to the ATR+ pmyo-

3::ChR2 animals being completely immobilized by the blue light in the vibration-light protocol, as we 

saw that the animals maintain responsiveness as measured by motion mode results (Fig. 8). Verifying that 

the cofactor presence does not immobilize the animals in the absence of blue light. 

Driving the GABAergic circuit during conditioning modulates learning 

GABA is a common neurotransmitter in the C. elegans nervous system (Schuske, Beg, and 

Jorgensen, 2004), as well as a key driver of locomotion due to its complementary activity at the 

neuromuscular junction (Richmond and Jorgensen, 1999; Fig. 1A). Thus we sought to assess how 
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overactivation of the inhibitory GABAergic circuit by driving ChR2 expression under the unc-47 

promoter (Fig. 9) could affect learning. Behavioral experiments were conducted as previously described 

(Fig. 5). The presence of cofactor (ATR+) allows for active ChR2 to drive activation of inhibitory 

GABAergic neurons. Statistical comparisons between trained and untrained animals of the same cofactor 

level and retention period were completed using a student’s t-test.  

Pause Time Ratio 

 Pause time ratio is the proportion of time spent pausing over the entire length of recorded video, 

as an average for each group (Fig. 10A). At one-minute postconditioning, trained ATR- C. elegans 

showed no change in pause time ratio (t(239) = 1.34, p=0.18) compared to untrained ATR- controls. 

Again, at one-minute postconditioning, we saw no differences in trained ATR+ punc-47::ChR2 C. 

elegans pausing (t(115)=-1.26, p=0.20), as compared to untrained ATR+ controls.  

Ten-minutes postconditioning, trained ATR- animals showed an 37% increase in pause time ratio 

(t(252) = -2.86; p=0.001), as compared to untrained controls. At ten-minutes postconditioning, trained 

ATR+ punc-47::ChR2 animals showed no change in paused time ratio (t(79)=-0.47, p=0.63) as compared 

to untrained ATR+ controls. Vibration-light conditioned ATR- animals showed conditioned pause 

behavior at ten-minutes postconditioning. While ATR+ punc-47::ChR2 animals display no conditioned 

paused behavior, regardless of the retention period. 

Forward Time and Distance Ratio 

 Forward time ratio is the proportion of time spent moving forward over the whole duration of 

time spent moving forward, as averaged for each experimental group (Fig. 10B). While forward distance 

ratio is the proportion of total trajectory these animals spent moving in a forward manner, as an average 

for each experimental group (Fig. 10C). Taken together, the forward time ratio is an indicator of the 

likelihood of generating forward locomotion, while forward distance ratio reflects the magnitude of that 

forward response when initiated.  
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At one-minute postconditioning, trained ATR- C. elegans showed a 17% increase in forward time 

ratio (t(302)= -2.16, p=0.03) but no difference in  forward distance ratio(t(302)= -1.52, p=0.12), as 

compared to ATR- untrained controls. While trained ATR+ punc-47::ChR2 C. elegans showed no change 

in forward time ratio (t(121)=0.35, p=0.72), but showed a trending decrease (-16%) in forward distance 

ratio (t(121)=1.72, p=0.08), as compared to ATR+ untrained controls. This suggests that trained ATR+ 

animals had no change in the likelihood of initiating a forward motion, but when it did occur, it was 

potentially a slightly smaller magnitude. 

At ten-minutes postconditioning, trained ATR- C. elegans showed a 17% decrease in forward 

time ratio (t(382)=3.00, p=0.01) and a 15% decrease in forward distance ratio (t(380)=4.17, p<0.001), as 

compared to untrained ATR- controls. Trained ATR+ punc-47::ChR2 C. elegans exhibited a trending 

24% increase in forward time ratio (t(135)=-1.84, p=0.06) with a significant 24% increase in forward 

distance ratio (t(135)=-2.45, p=0.01) as compared to untrained ATR+ controls. 

These data suggest that conditioned locomotor behavior at both one- and ten-minutes after 

vibration-light training affected forward locomotion for ATR- and ATR+  punc-47::ChR2 C. elegans. 

This change in forward pattern generation reflecting differences based on cofactor absence or presence.  

Backward Time and Distance Ratio 

 The backward time ratio is the proportion of time the animal spends moving backward, over the 

whole duration of the behavioral video, represented as an average for each group (Fig. 10D). While 

backward distance ratio is the proportion of distance moved backward, over the whole trajectory, 

represented as an average for each group (Fig. 10E). Relating the two, backward time ratio is an indicator 

of the likelihood of initiating a backward response, while the backward distance ratio indicates the 

magnitude of that generated backward response. 

 At one-minute postconditioning, trained ATR- C. elegans showed no change in backward time 

ratio (t(259)=-0.65, p=0.51) or backward distance ratio (t(259)=-0.82, p=0.41), as compared to untrained 
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ATR- controls. In trained ATR+ punc-47::ChR2 C. elegans, there was a trending 20% increase in 

backward time ratio (t(112)=-1.75, p=0.08), while no significant change in backward distance 

ratio(t(108)=-1.32, p=0.18) was observed. This suggests that trained ATR+ punc-47 C.elegans showed a 

trend toward increased initiation of reversals, but when initiated, the reversals were of typical magnitude, 

as compared to ATR+ untrained controls. 

 At ten-minutes postconditioning, trained C. elegans showed a 25% increase in backward time 

ratio (t(320)=-2.03, p=0.05), with a 24% increase in backward distance ratio (t(320)=-3.28, p=0.001). As 

for trained ATR+ punc-47::ChR2 C. elegans, there was no measured change for backward time ratio 

(t(118)=0.68, p=0.49) or backward distance ratio (t(118)=1.31, p=0.19), as compared to ATR+ untrained 

controls.  

 These data suggest that initially, at one-minutes post-vibration-light conditioning, ATR+ animals 

displayed conditioned locomotor behavior that resulted in the animals being more likely to initiate a 

reversal response, but this trend was not maintained ten-minutes later.  

Omega Turn Time Ratio 

 Omega turn time ratio is the proportion of time spent making an omega turn, as an average 

measure for each group (Fig. 10F). At one-minute postconditioning, trained ATR- C. elegans show no 

change in omega turn time ratio (t(261)= -0.31, p=0.75) as compared to ATR- untrained controls. The 

same is seen with trained ATR+ punc-47::ChR2 C. elegans, no change in omega turn time is observed 

(t(108)=0.27, p=0.78). 

 At ten-minutes postconditioning, trained ATR- C. elegans show no change in omega turn time 

ratio (t(240)=0.08, p=0.92). While trained ATR+ punc-47::ChR2 C. elegans showed no change in omega 

turn time ratio (t(71)=-0.18, p=0.85). Omega turns generation appears to be unaffected by the vibration-

light protocol.  
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Main take away of punc-47::ChR2 results 

Taken as a whole, trained pooled ATR- C. elegans and ATR+ punc-47::ChR2 C. elegans showed 

differential conditioned locomotor responsiveness based on cofactor level. The conditioned responses 

appear to differentially affect pausing and the forward circuit. At one-minute postconditioning, trained 

ATR- animals showed an increased likelihood of making a forward locomotor pattern, while there was a 

slight decrease in magnitude of forward locomotion for trained ATR+ animals. Then at ten minutes, 

pooled trained ATR- C. elegans showed an increase in pausing with a decreased likelihood and 

magnitude of forward movement, while trained ATR+ C. elegans showed no change in pausing and an 

increased likelihood and magnitude of forward movement. In other words, because the observed changes 

in conditioned locomotor behavior were dependent on cofactor level, these results suggest that trace of the 

vibration-light conditioning was present, except in an altered state, appearing to be due to the 

asynchronous top-down signaling of the GABAergic subcircuit. 

Co-activation of the cholinergic circuit during conditioning 

Because endogenous body wall muscle over activation and asynchronous GABAergic signaling 

showed to influence conditioning, we thought to further assess if the temporally specific stimulation of 

acetylcholine, a neurotransmitter that feeds into the neuromuscular junction (Richmond and Jorgensen, 

1999), is also required for learning (Fig. 1A). Acetylcholine is also known to direct behavior (Dittman 

and Kaplan, 2008), hence acetylcholine was identified to be of potential importance. Applying the same 

experimental concept as previously discussed (Fig. 5A), co-activation and co-termination of the 

endogenous phototaxis responsive via LITE-1 (Edwards et al., 2008; Ward et al., 2008) co-activated the 

downstream excitatory cholinergic interneurons and motor neurons during the vibration-light pairings. 

Analysis of the locomotor behavior of trained versus untrained controls, of the same cofactor level, was 

measured by a student's t-test. 
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Pause time ratio 

Pause time ratio is the average proportion of time spent pausing over the whole length of the 

recorded video, for each experimental group (Fig. 13A). At one-minute postconditioning, trained ATR- C. 

elegans showed no change in pause time ratio (t(239) = 1.34, p=0.18) compared to untrained ATR- 

controls. The same was observed for trained ATR+ punc-17::ChR2 C. elegans, no differences in pause 

time ratio (t(26)=-0.76, p=0.45) were measured, as compared to untrained ATR+ controls. 

Ten-minutes postconditioning, trained ATR- animals showed an 37% increase in pause time ratio 

(t(252) = -2.86; p=0.001), as compared to untrained controls. While ten-minutes postconditioning trained 

ATR+ punc-17::ChR2 animals showed no change in paused time ratio (t(75)=1.41, p=0.16) as compared 

to untrained ATR+ controls. All together, vibration-light conditioned ATR- animals display changes in 

paused behavior. While the same animals with co-activation of the cholinergic subcircuit exhibited no 

conditioned pause behavior.  

Forward Time and Distance Ratio 

 Forward time ratio is the average proportion of time spent moving forward over the whole 

duration of time spent moving forward, as measured for each experimental group (Fig. 13B). While 

forward distance ratio is the average proportion of total trajectory these animals spent moving in a 

forward manner, for each group (Fig. 13C). In other words, the ratio of time spent moving forward 

indicates the likelihood of initiating a forward response, while the ratio of distance spent moving forward 

is the resulting magnitude of that forward locomotion. 

At one-minute postconditioning, trained ATR- C. elegans showed a 17% increase in forward time 

ratio (t(302)= -2.16, p=0.03) but no difference in  forward distance ratio(t(302)= -1.52, p=0.12), as 

compared to ATR- untrained controls. While trained ATR+ punc-17::ChR2 C. elegans, showed a 25% 

decrease in forward time ratio (t(60)=1.94, p=0.05) and a 25% decrease in forward distance ratio 
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(t(63)=2.71, p=0.008) as compared to ATR+ untrained controls. Suggesting that forward pattern 

generation, initiation, and magnitude were reduced after vibration-light conditioning.  

At ten-minutes postconditioning, trained ATR- C. elegans showed a 17% decrease in forward 

time ratio (t(382)=3.00, p=0.01) and a 15% decrease in forward distance ratio (t(380)=4.17, p<0.001), as 

compared to untrained ATR- controls. Trained ATR+ punc-17::ChR2 C. elegans showed no change in 

forward time ratio (t(127)=-1.10, p=0.27), or changes in forward distance ratio (t(127)=-1.47, p=0.14), as 

compared to untrained ATR+ controls. 

These data suggest that conditioned forward locomotor behavior for trained ATR- C. elegans and 

trained ATR+ punc-17::ChR2 C. elegans occurs, but in a manner that is specific to cofactor levels, and 

only immediately after conditioning. Further interpretation in the discussion. 

Backward Time and Distance Ratio 

 The backward time ratio is the average proportion of time the animal spends moving backward, 

over the whole duration of the recorded video for each experimental group (Fig. 13D). Backward distance 

ratio is the proportion of distance moved backward, over the entire pathway trajectory, this is an average 

measure for each experimental group (Fig. 13E). In other words, the backward time ratio is indicative of 

the likelihood of performing a backward response, while the backward distance ratio indicates the 

magnitude of that backward locomotor pattern. 

 At one-minute postconditioning, trained ATR- C. elegans showed no change in backward time 

ratio (t(259)=-0.65, p=0.51) or backward distance ratio (t(259)=-0.82, p=0.41), as compared to untrained 

ATR- controls. However, for trained ATR+ punc-17::ChR2 C. elegans, backward time ratio (t(59)=-0.73, 

p=0.67) was not significant, yet there a significant increase in backward distance ratio (t(50)=-2.70, 

p=0.01) as compared to ATR+ untrained controls. These results suggest that trained ATR+ punc-17 

C.elegans showed no change in the likelihood of initiating a reversal, but when a reversal was initiated it 

was much more dramatic. 
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 At ten-minutes postconditioning, trained C. elegans showed a 25% increase in backward time 

ratio (t(320)=-2.03, p=0.05), with a 24% increase in backward distance ratio (t(320)=-3.28, p=0.001). As 

for trained ATR+ punc-17::ChR2 C. elegans, there were no changes in backward time ratio (t(96)=-0.46, 

p=0.64) or backward distance ratio (t(102)=-0.39, p=0.69) as compared to ATR+ untrained controls.  

 Trained ATR- animals showed conditioned changes in reversal behavior. While immediately 

postconditioning, trained ATR+ animals had a more robust reversal response that was not maintained ten-

minutes later.  

Omega Turn Time Ratio 

 Omega turn time ratio is the average proportion of time spent making an omega turn, as measured 

for each experimental group (Fig. 13F). At one-minute postconditioning, trained ATR- C. elegans show 

no change in omega turn time ratio (t(261)= -0.31, p=0.75) as compared to ATR- untrained controls. The 

same is seen with trained ATR+ punc-17::ChR2 C. elegans, where no change in omega turn time was 

observed (t(63)=1.34, p=0.18). 

 At ten-minutes postconditioning, trained ATR- C. elegans show no change in omega turn time 

ratio (t(240)=0.08, p=0.92). While trained ATR+ punc-17::ChR2 C. elegans showed a significant 86% 

increase in omega turn time ratio (t(52)=-2.74, p=0.01). The vibration-light conditioning assay affected 

the omega turn time ratio for only the trained ATR+ C. elegans at ten-minutes, we hypothesize on this 

observation later in the discussion.  

Main takeaway of punc-17::ChR2  

At one-minute postconditioning, trained ATR+ punc-17::ChR2 C. elegans showed interesting 

conditioned behavior that was reflected in the forward circuit - e.g., a decrease in forward time- and 

distance ratio that was the opposite of what was seen for trained pooled ATR- C. elegans. Additionally, at 

ten-minutes postconditioning, trained ATR+ punc-17::ChR2 C. elegans were the only group with changes 

in the proportion of omega turns, while having no other conditioned locomotor behavior at this retention 
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period. There is some prior evidence suggests acetylcholine signaling is partially involved in the 

regulation of omega turn frequency (Dittman and Kaplan, 2008). Further analysis in the discussion. 

Because we do see some locomotion for these groups at each retention period, results cannot be 

attributed to the animal’s immobilization during the conditioning protocol, as motion mode data show 

differential responding pre-, during-, and post- conditioning, for all levels of training and cofactor (Fig. 

14). Taken together, this data suggests that trained ATR+ punc-17::ChR2 C. elegans exhibited differential 

conditioned locomotor behavior compared to trained ATR- animals. Specifically, the forward conditioned 

behaviors were of opposing outputs, dependent on cofactor absence or presence, suggesting that some 

trace of the memory for the vibration-light conditioning was maintained, but in an altered state. 
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DISCUSSION 

Wild type (N2) Conditioned Locomotor Behavior 

It is generally well accepted that C. elegans are capable of associative learning (Kauffman, et al., 

2011; Kauffman, et al., 2010; Stein and Murphy, 2014). Yet, most associative conditioning assays using 

C. elegans involve 1 hour or longer conditioning periods (1-4 hours) (Hedgecock and Russell, 1975; 

Saeki, Yamamoto, and Iino, 2001). In the current study, we were interested in assessing the acquisition of 

learning, by measuring conditioned locomotor behavior immediately after training. Thus, the first series 

of experiments aimed to establish a baseline responding to the rapid associative conditioning assay used. 

We argued that pairing two US’s (vibration + light) was sufficient to alter the later locomotor response to 

a single US (vibration alone; Fig. 4). This is because we see a clear locomotor pattern exhibited by the 

vibration-light conditioned animals that are different than the locomotor patterns of the controls - e.g., 

untrained, light-only, and tone-only (Fig. 4). In earlier trials, it was determined that green light alone 

(~560nm), as well as green light paired with head touch, did not generate a conditioned response (data not 

shown). Additionally, 100hz vibration and 200hz vibration had subtle locomotor responses, while the 

300Hz vibration response was robust (data not shown). Finally, when we paired a 300Hz vibration with 

blue light pairing (Fig. 2), where we observed conditioned locomotor responses (Fig. 4). 

Measuring several metrics of wild type locomotor behavior, one-, five-, and ten-minutes 

postconditioning, the main take away is that vibration-light trained animals had distinct locomotor 

behaviors, as compared to controls. Vibration-light conditioned animals had a steady increase in paused 

time and consistent decreases in forward and backward locomotion as compared to untrained controls, 

indicating successful conditioning. Because this stimulus combination drives opposing locomotor 

behavior; mechanosensation drives reversals (Chalfie et al., 1985; Wicks and Rankin, 1995) and blue 

light drives forward locomotion (Edwards et al., 2008; Ward et al., 2008), thus the US-US pairing results 

in a CR of pausing behavior. Suggesting that the overall circuit is biased towards a reduction in 

locomotion, with neither vibration or light outweighing its influence, and pause behavior being the result. 
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These findings suggest after a few pairings, wild type C. elegans could rapidly change behavior that 

reflects the dual convergence of two directionally competitive stimuli.  

Looking at wild type controls, both light-only and tone-only animals show comparable locomotor 

trends that are similar to untrained animals. With one notable exception, at five- and ten-minutes 

postconditioning, tone-only animals show an increase in their pause time ratio that mirrors vibration-light 

conditioned animals, but showed a greater proportion of time spent moving forward. In previous reports, 

repeated mechanosensory stimulation resulted in an eventual decrease in reversal duration and magnitude 

due to habituation (Wicks and Rankin, 1995). In our interpretation, results of tone-only animals seem to 

be reflective of the multiple vibration-only presentations, both during training and testing, as repetitive 

stimulation occurs, reversal locomotion is stagnant, while forward and paused locomotion increases. 

Since tone-only animals showed locomotor behavior that is dissimilar to untrained animals, this could be 

a problem, potentially suggesting our assay has background effects on associative locomotion.  However, 

tone-only animals have a locomotor pattern that is dissimilar to vibration-light conditioned animals, 

suggesting that the effect of repetitive mechanosensory stimulation is modulated when paired closely in 

time with another competitive and distinct sensory stimulus. Given this distinction, we argued that to 

assess conditioned locomotor behavior, all directions of locomotion should be measured, not just a single 

locomotor pattern (i.e., reversals only). Looking to light-only animals, responding was consistent and 

steady across retention periods as compared to untrained controls, suggesting that non-associative 

influences or unexpected environmental confounds are responsible for changes in locomotor behavior. 

Given these findings, we moved forward with assessing how optogenetic stimulation of downstream 

effectors influence learned behavior.  

Body wall muscle overactivation during conditioning affects learning 

Our goal was to assess how activation downstream effectors, such as the body wall muscle, could 

influence learning a new association. When driving ChR2 under the myo-3 promoter, ChR2 is expressed 

in the body wall muscle. Referring to the training schematic and circuit illustration (Fig. 5 and Fig. 6 
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respectively), the blue light from the vibration-light pairing drives both the endogenous photosensitive 

circuit and activation of cells expressing ChR2 in the body wall muscle at the same time. In short, as the 

vibration-light pairing occurs, it simultaneously activates the body wall muscles of pmyo-3::ChR2 

animals at the exact time of conditioning. We see that pmyo-3::ChR2 animals in the trained ATR+ 

conditions show no change in locomotor behavior compared to their untrained ATR+ counterparts (Fig. 

7). Regardless of locomotor measure or retention period. Since the trained animals respond as the 

untrained animals would, activation of the body wall muscles during the vibration-light pairing likely 

disrupted learning. As the recall of the association at testing is comparable to naïve, untrained ATR+ 

animals. Trained pooled ATR- animals showed conditioned locomotor behavior at both one- and ten-

minutes postconditioning, suggesting that conditioning with the vibration-light pairing was successful in 

these optogenetic animals when cofactor was not present. Thus overactivation of body wall muscle 

responsible for locomotion at the time of conditioning appears to impair learning in an associative 

conditioning assay.  

Because disruption of the endogenous locomotor response seemed to affect learning in C. 

elegans, we further reviewed previous research involving manipulation of motor pattern generation and 

subsequent effects on neuroplasticity and learning in other species. Using primates, researchers have 

shown higher level cortex modification due to motor pattern generation or loss of limb - e.g., error 

prediction of continuous motor movements is recorded in the cerebellum of Rhesus monkeys and 

maintained over some time to update long-range connections with the cortex, maintaining and predicting 

upcoming locomotor behavior (Popa, Streng, and Ebner, 2017). Macaque’s with spinal cord lesions that 

resulted in the loss of both touch and body awareness input from the limb showed reorganization of the 

motor and somatosensory cortex (Kambi, et al., 2011). This phenomenon in primates suggests that active 

use of the limb to generate motor responses are important for maintaining higher-level cortical 

organization. In humans, concurrent cognitive and motor tasks are inversely related, that is, if lower-level 

motor tasks such as walking are not involved in higher-level processes (e.g., choice and decision making) 
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then there would not be an inverse relationship, yet there is one (Oliveira, et al., 2018). This could be due 

to a strain on attention processing, however, walking is an involuntary neurological process that is 

mediated by the lower, peripheral nervous system. These previously published data from other species 

suggest that motor pattern generation has a retrograde influence on higher-level cortical structures that are 

usage dependent and in this study we applied this observation in the context of learning.  

Looking further into motor feedback and learning, data gathered from squirrel monkeys that 

learned novel locomotor tasks showed distinct changes in motor cortex representation during different 

stages of learning – e.g., training, extinction, and reacquisition (Nudo, et al., 1996), suggesting motor 

pattern generation influences neuronal firing. Additionally, learned motor movement has been shown to 

up and downregulate many genes associated with neuronal plasticity and learning, within 1-24 hours after 

training (Hertler et al., 2016). Reflection on these studies of learned motor memory suggests that 

generation of locomotion and feedback from movement is important for physiological structuring of the 

nervous system, and with learning newly conditioned motor patterns. While motor processes do have a 

retrograde influence on higher-level cortical structures that is likely mediated by up and downregulation 

of learning and memory genes. In the current study, we showed that an endogenous locomotor response 

during an associative conditioning assay is important for successful acquisition in C. elegans. This falls in 

line with prior studies regarding motor learning and cortical plasticity.  

Acquisition of the vibration-light conditioning occurs between sensory neurons-interneurons and 

interneurons-interneurons, with information culminating downstream onto command interneurons; which 

modulate neuromuscular junction activity and initiate conditioned locomotor response via body wall 

muscle (Fig. 3). In this study, the body wall muscles were activated for the exact duration of the blue 

light. It is possible that while at the upper circuit level, the vibration-light convergence is uninterrupted, 

the inability to perform the endogenous locomotor response had disrupted the animal’s learning of the 

vibration-light association, seen in Assareh et al. (2017) where the conditioned fear response is disrupted 

with optogenetic inhibition of key brain regions during fear conditioning. In our study, upon testing ten-
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minutes postconditioning, we see these animals demonstrate a locomotor pattern that reflects that of a 

naïve/untrained animal.  

Given previous studies of learned motor memory, it would appear that the generation of 

locomotion and feedback from motor movement is important for physiological structuring of the nervous 

system, and with learning newly conditioned motor patterns. Relating this to the current study, we found 

evidence to suggest that while C. elegans undergo associative conditioning, the generation of the animal’s 

endogenous locomotor response may be important for the successful acquisition of the vibration-light 

pairing in C. elegans. 

Influence of the GABAergic circuit during conditioning in C. elegans 

 GABA is a key neurotransmitter in the C. elegans neuromuscular junction and drives locomotion 

(Eastman, Horvitz, and Jin, 1999; Fig 1A-C), and in this study, we sought to investigate how signaling by 

GABAergic motor neurons influences associative conditioning. To add to this argument, GABA is a 

prominent neurotransmitter in both the C. elegans and the mammalian nervous system (Werhahn, et al., 

2004; Schuske, Beg, and Jorgensen, 2004; Lu, Hollopeter, and Jorgensen, 2009) and changes in inhibitory 

signaling contribute to long term potentiation (Chapman, Perez, and Lacaille, 1998). In the current study, 

we used punc-47 to drive ChR2 expression in interneurons that partially drive the endogenous light 

response, as well as in command interneurons and the neuromuscular junction (Eastman, Horvitz, and Jin, 

1999). In these experiments, under the unc-47 promoter, ChR2 was driven in additional neurons that are 

outside of the illustrated schematic (Fig. 15; Gendrel, Atlas, and Hobert, 2016), this is a potential conflict. 

Yet, the main question we wanted to address is how overstimulation of downstream neuronal components 

(interneurons, motor neurons, and body wall muscle) during conditioning, affect learning. We believe that 

future work expressing ChR2 under a neuromuscular junction specific promoter could distinguish how 

different inputs of GABA neurotransmission contribute to learning.  

 Addressing the results, trained ATR+ punc-47 C. elegans showed no conditioned pause behavior 

but did show conditioned forward locomotion at one- and ten-minutes postconditioning. For trained ATR- 
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pooled C. elegans, the opposite was observed - i.e., conditioned increase in paused behavior and reversed 

conditioned forward locomotor patterns. These results suggest that the disruption in linear, top-down, 

activation of the GABAergic circuit during conditioning resulted in a biasing of the forward response 

circuit for trained ATR+ animals. Suggesting that when downstream effectors that mediate the locomotor 

response are activated at temporally inappropriate time points learning is partially disrupted.  

It appears that vibration-light conditioning relies on sequential signaling of the GABAergic 

circuit. In humans, a reduction in GABA concentration in the sensory-motor cortex is necessary for the 

acquisition of a learned motor task (Floyer-Lea et al., 2006). While using a low-intensity motor task, 

decreased GABA concentration was correlated with mediating connectivity in the motor cortex (Sampaio-

Baptista, et al., 2015). Pharmacological blocking of GABA reuptake in the motor cortex inhibited motor 

learning (Werhahn et al., 2004), yet pharmacological increases in GABA concentration increased long-

term performance on cognitive tasks in aged mice (Tong et al., 2016). In other words, for normal learning 

of a motor task, appropriate levels of GABA concentrations appear necessary for acquisition and recall of 

motor tasks. These previously reported findings align with the current finding that short-term increased 

GABAergic signaling disrupted vibration-light conditioning in C. elegans.  

Influence of cholinergic circuit during conditioning in C. elegans 

 Acetylcholine is an important neuromodulator that has been linked to learning (Picciotto, Higley, 

and Mineur, 2012) and is important for a functioning neuromuscular junction and in generating 

locomotion (Richmond and Jorgensen, 1999; Liu, Hollopeter, and Jorgensen, 2009; Fig 1A-C). In rats, an 

imbalance in excitatory (cholinergic) input results in the inappropriate recall of neural engrams (Barron et 

al., 2017), suggesting further that sequential and temporal activation of the cholinergic circuit is important 

for appropriate recall of memory. Given previous research, we investigated cholinergic motor neurons 

and their potential role in modulating the downstream components of our learning assay.  

Reviewing how overactivation of cholinergic motor neurons during conditioning affected 

learning (Fig 13), at one-minute postconditioning trained ATR+ punc-17::ChR2 animals showed 
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decreased forward time and forward distance ratios, with a subsequent increase in magnitude traveled 

moving backward. Suggesting that at least one-minute postconditioning, trained ATR+ punc-17::ChR2 C. 

elegans showed a more robust reversal response, perhaps reflecting a mildly increased escape response 

(Maguire et al., 2011) immediately postconditioning. While pooled ATR- trained C.elegans, showed a 

conditioned increase in paused behavior and increased conditioned forward locomotor patterns. ATR+ 

punc-17::ChR2 C. elegans only exhibited a sharp increase in omega turn time ratio.  

Interestingly, trained ATR+ punc-17::ChR2 C. elegans was the only group in the current study to 

show any change in omega turns. Omega turns are associated with the escape response in C. elegans, as 

they are part of the reorientation of locomotor direction (Broekmans, et al., 2016). But when on food, C. 

elegans exhibit a low proportion of omega turns (Gray, Hill and Bargmann, 2005) and in the current 

study, all animals were tested on food. Previous research suggests that omega turn completion in response 

to touch is mediated by GABAergic motor neurons, as directed by upstream command interneurons that 

release acetylcholine (Donnelly et al., 2013). Because punc-17::ChR2 is expressed in command 

interneurons, it is possible that overstimulation of the cholinergic circuit briefly biased this increase in 

omega turns. Further evidence suggests hypersensitivity to acetylcholine, as mediated by sensitized 

muscarinic acetylcholine receptors, significantly increased baseline omega-turn frequency (Dittman and 

Kaplan, 2008). So far, since this is the only measured increase in omega turns recorded, it is impossible to 

draw any decisive conclusion as to causation, however, it is possible that excessive cholinergic signaling 

increased the likelihood of producing omega turns in the ATR+ punc-17::ChR2 animals, while disrupting 

acquisition of conditioned locomotor response. 

As a whole, because trained ATR+ punc-17::ChR2 animals have differential conditioned 

responding compared to trained ATR- animals, this change in conditioned locomotor behavior suggests 

that top-down, linear cholinergic circuit activation is important for normal learning in the worm. When 

this sequential process is disrupted, as done in this study, normal learning is disrupted. How this occurs 

requires further investigation, yet, previous research supports retrograde signaling between command 
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interneurons and A-type (cholinergic) motor neurons by gap junctions in C. elegans as a mechanism to 

modulate spontaneous locomotor behavior (Liu et al., 2017). Gap junctions have also been identified in 

coordinating switching between forward and backward locomotion by coordination of command 

interneuron activity with cholinergic motor neurons (Kawano et al., 2011). Of the 302 neurons in the C. 

elegans neural connectome, innexins make this simple circuit considerably more complicated (Hall, 2016; 

Kunert-Graf, Sakhanenko, and Galas 2017), making gap junctions a plausible mediator of retrograde 

signaling from downstream effectors.  

Limits of the current study 

 In the current study, some of the following compromises occurred; first, due to the nature of our 

software, TierPsy, all behavior videos must be 30 seconds or longer, given our frame rate (Javer et al., 

2018). This is why we could not assess temporally specific time and distance ratios immediately pre- or 

post-vibration presentation. We did attempt to splice whole videos into pre- and post- segments and 

analyze them individually. This was unsuccessful, as TierPsy needs a much larger number of frames to 

correctly orient the head and tail end of the worm (Javer et al., 2018). With that, we chose to use the 

temporally more specific, but less directionally specific, measure of motion mode. These data are to be 

assessed in the context of time and distance ratios. Another aspect of TierPsy data output is the sheer 

number of metrics the program puts out for each video processed – i.e., there are 700+ data points for 

each animal recorded, in each video. In this research, we used only six metrics to assess locomotor 

behavior - forward, backward, paused and omega turns. While we chose to not use some other locomotor 

metrics (e.g., upsilon turns and coils) as these locomotor patterns account for only a small percentage of 

worm locomotion. This is why some of the time- and distance-ratios do not add up to exactly 100%.  

Another aspect of this research to account for is the degree of natural variation in locomotor 

response across some of the treatments. It is possible that components of the data that were affected by 

the experimenter, temperature and humidity of the testing room, NGM plate composition, degree of 

crowding on the plate, time spent incubating, etc. However, by following protocols for controls we ran a 
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matched untrained (naïve) control with every trained replicate over a minimum of three days per 

condition, then used the untrained behavioral data as the baseline measure of behavior (Hart, et al., 2006). 

It is believed that most of the uncontrolled environmental variation is minimized by this method. In this 

presented data, 2,983 wild type and optogenetic C. elegans were analyzed, further diluting extraneous 

influence.     

Lastly, light- and tone-only control groups for the optogenetic animals were not initially run. At 

the time, we deemed it important to first ensure that conditioning differences in ATR+ groups were even 

occurring, before adding in the additional control groups. Currently, these trials are being taken over and 

run to assess how ATR+ animals respond to vibration after several presentations of the light-alone. Again, 

it is still possible to draw tentative conclusions given this completed data set. 

Future directions 

 After light-only and tone-only trials for the optogenetic strains are complete, there are several 

ways to further the current findings. First, drive halorhodopsin (Halo) under the same promoters, myo-3, 

unc-17, and unc-47 to assess how the inactivation of body wall muscle and the different circuits affects 

learning. Hypothetically, this should show results where learning is disrupted in pmyo-3::Halo animals, 

while the memory trace should be rescued in punc-17::Halo and punc-47::Halo. Once, complete, it would 

be interesting to then drive ChR2 expression in only cholinergic and GABAergic motor neurons in an 

attempt to further deduce how, if any, effect signaling at the neuromuscular junction has on learning. 

Another future step would be to express GCaMP – a genetically encoded calcium indicator used to 

fluorescently detect active neurons – in downstream interneurons and motor neurons. This would allow 

for measurement of changed downstream neuronal activity during and postconditioning in trained verse 

untrained animals, thus further investigating the sequential effects of not only conditioned behavior, but 

how neuronal signaling changes as a result. 
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CONCLUSION 

Imaging of the human brain during the acquisition of a newly learned motor skill shows dynamic 

neuronal activation between the cerebellum and the higher cortex (Doyon et al., 2002). Studies using non-

human primates find even more compelling evidence of cortical structural reorganization post-lesioning 

or motor task training (Nudo et al., 1996; Kambi et al., 2011); suggesting feedback from lower limbs are 

imperative in motor learning. Not surprisingly, some of the same cellular and molecular components 

involved in learning and memory are involved in motor task learning as well (Hertler et al., 2016).  

Yet lesioning studies are extremely invasive, so to further study circuitry during conditioning in a 

temporally precise, and but in a non-invasive manner, optogenetic experiments are useful. As highlighted 

by optogenetic inhibition of key brain regions during various classical conditioning procedures in rats 

either induced inappropriate increases in behavioral response (Chang, et al., 2016) or inhibition of 

conditioned response all together (Assareh et al., 2017). Still, there are limitations to the use of model 

organisms with complex cortices, such as primates and rodents. This is why optogenetic control of 

different neural sub circuits during associative conditioning in C. elegans is ideal. In this research, we 

observed similar behavioral observations in C. elegans, as previous research noted in mammalian test 

subjects, where the inability to execute a motor response during conditioning or a task, affected the 

learned locomotor response. With mammalian studies, imaging methods are used to assess changing 

structural morphology at the stages of learning, while in this study, we manipulated endogenous behavior 

in an unrestrained and freely moving animal.   

Results of this study suggest four key findings: 1.) Wild type C. elegans can rapidly learn an 

association, given five repetitions of pairings during training, show consistent conditioned locomotor 

behavior within ten-minutes of training. 2.) Body wall muscle overstimulation during conditioning 

inhibits the acquisition of a conditioned locomotor response. 3.) Simultaneous stimulation of GABAergic 

and cholinergic circuits during conditioning disrupted learning but did not completely ablate the memory 
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trace, suggesting sequential signaling is important for conditioning. 4.) locomotor movement is important 

for conditioning, across taxa; from C. elegans to rats, to primates and humans.  

 We offer C. elegans as a viable model organism to further decipher how sequential activation of 

different neural networks affect learned behavior. This has huge potential due in part to optogenetic 

methods to noninvasively turning on or off specific neural circuits, many experience-dependent 

associative (or nonassociative) conditioning protocols, and a fully sequenced genome with homologous 

learning and memory genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 

 

FIGURES 

 

 

 

 

 

 

 

 

Figure 1. C. elegans neuromuscular junction and locomotor example. (A) Circuitry schematic of how 

command interneurons connect with different subtypes of motorneurons and the subsequent projection onto 

body wall muscle. Excitatory projections are mediated by acetylcholine and inhibitory projections are mediated 

by GABA. Differential activation of these subcircuits within the NMJ, as indicated by dark purple, leads to 

either forward (B) or backward (C) locomotion. Connections are modeled after Haspel, O’Donovan, and Hart 

(2010) and Zhen and Samuel (2015). (D) Example of  C. elegans locomotor patterns - illustration was adapted 

from António Carlos da Costa, Vrije Universiteit Amsterdam - https://www.oist.jp/news-

center/photos/nuances-c-elegans-crawling-behavior 

 

A.) 

B.)  C.)  

D.)  

https://www.oist.jp/news-center/photos/nuances-c-elegans-crawling-behavior
https://www.oist.jp/news-center/photos/nuances-c-elegans-crawling-behavior
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Figure 2. Rapid associative conditioning assay and associated behavioral controls used to assess wild type 

conditioned locomotor behavior. Pairing consists of a 2 second ISI between the onset of the vibration and onset 

of the blue light. Other training controls (e.g., tone-only, light-only, and naïve/untrained) are as indicated and 

completed with independent groups of C.elegans. At testing, each plate of multiple wild type C. elegans were 

recorded for 75 seconds at each retention period 
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Figure 3. Illustrated diagram of the mechanosensory and photosensitive circuits with connections to 

downstream effectors controlling locomotor response. The white box represents sensory neurons driving 

mechanosensation, Chalfie et al. (1985), Wicks and Rankin (1995). The blue box represents neurons that 

express the LITE-1 photoreceptor that drives photosensation, Edwards, et al. (2008) and Ward et al. (2008). 

Downstream interneurons (gray hexagon) and motor neurons (purple/green circles) controlling directionality 

of locomotive movement: Haspel et al. (2010). 
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Figure 4. Wild type locomotor behavior after vibration-light conditioning or controls (e.g., tone-only, light-only, 

and untrained). Responses to a five-second vibration are measured one-, five- and ten-minutes post-training. 

Charted responses are the means of each group, and error bars are +/-SEM. Analysis for significance was done by 

two-way ANOVA with posthoc analysis at each retention period to compare differences between condition and 

controls with the untrained group. (A, B, D, F) Time ratios are the average proportion of time animals of each 

group spent moving in each possible locomotor direction, pausing, moving forward or backward, or performing 

an omega turn. (C, E) Distance ratios are the average proportion of the total trajectory that each group of animals 

moved in either the forward or backward direction. At ten-minutes following vibration-light conditioning, wild 

type C. elegans increased time spent pausing (A), with a subsequent decrease in time (B) and distance (C) spent 

moving forward, as well as decreased time (D) and distance (E) moving backward. No changes in omega turn time 

were measured (F). Controls - light-only and tone-only have similar locomotor patterns to the untrained group, but 

dissimilar to vibration-light conditioned animals. 
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Figure 5. Vibration-light conditioning assay used with optogenetic C. elegans. (A) Schematic of vibration-

light conditioning and testing protocol. Vibration-light pairing consists of a 2 second ISI between the onset of 

the vibration and onset of blue  light. Other training conditions are as indicated and completed with independent 

sets of animals. At testing, each plate of was video recorded for 75 seconds at one of the following retention 

periods, one- or ten- minutes postconditioning (B) Example set up of all experiments. (C) Example locomotor 

changes when ChR2 is activated by blue light under the different neuronal promoters. punc-17::ChR2 show a  

whole body bending movement, while punc-47::ChR2 shows temporary paralysis while the blue light is on. 

 

A.) 

C.) 

B.) 
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Figure 6. Schematic of the mechanosensory and phototaxis circuit, with indicated expression profile of pmyo-

3::ChR2. During vibration-light conditioning, blue light drives both the photosensitive circuit and 

channelrhodopsin (ChR2) overactivation of body wall muscles, thus experimentally disrupting the sequential, 

top-down signaling process, but not disrupting integration of both mechanosensory and photosensitive circuits 

that underlie the association. Expression profile of pmyo-3 in body wall muscles as previously reported by 

Nagel, et al. (2005). As before, the white box represents sensory neurons driving mechanosensation, Chalfie 

et al. (1985), Wicks and Rankin (1995). The blue box represents neurons that express the LITE-1 photoreceptor 

that drives photosensation, Edwards, et al. (2008) and Ward et al. (2008). Downstream interneurons (gray 

hexagon) and motor neurons (purple/green circles) controlling directionality of locomotive movement: Haspel 

et al. (2010). 
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Figure 7. Conditioned locomotive behavior one- and ten- minutes after vibration-light training for pmyo-3::ChR2 C. 

elegans, with or without cofactor. All trained output was normalized to untrained output and presented as percentage 

points. Error bars are normalized SEM. Two-way t-tests were used to assess differences between trained and untrained 

groups of the same cofactor level. (A, B, D, F) Time ratios are the average proportion of time animals of each group 

spent moving in each possible locomotor direction, pausing, moving forward or backward, or performing an omega 

turn. (C, E) Distance ratios are the average proportion of the total trajectory that each group of animals moved in either 

the forward or backward direction. (G) Circuit diagram from fig 6. Trained ATR+ pmyo-3::ChR2 animals exhibit 

locomotor behavior that is equivalent to their untrained ATR+ controls, suggesting that learning was completely 

disrupted when overactivation of the body wall muscle during conditioning occurred. 
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Figure 8. pmyo-3::ChR2 motion mode measurement of worm locomotion pre-, during- and post-CS presentation at one- 

and ten-minutes postconditioning. Line graphs depict variability in locomotion across the pre-, during-, and post- bins (+1 

is forward, 0 is paused, -1 is reversal). (A) The average motion mode of pooled ATR- untrained and trained C. elegans at 

one-minute postconditioning and (B) ten-minutes postconditioning. (C) Average motion mode for ATR+ pmyo-3::ChR2 

trained and untrained animals one-minute postconditioning, and (D) ten-minutes postconditioning. Relative locomotor 

changes pre- vs. post-CS presentation support that the pmyo-3::ChR2 ATR+ animals are still capable of movement, and 

that the cofactor and transgene do not render the animal immobile.  
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Figure 9. Schematic of the mechanosensory and phototaxis circuit, with the indicated expression profile of punc-

47::ChR2. During vibration-light conditioning, blue light drives both the photosensitive circuit and 

channelrhodopsin (ChR2) overactivation of the GABAergic circuit, thus experimentally disrupting the sequential, 

top-down signaling process, but not disrupting integration of both mechanosensory and photosensitive circuits 

that underlie the association. Expression profile of unc-47 in GABAergic motor neurons as previously reported 

by Eastman, Horvitz, and Jin, 1999; Schuske, Beg, and Jorgensen, 2004. As before, the white box represents 

sensory neurons driving mechanosensation, Chalfie et al. (1985), Wicks and Rankin (1995). The blue box 

represents neurons that express the LITE-1 photoreceptor that drives photosensation, Edwards, et al. (2008) and 

Ward et al. (2008). Downstream interneurons (gray hexagon) and motor neurons (purple/green circles) controlling 

directionality of locomotive movement: Haspel et al. (2010). 
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Figure 10. Locomotive behavior one- and ten-minutes after conditioning for punc-47::ChR2 C. elegans. All trained output were 

normalized to untrained output and presented as percentage points. Error bars are normalized +/-SEM. Two-way student’s t-

tests were used to assess differences between trained and untrained groups of the same cofactor level. A solid line indicates a 

significant difference (p<0.05), while the dashed line indicates trending towards significance (p<0.09). (A, B, D, F) Time ratios 

are the average proportion of time animals of each group spent moving in each possible locomotor direction, pausing, moving 

forward or backward, or performing an omega turn. (C, E) Distance ratios are the average proportion of the total trajectory that 

each group of animals moved in either the forward or backward direction. (G) Illustrated diagram from fig 9. Trained ATR+ 

punc-47::ChR2 animals show differential conditioned paused and forward locomotor behaviors, suggesting that learning was 

not completely disrupted during conditioning, but was altered due to the overactivation of the GABAergic circuit.  
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Figure 11. Average motion mode measurement of punc-47::ChR2 locomotion pre-, during, and post-CS only 

presentation, one- and ten-minutes postconditioning. Line graphs depict variability in locomotion across the pre-, during-

, and post- time segments in one-second bins (+1 is forward, 0 is paused, -1 is reversal). (A) The average motion mode of 

pooled ATR- trained and untrained C. elegans at one-minute postconditioning and (B) ten-minutes postconditioning. (C) 

Average motion mode for trained and untrained ATR+ punc-47::ChR2 animals one-minute postconditioning, and (D) ten-

minutes postconditioning. Relative differences in locomotion show that the observed changes in locomotor behavior (i.e., 

time and distance ratios) are due to conditioning, and not an artifact of the cofactor rendering the animals immobile. 
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Figure 12. Schematic of the mechanosensory and phototaxis circuit, with the indicated expression profile of 

punc-17::ChR2. During vibration-light conditioning, blue light drives both the photosensitive circuit and 

channelrhodopsin (ChR2) overactivation of the cholinergic circuit, thus experimentally disrupting the 

sequential, top-down signaling process, but not disrupting integration of both mechanosensory and 

photosensitive circuits that underlie the association. Expression profile of unc-17 in cholinergic motor neurons 

as previously reported by Eastman, Horvitz, and Jin, (1999). As before, the white box represents sensory 

neurons driving mechanosensation, Chalfie et al. (1985), Wicks and Rankin (1995). The blue box represents 

neurons that express the LITE-1 photoreceptor that drives photosensation, Edwards, et al. (2008) and Ward et 

al. (2008). Downstream interneurons (gray hexagon) and motor neurons (purple/green circles) controlling 

directionality of locomotive movement: Haspel et al. (2010). 
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Figure 13. Vibration-light conditioning with punc-17::ChR2 C. elegans. All trained output were normalized to 

untrained output and presented as percentage points. Error bars are normalized +/-SEM. Two-way student’s t-tests 

were used to assess differences between trained and untrained groups of the same cofactor level. (A, B, D, F) Time 

ratios are the average proportion of time animals of each group spent moving in each possible locomotor direction, 

pausing, moving forward or backward, or performing an omega turn. (C, E) Distance ratios are the average proportion 

of the total trajectory that each group of animals moved in either the forward or backward direction. (G) Illustrated 

schematic from fig 12. Trained ATR+ punc-17::ChR2 animals showed differential conditioned locomotor behavior 

at one-minute postconditioning, and were the only animals to show any change in omega turns, at ten-minutes 

postconditioning. 
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Figure 14. Average motion mode of punc-17::ChR2 locomotion pre-, during- and post-CS presentation, one- and ten-

minutes postconditioning. Line graphs depict variability in locomotion across the pre-, during-, and post- bins (+1 is 

forward, 0 is paused, -1 is reversal). (A) The average motion mode of trained and untrained pooled ATR- C. elegans at 

one-minute postconditioning and (B) ten-minutes postconditioning. (C) Average motion mode for trained and untrained 

punc-17::ChR2 ATR+ animals one-minute postconditioning, and (D) ten-minutes postconditioning. Relative differences 

in locomotion show that the observed changes in locomotor behavior (i.e., time and distance ratios) are due to 

conditioning, and not an artifact of the cofactor rendering the animals immobile.  
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Figure 15. Proposed schematic of the mechanosensory and phototaxis circuit, with the indicated expression 

profile of pmyo-3::ChR2 (Nagel et al., 2005), punc-17::ChR2 (Eastman, Horvitz, and Jin, 1999) and punc-

47::ChR2 (Eastman, Horvitz, and Jin, 1999; Schuske, Beg and Jorgensen, 2004). The white box represents 

sensory neurons driving mechanosensation, Chalfie et al. (1985), Wicks and Rankin (1995). Blue box 

represents both sensory and interneurons that express the LITE-1 photoreceptor, Edwards, et al. (2008) and 

Ward et al. (2008). Downstream interneurons (grey hexagon) and motor neuron subcircuits (purple and green 

circles) that control the directionality of locomotive movement: Haspel et al. (2010). 
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