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Abstract 

 The decline of Pacific salmon (Oncorhynchus spp.) is well-documented, and freshwater 

habitat degradation is a primary contributor. Despite decades of river restoration, salmon 

populations have not significantly recovered. Large woody debris (LWD) placement is one of the 

most common forms of restoration. To evaluate the effectiveness of this restoration method, I 

analyzed long-term monitoring data from 16 LWD placement projects throughout Washington 

State, implemented between 2004 and 2015. Each project followed a multiple Before-After, 

Control-Impact study design, which monitored physical habitat and fish populations. I used a series 

of linear mixed models to evaluate both habitat and fish response. I found that habitat features 

responded positively, with increases in average residual pool depth, pool area, and habitat 

complexity. However, fish response varied by species and location. I looked for changes in both 

abundance and size of juvenile coho (O. kisutch), Chinook (O. tshawytscha) and steelhead/rainbow 

trout (O. mykiss). The average size of O. mykiss increased over time. Coho and coastal Chinook 

populations were largely unaffected, indicating that these populations are limited by factors 

unaddressed by LWD placement. Inland Chinook populations increased in abundance 

immediately, but declined in average size over time, indicating over-crowding at restoration sites 

due to a lack of high-quality habitat. My results demonstrate that LWD placement is effective at 

improving freshwater salmon habitat, but these improvements are not generating consistent 

increases in juvenile salmon abundance or biomass, suggesting that LWD placement does not 

always address the limiting factors for salmon production. Broader threats to salmon recovery, 

including declining ocean conditions, climate change, and dams, must also be addressed to 

improve effectiveness of restoration. My findings also highlight the vital need for comprehensive, 

long-term monitoring of restoration actions to guide future salmon recovery efforts.  
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Introduction 

Pacific salmon (Oncorhynchus spp.) play important spiritual, cultural, economic, and 

ecological roles in the Pacific Northwest. They have been described as keystone species due to 

their importance as a food source for marine and terrestrial vertebrates, and as a vector for 

nutrients in freshwater and terrestrial food webs (Willson and Halupka 1995, Willson et al. 1998, 

Lundberg and Moberg 2003, Helfield and Naiman 2006). In the northeastern Pacific Ocean, 

Chinook salmon (O. tshawytscha) provide an essential food source for declining resident killer 

whales (Orcinus orca; Ford et al. 2010).  In addition, commercial and recreational fishing of 

Pacific salmon contribute more than $1 billion to the US economy annually (NOAA 2017a). Thus, 

the status and health of Pacific salmon are of special concern.  

The decline of Pacific salmon has been well-documented, and the causes are conclusively 

human-derived (NRC 1996, NOAA 2015).  Freshwater habitat degradation has long been 

recognized as a primary driver, although climate change is poised to exacerbate existing 

challenges with warming temperatures and changing patterns of precipitation and streamflow 

(Nehlsen et al. 1991, NRC 1996, Mote et al. 2003, Battin et al. 2007, Beechie et al. 2013). As a 

result, a great deal of effort and funding has gone into freshwater habitat restoration, totaling 

approximately $2 billion since the year 2000 (NOAA 2017b). With so much at stake, there is 

great interest in the efficacy of salmon habitat restoration projects. 

Of particular concern among habitat managers is the loss of large woody debris (LWD) in 

freshwater systems. Among other benefits, naturally occurring LWD is positively correlated with 

pool frequency, pool depth, instream cover, and habitat diversity, which are all vital components 

of salmon rearing habitat (Trotter 1990, Abbe and Montgomery 1996, Naiman et al. 2002, 

Beechie et al. 2005, Quinn 2005, Roni et al. 2015).  Wood-formed pools are created through
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scouring processes that occur during high flow events, typically during the winter and spring 

(Abbe and Montgomery 1996). Historic logging and stream clearing practices have resulted in 

unnaturally low levels of LWD in Pacific Northwest waterways (Maser and Sedell 1994, Collins, 

et al. 2002, Wooster and Hilton 2004, Wohl 2014).  In an effort to emulate the habitat benefits of 

natural wood and to bolster declining salmon populations, the placement of LWD has become 

one of the most popular forms of freshwater habitat restoration (Roni et al. 2002, 2008, 2015, 

Bernhardt et al. 2005, Katz et al. 2007). More than 2,000 wood placement projects have been 

implemented since 1980 in the Columbia River Basin alone (Roni et al. 2015). Such projects 

range from simply placing large wood from the riparian zone into the active stream channel, to 

the construction of complex engineered log jams (Roni and Beechie 2013).   

Stream restoration projects are typically carried out with the expectation that the outcome 

will be improved habitat, which will then result in increased production of salmon (Roni et al. 

2008). However, there is often little follow-up monitoring to determine if this is true. Historically, 

just 10% of all river restoration projects receive any sort of post-restoration assessment, often 

because funding for monitoring is difficult to obtain (Bernhardt et al. 2005). Even when monitoring 

does occur, it is typically insufficient to evaluate fish response. Salmon populations are inherently 

variable from year to year, so long-term monitoring is especially important. Five to ten years of 

monitoring is the recommendation for stream restoration projects (Hunt 1976, Kondalf and Micheli 

1995), but a 2010 meta-analysis of 211 in-stream restoration projects found that less than 5% of 

monitoring programs reach that benchmark (Whiteway et al. 2010). Furthermore, most restoration 

monitoring projects fail to collect any pre-project (i.e., baseline) data, making it extremely difficult 

to establish causal relationships between restoration actions and outcomes (Bash and Ryan 2002).  

Multiple years of baseline data are essential to capture inter-annual variations in stream conditions 
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and fish abundance in order to establish an accurate baseline against which to compare post-

restoration data. 

Given the large number of LWD placement projects in existence, we do at least have a 

growing body of literature on the resultant physical habitat changes, which are mostly considered 

beneficial for fish. Roni et al. (2015) summarized the findings of 83 wood placement studies and 

reported that more than 90% had positive results for at least one habitat metric. However, the 

authors acknowledged that studies of successful restoration projects are more likely to be 

published than those of unsuccessful projects (Kondalf and Micheli 1995). Common metrics that 

improve after LWD placement are habitat complexity, instream cover, pool frequency, and pool 

depth (Roni et al. 2015). Despite these habitat findings, the effectiveness of LWD placement at 

improving salmon production remains uncertain (Hunt 1988, Paulson and Fisher 2005, Stewart 

et al. 2009, Roni et al. 2008 & 2015, Whiteway et al. 2010, Krall et al. 2019). 

Physical habitat enhancement itself is typically not the end-goal, but rather a means of 

increasing the production of the target species. Therefore, it is important to evaluate both physical 

and biological responses to restoration. Given the rarity of such dual analyses in the published 

literature (Katz et al. 2007), it is unsurprising that our current understanding of fish response to 

restoration is inconclusive. Despite the efforts and expenditures directed towards salmon habitat 

restoration in recent decades, salmon populations have not recovered appreciably. Seventeen 

distinct population segments, or evolutionarily significant units, of Pacific salmon and steelhead 

(O. mykiss) remain listed as threatened or endangered under the terms of the U.S. Endangered 

Species Act (NOAA 2015).  This is indicative that at least one of the following is occurring: (1) 

our restoration actions are failing to improve habitat as intended; (2) restoration is improving 

habitat, but salmon are not responding positively, which would suggest that habitat restoration 
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projects are not addressing the limiting factors for salmon production; or (3) habitat is improving 

and salmon are responding positively, but those gains are more than offset by additional drivers of 

salmon decline that are not addressed by our current levels or current focus of habitat restoration.  

The research presented here attempts to fill some of the gaps in our understanding of 

salmon response to freshwater habitat restoration. My research uses data from multiple LWD 

placement projects across Washington State to evaluate their effectiveness at improving habitat 

and increasing salmon production.  The specific objectives of this work are to assess the immediate 

and long-term effects of LWD placement on (1) physical habitat and (2) the diversity and 

abundance of juvenile salmon at restoration sites. In doing so, I hope to promote salmon recovery 

by informing future restoration and monitoring actions.    

 

Methods 

Restoration Projects and Monitoring Design 

The data used in my analyses come from 16 LWD placement projects that were 

implemented in various watersheds throughout Washington State, between 2004 and 2015 (Table 

1, Figure 1). Data were collected at project sites through two monitoring programs: the Project 

Effectiveness program established by Washington State’s Salmon Recovery Funding Board 

(SRFB), and the Action Effectiveness Monitoring program that operated in partnership with the 

Bonneville Power Administration’s Columbia Habitat Monitoring Program (CHaMP).  Both 

programs follow sufficiently similar monitoring protocols to allow the resulting data to be analyzed 

together (WSRCO 2014, PNWAMP 2015).  
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The monitoring protocols for both SRFB and CHaMP followed a multiple Before-After 

Control-Impact experimental design (Stewart-Oaten et al. 1986). The intensity and scope of LWD 

placement varied among restoration projects, and many included additional restoration actions 

(Table 1; Bennett et al. 2015, Martin and Buelow 2017, WSRCO 2018).  Each project included 

one or more “treatment” study reach(es) that were located within the area of planned stream 

restoration. Comparable “control” study reach(es) were selected based on morphological and 

habitat similarities to the pre-restoration state of their paired treatment study reach(es). Control 

study reaches were located upstream of the restoration zone, in an area that would remain untreated 

for the duration of monitoring.  

The paired treatment and control study reaches were monitored at varying intervals, both 

before and after restoration actions were implemented. The pairs were subjected to the same multi-

year sampling schedules, though schedules varied among the projects (Table 2).  In this analysis, 

I define the year of restoration as year 0. Survey years before restoration are negative (e.g., years 

-3, -2, -1), and survey years after restoration are positive (e.g., years 1, 2, 3). If a monitoring survey 

occurred in year 0, it was completed prior to the implementation of restoration actions.  Monitoring 

occurred from May through November. In order to minimize seasonal differences, the paired 

treatment and control study reaches were typically sampled during the same week in a given 

monitoring year, and never more than two weeks apart. Within a single monitoring year, the same 

technician crew monitored all study reaches of a given project. 
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Habitat Data Collection and Response Variables  

Study reaches ranged in length from 100 m to 600 m, depending on the average bankfull 

width (m) of the active stream channel (Table 2).  Standard habitat units, including riffles, pools, 

and glides, were delineated by field technicians prior to conducting topographic surveys. The 

CHaMP and SRFB monitoring protocols conducted topographic surveys through different means, 

necessitating that some habitat metrics be calculated differently. Habitat data for projects 

monitored under the CHaMP protocols were collected with a surveying total station, which 

allowed managers to generate digital elevation models of the active stream channel and 

surrounding floodplain. This allowed precise calculation of habitat unit area (m2) and residual 

depth (m). Habitat data were collected at SRFB-monitored projects via a longitudinal thalweg 

profile, which limited width and depth measurements to equally spaced, pre-set intervals, meaning 

the habitat unit calculations were coarser estimates.  

In order to evaluate physical habitat changes, I used three response variables: 

i) Pool : Reach Ratio: The ratio of pool area (m2) to study reach area (m2), calculated 

as the summed area of all of the pools within a study reach, divided by the total area 

of the study reach. 

ii) Mean Residual Pool Depth (RPD): The mean RPD (m) of all habitat units in a study 

reach that were identified as pools by technicians in the field. RPD was calculated 

as the difference between the maximum pool depth and the minimum tail-out depth 

of each pool (Lisle 1987).  

iii) Habitat Diversity: A modified version of Shannon’s diversity index (Shannon and 

Weaver 1949; formula 1),  
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(1)  𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 𝑖,𝑗 = − ∑ 𝑝𝑖𝐿𝑛(𝑝𝑖)𝑛
𝑖=1 ,  

in which 𝑛 is the total number of different habitat unit types in a study reach, and 

𝑝𝑖  is the proportional area occupied by each habitat unit type (i).  

 

Fish Data Collection and Response Variables 

 Fish data were primarily collected via snorkel surveys under both protocols.  Snorkelers 

recorded the species, number, and size (estimated to the nearest 10 mm) of each fish observed 

within a study reach. On rare occasions, if water quality was too poor to conduct a snorkel survey, 

backpack electrofishing was used to collect the same information. In order to maintain consistency, 

if electrofishing was necessary, it would be used at all study reaches within the project during the 

same monitoring year. Three projects in my study used passive integrated transponder (PIT) tags 

to track fish response. Because the resulting data were not comparable to the snorkel survey data, 

they were left out of the fish analyses (Figure 2). 

In order to evaluate the diversity of the salmonid fish community, I considered the 

abundance and size distribution of all salmonid fishes, excluding individuals that were identified 

as spawning adults. This included: Chinook salmon, coho salmon (O. kisutch), steelhead and 

rainbow trout (which I will refer to collectively as O. mykiss, hereafter), cutthroat trout (O. clarkii), 

bull trout (Salvelinus confluentus), brook trout (S. fontinalis), and mountain whitefish (Prosopium 

williamsoni).  I defined six size class bins for each species: (A) <50 mm, (B) 51-100 mm, (C) 101-

150 mm, (D) 151-200 mm, (E) 201-250 mm, and (F) >251 mm (Kiffney et al. 2006). To assess 

changes in salmonid community diversity at project sites, I used the following response variable: 



 

8 
 

iv) Species-Size Class Diversity: A modified version of Shannon’s diversity index 

(Shannon and Weaver 1949; formula 1), 

(1) 𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 𝑖,𝑗 = − ∑ 𝑝𝑖𝐿𝑛(𝑝𝑖)𝑛
𝑖=1 ,  

 in which  𝑛 = the number of species-size class bins observed in a study reach, 

and 𝑝𝑖  is the proportional abundance of fish belonging to the 𝑖𝑡ℎ size-class bin.  

In order to evaluate juvenile salmon populations, I focused on three individual target 

species: coho salmon, Chinook salmon, and O. mykiss. I limited my analysis of O. mykiss to 

individuals < 300 mm in total length, because I could be reasonably certain that any individuals 

larger than 300 mm were resident rainbow trout, based on observations of the upper range of 

steelhead smolt sizes (Partridge 1985, Peven et al. 1994, Kendall et al. 2014). For each target 

species, I assessed the following response variables:   

v) Fish Area : Calculated as the number of fish per 100 m2 of stream area. 

vi) Biomass Area : Calculated as total estimated biomass (g) per 100 m2 of stream area. 

Models testing Biomass Area were designed to evaluate biomass with respect to fish 

density, by including Fish Area as an explanatory covariate. Thus, the models can 

be interpreted as evaluating the average biomass per fish.  

vii) Fish Length : Calculated as the number of fish per 100 m of stream length. 

viii) Biomass Length : Calculated as total estimated biomass (g) per 100 m of stream 

length. Models testing Biomass Length were designed to evaluate biomass with 

respect to fish density, by including Fish Length as an explanatory covariate. Thus, 

the models can be interpreted as evaluating the average biomass per fish. 



 

9 
 

I evaluated fish density and biomass in terms of both study reach area and study reach 

length because I recognize that stream width may be impacted by restoration actions.  By looking 

at the response variables in terms of both stream area and stream length, I am better able to 

distinguish if changes in response variables are due to changes in habitat quantity or habitat quality.   

To calculate biomass of the target species, I extrapolated weight (g) estimates from the 

recorded lengths. I obtained length / weight data for each species from the PIT Tag Information 

System database (PSMFC 2019), which I fit in a least squares regression of the format: 

(2) log(𝑊𝑒𝑖𝑔ℎ𝑡) ~ 𝑎 + 𝑏 log(𝐹𝑜𝑟𝑘 𝐿𝑒𝑛𝑔𝑡ℎ).   

I then used the results of each regression to generate a predictive weight equation for each 

species, using the expression 

(3) 𝑊 = 𝑎𝐿𝑏,  

in which W is the fish weight (g), L is the fish length (mm), and a and b are the parameters of the 

regression (Crec’hriou et al. 2015; Table 3). 

Not every species was present at every project.  A project was excluded from a species 

analysis if that species was absent from all study reaches of that project for all monitoring years 

(Figure 2 and Table 6).  

 

Data Analysis 

 I used a linear mixed model approach to evaluate the effects of LWD placement on each 

response variable.  All analyses were carried out in R version 3.6.2 (R Core Team 2019), using the 
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“nlme” package (Pinheiro et al. 2019).  Each model followed the structure in Table 4, using the 

same three fixed effects: (i) Time, (ii) Treatment, and (iii) Time Since Treatment.  This model 

design was intended to capture discontinuous change, in which the treatment of LWD placement 

can affect both the intercept and slope of the response variables (Singer and Willett 2003). The 

intercept represents the baseline response variable value at the year of restoration, and the slope 

represents the change in response variable per year.  The fixed effect of Time was measured in 

terms of years since restoration and represents the slope that applies to all projects and all study 

reaches (i.e., the background rate of change).  Time was normalized for each project so that the 

year of restoration was Time = 0, while years before were negative and years after were positive.  

The fixed effect of Treatment was defined as a binary condition, for which a study reach was 

categorized as either having been treated with LWD placement or not. Control study reaches retain 

a value of Treatment = 0 for all monitoring years, whereas treatment study reaches have a value 

of Treatment = 0 for monitoring years before restoration and Treatment = 1 for monitoring years 

after restoration. Treatment can be thought of as the static effect of LWD placement, representing 

the difference in intercept of treatment study reaches, relative to the intercept of control study 

reaches. Time Since Treatment is the interaction of Time and Treatment, and can be thought of as 

difference in slope, or rate of change in response variable, that occurs after LWD placement, 

relative to the background rate of change (i.e. Slope (Trtmnt Study Reaches) = β Time + β Time Since Trt). I did 

not account for any variations in treatment intensity or additional restoration actions in the fixed 

effects. 

Each model included a continuous autoregressive residual covariance structure, which used 

individual study reaches as the subject.  To account for inherent differences among streams, and 

to nest paired control / treatment study reaches within their respective projects, each model 
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included random effects for project (Tables 5-6). In all analyses, I tested model assumptions of 

homogeneity of variance and normality through visual inspection of diagnostic plots. In order to 

achieve normality, it was often necessary to include explanatory covariates in the models, in 

addition to the fixed effects (Tables 5-7, Appendix 1-2).  I compiled a list of potential explanatory 

covariates based on ecological knowledge of factors that could influence my response variables, 

and also based on data availability. I plotted each covariate against the residuals of an “empty” 

model (i.e., a model including just the random effects for project with no fixed effects). I selected 

covariates for inclusion in the final model of a response variable if their plots showed a biased 

distribution of residuals. When appropriate, I used the “weights” statement in the “nlme” package 

to allow residual variance to vary by different identifying factors (Tables 5-6; Zuur 2009, Pinheiro 

et al. 2019).  

 

Results and Discussion 

Habitat Response 

As measured by each of the three habitat response variables, physical habitat improves after LWD 

placement (Table 8, Figure 3).  Pool : Reach Ratio exhibits an immediate, static increase after 

restoration (β Treatment = 0.059, P <0.05).  Mean RPD declines immediately (β Treatment = - 0.077, P 

<0.001), but increases steadily over time (β Time Since Trt = 0.044, P <0.001), resulting in a net increase 

by the third year after restoration. Habitat Diversity seems to be increasing over time, regardless 

of restoration status (β Time = 0.037, P <0.001).  At treatment study reaches, Habitat Diversity 

exhibits an immediate, static increase after restoration (β Treatment = 0.155, P <0.01).  However, this 

may be an acceleration of the background rate of change, rather than an addition to it, because the 
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net slope for treatment study reaches subsequently flattens (Slope (Trtmnt Study Reaches) = β Time + β Time 

Since Trt = 0.037 + (- 0.031) ≈ 0). 

 When taken together, my model results for the three habitat response variables paint a 

picture of the physical changes achieved from LWD placement projects. The high flows during 

the first winter and spring after LWD placement generate enough energy to begin scouring pools 

around the wood. This results in an increase in Pool : Reach Ratio and Habitat Diversity great 

enough to be observed at the first post-restoration monitoring event, and both variables then remain 

constant over time.  The young pools are initially shallow, which brings down the average RPD at 

treatment study reaches that had any deep pool habitat prior to restoration. As time goes on, 

repeated scour events deepen the new pools, resulting in a net increase in Mean RPD after 

approximately 3 years.  When LWD placement projects are proposed, they are often touted for the 

immediacy with which they improve stream habitat (J. Helfield, pers. comm.). While it is clear 

that LWD placement projects have a much more rapid impact than other forms of restoration (e.g., 

riparian planting), my results indicate they may take several years to fully realize.  This 

underscores the need for long-term monitoring to properly evaluate restoration effectiveness. 

 

Fish Response 

Species-Size Class Diversity 

Species-Size Class Diversity exhibits an immediate decline after LWD placement (β Treatment = - 

0.098, P <0.01), but then increases over time (β Time Since Trt = 0.022, P <0.05; Table 8, Figure 3). 

This corresponds to a net increase in Species-Size Class Diversity after 4-5 years.  This closely 
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follows the results for the physical habitat response, particularly Mean RPD.  Previous research 

found salmonid diversity largely tracked instream wood volume (Kiffney et al. 2006). This is 

consistent with my results, which show salmonid diversity tracks the effects of instream wood. 

The delayed benefits are further evidence of the need for long-term monitoring of restoration 

actions.  Increased Species-Size Class Diversity can be considered a desirable outcome of LWD 

placement, because diverse communities are known to be more resilient to disturbance and 

environmental challenges (May 1973, McCann 2000, Balvanera et al. 2006, Ives and Carpenter 

2007).  Diversity is likely to become increasingly important as climate change takes its toll (Battin 

et al. 2007).   

 

Juvenile Coho Salmon 

The models testing coho Biomass Area and Biomass Length do not show any significant fixed effects 

(Table 9, Figure 4), indicating that LWD placement does not affect juvenile coho size. In contrast, 

Time Since Treatment has a significant positive effect on both Fish Area and Fish Length, suggesting 

that the density of juvenile coho at treatment study reaches increases over time, relative to the 

density at control study reaches (Table 9, Figure 4). However, the effect of Time is also significant 

in both model results, which means I must consider the beta estimates of both Time and Time Since 

Treatment in order to evaluate the net magnitude of change after restoration, which is important 

for judging the biological significance of the results.   

The model for coho Fish Area shows statistically significant results for all three fixed effects 

(Table 9, Figure 4). Taken together, they suggest a background decline in coho abundance per unit 

stream area (β Time = - 0.288, P <0.001) and a further, immediate decline in abundance after LWD 



 

14 
 

placement (β Treatment = - 0.253, P <0.01). Coho abundance then remains stable over time at 

treatment study reaches (i.e. Slope Trtmnt Study Reaches = - 0.288 + 0.274 ≈ 0 fish · 100 m-2 · yr-1), while 

continuing to decline at control study reaches. While this indicates that LWD placement might 

slow the decline in coho density over time, the effect is not great enough to reverse a negative 

background trend. 

 In contrast, the model results for coho Fish Length (Table 9, Figure 4) indicate that 

background coho abundance per unit stream length is increasing over time (β Time = 1.454, P 

<0.01). There is no immediate effect of LWD placement on coho Fish Length, but there is a positive 

effect over time. However, the effect is quite small, resulting in a rate of increase in coho 

abundance at treatment study reaches that is hardly faster than the background trend (i.e., Slope 

(Trtmnt Study Reaches) = 1.454 + 0.022 ≈ 1.476 fish · 100 m-1 · yr-1). The beta estimate for Time Since 

Treatment is two degrees of magnitude smaller than the beta estimate for Time, which corresponds 

to a rate of increase that would take approximately 50 years to gain one additional fish per 100 m 

of stream at treatment study reaches, relative to control study reaches (β Treatment = 0.022 fish · 100 

m-1 · yr-1). This rate of increase will not yield biologically significant improvements to coho 

production on a time scale that is meaningful for salmon recovery.  

The conflicting results for the fixed effect of Time in the coho Fish Area and Fish Length 

models suggest that background coho abundance is declining with respect to stream area, while 

simultaneously increasing with respect to stream length. This could happen if the project streams 

were getting wider over time for reasons unrelated to LWD placement, as stream widening could 

result in more fish per stream length, but less per stream area. However, I found no evidence in 

the raw topographic data to suggest this is occurring. Thus, I believe these results are more likely 

a relic of the wide range in survey dates (mid-May to mid-November), which can correspond to 
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dramatically different flow rates and correspondingly different stream widths at the time of the 

snorkel surveys from year to year. These results call attention to the importance of consistent, long-

term baseline and control data in restoration monitoring. Even though I cannot definitively 

describe background trends for coho abundance in my project streams, the paired design (and the 

fact that paired treatment and control study reaches were typically surveyed during the same week 

and under the same flow conditions in each sampling year) allows me to interpret how coho density 

is responding to LWD placement, relative to background density.  My coho Fish Area and Fish Length 

model results support the conclusion that juvenile coho salmon exhibit little or no biologically 

significant response to LWD placement, which is counter to previous studies that have reported 

increases in coho production after freshwater habitat restoration (see Roni et al. 2013). 

Given the observed habitat changes, I would have expected to see a much greater increase 

in juvenile coho production after restoration. Juvenile coho are known to selectively inhabit deeper 

pools and pools with a greater abundance of LWD (Bisson et al. 1988, Quinn and Peterson 1996).  

Such pools are correlated with higher overwinter survival and greater smolt production (Bustard 

and Narver 1975, Murphy et al. 1986, Nickelson et al 1992a, 1992b, Sharma and Hilborn 2001).  

Previous studies have shown increased coho production in response to restoration projects in which 

artificially-placed LWD generated deep, wood-formed pools (Cederholm et al. 1997, Roni and 

Quinn 2001).  If insufficient deep pool habitat was the initial limiting factor in my study streams, 

the lackluster coho response is surprising.  

It is possible that the availability of deep pools is not the limiting factor for coho production 

in some of my study streams.  Off-channel habitats are important for overwintering survival of 

juvenile coho, and in some cases may be more important than deep pools in the main channel 

(Bustard and Narver 1975, Nickelson et al. 1992a, 1992b, Pollock et al. 2004). Coho densities have 
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been found to respond positively to restoration projects that enhance overwintering habitat in the 

form of reconnected or constructed side channels (Morley et al. 2005, Henning et al. 2006, Roni 

et al. 2006, Roni et al. 2010). My results are consistent with the recent findings of Anderson et al. 

(2019), which demonstrate that LWD placement might not enhance coho abundance at sites where 

other habitat factors are limiting. 

The addition of time-varying covariates to the juvenile coho models gives some potential 

insight into contributing factors that may be limiting juvenile coho response to LWD placement.  

All four coho models contain three of the same explanatory covariates, which were necessary to 

include in these models to achieve normality of residuals (Tables 6-7). Those covariates are: (1) 

Summer Air Temperature, which gives the regional average departure from normal air temperature 

(°C) for the months April-September (NOAA 2019), and serves as a proxy for summer stream 

temperatures; (2) Snow Water Equivalent, which gives the percent of normal snow water 

equivalent on April 1 for the Pacific Northwest Region (USDA 2019), and serves as a proxy for 

winter peak flows and summer low flows; and (3) Snorkel Date, which is the standardized Julian 

calendar date of each snorkel survey, and serves as a proxy for the number of growing days that 

have passed by the time of the survey. These three explanatory covariates are statistically 

significant in all coho models, with the one exception being Snow Water Equivalent in the Fish 

Length model (Table 9). In every model, the magnitudes of the beta estimates for each of these 

explanatory covariates are greater than those of the significant fixed effects (between ~1.4 – 400 

times greater).  This indicates that in my study streams, juvenile coho abundance and size are more 

greatly influenced by climatic variables than by the physical habitat characteristics influenced by 

LWD placement.   
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Furthermore, for each of the aforementioned explanatory covariates, the sign of the beta 

estimate in the Fish model results (positive/negative) is opposite to the sign in the Biomass model 

results (Table 9). This suggests that factors correlated with higher juvenile coho density are 

simultaneously correlated with smaller coho sizes, and vice versa.  An inverse relationship between 

fish density and fish size has been well-documented in systems that exhibit density-dependent 

growth due to competition and limited food availability (Elliot 1984, Grant and Kramer 1990, 

Keeley 2001, Imre et al 2004, Grant and Imre 2005, Connor et al. 2013).  Therefore, it is possible 

that I did not observe a greater biological response from coho to LWD placement because the coho 

populations in my study streams are already close to their carrying capacities, as dictated by the 

availability of food resources. Further research and restoration actions targeting the autochthonous 

and allochthonous nutrient sources supporting juvenile coho salmon may be necessary to support 

coho recovery.  

Another possible explanation for the lack of coho response may be the timing of the 

sampling season (May-November).  Previous research evaluating coho production after LWD 

placement has found the response to be greater in the winter than in the summer (Cederholm et al. 

1997, Roni and Quinn 2001).  Thus, it is possible that LWD placement has, in fact, improved 

overwinter survival of coho at the treatment study reaches, but this was not captured with the 

monitoring schedule. However, given enough time and multiple generations, greater overwinter 

survival should eventually result in observable increases in juvenile coho abundance throughout 

the sampling season. 
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Juvenile Chinook Salmon 

The results of my juvenile Chinook models indicate that the species’ response to LWD placement 

projects varies depending on whether the population is coastal or inland (Table 7).  There is strong 

ecological justification to distinguish between coastal and inland populations, due to the different 

distributions of ocean-type and stream-type Chinook. Ocean-type Chinook, which typically 

migrate to the oceans during their first three months, are more often found near the coastline in the 

lower reaches of rivers, whereas stream-type Chinook, which spend one or more year(s) in 

freshwater before migrating to the ocean, are more likely to be found in smaller tributary streams 

of major rivers like the Columbia River (Taylor 1990, Healey 1991, Myers et al. 1998, Quinn 

2005). Thus, I presume the coastal populations have greater representation of ocean-type Chinook 

and the inland populations have greater representation of stream-type. The distribution of project 

locations within my sample made it easy to determine coastal and inland designations. I had a 

subset of projects located < 200 stream km from the ocean (coastal) and a subset of projects located 

>500 stream km from the ocean (inland), with nothing in between (Figure 2).  All inland projects 

in my sample that contained Chinook were monitored under CHaMP protocol, while all coastal 

projects were monitored under SRFB protocol, but I have no reason to believe that this should 

impact the results, as the two protocols used similar methods for surveying fish. It is highly 

plausible that inland Chinook would have a more pronounced response to freshwater restoration 

than coastal Chinook, which is precisely what my results illustrate.  

Coastal Chinook exhibit relatively little response to LWD placement (Table 10, Figure 5).  

The combined results of both Fish Area and Biomass Area suggest that coastal Chinook increase in 

density per unit area immediately after restoration, but decline over time in both number and 

biomass. However, these results only appear in the Fish Area and Biomass Area models, indicating 
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that they might be a relic of changes in stream width after LWD placement.  The results of Fish 

Length and Biomass Length show no significant effects of restoration at coastal Chinook populations.  

In contrast, the fixed effects results for inland Chinook are consistent with respect to both 

study reach area and study reach length (Table 10, Figure 5).  The interaction of Treatment * Inland 

is statistically significant and positive in both Fish Area (β Treatment = 3.191, P <0.05) and Fish Length 

(β Treatment = 35.585, P <0.01), while the interaction of Time Since Treatment * Inland has no effect, 

indicating an immediate increase in abundance, which remains constant over time. This suggests 

either increased survival at early life stages or increased migration from other habitat to the 

restoration zones, or both. The consistency of response with respect to both study reach area and 

study reach length suggests that LWD placement improves both habitat quantity and habitat quality 

for juvenile inland Chinook.   

The models for Biomass Area and Biomass Length are similarly consistent, both showing a 

significant positive effect of the interaction of Treatment * Inland (β Treatment, Area = 4.390, P <0.05; 

β Treatment, Length = 78.167, P <0.05) and a significant negative effect of the interaction of Time Since 

Treatment * Inland (β Time Since Trt, Area = -3.016, P <0.05; β Time Since Trt, Length = -47.803, P <0.05; 

Table 10, Figure 5).  This indicates that the size of inland juvenile Chinook increases immediately 

after restoration, but then declines steadily over time. The beta estimates for the interaction of Time 

Since Treatment * Inland in both Biomass models correspond to a net decline in the size of 

Chinook at restoration sites after just two years. This revelation is yet another example of the value 

of long-term monitoring, lasting the recommended 5- 10 years (Hunt 1976, Kondalf and Micheli 

1995).  
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The static increase in inland juvenile Chinook abundance at treatment study reaches 

suggests that LWD placement increases salmon production, but the subsequent decline in biomass 

over time cannot be ignored. The combined results strongly indicate density-dependent growth 

after restoration due to resource competition (Murphy et al 1986, Bilby and Bisson 1987 & 1992, 

Keeley 2001).  Slower growth can delay smolting and slow downstream migration, both of which 

increase the risk of mortality during these later life stages, especially in populations with longer 

migrations (Giorgi et al. 1997, Quinn 2005, Connor and Tiffan 2012).  Furthermore, size is highly 

correlated with smolt-to-adult survival in salmonids (Ward et al. 1989, Henderson and Cass 1991, 

Mortensen et al. 2000). Therefore, if left unchecked, the decline in size of inland juvenile Chinook 

could counteract any productivity gains from increased abundance.  

Previous research has found that when high-quality habitat is scarce, juvenile salmonids 

preferentially aggregate in these areas, even when densities become high enough to inhibit growth 

(Kahler et al. 2001, Kiffney et al. 2014). My results suggest that such localized “over-crowding” 

of juvenile Chinook is occurring after LWD placement at inland locations.  Therefore, the best 

way to address this density-dependent growth of inland Chinook might be to greatly increase the 

number of restoration projects.   

 

Juvenile O. mykiss  

The model results for O. mykiss show that LWD placement has no significant effect on Fish Area 

or Fish Length (Table 11, Figure 6). However, Time Since Treatment has a significant positive effect 

on both Biomass Area and Biomass Length (β Time Since Trt, Area = 10.241, P <0.05; β Time Since Trt, Length = 

114.721, P <0.05; Table 11, Figure 6). These combined results illustrate that juvenile O. mykiss 
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do not increase in abundance after restoration, but their populations are increasingly composed of 

larger individuals in the years after restoration. This suggests that restoration has been effective at 

improving freshwater habitat for juvenile O. mykiss, because size is positively correlated with 

survival at every life-stage among salmonids (Ward et al. 1989, Henderson and Cass 1991, 

Mortensen et al. 2000, Beamish and Mahnken 2001, Quinn 2005).  However, it should be noted 

that it is impossible to distinguish between anadromous and resident individuals from the available 

data.  It is the anadromous expression of most O. mykiss populations (i.e., steelhead) that are of 

primary concern for conservation, but anadromous and resident forms often overlap and interbreed 

(Christie et al. 2011; Courter et al. 2013; Sloat and Reeves 2014).  Enormous effort has gone into 

trying to determine the influences of genetics, environmental factors, and individual condition on 

anadromy and residency (see Kendall et al. 2015), but much uncertainty remains regarding the 

underlying patterns and processes. Therefore, it is difficult to speculate to what degree the habitat 

improvements, and corresponding increase in juvenile O. mykiss biomass, improve the production 

of steelhead, in particular. 

 

Conclusions 

LWD placement projects improve freshwater rearing habitat by increasing habitat diversity, pool 

area, and pool depth.  Habitat diversity and pool area improve immediately, while average pool 

depth initially declines then increases over time, taking approximately three years to exhibit a net 

increase. Such habitat enhancements are among the desired outcomes for restoration managers 

targeting salmon production, because deep pools and a diversity of habitat units are known to be 

vital components of freshwater salmon rearing habitat (Beechie et al. 2005).  The response of 
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salmonid species-size class diversity to LWD placement closely follows the response of average 

residual pool depth, exhibiting an initial decline followed by improvement over time, resulting in 

a net increase after 4-5 years. This apparent relationship between pool depth and salmonid fish 

diversity presents further evidence of the significance of deep pool habitat for maintaining healthy 

salmon communities.  

Given our knowledge of what constitutes essential salmon rearing habitat, I would expect 

improvements in production of coho salmon, Chinook salmon, and O. mykiss at LWD placement 

sites.  However, the response of each species was far from uniform. Despite their extended 

freshwater residency, juvenile coho salmon appear to exhibit very little response to LWD 

placement.  Coho biomass is unaffected, and while coho abundance improves over time, it does so 

at such a slow rate it cannot be considered biologically significant. My results suggest that coho 

biomass and abundance are more strongly influenced by climatic factors, such as summer air 

temperature and snow-pack at the start of spring, and that the coho populations may already be 

close to their carrying capacities based on available food sources. Likewise, coastal Chinook 

production is also largely unresponsive to LWD placement, though I presume this is because these 

population likely have short freshwater residence times, and thus freshwater habitat quality may 

be less important than ocean conditions. Thus, the habitat improvements attained by LWD 

placement do not seem to address the limiting factors for juvenile coho or coastal Chinook 

production. 

In contrast, O. mykiss and inland Chinook populations respond positively to LWD 

placement, but with notable caveats. The average size of juvenile O. mykiss increases over time 

after restoration, but I cannot determine to what extent this benefits anadromous as opposed to 

resident individuals. Inland Chinook exhibit a sustained increase in abundance after LWD 
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placement, suggesting that the habitat improvements do address the limiting factor for juvenile 

survival. But the average size of juvenile Chinook at inland treatment study reaches declines 

steadily over time. This suggests that overcrowding at LWD placement sites is resulting in density-

dependent limits to growth, likely due to a dearth of high-quality habitat.  Given the established 

positive correlation between size and survival, this finding cannot be ignored.  An increase in the 

spatial extent of freshwater restoration at inland locations may be essential for improving inland 

Chinook production. 

My analyses demonstrate that LWD placement is effective at improving freshwater habitat, 

but with all things considered, these improvements are not generating consistent increases in 

juvenile salmon production. This suggests that LWD placement does not always address the 

limiting factors for salmon production.  It is clear that limiting factors vary by species and location, 

and large-scale threats, such as declining ocean conditions, climate change, and restricted access 

to freshwater habitat from dams and culverts, undoubtedly impact salmon production in ways that 

LWD placement alone cannot solve.  Moreover, it is possible that competitors and predators of 

juvenile salmon, including some invasive species, may benefit to an equal or greater extent from 

the habitat improvements of LWD placement, to a degree that it limits the net gains salmon 

production. Given the clear habitat improvements and promising responses observed with O. 

mykiss biomass and inland Chinook abundance, LWD placement projects should continue to play 

a large role in salmon restoration, but should not be relied on as the only action.  A broader, more 

comprehensive strategy for restoration and conservation, which addresses a wider range of limiting 

factors, is essential in order to ensure the long-term survival of sensitive salmon populations.   

Furthermore, my results highlight the critical need for baseline and long-term monitoring 

of restoration projects.  My key findings would not have been possible without either. It can take 
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three to five years to fully realize some restoration benefits, including increases in average pool 

depth and salmonid fish diversity.  Likewise, long-term monitoring was essential in revealing the 

biomass declines of inland Chinook at restoration sites.  Without pre-restoration and control data, 

it would have been nearly impossible to confidently identify trends in salmon response to 

restoration, due to naturally high variability in the populations and seasonal fluctuations of 

influential climatic factors. Restoration effectiveness cannot progress without such detailed 

evaluations. Funding agencies must fund, and restoration managers must carry out, comprehensive 

long-term monitoring if restoration practitioners are going to learn which restoration techniques 

are most effective.  This information is essential for guiding future restoration efforts and 

supporting salmon recovery. 
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Tables and Figures 
Table 1: Summary of actions at Large Woody Debris (LWD) placement projects, monitored under protocol of WA’s Salmon Recovery Funding Board (SRFB; WSRCO 2018) & 

Bonneville Power Administration's Columbia Habitat Monitoring Program (CHaMP; PNWAMP 2015, Bennet et al. 2015, Martin and Buelow 2017). Map Code corresponds to 

project location, shown in Figures 1-2. Project ID is determined by monitoring programs. Trt= Treatment study reach, which received LWD placement. Ctrl = Control study reach. 

Map 
Code 

Watershed 
Monitoring  

Program Project ID 
Yr of 
Trt 

Km  
Treated 

# of LWD 
Struct1 

LWD Struct  
per km Additional Treatment 

LSV 
Little  

Skookum Valley 
SRFB 02-1444 2005 0.48 9 18.75 

Streambank Stabilization; Riparian Planting;  
Non-native plant removal/control 

SCWB Salmon Crk/ Willapa Bay SRFB 02-1463 2004 2.74 80 29.20 Channel Reconfiguration / Levee Removal 

ChC Chico Creek SRFB 04-1209IS 2005 0.16 11 68.75 
Streambank Stab.; Riparian Planting; Invasive Plant 

Removal/Control; Channel Reconfig./ Levee Removal 

Lnew Lower Newaukum SRFB 04-1338 2008 0.24 6 25.00 
Riparian Planting; Invasive Plant Removal/ 
Control; Channel Reconfig./ Levee Removal 

Lcol Lower Columbia SRFB 04-1448 2005 0.32 9 28.13 Riparian Planting  

Uwash Upper Washougal SRFB 04-1575 2005 0.8 15 18.75 Streambank Stab; Spawning Gravel; Riparian Planting 

Dung Dungeness SRFB 04-1589 2005 1.29 7 5.43 N/A 

CCL Cedar Crk / Lewis SRFB 05-1533 2007 0.42 20 47.62 Riparian Planting; Channel Reconfig. / Levee Removal 

SkNook 
Skookum /  
Nooksack 

SRFB 07-1803 2009 0.9 3 15.79 
Streambank Stabilization;  

Channel Reconfiguration/ Levee Removal 

UTCMC 
Upper Trout Crk/  

Middle Col 
SRFB 02-1515 2005 12.07 44 3.65 

Road Abandonment;  
Upland Vegetation Management 

PA3 Tucannon River CHaMP PA-3 2014 2.19 48 21.92 N/A 
PA14 Tucannon River CHaMP PA-14 2014 2.64 88 33.33 Channel Reconfiguration / Levee Removal 
PA24 Tucannon River CHaMP PA-24 2015 1.59 61 38.36 Channel Reconfiguration / Levee Removal 

ACCC 
Asotin Creek- 
Charley Creek 

CHaMP 

CC-F2 P1BR (Ctrl) 

2013 4 177 44.25 

Riparian Planting;  
Invasive Plant Removal/Control;  

Cattle Exclusion;  
 

*Supplemental LWD Placement in 2016* 

CC- F5 P1BR (Ctrl) 
CC-F3 P1BR (Trt) 
CC-F3 P2BR (Trt) 
CC-F4 P2BR (Trt) 
CC-F4 P3BR (Trt) 

ACNF 
Asotin Creek-  

North Fork 
CHaMP 

NF-F4 P1BR (Ctrl) 

2014 4 121 30.25 
Cattle Exclusion; 

 
*Supplemental LWD Placement in 2016* 

NF-F6 P2BR (Ctrl) 
NF-F1 P1BR (Trt) 
NF-F1 P2BR (Trt) 

NF-F2 P1 (Trt) 
NF-F2 P2 (Trt) 

ACSF 
Asotin Creek-  

South Fork 
CHaMP 

SF-F5 P3BR (Ctrl) 

2012 4 146 36.50 
Cattle Exclusion;  

 
*Supplemental LWD Placement in 2016* 

SF-F2 P2BR (Ctrl) 

SF-F3 P2BR (Trt) 

SF-F3 P3BR (Trt) 

SF-F4 P1 (Trt) 

SF-F4 P2 (Trt) 
1 The size of each LWD structure was proportional to the size of the stream in which they were placed. 
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Table 2: Monitoring schedule and study reach details for LWD restoration projects, monitored under protocol of WA’s Salmon Recovery Funding Board (SRFB; WSRCO 2014, 

2018) & Bonneville Power Administration's Columbia Habitat Monitoring Program (CHaMP; PNWAMP 2015, Bennet et al. 2015, Martin and Buelow 2017). Map Code 

corresponds to project location, shown in Figures 1-2.  Trt= Treatment study reach, which received LWD placement. Ctrl = Control study reach, which receives no restoration for 

the duration of monitoring. Year 0 is the year of LWD placement. If Year 0 is listed, sampling occurred prior to LWD placement. Negative sampling years occurred before 

restoration; positive years occurred after restoration. Min/max wetted widths refer to the average wetted widths of each study reach during a given monitoring event. Target species 

is the intended beneficiary of restoration actions, based on what is listed in the planning documents for each restoration project. 

Map 
Code 

Project ID Year 0 
Habitat Monitoring 

Yrs 1 
Snorkel  

Survey Yrs 1 
Study Reach Length2 (m) 

[Trt]                   [Ctrl] 
Min/ Max Wetted Width (m) 

[Trt]                   [Ctrl] 

Target  
Species 

LSV 02-1444 2005 -1, 1, 3, 5, 10 -1, 1, 3, 5 150 90/150  1.18 / 1.50 1.37 / 1.59 Coho 
SCWB 02-1463 2004 0, 1, 3, 5, 10 0, 1, 3, 5, 10 180 180 4.52 / 10.43 2.90 / 3.93 Coho 
ChC 04-1209IS 2005 0 1, 4, 6, 8 0 1, 4, 6, 8 250 250 5.36 / 8.6 4.97 / 7.06 Chum 

Lnew 04-1338 2008 0, 2, 4 0, 2, 4 200 200 5.93 / 9.19 8.37 / 9.70 Chinook 
Lcol 04-1448 2005 0, 1, 3, 5, 10 0, 1, 3, 5, 10 320 320 23.67 / 42.05 25.36 / 29.37 Chum 

Uwash 04-1575 2005 0, 1, 3, 5, 10 0, 1, 3, 5, 10 500 500 20.42 / 25.87 14.92 / 21.31 Steelhead 
Dung 04-1589 2005 0, 1, 3, 5, 7 0, 1, 3, 5, 7 500 500 14.71 / 24.08 15.67 / 19.64 Chinook 
CCL 05-1533 2007 -1, 1, 3, 5 -1, 1, 3, 5 300 165/300 13.42 / 15.23 11.90 / 13.45 Chinook 

SkNook 07-1803 2009 -1, 1, 3, 5 -1, 1, 3, 5 500 500 28.90 / 30.92 28.28 / 32.84 Chinook 
UTCMC 02-1515 2005 -1, 1, 3, 5, 7 -1, 1, 3, 5, 7 150/360 150 4.07 / 12.27 4.07 / 4.87 Steelhead 

PA3 PA-3 2014 -3, -2, -1, 0, 1, 2, 3 0, 1, 2, 4 275 295 11.23 / 16.51 8.34/ 9.88 Chin. / SH 
PA14 PA-14 2014 -2, -1, 0, 1, 2, 3 0, 1, 2, 3, 4 245 265 9.70 / 10.72 9.55 / 10.45 Chin. / SH 
PA24 PA-24 2015 -4, -3, -2, -1, 0, 1, 2 -1, 0, 1, 3 260 275 13.17 / 19.79 10.50 / 11.68 Chin. / SH 

ACCC 

CC-F2 P1BR (Ctrl) 

2013 

-2, -1, 0, 1, 2, 3, 4 

N/A 

165 165 2.78 / 5.08 - 

Chinook /  
Steelhead 

CC- F5 P1BR (Ctrl) -2, -1, 0, 1, 4 170 170 3.18 / 4.02 - 
CC-F3 P1BR (Trt) 0, 1, 2, 3, 4 160 160 - 3.18 / 4.43 
CC-F3 P2BR (Trt) -1, 0, 1, 2, 4 155 155 - 3.83 / 4.33 
CC-F4 P2BR (Trt) 0, 1, 3, 4 155 155 - 3.73 / 4.06 
CC-F4 P3BR (Trt) 0, 1, 2, 3, 4 150 150 - 3.25 / 3.89 

ACNF 

NF-F4 P1BR (Ctrl) 

2014 

-3, -2, -1, 0, 1, 2, 3 

N/A 

210 210 5.50 / 6.45 - 

Chinook /  
Steelhead 

NF-F6 P2BR (Ctrl) -3, -2, -1, 0, 1, 2, 3 200 200 6.92 / 9.09 - 
NF-F1 P1BR (Trt) -2, -1, 1, 2, 3 205 205 - 5.85 / 6.79 
NF-F1 P2BR (Trt) -3, -2, -1, 0, 1, 2, 3 210 210 - 7.62 / 8.51 

NF-F2 P1 (Trt) -2, -1, 0, 1, 2, 3 195 195 - 8.17 / 9.03 
NF-F2 P2 (Trt) -2, -1, 0, 1, 2, 3 210 210 - 7.85 / 9.49 

ACSF 

SF-F5 P3BR (Ctrl) 

2012 

-1, 0, 1, 2, 3, 4, 5 

N/A 

175 175 4.76 / 6.13 - 

Chinook /  
Steelhead 

SF-F2 P2BR (Ctrl) -1, 0, 1, 2, 3, 4 180 180 3.72 / 4.38 - 

SF-F3 P2BR (Trt) -1, 0, 1, 3, 4, 5 170 170 - 3.10 / 3.70 

SF-F3 P3BR (Trt) 0, 1, 2, 3, 4, 5 180 180 - 3.57 / 4.19 

SF-F4 P1 (Trt) 0, 1, 2, 3, 4, 5 165 165 - 3.59 / 4.03 

SF-F4 P2 (Trt) 0, 1, 2, 3, 5 160 160 - 4.08 / 4.63 
1 Monitoring may have occurred at more time points than is listed. The monitoring years listed represent the data that were publicly available at the time of analysis. 
2 Study reach lengths for are the average length from all monitoring years, rounded to the nearest 5 m. If more than one length value is listed, the length changed over time. 
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Table 3: Parameters and adjusted R2 values for predictive weight (g) equation for each salmon species (Oncorhynchus spp.). 𝑊 = 𝑎𝐿𝑏, in which W is the fish weight (g), L is the 

estimated fork length (mm) of each fish (Crec’hriou et al. 2015).  Parameters a and b were generated by fitting weight and length data from the PIT Tag Information System 

database (PSMFC 2019) in a least squares regression, following the format log(𝑊𝑒𝑖𝑔ℎ𝑡) ~ 𝑎 + 𝑏 log(𝐹𝑜𝑟𝑘 𝐿𝑒𝑛𝑔𝑡ℎ). 

Species a b Adj. R2 

Chinook 9.48 E-06 3.03 0.979 

Coho 1.72 E-05 2.91 0.963 

O. mykiss 1.60 E-05 2.91 0.986 
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Table 4: Model design for testing habitat and fish response variables using linear mixed models. Fixed effects of Time, Treatment, and Time Since Treatment capture discontinuous 

change in both intercept and slope, as a result of restoration actions (Singer and Willett 2003). Random effects for intercept and slope by Project allow the paired Treatment and 

Control Study Reaches to be nested within Project.  Final models were fitted using Restricted Maximum Likelihood (REML) estimation. 

  
RV ~ β0 + Time x β1 + Treatment x β2 + 

Time Since 

Treatment x β3 
+ μ intercept/slope  + ϵresiduals 

Definition 
Response 

Variable 
  Intercept  

  

Slope   

Has restoration  

occurred at this  

study reach? 

 0 = No; 1 = Yes 

  

Interaction of 

Time and  

Treatment 

  

Random Effects 

intercept and 

slope for each 

Project 

 

Residuals 

Purpose    Value at  

Time = 0.  
 

Slope that  

applies to all 

study reaches in 

all projects. 

 

Allows intercept at 

treatment study 

reaches to vary from 

baseline  

intercept. 

 

Allows slope at  

treatment study 

reaches to vary from 

baseline slope after 

restoration occurs. 

 

Allows the 

 intercept and slope 

for each Project to 

vary from the  

baseline intercept 

and slope. 

   

Interp.     

Time = 0 for 

the year of  

restoration at 

each Project  

  

Accounts for 

background rate 

of change,  

regardless of  

restoration status. 

  

Accounts for  

immediate, or static, 

changes in Response  

Variable due to 

restoration. 

  

Accounts for changes 

in Response Variable 

over time due to  

restoration. 

  

Nests the treatment 

and control study 

reaches within 

their Project 
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Table 5: Covariate, Weighted Variance, and Random Effects details for the habitat response variables that were tested using linear mixed effects models.  Habitat Diversity is 

based on Shannon’s diversity index; Pool : Reach Ratio is the summed pool area (m2) divided by the study reach area (m2); Mean RPD is the average residual pool depth (m). 

Covariates were added to models when necessary to achieve normality, and were selected based on a combination of visual inspection of residuals and fit statistics. Weighted 

Variance refers to the identifying factor whose residual variance was allowed to vary, using the “weights” statement in the “nlme” package in R (Pinheiro et al. 2019).  

Response Variable Covariates Weighted Variance Random Effects 
Projects Included in 

Model 

Habitat Diversity 

Stream Width,  

Annual Regional Air Temp,  

Annual Regional Precip,  

Stream Width * Annual Regional Precip 

Calendar Year 
Intercept  

by Project 

All 

(n = 16) 

Pool : Reach Ratio N / A Calendar Year 

Intercept 

by Project nested in 

Monitoring Program 

All 

(n = 16) 

Mean RPD  

Stream Width,  

(Stream Width)2,  

Annual Regional Air Temp,  

Bank Stabilization Treatment 

Project 

Intercept 

by Project nested in 

Monitoring Program 

All 

(n = 16) 
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Table 6: Covariate, Weighted Variance, and Random Effects details for the fish response variables that were tested using linear mixed effects models. Explanatory Covariates were 

added to models when necessary to achieve normality of residuals, based on a combination of visual inspection and fit statistics. Weighted Variance refers to the identifying factor 

whose residual variance was allowed to vary, using the “weights” statement in the “nlme” package in R (Pinheiro et al. 2019).  

Species 
Response  

Variable 
Units Explanatory Covariates 

Weighted 

Variance 

Random  

Effects 

Projects Included in 

Model 1 

Salmonid 

Community 
Species-Size 

Class Diversity 

Shannon's  

Diversity  

Index 

Snorkel Date, SWE, Summer Precipitation 
Monitoring 

Program 

Intercept & 

Slope 

 by Project 

CCL, ChC, Dung, Lcol, Lnew, 

LSV, PA14, PA24, PA3, SCWB, 

SkNook, UTCMC, Uwash 
 

(n = 13) 
              

Coho 

Fish Area fish / 100 m2 
Summer Air Temp, Snorkel Date, SWE, Stream 

Width, Dist. from Ocean (inverse) 

Project 
Intercept & 

Slope 

 by Project 

CCL, ChC, Dung, Lcol, Lnew, 

LSV, SCWB, SkNook 
 

(n = 8) 

Biomass Area g / 100 m2 
Coho Density (fish / 100 m2), 

Summer Air Temp, Snorkel Date, SWE,  

Snorkel Date * Summer Air Temp 

Fish Length fish / 100 m 
Summer Air Temp, Snorkel Date,  

SWE, Stream Temp during Survey,  

Dist. from Ocean (inverse) 

Biomass Length g / 100 m 
Coho Density (fish / 100 m), 

Summer Air Temp, Snorkel Date, SWE,  

Snorkel Date * Summer Air Temp 
              

Chinook 

Fish Area fish / 100 m2 
Inland * Fixed Effects, 

Snorkel Date, Summer Air Temp 

Calendar 

Year 

Intercept & 

Slope 

 by Project 

CCL, Dung, Lcol, Lnew, 

SCWB, SkNook, PA14, PA24, 

PA3 
 

(n = 9) 

Biomass Area g / 100 m2 

Inland * Fixed Effects, 

Chinook Density (fish / 100 m2), 

Snorkel Date, Summer Air Temp,  

Inland * Snorkel Date 

Project 

Fish Length fish / 100 m 
Inland * Fixed Effects, 

Snorkel Date, Summer Air Temp 

Calendar 

Year 

Biomass Length g / 100 m 

Inland * Fixed Effects, 

Chinook Density (fish / 100 m), 

Snorkel Date, Summer Air Temp,  

Inland * Snorkel Date 

Project 

              

O. mykiss 

Fish Area fish / 100 m2 Snorkel Date, Dams, SWE 

Major 

River 

Intercept & 

Slope 

 by Project 

CCL, ChC, Dung, Lcol, Lnew, 

LSV, PA14, PA24, PA3, SCWB, 

SkNook, UTCMC, Uwash 
 

(n = 13) 

Biomass Area g / 100 m2 
O. mykiss Density (fish / 100 m2), 

Snorkel Date, Dams, SWE 

Fish Length fish / 100 m Snorkel Date, Dams, SWE, Stream Width (inverse) 

Biomass Length g / 100 m 
O. mykiss Density (fish / 100 m), 

Snorkel Date, Dams, SWE 
1 Project codes: LSV = Little Skookum Valley, SCWB = Salmon Creek / Willapa Bay, ChC = Chico Creek, Lnew = Lower Newaukum, Lcol = Lower Columbia, Uwash = Upper 

Washougal, Dung = Dungeness, CCL = Cedar Creek / Lewis R., SkNook = Skookum / Nooksack, UTCMC = Upper Trout Creek / Middle Columbia R., PA3/PA14/PA24= 

Tucannon River Project Areas. 
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Table 7: Covariates used in one or more linear mixed model(s) used to evaluate physical and biological responses to large woody debris restoration projects. Time-varying 

covariates vary between monitoring events, time-invariant covariates do not change. Level refers to the subject level at which the covariate varies. Study Reach is nested within 

Project, and individual monitoring years for Projects are nested within Calendar Year. Sources are listed for covariates whose values could not be obtained from the monitoring 

data or the project planning documents (Bennet et al. 2015, Martin and Buelow 2017, WSRCO 2018). 

Covariate Type Level Definition Source 

Annual Regional Air 

Temperature  

(depart. from normal) 

Time-

Varying 
Project 

Average of the regional monthly departures from normal air temperature (°C) for the water year 

(October -September) of the year of the survey.  

Regional values for each Project, obtained from the nearest NOAA weather station (Appendix 1). 

National Centers for 

Environmental 

Information  

(NOAA 2019) 

Annual Regional  

Precipitation  

(depart. from normal) 

Time-

Varying 
Project 

Sum of annual water year (October-September) monthly departures from normal precipitation 

(in) of the year of the survey.  

Values for each Project obtained from the nearest NOAA weather station (Appendix 1). 

National Centers for 

Environmental 

Information  

(NOAA 2019) 

Bank Stabilization  

Treatment  

(binary) 

Time- 

Invariant 
Project 

1 = Bank stabilization was included in the treatment for this Project, 

0 = Bank stabilization was not included in treatment for this Project. 

[Note: The value applies to both Treatment/Control Study Reaches within a Project.] 

  

Dams  

(binary) 

Time- 

Invariant 
Project 

1= There are 1 or more dams on pathway from ocean to project site,  

0= No dams on pathway from ocean to project site 
  

Distance from Ocean 

(km) 

Time- 

Invariant 
Project Total river/stream distance (km) between the ocean and the Project site 

National Hydrography 

Dataset (USGS 2019) 

Habitat Date 
Time-

Varying 

Study 

Reach 
Julian calendar date of the habitat survey.   

Inland 

(binary) 

Time- 

Invariant 
Project 

1= Inland project site (>500 km from ocean), 

0= Coastal project site (<200 km from ocean) 

[Note: For data in Chinook salmon analysis, this is indistinguishable from Monitoring 

Program.] 

National Hydrography 

Dataset (USGS 2019) 

Major River  

(binary) 

Time- 

Invariant 
Project 

1= The project site is on a tributary of a major river (i.e. the Columbia River),  

0= The project site is not on the tributary of a major river 
  

Monitoring Program 
Time- 

Invariant 
Project 

Indicates which monitoring program was responsible for the date collection for each Project:  

Washington State Salmon Recovery Funding Board (SRFB), or  

Bonneville Power Administration’s Columbia Habitat Monitoring Program (CHaMP) 

  

Snorkel Date  

(standardized) 

Time-

Varying 

Study 

Reach 

Based on Julian calendar date of the snorkel survey. If snorkel survey date was missing, the 

corresponding habitat survey date was used instead. Julian dates were centered and scaled. 
  

Snow Water Equiv. 

(% of normal  

for April 1) 

Time-

Varying 

Calendar 

Year 

Percent of regional normal snow water equivalent for April 1 of the survey year.  

Normal values based on average of NRCS 1981-2010 values for Pacific Northwest 2-Digit HUC 

region. 

National Water and 

Climate Center  

(USDA 2019) 

Stream Temp. (°C)  

at Start of Survey 

Time-

Varying 

Study 

Reach 

Temperature (°C) at the start of snorkel survey, centered on the population mean value. [Note: 

This value is missing from ~15% of site visits, primarily affecting Tucannon River Project Sites] 
  

Stream Width (m) 
Time-

Varying 

Study 

Reach 

Average wetted width (m) of the Study Reach, derived from the habitat survey for a given 

survey year. 
  

Summer Air Temp  

(depart. from normal) 

Time-

Varying 
Project 

Average of regional monthly departures from normal air temperature (°C) for the months of 

April-September from the survey year. 

Regional values for each Project, obtained from the nearest NOAA weather station (Appendix 1). 

National Centers for 

Environmental 

Information  

(NOAA 2019) 
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Table 8: Results for linear mixed models testing physical habitat and salmonid community response to large woody debris placement projects (Tables 4-6). Each restoration project 

followed a multiple before-after, control-impact study design (Stewart-Oaten et al. 1986; Tables 1-2). Asterisks indicate statistical significance  

[* P <0.05; ** P <0.01; *** P <0.001]. 

Response Variable Fixed Effect β Est. P-Value Covariates β Est. P-Value 

Habitat Diversity 

intercept 1.067 < 0.001 *** Stream Width (m) 0.001 0.862   

Time 0.037 < 0.001 *** Annual Precip. 0.388 < 0.001 *** 

Treatment 0.155 0.003 ** Annual Air Temp - 0.046 < 0.001 *** 

Time Since Trt - 0.031 0.044 * Stream Width * Annual Precip - 0.020 0.007 ** 

Pool : Reach Ratio 

intercept 0.235 0.002 ** 

- 
Time 0.003 0.471   

Treatment 0.059 0.013 * 

Time Since Trt 0.002 0.762   

Mean RPD 

intercept 0.142 0.079   Stream Width (m) 0.045 < 0.001 *** 

Time - 0.005 0.227   (Stream Width)2 -0.001 < 0.001 *** 

Treatment - 0.077 < 0.001 *** Annual Air Temp - 0.010 0.034 * 

Time Since Trt 0.044 < 0.001 *** Bank Stabilization - 0.083 0.022 * 
  

        
    

    

Species-Size Class 

Diversity  

intercept 1.059 0.000 *** Snorkel Date 0.077 0.042 * 

Time 0.005 0.773   SWE (April 1) 0.173 0.051   

Treatment - 0.225 0.004 ** Summer Precip. 0.259 < 0.001 *** 

Time Since Trt 0.051 0.014 *         
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Table 9: Results for linear mixed models testing juvenile coho salmon (Oncorhynchus kisutch) response to large woody debris placement projects (Tables 4, 6, 7). Each restoration 

project followed a multiple before-after, control-impact study design (Stewart-Oaten et al. 1986; Tables 1-2). Asterisks indicate statistical significance [* P <0.05; ** P <0.01; *** 

P <0.001]. 

COHO Fixed Effects β Est. P-Value Covariates β Est. P-Value 

Fish Area 

intercept 8.654 0.009 ** Summer Air Temp 0.399 < 0.001 *** 

Time - 0.288 < 0.001 ***  SWE (April 1) 1.415 < 0.001 *** 

Treatment - 0.253 < 0.001 *** Snorkel Date - 0.726 0.001 ** 

Time Since Trt 0.274 < 0.001 *** Stream Width (m) - 0.224 < 0.001 *** 

        Dist. from Ocean (inverse) 21.32 0.125   
              

    

Biomass Area 

intercept 7.06 0.001 ** Summer Air Temp  - 1.784 0.002 ** 

Time - 0.201 0.909   SWE (April 1) - 5.575 0.006 ** 

Treatment - 0.032 0.973   Snorkel Date  2.582 < 0.001 *** 

Time Since Trt - 0.032 0.846   Coho Density (fish / 100 m2) 3.603 < 0.001 *** 

        Snork. Date * Summer Air Temp 2.599 0.004 ** 
              

    

Fish Length 

intercept 45.279 0.237   Summer Air Temp  6.205 < 0.001 *** 

Time 1.454 0.007 ** SWE (April 1) 18.889 0.096   

Treatment -0.613 0.235   Snorkel Date - 8.782 0.009 ** 

Time Since Trt 0.022 0.040 * Stream Temp during Survey -0.864 < 0.001 *** 

        Dist. from Ocean (inverse) 87.434 0.474   
              

    

Biomass Length 

intercept 79.667 0.018 * Summer Air Temp  - 26.793 0.022 * 

Time 4.012 0.847   SWE (April 1) - 63.37 0.003 ** 

Treatment 1.805 0.765   Snorkel Date  17.353 0.011 * 

Time Since Trt 0.295 0.868   Coho Density (fish / 100 m) 3.15 < 0.001 *** 

        Snork. Date * Summer Air Temp 26.948 0.036 * 
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Table 10: Results for linear mixed models testing juvenile Chinook salmon (Oncorhynchus tshawytscha) response to LWD placement restoration projects (Tables 4, 6, 7). Each 

restoration project followed a multiple before-after, control-impact study design (Stewart-Oaten et al. 1986; Tables 1-2). Asterisks indicate statistical significance  

[* P <0.05; ** P <0.01; *** P <0.001]. 

CHINOOK 
Fixed  

Effects 
β Est. P-Value 

Inland * 

 Fixed Effects 
β Est. P-Value Covariates β Est. P-Value 

Fish Area 

intercept 0.083 0.857   Inland 2.386 0.031 * Snorkel Date 0.040 0.340   

Time 0.176 0.486   Time * Inland 0.029 0.951   Summer Air Temp 0.093 0.005 ** 

Treatment 0.038 <0.001 *** Treatment * Inland 3.191 0.014 *         

Time Since Trt -0.013 <0.001 *** Time Since Trt * Inland - 0.330 0.440           
              

            

Biomass Area 

intercept - 0.390 0.210   Inland 1.504 0.112   Chinook Dens. (fish / 100 m2) 4.532 <0.001 *** 

Time 0.274 0.139   Time * Inland 0.795 0.360   Snorkel Date 0.118 0.423   

Treatment 0.766 0.075   Treatment * Inland 4.390 0.012 * Summer Air Temp 0.620 <0.001 *** 

Time Since Trt - 0.388 <0.001 *** Time Since Trt * Inland - 3.016 0.019 * Snorkel Date * Inland 4.116 <0.001 * 
              

            

Fish Length 

intercept 3.333 0.369   Inland 23.306 0.016 * Snorkel Date 0.663 0.341   

Time 1.555 0.560   Time * Inland - 0.838 0.865   Summer Air Temp 0.714 0.157   

Treatment - 0.028 0.735   Treatment * Inland 35.585 0.004 **         

Time Since Trt 0.009 0.626   Time Since Trt * Inland - 2.242 0.558           
              

            

Biomass Length 

intercept -7.324 0.087   Inland 20.288 0.149   Chinook Dens. (fish / 100 m) 4.674 <0.001 *** 

Time 4.799 0.044 * Time * Inland 10.618 0.431   Snorkel Date -0.895 0.742   

Treatment 6.456 0.424   Treatment * Inland 78.167 0.021 * Summer Air Temp 8.368 <0.001 *** 

Time Since Trt - 2.706 0.114   Time Since Trt * Inland - 47.803 0.030 * Snorkel Date * Inland 59.603 0.002 ** 
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Table 11: Results for linear mixed effects models testing juvenile Oncorhynchus mykiss (< 300 mm) response to large woody debris placement projects (Tables 4, 6, 7). Each 

restoration project followed a multiple before-after, control-impact study design (Stewart-Oaten et al. 1986; Tables 1-2). Asterisks indicate statistical significance  

[* P <0.05; ** P <0.01; *** P <0.001]. 

O. mykiss Fixed Effects β Est. P-Value Covariates β Est. P-Value 

Fish Area 

intercept 12.824 0.001 ** SWE (April 1) - 6.958 0.003 ** 

Time 0.866 0.123   Dams 5.584 0.291   

Treatment 1.473 0.458   Snorkel Date 0.904 0.257   

Time Since Trt - 0.601 0.204           
              

    

Biomass Area 

intercept 6.927 0.686   O. mykiss Dens. (fish / 100 m2) 5.126 < 0.001 *** 

Time - 1.785 0.589   Dams 114.866 0.002 ** 

Treatment - 25.512 0.220   Snorkel Date 16.672 0.034 * 

Time Since Trt 10.241 0.040 *         
              

    

Fish Length 

intercept 191.785 0.001 ** SWE (April 1) - 85.016 0.004 ** 

Time 10.092 0.086   Dams 42.095 0.564   

Treatment 10.608 0.681   Snorkel Date 19.420 0.056   

Time Since Trt - 1.735 0.776   Stream Width (inverse) - 131.784 0.329   
              

    

Biomass Length 

intercept 140.63 0.429   O. mykiss Dens. (fish / 100 m) 4.908 < 0.001 *** 

Time - 38.686 0.163   Dams 1193.828 0.001 ** 

Treatment - 296.909 0.126   Snorkel Date 145.580 0.052   

Time Since Trt 114.721 0.014 *         
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Figure 1: Map showing the approximate locations of large woody debris (LWD) restoration projects, monitored under protocol of Washington State's Salmon Recovery Funding 

Board (SRFB; WSRCO 2018) & Bonneville Power Administration's Columbia Habitat Monitoring Program (CHaMP; PNWAMP 2015 Bennet et al. 2015, Martin and Buelow 

2017). Each point shows the project-specific Map Code (Tables 1-2), the year of restoration, and the number of LWD structures placed over the length of stream (km) receiving 

actions. LSV = Little Skookum Valley, SCWB = Salmon Creek / Willapa Bay, ChC = Chico Creek, Lnew = Lower Newaukum, Lcol = Lower Columbia, Uwash = Upper 

Washougal, Dung = Dungeness, CCL = Cedar Creek / Lewis R., SkNook = Skookum / Nooksack, UTCMC = Upper Trout Creek / Middle Columbia R., PA3/PA14/PA24= 

Tucannon River Project Areas, ACCC = Asotin Creek- Charley Creek, ACNF = Asotin Creek- North Fork, ACSF = Asotin Creek- South Fork.  
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Figure 2: Map showing the approximate locations of large woody debris (LWD) restoration projects, monitored under protocol of Washington State's Salmon Recovery Funding 

Board (SRFB; WSRCO 2018) & Bonneville Power Administration's Columbia Habitat Monitoring Program (CHaMP; PNWAMP 2015, Martin and Buelow 2017). Each point 

shows the species analyses in which data from each project was used. Species analyses included: Coho (Oncorhynchus kisutch), Chinook (O. tshawytscha), O. mykiss, and 

Salmonid Species Size-Class Diversity (Table 6). LSV = Little Skookum Valley, SCWB = Salmon Creek / Willapa Bay, ChC = Chico Creek, Lnew = Lower Newaukum, Lcol = 

Lower Columbia, Uwash = Upper Washougal, Dung = Dungeness, CCL = Cedar Creek / Lewis R., SkNook = Skookum / Nooksack, UTCMC = Upper Trout Creek / Middle 

Columbia R., PA3/PA14/PA24= Tucannon River Project Areas.  
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Figure 3: Plots displaying the results for the statistically significant (p-value < 0.05) fixed effects from a series of linear mixed models testing the immediate and long-term effects 

of large woody debris placement in stream restoration. From top left to bottom right: Habitat Diversity Index; Mean Residual Pool Depth (m); Pool to Reach Ratio (m2 / m2); and 

Salmonid Species-Size Class Diversity. See Table 8 for full model results. 
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Figure 4: Plots displaying the results for the statistically significant (p-value < 0.05) fixed effects from a series of linear mixed models testing the immediate and long-term effects 

of large woody debris placement on juvenile coho salmon (Oncorhynchus kisutch). From top left to bottom right:  juvenile coho density (fish / 100 m2); juvenile coho density (fish 

/ 100 m); juvenile coho biomass (g / 100 m2); and juvenile coho biomass (g / 100 m). Models testing biomass include a covariate that controls for coho density, thus the results can 

be interpreted as the effects of large woody debris placement on the average weight of each fish. See Table 9 for full model results. 
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Figure 5: Plots displaying the results for the statistically significant (p-value < 0.05) fixed effects from a series of linear mixed models testing the immediate and long-term effects 

of large woody debris placement on juvenile Chinook salmon (Oncorhynchus tshawytscha) from both Inland (> 500 km from the ocean) and Coastal (< 200 km from the ocean) 

restoration locations. From top left to bottom right: juvenile Chinook density (fish / 100 m2); juvenile Chinook density (fish / 100 m); juvenile Chinook biomass (g / 100 m2); and 

juvenile Chinook biomass (g / 100 m). Models testing biomass include a covariate that controls for Chinook density, thus the results can be interpreted as the effects of large 

woody debris placement on the average weight of each fish. See Table 10 for full model results. 
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Figure 6: Plots displaying the results for the statistically significant (p-value < 0.05) fixed effects from a series of linear mixed models testing the immediate and long-term effects 

of large woody debris (LWD) placement on juvenile steelhead / rainbow trout (Oncorhynchus kisutch). From top left to bottom right: juvenile O. mykiss density (fish / 100 m2); 

juvenile O. mykiss density (fish / 100 m); juvenile O. mykiss biomass (g / 100 m2); and juvenile O. mykiss biomass (g / 100 m). Models testing biomass include a covariate that 

controls for O. mykiss density, thus the results can be interpreted as the effects of LWD placement on the average weight of each fish. See Table 11 for full results. 
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Appendix 1 
 

Weather stations used to determine values for Annual Regional Air Temperature (departure from normal), Annual Regional Precipitation 

(departure from normal), and Summer Air Temp (departure from normal) for each Project (NOAA 2019). 

Watershed 
Watershed  

Code 
Station Name Station ID 

Little  

Skookum Valley 
LSV Olympia Airport, WA WBAN: 24227 

Salmon Creek/  

Willapa Bay 
SCWB Astoria (Port of), OR WBAN: 94224 

Chico Creek ChC Tacoma Narrows Airport, WA  WBAN: 94274 

Lower  

Newaukum 
Lnew Renton Municipal Airport, WA WBAN: 94248 

Lower  

Columbia 
Lcol Astoria (Port of), OR WBAN: 94224 

Upper  

Washougal 
Uwash Vancouver Pearson Airport, WA  WBAN: 94298 

Dungeness Dung Port Angles Fairchild Internat'l Airport, WA WBAN: 94266 

Cedar Creek /  

Lewis 
CCL Vancouver Pearson Airport, WA WBAN: 94298 

Skookum / 

Nooksack 
SkNook Bellingham Airport, WA WBAN: 24217 

Upper Trout Creek /  

Middle Columbia R. 
UTCMC Vancouver Pearson Airport, WA  WBAN: 94298 

Tucannon  

River 

PA3 

Walla Walla Regional Airport, WA WBAN: 24160 PA14 

PA24 

Asotin  

Creek 

ACCC 

Lewiston Nez Perce Co Airport, ID  WBAN: 24149 ACNF 

ACSF 
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Appendix 2 

Potential covariates that were considered, but not used in any final linear mixed models used to evaluate physical and biological responses to large 

woody debris restoration projects. Time-varying covariates vary between monitoring events, time-invariant covariates do not change. Level refers 

to the subject level at which the covariate varies. Sources are listed for covariates whose values could not be obtained from the monitoring data or 

project planning documents. 
Covariate Type Level Definition Source 

Ave. Depth (m) of Ctrl 

Study Reach 
Time-

Varying 

Calendar 

Year 

The average depth of the control reach for any given year (m). This is was meant 

as a potential proxy for flow rate. 
  

Calendar Year 
Time-

Varying 

Calendar 

Year 
Calendar year of the year of monitoring.  Tested as both numeric and discrete.   

Chinook Spring / Fall 

Return 

Time-

Varying 

Calendar 

Year 

Adult Chinook salmon returns to the Bonneville Dam during the previous year's 

Fall and Spring runs.  
NW Fisheries Science 

Center (NWFSC 2019) 

Coho Prior Ocean 

Survival 

Time-

Varying 

Calendar 

Year 

Estimated smolt to adult survival rate of coho salmon in the Columbia River for 

the previous year. 
NW Fisheries Science 

Center (NWFSC 2019) 

Major River Distance 

(km) 

Time-

Invariant 
Project 

Major river (i.e., Columbia River) distance from ocean to tributary streams in 

which the project is located.  Does not include tributary stream distance. 
Nat’l Hydrography 

Dataset (USGS 2019) 

Stream Distance (km) 
Time-

Invariant 

Study 

Reach 

Small or tributary stream distance from the ocean or a major river (i.e., 

Columbia River) to the study reach. 
Nat’l Hydrography 

Dataset (USGS 2019) 

Target Species (i.e., 

"Coho as Target Spp", 

"Chinook as Target Spp", 

or "SH as Target Spp") 

Time-

Invariant 
Project 

Binary covariate, indicating whether the target of the restoration actions was 

either Chinook, coho, or steelhead, depending on which species' response was 

being testing in the response variable of the model.  For instance, if the response 

variable of the model was a measure of coho salmon production, the value of 

this covariate would be: 1 = Coho were target of restoration; 0 = Coho were not 

the target of restoration.  Target species were obtained from restoration planning 

documents.  This covariate was applied to both control and treatment study 

reaches of a project.  

  

Predator Biomass  

(g / 100 m; g / 100 m2); 

Competitor Biomass  

(g / 100 m; g / 100 m2) 

Time-

Varying 

Study 

Reach 

Biomass (g / 100 m; g / 100 m2) of Predators / Competitors of the species being 

tested in the response variable of the model.  Predators were defined as other 

salmonid fishes observed in the study reach estimated at > 200 mm in length.  

Competitors were defined as other salmonid fishes observed in the study reach 

estimated at < 200 mm in length.  

  

Annual / Winter / 

Summer Regional Air 

Temp. (Ave. of 

Observed Temp. (C)) 

Time-

Varying 
Project 

Average of the observed daily air temperature (C) for the water year of the 

survey. Annual temperatures were the average from Oct-Sept; Winter 

temperatures were the average from Oct-March; Summer temperatures were the 

average from April - Sept. Regional values for each Project was obtained from 

the nearest NOAA weather station (see App. 1 for weather station list).  

Nat’l Centers for  

Environmental 

Information  

(NOAA 2019) 
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Appendix 2 Continued 

Covariate Type Level Definition Source 

Winter / Summer 

Regional Precipitation  

(depart. from normal) 

Time-

Varying 
Project 

Sum of monthly departures from normal precipitation (in) of the water year of 

the survey. Winter values were from October - March; Summer values were 

from April - September. Values for each Project obtained from the nearest 

NOAA weather station (see Appendix 1 for weather station list) 

Nat’l Centers for  

Environmental 

Information  

(NOAA 2019) 

Winter Air 

Temperature  

(depart. from normal) 

Time-

Varying 
Project 

Average of regional monthly departures from normal air temperature (C) for the 

months of October-March of the previous and current survey year. Regional 

values for each Project obtained from the nearest NOAA weather station (see 

Appendix 1 for weather station list). 

Nat’l Centers for  

Environmental 

Information  

(NOAA 2019) 
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