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Abstract 

 

Hip proprioception has been tested on various populations, but there is limited research 

on healthy young adults. Primary assessments of proprioception for hip have been on joint 

position sense (JPS), but fewer studies have accomplished this in an unconstraint testing 

apparatus with angular repositioning tasks. Purpose of this study was to examine effects of active 

and passive repositioning on hip JPS in healthy young adults. It was hypothesized that active JPS 

error scores would be lower compared to passive JPS error scores. There was a total of 15 

subjects in the study. Digitization of anatomical landmarks were used to create a virtual 

coordinate system to estimate hip joint center. JPS protocol consisted of three different 

conditions, passive with hip trolley, active with hip trolley and active without hip trolley. All 

conditions tested three different target positions of 30°, 45° and 60° degrees of hip flexion. The 

results of absolute and constant JPS error scores revealed that there was a linear decrease in 

average absolute error score, which elicited a decrease in levels of muscular control during 

flexion and accuracy of reposition targets (p=.001). The reduction of error score in passive JPS 

tasks may have allowed for subjects to concentrate on target angles more, because of less 

demand for joint stabilization. Unfortunately, most research contradicts the stud . 

Future research should focus on possible variables that further contribute to hip proprioception. 

Particularly studying the effects of lower back stiffening and fascial interactions with hip muscle 

activation.   
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Literature Review  

Proprioception 

  

being stimulated, then providing a response using mechanisms that are regulators of postural 

equilibrium, joint stability, and peripheral muscle senses (Sherrington, 1906; Lin et al., 2006; 

Proske & Gandevia, 2012; Sahlberg, 2014). Proprioception was later transformed into a more 

location in space and velocity via afferent and efferent neural pathways (Magill & Anderson, 

2014).  This system, both in the unconscious and conscious, is important for all major functions 

of the body (Hurley & Newham, 1998; Riemann & Lephart, 2002), especially for control and 

awareness of movement, known as kinesthesia, which will be discussed later (DiZio, Lackner & 

Champney, 2014; Han et al., 2016; Lin et al., 2006). 

Somatosensory pathways account for afferent, efferent and central integration that aid 

with joint stability and coordinated movement (Riemann & Lephart, 2002; Sherrington, 1907). 

Somatosensory pathways are also involved in proprioception (Riemann & Lephart, 2002). 

Somatosensation comprises global sensation of the body via thermoreception, pain information 

from the periphery and mechanoreception (Riemann & Lephart, 2002); whereas proprioception 

focuses on afferent information from internal peripheral receptors that contribute to the 

maintenance of joint stability and appreciation of joint positions (Goble, 2016; Riemann & 

Lephart, 2002).  To provide further understanding, proprioceptive information begins as a 

stimulus. This stimulus is detected by afferent mechanoreceptors that then, depending on type of 

receptor, is sent as action potential to the spinal cord; within consideration of conscious 

information going to the cerebral cortex and unconscious information going to the cerebellum 



 

(Riemann & Lephart, 2002; Roijezon, Clark & Treleaven, 2015). The commands from 

the appropriate areas of motor output (somatosensory cortex), as efferent signals, are then sent 

back down the descending pathways to the proprioceptors for stimulus response (Riemann & 

Lephart, 2002; Roijezon, Clark & Treleaven, 2015). Proprioception is a small but important part 

of a continuous cycle of mechanoreceptor stimulation, neural transmission, merging of signals by 

the central nervous system (CNS), transmission of efferent signals, and muscle activation 

(Riemann & Lephart, 2002a; Lin et al., 2006; Kabbaligere, Lee & Layne, 2016). Altogether, a 

result with a responding force production that helps to provide timely and coordinated 

adjustments to environmental changes (Riemann & Lephart, 2002a; Lin et al., 2006; 

Kabbaligere, Lee & Layne, 2016).  

Theories behind how the feedback control processes work with afferent signals coming 

from the receptors have minor differences (Proske, 2005). One theory states the feedback system 

that motor output is centrally derived (Proske, 2005). While the other theory states a process 

called efference copying, or corollary discharge (Proske, 2005; Roijezon et al., 2015). Efference 

copy describes that the brain compares what is happening to what should be happening, or 

exafference and reafference comparisons creating a negative (Bridgeman, 2007; Donaldson, 

2000). However, most of the efference copy research is done on head and eye movement 

(Bridgeman, 2007; Roijezon et al., 2015), thus its regards to limb proprioception is limited.  

Efference copy tends to also connect with sense of effort (Bridgeman, 2007; Proske, 

2005, Prosk & Gandevia, 2012). With unknown origin of this mechanism, this remains with the 

conclusion that sense of effort does have a neurological mechanism, but whether its origin site is 

from afferent sensory feedback or central integration remains contested (Smirmaul, 2012; 

Proske, 2005; Proske & Gandevia, 2012). CNS driven sense of effort is explained with all motor 



 

commands originate in the motor cortex due to assumed predictions of movements the brain 

makes during sensory reception from afferent neurons (Smirmaul, 2012). With previous authors 

stating that the premotor cortex controls the primary somatosensory cortex via efference copy 

with no relation to sensory feedback (Simirmaul, 2012). The CNS theory of sense of effort is 

supported by results discussing that with the evidence of CNS commands being the dominate 

source for sense of effort brings further suggestions that sense of effort has its connections with 

kinesthesia (Allen & Proske, 2006; Proske & Gandevia, 2009). Although, kinesthesia is later 

discussed, its mechanisms from mechanoreceptors that are responsible for signal information that 

could be in contribution from  force sense (sense of effort) (Proske & Gandevia, 2009).Which 

could indicate that for sense of effort to be centrally driven, that efference copy is a part the 

primary feedback controls for restoration and maintenance of stability of joints via posture, 

passive movement, active movement and resistance to movement (Riemann & Lephart, 2002). 

Proprioceptive acuity is derived by the accurate sensory input of mechanisms to provide 

feedback from peripheral proprioceptors, vision and vestibular apparatus or balance (Hurley & 

Newham, 1998; Riemann & Lephart, 2002). In clinical research, proprioceptive acuity is the 

perception of external forces (Goble, 2016; Hurley & Newham, 1998). Some external factors that 

influence the proprioceptive acuity output are peripheral proprioceptive measurements such as 

limb preference, neural plasticity, age and muscle strength (Goble, 2016; Hurley & Newham, 

1998; Riemann & Lephart, 2002). In addition, motor control objectives are to maintain and 

restore joint stability and equilibrium (Riemann & Lephart, 2002). Peripheral receptors 

(musculotendinous and capsuloligamentous) can significantly impact motor control of a joint 

(Riemann & Lephart, 2002). Thus, exclusion of visual and vestibular apparatus is preferred 



 

during repositioning tasks based on past findings of increased error rate compared to peripheral 

proprioceptors (Fitzpatrick & McCloskey, 1994). For this reason, proprioceptive acuity is 

measured by joint position matching tasks without assistance from vision and vestibular 

apparatus (Goble, 2016). 

JPS and Kinesthesia 

 Joint position sense (JPS) and kinesthesia are subcategories of proprioception (Riemann 

& Lephart, 2002a; Han et. al, 2016; Hurley, Rees & Newham, 1998; Proske & Gandevia, 2012; 

Allen & Proske, 2006; Wright et. al, 2014). Both explain portions of movement sense and 

position sense; however, JPS and kinesthesia provide separate pieces of information for 

proprioception. That is promoted by angular excursion, stimulates joint and musculotendinous 

afferents that respond in more than one axis of rotation (Janwantanakul et. al, 2001). Kinesthesia 

and JPS are submodalities of proprioception with respect to less contemporary terms like 

posture, passive/active movement, and resistance to movement and muscular sense (Riemann & 

Lephart, 2002a; Sahlberg, 2014; Dover & Powers, 2003).  

Kinesthesia is defined as conscious awareness and detection of joint movement (Voight, 

1996; Sahlberg, 2014; Proske & Gandevia, 2012; Allen & Proske, 2006; Winter et. al, 2005) and 

is investigated by instruments of dynamometry and others like inclinometers (Voight, 1996; 

Suprak et. al 2016; Janwantanakul et. al, 2001; Dover & Powers, 2003). With these instruments, 

kinesthesia for example, is assessed then by measuring threshold to detection of passive motion 

(Lephart et al., 1997). JPS, on the other hand, is measured via reproduction of passive 

positioning and reproduction of active positioning (Lephart et al., 1997; ). These are tests convey 

proprioceptive acuity and studies have specifically described findings of passive or active motion 



 

and in closed or open chain kinetic chain protocols in effects to JPS (Dover & Powers, 2003; 

Rogol, Ernst, Perrin, 1998).  

JPS is described as the ability to perceive or sense a segment position relative to other 

parts of the body and in space via information relayed to the CNS peripheral mechanoreceptors 

(Dover & Powers, 2003; Suprak et. al, 2006; Sahlberg, 2014). JPS is often tested as an external 

task of position replication of a joint to measure proprioceptive accuracy (Dover & Powers, 

2003; Suprak et. al, 2006; Sahlberg, 2014). Specifically, using absolute, constant and or variable 

error values from reproduction from a presented position (Voight et. al, 1996; Rogol, Ernst & 

Perrin, 1998; Janwantanakul et. al, 2001; Suprak et. al, 2006; Suprak et. al, 2007; Suprak et. al, 

2016; Dover & Powers, 2003; Lin et. al, 2006). JPS error values are obtained using the 

differences of a target position and the attempted repositioning values (Pickard et al., 2003). In 

comparison, kinesthesia requires similar methods for thresholds of detection of passive motion 

(Proske & Gandevia, 2009). Both kinesthesia and JPS are ultimately equal in validity and 

reliability for use of interpreting proprioception.   

There are two categories of mechanoreceptors supporting proprioception, 

musculotendinous and capsuloligamentous. Musculotendinous receptors, specifically, muscle 

spindles and Golgi Tendon Organs (GTOs), are located in the muscle and tendons, respectively 

(Suprak et al., 2006 & 2007; Voight et al., 1996).  Capsuloligamentous receptors consist of 

Ruffini endings, Pacinian corpuscles, Golgi tendon-like endings and free nerve endings 

(Riemann & Lephart, 2002; Magill & Anderson, 2014), (with most research on Ruffini endings 

and Pacinian corpuscles). These receptors are mainly located in the joint capsule, ligaments, 

tendons and skin. Both capsuloligamentous and musculotendinous mechanoreceptors provide 

specific feedback regarding changes and adaptations to motions with respect to a given stimulus 



 

(Riemann & Lephart, 2002; DiZio, Lackner & Champney, 2014; Suprak et. al, 2006 & 2007; 

Voight et. al, 1996; Janwantanakul et. al, 2001; Dover & Powers, 2003; Lin et. al, 2006). 

Together, these mechanoreceptors are fundamental components of proprioception, and will be 

discussed more fully in the following sections.  

Mechanoreceptors: Capsuloligamentous 

Capsuloligamentous receptors (Ruffini endings, Pacinian corpuscles and Golgi tendon- 

like organs) are housed within the capsules and ligaments of synovial joints. The structures of 

Ruffini endings and Pacinian corpuscles are both classified as skin receptors (Dover & Powers, 

2003). They are two of four known skin mechanoreceptors, omitting Meissner corpuscles, and 

Merkel endings (Proske & Gandevia, 2012; Voight et. al, 1996) due to Ruffini endings and 

Pacinian corpuscles being the most prevalent in proprioception research. Both Ruffini endings 

and Pacinian corpuscles have been found within subdermal joint areas such as the knee and 

shoulder (Macefield, 2005). In addition, Golgi tendon-like organs are also located in these tissues 

and have similar behavior as Ruffini endings (Riemann & Lephart, 2002; Voight et. al, 1996). 

Thus, the Golgi tendon-like organs will be further discussed with findings of Ruffini endings.  

 Ruffini endings are classified as static receptors because of their low threshold and slow 

adaptation to stimuli, allowing them to discharge responses to a continuous stimulus (Dover & 

Powers, 2003; Lephart et. al, 1997). Slow adaptation is also seen in Golgi tendon-like organs 

(Voight et. al, 1996). Ruffini endings are activated by tissue stretch, slack and folding due to 

joint rotation (Proske & Gandevia, 2012; Voight et. al, 1996). Thus, these receptors are thought 

to facilitate joint sensations and position changes, in other words, joint position sense and 

kinesthesia (Lephart et. al, 1997). Previous research findings indicate that these receptors 

primarily respond to limits of angular excursion, during active and passive ROM (Macefield, 



 

or could suggest that Ruffini endings, as well as 

other slow adapting capsuloligamentous receptors (Golgi tendon-like organs), are the most 

involved with joint position sense and kinesthesia in end ranges of motion than was assumed 

before based on previous findings (Collins et al., 2005; Macefield, 2005; Proske & Gandevia, 

2012). Collins and colleagues illustrated that during stretch and vibration trials of MCP, elbow 

and knee joints, an increase of perceived knee flexion with vibration and stretch than vibration 

alone. Thus, the stimulus that targeted musculotendinous receptors, vibration, was not as 

sensitive with joint position than in combination with capsuloligamentous receptors (Collins et 

al., 2005).   

 Pacinian corpuscles are receptors that input information within the joint capsule and 

synovial membrane (fibrosum layer) (Macefield, 2005). Pacinian corpuscles also have a slightly 

different filtering characteristic than Ruffini endings; allowing brisk mechanical transients to 

generate a stimulus, due t

Gandevia, 2012). These receptors are stimulated by both compression stimuli and stretch (Voight 

et. al, 1996; Macefield, 2005; Proske & Gandevia, 2012). Sensations such as compression and 

stretching in tissues about a joint are detected when the joint is passively or actively moving 

about the axis of rotation, being most active at the end ranges of motion (Voight et. al, 1996). 

Previous research has considered the end ranges of motion to be the height of sensitivity when 

parent tissue is most deformed (Amiri-Khorasani et. al, 2011; Proske & Gandevia, 2012; Voight 

et. al, 1996).  

Mechanoreceptors: Musculotendinous 

         Musculotendinous mechanoreceptors (i.e. muscle spindle, GTOs) are considered main 

components of detection in muscular deformation, especially in midranges of motion, where the 



 

capsuloligamentous receptors are least sensitive (Janwantankul et al., 2001; Suprak et al., 2005; 

Proske & Gandevia, 2012), though there is controversy with what mechanoreceptors are the 

greatest contributors (Collins et al., 2005). Nevertheless, there has been evidence of these 

mechanoreceptors being the primary informers of proprioceptive information with regards to 

joint position sense and kinesthesia (DiZio, Lackner & Champney, 2014; Hurley & Newham, 

1998; Sahlberg, 2014; Sherrington, 1907; Suprak et al., 2007). This evidence includes acuity, 

feedback and joint stability characteristics of musculotendinous mechanoreceptors (Hurley & 

Newham, 1998; Riemann & Lephart, 2002; Macefield, 2005; Sahlberg, 2014). Particularly being 

dynamic contributors in detections of forces conducted by muscles and tendons (Hurley & 

Newham, 1998; Riemann & Lephart, 2002; Macefield, 2005; Sahlberg, 2014). 

Muscle spindles, owing to their location in the muscle, identify muscle lengthening along 

with the changes in length of the muscle fibers with regards to velocity of the contraction or 

stretch taking place (Hurley & Newham, 1998; Magill & Anderson, 2014; Voight et al., 1996, 

DiZio, Lackner & Champney, 2014; Suprak et al., 2007; Proske & Gandevia, 2012). Within the 

muscle spindle comprises a fiber capsule; intrafusal fibers and stretch receptors (Macefield, 

2005). These intrafusal fibers have adaptive properties and are individually controlled by the 

CNS (Hospod, 2007). By association, CNS has adaptive properties in regards to the muscle 

spindle (Hospod, 2007). Together, stretch receptors are housed by the intrafusal fibers as they 

detect movement signaled by the velocity component of the response to length change (Proske & 

Gandevia, 2009 & 2012). This allows for detection of heaviness and force with high threshold 

response, with exception of the inability to detect force generation of neighboring muscles 

(Macefield, 2005). Furthermore, intrafusal fibers are arranged in parallel to the main force-

generating extrafusal muscle fibers, which disables them from encoding forces generated by 



 

contraction of the muscle, but sensitive to stretch and lengthening of the fibers (Macefield, 

2005). Even so, proprioceptive input from muscle spindles has cumulative sensory information 

via population coding, by intrafusal components of primary stretch receptors (DiZio, Lackner & 

Champney, 2014; Proske & Gandevia, 2009; Macefield, 2005).  

GTOs, located in the musculotendinous junction, detect changes in tension and force 

being placed on the tendons, whether it be active or passive (Magill & Anderson, 2014; 

Macefield, 2005; Voight, 1996, Riemann & Lephart, 2002; Suprak et al., 2007; Proske & 

Gandevia, 2012; Gregory et al., 2002; Jami, 1992). When tension is developed in the tendon, 

slack is taken out of the collagen fibers, which causes them to apply pressure on active 1b 

afferent fibers of the GTO (Voight, 1996; Riemann & Lephart, 2002; Suprak et al., 2007; 

Macefield, 2005; Jami, 1992). GTOs are also described to have functions for sensations of 

heaviness and force and as limit detectors with high threshold response, as do muscle spindles 

(Proske & Gandevia, 2012; Voight et al., 1996). These characteristics could then relate to 

sensitivity being enhanced at mid-ranges of motion as described in the fingers (Proske & 

Gandevia, 2012), due to interphalangeal joints being composed of tendon, collagen and fascia 

(Macefield, 2005). 

GTO contribution to position sense has also been demonstrated in recent literature that 

examines responses to muscle activation and stretching (Gregory et al., 2002; Magill & 

Anderson, 2014; Macefield, 2005; Voight, 1996, Riemann & Lephart, 2002; Suprak et al., 2007; 

Proske & Gandevia, 2012). With eccentric forces, GTOs have been observed maintaining and 

even increasing sensitivity in the ability to signal muscle tension (Gregory et al., 2002), even 

after fatiguing protocols (Proske & Gandevia, 2012; Gregory et. al, 2002). This observation 

indicates that sensitivity of GTOs within musculotendinous junction can provide to other 



 

receptors (e.g. motor neurons) with summation of forces that are then applied (Macefield, 2005; 

Riemann & Lephart, 2002; Riemann & Lephart, 2009) and remains consistent and unimpaired by 

fatigue and muscle fiber damage during activity (Walsh et al., 2004). This ability of 

counteracting fatigue would be critical for injury prevention and contribution to proprioceptive 

acuity (Riemann & Lephart, 2009).  

It has b

position sense protocols (Winter et al., 2005; Walsh et al., 2004; Blum et al., 2017). Studies 

suggest that when a limb is unsupported during JPS protocols, the force of gravity allows for a 

larger signal from musculotendinous mechanoreceptors (Jami, 1992; Gregory et al., 2002). There 

has also been continued discussion about a force-effort relationship of muscles due to the 

suggestion of GTOs being primary advocates for sense of effort (Walsh et al., 2004; Gregory et 

al., 2002; Proske & Gandevia, 2009; Jami, 1992). Sense of effort is also a tactic that the body 

uses to maintain a position, especially in an example of accomplishing a repositioning task after 

as an increase of sensitivity to muscle tension that has been previously discussed (Gregory et al., 

2002, Blum et al., 2017; Jami, 1992). A sense of effort relies mainly on the signal strength being 

sent to afferent motor neurons (Winter et al., 2005; Gregory et al., 2002), which is a similar 

signal outcome from muscle tension that is being detected at the musculotendinous junction 

(Gregory et al., 2002). Thus, studies suggest that GTOs specifically provide this type of 

information of movement sensation. However, the sense of effort mechanism and its relations to 

joint position sense requires further investigations to understand the roles of mechanoreceptors 

and central mechanisms (Macefield, 2005). 



 

Motor Neurons 

 Three types of known motor neurons innervate muscle; with the larger in diameter type 

Macefield, 2005; Proske & Gandevia, 2012). Specifically, -motor neurons innervate extrafusal 

fibers, -motor neurons innervate intrafusal fibers of the muscle spindles and -motor neurons 

Gandevia, 2012). The -motor neurons are in direct interaction with the skeletal muscle due to 

the innervation of the extrafusal component of the muscle, which also provides much of the force 

generated (Magill & Anderson, 2014; Proske, 1997; Proske & Gandevia, 2012; Lephart et. al, 

1997).  -neurons enable an afferent feedback system to the CNS, providing a 

 motor neurons), based on the nuclear bag 

model (Macefield, 2005; Magill & Anderson, 2014; Proske, 1997; Proske & Gandevia, 2012). 

This model can explain why  motor neurons allow for spindle adjustment of sensitivity, 

supporting the  motor neurons by its respective innervations at the polar region of the nuclear 

bags (Lephart et. al, 1997; Proske & Gandevia, 2012). Findings suggest that  and  motor 

neurons assist with muscle spindles sensitivity, through a phenomenon called - coactivation 

(Hospod, 2007, Suprak et. al, 2007).  motor neurons are in a linkage 

in coordination of the extrafusal as well as intrafusal (muscle spindle) components (Suprak et. al, 

2007; Macefield, 2005, Michelson & Hutchins, 1995).  

Although studies report the greatest acuity occur at end ranges in constrained models 

(Han et. al, 2016; Janwantanakul et. al, 2001), there is disagreement with studies using 

unconstrained models (Amiri-Khorasani et al., 2011; Arvin et. al, 2015; Ishii et. al, 1999; Onishi 

et. al, 2017; Suprak et. al, 2006; Suprak et. al, 2007; Suprak et. al, 2011; Pickard, 2003; Stillman 



 

et. al, 1998). In depth, when a joint is unconstrainted, the limb must be supported against gravity, 

which requires the muscle spindles to remain sensitive via muscle activation (Suprak et al., 

2007). Research further supports unconstrainted model so that the intrafusal muscle spindle 

sensitivity is maintained throughout an imposed stretch or force generation even in shortening 

(Suprak et. al, 2006; Suprak et. al, 2007; Hospod, 2007; Macefield, 2005; Durbaba et. al, 2001 & 

2003).  These previous studies display that muscle spindles activity often correlate with muscular 

activity via motor neuron coactivation (Hospod, 2007).   

Structures of the hip  

Considered to be a true ball-and-socket joint, the hip allows all three planes of rotation 

and translation (Jaffar, Abass, & Ismael, 2006; Powers, 2010; Retchford et al., 2013; Schuenke 

et. al, 2014). The acetabulum of the hip and femoral head is incased in a complexity of structures 

varying from the labrum cartilage, ligaments, muscles (Torry et al., 2006) and even nerve 

innervations (Kim & Azuma, 1995; Alzaharani et al., 2014; Haversath et al., 2013; Schuenke, 

Schulte, Schumacher; 2014). The bony anatomy of the hip has contributions from three regions 

of the pelvis (ilium, ischium and pubis) and the femur (femoral head) (Torry, et al., 2006); which 

then provide attachment sites for each muscle involved in hip actions.  

 Previous studies have discussed a multitude of muscles that are in proximity of the hip 

joint and or are involved in hip movement, stability and or functionality. The muscles listed are: 

Gluteus medius, gluteus minimus, gluteus maximus, adductor magnus, adductor longus, adductor 

brevis, pectineus, iliacus, psoas, quadratus femoris, gemelli (inferior and superior), piriformis, 

rectus femoris, semimembranosus, semitendinosus, biceps femoris, gracilis, sartorius, obturator 

internus and externus, and tensor fasciae latae (TFL) (Retchford et al., 2013; Torry et al., 2006; 

Wickiewicz et al., 1986, Schuenke, Schulte, Schumacher; 2014; Soderberg & Andrews, 1986). 



 

Most muscles mentioned have ultimately been conclusive about their roles in hip joint stability, 

movement and functionality (Schuenke, Schulte, Schumacher; 2014; Soderberg & Andrews, 

1986). Fundamental studies have also categorized them by motions that each muscle participates 

in (Soderberg & Andrews, 1986) along with mechanical moments, or lines of action (Soderberg 

& Andrews, 1986; Wickiewicz et al., 1986). Specifically, quadratus femoris, obturator internus, 

externus and gemilli are considered rotator cuff muscles of the hip (Retchford et al., 2013). Yet, 

there are still specific muscles that have been less definitive than most and primarily assumed 

functions by pinnation and cross-sectional area (CSA) (Torry et al., 2006; Wickiewicz et al., 

1986, 1990). These muscles are piriformis, pectineus and iliopsoas (Giphart et al., 2017). 

Although textbooks describe these muscles to have specific roles (Schuenke, Schulte, 

Schumacher; 2014), recent studies have investigated these muscles in depth, in attempts to 

understand the behavior of these muscles in multiple scenarios (Giphart et al., 2017; Leung et al., 

2014). Giphart and colleagues (2017) revealed a specific role of the pectineus being active 

during hip flexion (Giphart et al., 2017). The pectineus has been noted as a primary muscle for 

hip external rotation (Schuenke, Schulte, Schumacher; 2014). Hypertrophy of the piriformis in a 

study by Leung and colleagues (2014) demonstrated that resistance of internal rotation and 

increase CSA of the piriformis after neuromuscular training was completed.  

The hip also contains major ligaments and tendons that provide passive stability, dynamic 

stability and dynamic motion (Kadaba et al., 1990; Retchford et al., 2013). Although not all 

structures are mentioned in this review (Torry et al., 2006), the structures that seem to be 

involved in hip proprioception are the ligamentum teres or capitis femoris (LCF), transverse 

acetabular ligament (TAL), acetabular labrum and other nerve innervations (Kilicarslan et al., 

2015; Birnbaum et al., 1997; Leunig et al., 2000; Retchford et al., 2013). In fact, the LCF is a 



 

part of growth and development of the femoral head due to vascularization in prepubescent ages 

(Sarban et. al, 2007; Bardakos & Villar, 2009).  The labrum seems to be designed to provide a 

provide a similar purpose as the menisci to the knee and is comprised of various collagen types 

(Mason, 2001).  

Previous studies have examined TAL, LCF and labrum for evidence of mechanoreceptor 

existence (Desteli et al., 2014; Gerhart et al., 2012; Kilicarslan et al., 2015; Retchford et al., 

2013). Although minimal clear evidence of somatosensory afferent nerve endings are found 

(Dehao et al., 2015; Murtali et al., 2004), cadaveric and surgical research revealed hip samples to 

have significant amounts of type IVa nerve endings, or free nerve endings (Sarban et. al, 2007; 

Bardakos & Villar, 2009; Kapetanakis et al., 2017; Kilicarslan et al., 2015; Leunig et al., 2000; 

Retchford et al., 2013; Voight et. al, 1996). With suggestion that these structures have a 

proprioceptive role in the hip via nociception (Gerhardt et al., 2012; Kapetanakis et al., 2017; 

Moraes et al., 2011).These studies have also confirmed other mechanoreceptors similar to 

Ruffini endings and GTOs in the hip capsule (Gerhardt et al., 2012; Kapetanakis et al., 2017; 

Moraes et al., 2011). 

Free nerve endings (FNE), although not discussed much in proprioceptive literature, are 

displayed as pain receptors for a joint, known as nociception (Sarban et. al, 2007; Bardakos & 

Villar, 2009; Kilicarslan et al., 2015; Retchford et al., 2013). FNE have also been located in the 

same tissues as other mechanoreceptors (Kim & Azuma, 1995; Lewis et al., 2006; Riemann & 

Lephart, 2002). Thus, these receptors could play a role in sensory functions in the hip by using 

pain as a detection for unsafe ranges of motion. Voight et. al (1996) suggested that FNE are 

aroused by forceful rotation stimulus, which can confirm Kilicarslan and colleagues (2015) 



 

findings of A-delta mechanoreceptors and group C polymodal nerve endings within the 

acetabular labrum and classifying them as sensory fibers. These pain receptors would help alert 

and prevent the hip from mechanical tissue damage (Kilicarslan et al., 2015; Leunig et al., 2000). 

FNE in the acetabular labrum allow for the joint capsule to detect femoral head translation and 

extreme ranges of motion to possibly enhance proprioception and joint stability (Kapetanakis et 

al., 2017; Retchford et al., 2013).  

FNE in other components of the joint capsule enhance the proprioceptive ability of 

mechanical properties such as the LCF during dynamic tensile loads, much like the ACL for the 

knee  authors postulate that mechanical abilities of the 

LCF play more of a role with passive stabilization and that the ligament is most stressed during 

external rotation of the hip (Retchford et al., 2013). Nerve innervations found in the TAL, LCF 

and labrum also suggest that these structures allow for some somatosensory awareness 

(Birnbaum et al., 1997). Nevertheless, the role of the LCF, TAL and labrum have promising 

connections of nociception and proprioception with consistent findings of FNE and nerve 

bundles within the hip (Bardakos & Villar, 2009; Kilicarslan et al., 2015; Leunig et al., 2000; 

Sarban et. al, 2007). 

Shoulder versus Hip 

In comparison to a modified ball-and-socket joint, the shoulder, the hip allows the same 

degrees of freedom as the shoulder. However, due to the more unstable nature of the interactions 

of the glenoid labrum, ligamentous support, and humerus, there is more ROM at the shoulder 

than there is at the hip (Jaffar, Abass, Ismael, 2006; Schuenke et. al, 2014; Bardakos & Villar, 

2009). Moreover, the hip is more stable due to its naturally deeper socket fitting with the 

acetabulum and femoral head, which restricts extreme ROM (Jaffar, Abass, Ismael, 2006; 



 

Mason, 2001; Schuenke et. al, 2014). The similarities between the shoulder and the hip were 

further examined by Jaffar and colleagues (2006), who compared structural and functional 

properties of cadaveric bones, ligaments and muscles that make up these two joints. Their 

findings provided more evidence of differences in between shoulder and hip, but also 

accentuated the similarities of both joints, by an observation of the hip allowing for greater 

tension and forces applied to the structure before subluxation or complete dislocation (Jaffar, 

Abass, Ismael, 2006). With comparison to the shoulder, and same degrees of freedom, the hip 

has greater bony constraints for purposes that seem to be for prevention of subluxation and 

hypermobility using balance and stabilization (Arvin et al., 2015; Jaffar, Abass & Ismael, 2005; 

Bejaminse et al., 2009; Ishii et al., 1999; Pickard et al., 2003; Retchford et al., 2013; Wingert et 

al., 2014).  

In addition to stabilization, intracapsular and atmospheric pressure changes encourage the 

shoulder to have greater stabilization from its joint capsule (Kumar & Balasubramaniam, 1985; 

Retchford et al., 2013). This is observed as decreased occurrences of subluxation when capsular 

pressure was released (Kumar & Balasubramaniam, 1985). This effect of released pressure was 

not seen with the hip (Wingstrand, Wingstrand & Krantz, 1990). With the hip having greater 

joint contact surface of the labrum than the shoulder, allows for greater joint stability during 

traction even without capsule pressure and labrum support (Jaffar, Abass & Ismael, 2005; 

Wingstrand, Wingstrand & Krantz, 1990).  

Deep muscles of the hip, such as obturator internus and externus, quadratus femoris and 

the gemelli, are what can be considered rotator cuff muscles of the hip (Retchford et al., 2013). 

The shoulder also has this muscular structure, naming rotator cuff muscles, teres minor, 

infraspinatus, supraspinatus, and subscapularis (Jaffar, Abass, Ismael, 2005). There is evidence 



 

of deep hip muscles providing similar type of stability that is seen from rotator cuff muscles in 

the shoulder. The functionality of the deep hip muscles is the same as the rotator cuff muscles of 

the shoulder, but design, cross sectional area (CSA), moment arms and pinnation has some 

differences (Neumann, 2010) that suggest that the rotator cuff muscles of the hip play a role in 

hip joint stiffness, passive stability and proprioception (Retchford et al., 2013; Torry, 2006).  

Other studies that examine knee mechanics find that weak hip muscles can cause 

instability in the knee, which would allow for valgus motions to occur; increasing chances of 

injury (Benjaminse et al., 2009; Boling et al., 2009). This topic of knee injury with weak hip 

muscles has been researched extensively (Homan et al., 2013; Powers, 2010; ), leading into a 

conclusion that because of the increased demand for stability in the hip is simply the nature of 

these muscles.  Therefore, more investigation of proprioceptive behaviors of the hip are required 

for a complete comparison of the shoulder and hip.   

Specific populations on proprioception and JPS  

 Investigational topics of the hip have been listed as nerve and mechanoreceptor 

innervation, ligament and structural characteristics. Tested populations include arthritic patients, 

athletes of novice, amateur, and elite levels, hip arthroplasty patients, older adults (Adamo, 2007; 

Arvin et al, 2015; Benjaminse et al., 2009; Lin et al., 2006; Moraes et al., 2011; Onishi et al., 

2017; Wright et al., 2014; Pickard et al. 2003). For instance, athletes have been seen to display 

enhanced hip joint position sense compared to those of novice skill level or sedentary individuals 

(Lin et. al, 2006). The repositioning error value for JPS was dependent on group skill level, 

relating experience to decreased joint position sense error (Lin et al., 2006, Muaidi et al., 2008). 

There have also been studies that have applied proprioceptive and balance exercises to see if 

there are changes in joint position sense (David et al., 2019; Daneshjoo et al., 2012; Diracoglu et 



 

al., 2005). David and colleagues (2019) observed small improvements in absolute error just with 

foam rolling immediately before. These observations have been explained by neuropathological 

adaptations and enhancement of sensation for neuromuscular coordination from sport specific 

skills learned over time (Bressel et al., 2007; David et al., 2019; Lin et al., 2006; Nagai et al., 

2013).  

For special populations, common studies tend to be with arthroplasty and arthritic 

patients (Ishii et al., 1999; Onishi et al., 2007; Moraes et al., 2011). Subjects with unhealthy hips 

have been reported to not have major differences of JPS ability, but comparing to similar studies, 

there are losses in proprioception and mechanoreceptor composition with age (Kaplan et al., 

1985; Onishi et al., 2017; Wingert et al., 2014). This decline in JPS and kinesthesia has been 

exhibited in both active and passive movements, focused within planes of rotation for the hip 

joint (Goble, 2010; Hurley, Rees & Newham, 1998; Onishi et al., 2017). This finding could 

indicate that injury may not fully impede on JPS acuity, but age might. However, there remains 

disagreement of a possible age-related decrease in proprioception (Ishii et al., 1999; Pickard et 

al., 2003).  

Benjaminse and colleagues (2009) remains to have the most current study of healthy hip 

JPS. Healthy individual data would provide further understanding of proprioceptive and 

neuromuscular relationships in the body as to how the brain communicates with joints. It was 

warranted that to continue doing active JPS to investigate more of a possible standardization for 

what error scores can be used in a clinical setting (Benjaminse et al., 2009). Specifically, aiding 

with progress data for rehabilitation, providing that the repeatability of the JPS and error scores 

are valid. With JPS being an accessible application on a cell phone (Edwards et al., 2016), the 



 

use of the error scores per person may help with neuromuscular and proprioceptive decline in 

age and possible connections with athletic performance (Lin et al., 2006; Lin et al., 2009). 

A possible cause to this controversy in research could be the inconsistency of 

methodology used for angular repositioning measurements (Goble, 2010; Elangovan, Herrmann, 

& Konczak, 2014; Han et al., 2016). A lack of regulation of how JPS is measured can create 

differences in findings among literature. There are previous validation studies for JPS (Arvin et 

al. 2015; Benjaminse et al., 2009; Edwards et al., 2016; Nussbaumer et al., 2010), but there still 

no true conclusion of proper methodology. In addition, choices in equipment used to measure 

JPS are not congruent, with variations of equipment from goniometry (Kaplan et al., 1985; 

Nussbaumer et al., 2010; Onishi et al., 2017) and dynamometry (Benjaminse et al., 2009) to 

motion capture systems (Amiri-Khorasani, Osman & Yusof, 2011; Arvin et al., 2015). 

Nevertheless, most methods are currently categorized as constrained models for measurement of 

JPS. A constrained model can be defined as any apparatus that causes resistance of motion or 

encasement of the target limb (Suprak et al., 2006). A constrained model also limits findings, 

understanding that the restriction from the apparatuses used manipulates how a subject detects 

join position from tactile cues (Suprak et al., 2011) and increased muscular effort (Voight et al., 

1996; Suprak et al., 2006). These methods of constrained versus unconstrained could explain the 

increase in sensitivity/acuity of the joint because of interpreted motion by the joint as an external 

load (Suprak et. al, 2007) or from end ranges of motion (Janwantanakul et al., 2001). This further 

promotes methods on measuring acuity during active and passive using an unconstrained model 

(Voight et. al, 1996; Rogol, Ernst & Perrin, 1998; Suprak et. al, 2006; Suprak et. al, 2007; 

Suprak et. al, 2016. There are previous studies that evaluation ROM and JPS using unconstrained 

apparatuses (Edwards et al., 2016; Suprak et al., 2006; Suprak et al., 2007; Pickard et al., 2003), 



 

and find different results, but very few are focused on the hip joint. Therefore, the purpose of this 

study was to examine the effects of active and passive positioning of the hip on averages of 

absolute error and variable error on healthy young adults. It was hypothesized that there will be a 

decrease in absolute error and variable error in active positioning compared to passive. It was 

also hypothesized that an active unconstrained assessment would have a reduction of 

repositioning error than constrained JPS assessment. 
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Introduction 

In many sports, hip injuries are commonly observed among athletes of all ages (Kerbel et al., 

2018). High impact sports such as soccer and football, require the body to engage in rapid 

acceleration and deceleration along with cutting and quick changes in direction (Prather, 2014). 

In athletes of all ages, the most common hip injuries in recent years have been femoroacetabular 

impingement (FAI) (5-6%) and snapping hip syndrome (5-10%) (Prather, 2014; Keogh & Batt, 

2008). The significant amount of force upon the hip joint from activities over time could lead to 

bone degradation and decreased performance and could eventually progress to joint disorders 

such as osteoarthritis (Keogh & Batt, 2008).  For rehabilitation, clinicians often recommend 

intervention that focuses on proprioception and maintenance of range of motion (ROM) in 

attempts to alleviate the symptoms of joint disorders (Kapetanakis et al., 2017; Lin et al., 2009). 

Proprioception has transformed into a contemporary definition of awareness and sensation of 

joint and segment position, movement direction, and movement speed via afferent neural 

pathways (Magill & Anderson, 2014; Riemann & Lephart, 2002a; Lin et al., 2006; Kabbaligere, 

Lee & Layne, 2016). Afferent signals provide feedback to the brain needed to respond to 

environmental changes with force production that aids with timely and coordinated adjustments 

(Riemann & Lephart, 2002a; Lin et al., 2006; Kabbaligere, Lee & Layne, 2016). These signals 

originate from specialized neural transducers (i.e., receptors) called mechanoreceptors, or 

proprioceptors, that convert stimuli to action potentials for transmission in the central nervous 

system (CNS) (Roijezon, Clark & Treleaven, 2014). Categories of proprioception are divided 

into several submodalities. Kinesthesia, or sense of motion and direction of motion; joint 

position sense (JPS), ability to detect limb position in space; and sense of effort or tension 



 

(Dover & Powers, 2003). JPS is the most common for proprioceptive measurement (Dover & 

Powers, 2003; Han et. al, 2016; Proske & Gandevia, 2012; Allen & Proske, 2006). This 

breakdown of categories has provided researches to understand proprioception and its 

application to rehabilitation and injury prevention.  

Research on assessment of hip proprioception has increased over the years, and results of 

these studies have which suggested that free nerve endings (FNE) may be involved in 

proprioception, along with mechanoreceptors in the hip (Sarban et. al, 2007; Bardakos & Villar, 

2009; Kilicarslan et al., 2015; Retchford et al., 2013) even after arthroscopy (Kapetanakis et al., 

2017). Free nerve endings (FNE) have been known to register pain or nociception (Sarban et. al, 

2007; Bardakos & Villar, 2009; Kilicarslan et al., 2015; Retchford et al., 2013). Previous 

research from Voight and colleagues (1996) suggests that FNE are and stimulated by forceful 

rotation at the hip, with the feedback perhaps arising from densely innervated ligamentum teres 

(LCF), transverse acetabular ligament (TAL) and acetabular labrum (Birnbaum et al., 1997; 

Kilicarslan et al., 2015; Leunig et al., 2000; Retchford et al., 2013). Thus, FNE could be part of 

position sense abilities in the hip. For example, greatest mechanical stress of the hip is during 

external rotation (Retchfor et al., 2013). Which LCF would play a role in passive stabilization 

(Retchford et al., 2013).  

Possible causes to controversy in research on JPS could be related to inconsistencies in 

methodology during angular repositioning measurements (Goble, 2010; Dover & Powers, 2003; 

Elangovan, Herrmann, & Konczak, 2014; Han et al., 2016). Although there are validation studies 

(Arvin et al. 2015; Benjaminse et al., 2009; Edwards et al., 2016), lack of consistency in 

measurement of JPS could be leading to differences in findings among literature. For instance, a 

previous study showed results that favored active position sense testing over passive position 



 

sense (Erickson & Karduna, 2012; Hung & Darling, 2012; Friement et al., 2006). It has been 

explained in previous studies that passive JPS tasks are often used rehabilitation settings 

(Erickson & Karduna, 2012; Kwon et al., 2013; Lephart et al., 1997). However, previous 

research that has compared active and passive JPS often favor active over passive JPS (Erickson 

& Karduna, 2012; Hung & Darling, 2012; Friement et al., 2006). These studies discuss that the 

reduction of error in reproducing positions can be explained by heightened muscle activation 

when subjects are required to move their own limb rather than being assisted (Erickson & 

Karduna, 2012). Currently, common procedure for JPS data collections have the subject be 

attached to the equipment that quantifies the origin and reproduced positions that then provide a 

value that represents the differences between the two positions called error scores. Unfortunately, 

some apparatuses have been seen to constrain joint range of motion (Han et. al, 2016; 

Janwantanakul et. al, 2001).  

Another factor possibly adding to controversy are inconsistency in choices of equipment used 

to measure JPS. Previous studies have used a variety of equipment such as goniometry (Kaplan 

et al., 1985; Onishi et al., 2017), dynamometry (Benjaminse et al., 2009), motion capture systems 

(Amiri-Khorasani, Osman & Yusof, 2011; Arvin et al., 2015), inclinometers (Dover & Powers, 

2003), and electromagnetic tracking devices (Suprak et al., 2006). Edward and colleagues (2016) 

recently developed a software application for the iPod Touch that combines accelerometry and 

gyroscope to eliminate tactile sensation and allow for natural range of motion. Nevertheless, 

most methods are currently categorized as constrained models. Thus, do not address the tactile 

sensations (Suprak et al., 2011) and or restraining the joint from naturally arriving at a target 

position, which could limit findings. There are previous studies that evaluated ROM and JPS 

using unconstrained apparatuses (Edwards et al., 2016; Suprak et al., 2006; Suprak et al., 2007; 



 

Pickard et al., 2003), and find different results than of constrained models, but very few are 

focused on hip JPS (Benjaminse et al., 2009; Leardini et al., 1999). 

Benjaminse and colleagues (2009) remains to have the most applicable study of healthy hip 

JPS. Healthy individual data would provide further understanding of the relationship between 

proprioception and muscle activation. Author suggested that JPS research should continue to aim 

for standardization; specifically, utilization of error scores as reference to what should be normal 

(Benjaminse et al., 2009). Standardization would provide stronger repeatability and validity of 

JPS and allow for greater understanding of error scores. Therefore, the purpose of this study was 

to examine the effects of active and passive positioning of the hip on average absolute JPS error 

and constant JPS error on healthy young adults. It was hypothesized that there will be a decrease 

in absolute error and constant error scores in active repositioning compared to passive.  

 

Methods 

Subjects 

There were 15 (8 female, 7 male) healthy individuals participated in the study. Subject 

demographics are described in Table 1. The research protocol was verbally reviewed by the 

researcher, as well as a written informed consent provided for each participant to read and sign. 

This informed consent form, as well as the protocol used in the study, was approved by the 

Western Washington University review board for Human Subjects. Subjects that were included 

in the study had no previous history of lower back/hip pain, injury or surgery that required 

professional healthcare intervention. Exclusion criteria included low back/hip pain and or 

surgery within the last year.   

Instrumentation 



 

(Innovative Sports Training, Inc., Chicago, IL) was used to track hip angles throughout the 

protocol at a sampling rate of 240 Hz. The Polhemus unit consisted of a transmitter, two 

receivers, and a digitizer. The digitizer was used to determine location and orientation of the 

sensors in space relative to the transmitter (Pickard et al., 2003; Suprak et al., 2006; Swinnen et 

al., 2014). The receivers were placed about 2.54 cm above spinous process of the first sacral 

vertebrae and midthigh of the dominant leg. Midthigh was defined as equal distance between the 

greater trochanter and lateral femoral epicondyle of the dominant leg. After placement of the 

receivers, palpation and digitization of L5/S1 joint space, left/right medial and lateral femoral 

epicondyles was completed. The joint coordinate system for the femur and pelvis has been 

established previously by the Terminology committee of the International Society of 

Biomechanics (ISB) (Wu et al., 

Joint coordinate systems were established using a rotation method from Euler angle sequence: 

flexion/extension, internal/external rotation, and ab/adduction. Per these guideline and software 

setup, a 3D joint center was established. Once all trials were recorded, hip angles were calculated 

using an Euler angle sequence in accordance with the recommendation of the ISB (Wu et al., 

2002). Leg dominance was determined by the preferred take-off leg for jumping (Benjaminse et 

al., 2009).  

To limit the effects of gravity in the plane of motion (sagittal) during passive trials, 

subjects had a specialized hip trolley (Figure 1) attached to the ankle with an air splint for 

stability. The trolley and air splint were attached in such a way that it would not inhibit or 

manipulate The hip trolley would allow decrease muscle 

activation during passive trials as encouraged by previous studies (Suprak et al., 2006). In 



 

active condition to 

eliminate the effect of tactile cues in one condition versus the other in addition to limiting the 

effects of gravity.  

JPS Protocol 

 Once subjects were digitized and set up with two landmark sensors, sacrum and thigh, 

subjects were instructed on how positioning and repositioning for both active and passive 

movements were to be done (See Figure 1). Subjects were positioned to lay on their 

nondominant side and have their head rested on their arm in recovery position after placement 

and digitization of receivers and hip joint centers, and then blindfolded. Subjects then proceeded 

with verbal instructions and were allowed to practice until they felt comfortable with the protocol 

during a metronome count. To prevent contribution of internal and external rotation of the hip, 

subjects were instructed to keep their toes pointed forward and the knee in natural full extension. 

Neutral or starting position of the tested leg was defined as full hip extension and being in line 

with their other leg while subjects remained on their side during trials. Subjects were also 

allotted a one-minute rest between active trials and 30 seconds between passive trials to reduce 

the effects of fatigue.  

All trials began with the hip in the neutral position (0° of hip flexion). Neutral was 

 In the passive 

 then moved into flexion in the sagittal plane to the target position by 

the researcher. This was accomplished at a velocity of approximately 10°/sec. This pace was 

determined previously by metronome, and leg positioning was guided by the computer output 

displaying the hip flexion angle. Once the target angle was reached, it was held for three 

seconds, while the subjects were instructed to concentrate only on the position of the hip in the 



 

sagittal plane. The researcher then brought the hip back to the neutral position at approximately 

the same velocity. The hip was held in the neutral position for 3 seconds. Then, the researcher 

began moving the hip into flexion at approximately the same velocity while the subject 

attempted to replicate the target position by indicating to the research when they felt that they 

this process for three trials each at target angles of 30°, 45°, and 60° of flexion for a total of nine 

total trials. The presentation of these trials was presented randomly via a balanced latin square 

design. 

For active trials, subjects were verbally instructed to move into hip flexion at 

approximately the same pace as for the passive trials. Active trials were also done with and 

without hip trolley. Having both sets of trials will allow the study to fully investigate the effects 

of muscle activation on joint position sense tasks. Subjects were asked to actively flex their hip, 

and when they are 

position for three seconds while concentrating only on the position of the hip. After three 

ral position. After three seconds in the 

possible, by flexing the hip until they felt they had returned to the target position. There, they 

remained for a full second. Subjects repeated this process for three trials each at target angles of 

30°,45°, and 60° of flexion for a total of nine trials. As with the passive trials, these trials were 

randomly presented via a balanced latin square design. 

Data Analysis 

Three-dimensional hip kinematics were calculated via transformation matrices, using the 



 

passive position replication conditions. The output values (hip flexion angles) were then further 

processed with a custom-written MATLAB (The MathWorks, Inc., Natick, MA, USA) software. 

Hip flexion angles in both target and replicated positions were calculated, and then compared. 

The constant error was calculated by subtracting the hip flexion angle in the target position from 

the replicated position. Therefore, a positive constant error indicated that the hip was more flexed 

in the replicated position (overshot) as compared to the target position. This constant error was 

then averaged across the three trials for each target angle. Absolute error for each target angle 

was calculated as the absolute value of the constant error and averaged across all three trials for 

each target position. was within three degrees of 

the target position (e.g. target position of 30° would be between 27-33°). 

Statistical Analysis 

Statistical analysis was done using SPSS version 25 (IBM SPSS Statistics, Chicago, IL). 

two, three-way repeated measures analyses of variance (ANOVA) were used to examine the 

effects of condition (passive vs. active with trolley vs. active without trolley) and position (30° 

vs. 45° vs. 60° of flexion) on the dependent variables of constant and absolute errors. Significant 

di

event of a significant condition by position interaction effect. Partial eta squared ( ) was used to 

indicate effect sizes, with benchmarks of 0.2, 0.5, and 0.8 used to denote small, medium, and 

large effects, respectively (Cohen, 1988). 

In the case of a non-significant interaction, but significant main effects of either condition 

or position, pairwise comparisons were conducted, with a Bonferroni correction. 

 

 



 

Results 

Constant Error 

the condition by position interaction (p = .448), nor for the main effects of condition (p = .17) or 

position (p = .727). Therefore, no correction to the degrees of freedom were made when 

evaluating the results of the two-way ANOVA. The two-way ANOVA revealed no significant 

condition by position interaction effect on constant error (CE) (F[4, 60] = .798, p = .531, 

). There was also no significant main effect of position on CE (F[2, 30] = .619, p = .545, 

). However, CE was significantly affected by condition, with a medium effect size 

(F[2, 30] = 9.94, p = .001, ). A linear contrast showed decreasing CE with decreased 

levels of active muscle control of movement and positioning across positions (passive on trolley 

< active on trolley < active without trolley) (p = .001) (Figure 2).  

Absolute Error 

 test indicated that the AE data did not violate the assumption of 

sphericity for the condition by position interaction (p = .558), nor for the main effects of 

condition (p = .09) or position (p = .892). Therefore, no correction to the degrees of freedom 

were made when evaluating the results of the two-way ANOVA.As observed for CE, the two-

way ANOVA revealed no significant condition by position interaction effect on absolute error 

(AE) (F[4, 60] = 1.10, p = .367  = 0.065). There was also no significant main effect of position 

on AE (F[2, 30] = 3.05,  p = .062, ). However, AE was significantly affected by 

condition, with a medium effect size(F[2, 30] = 4.18, p = .025, ). As with CE, a 

linear contrast showed decreasing AE with decreased levels of active muscle control of 



 

movement and positioning across positions (passive on trolley < active on trolley < active 

without trolley) (p = .024) (Figure 3). 

Discussion 

The current study investigated the effects of the degree of hip control (passive, supported 

movement vs. active, supported movement vs. active, unsupported movement) and hip position 

(30° vs. 45° vs. 60° hip flexion) on JPS acuity (AE and CE) in healthy subjects. It was 

hypothesized that an active unconstrained assessment would have a reduction of repositioning 

error than constrained JPS assessment. The results of the study revealed a linear decrease in both 

absolute and constant error scores as the degree of active muscle support decreased. This did not 

support the original hypothesis that active JPS would be more accurate and decrease error score 

values compared to passive.  

The subjects in the current study accomplished joint repositioning tasks in an 

unconstrained model. A subject required to support their own limb weight can often be 

intrinsically a part of an unconstrained model task (Benjaminse et al., 2009). Limb support, or 

weight bearing has been previously investigated by comparison of applying external force to the 

subject and results indicated that adding weight to the limb positively influenced joint position 

acuity levels (Suprak et al., 2007). There is limited research that have shown passive joint 

position sense in healthy populations produced greater accuracy than active (Ju, Weng & Cheng, 

2010; Laufer et al., 2001). For the hip joint, the current study results may have revealed that 

stabilization simply takes priority over being accurate during flexion (Giphart et al., 2012; 

Retchford et al., 2013). Stabilization in the hip has been well established in research (Diamond et 

al., 2017; Retchford et al., 2013), and joint position sense has contribution to control of hip 



 

muscles (Torry et al., 2006). Thus, active JPS trials would have required more sense of effort 

towards stabilization rather than consciously focusing on the target position.  

Results from previous studies indicate that if active joint repositioning is more accurate 

than passive, it is due to increased muscle activation from the requirement of the subject to 

support their own limb (Benjaminse et al., 2009; Pickard et al., 2003). Benjaminse and 

colleagues (2009) suggested that the need to maintain balance during testing became the sole 

focus from the subject rather than the repositioning task, causing an increase in active JPS error 

scores.  Previous studies have documented that muscle activation influences joint proprioceptive 

acuity (Suprak et al., 2016). In the current study, the condition of active JPS without hip trolley 

may have required subjects to activate hip abductors (TFL and gluteus medius/maximus) and 

external rotators (hip rotator cuff muscles and gluteus maximus) along with hip flexors (iliopsoas 

and rectus femoris) (Retchford et al., 2013). The increased muscular demand may have caused 

activation of abdominal muscles to increase lumbar fascia stiffness (Hodges & Richardson, 

1997; Kopeinig et al., 2015). Increased stiffness in the lumbar region, in aims to stabilize, could 

also have caused anterior pelvic tilt (Neumann, 2010).  Thus, pelvic tilt and stiffness of lumbar 

fascia and musculature could have affected perception of the target position and increasing error 

scores.    

Previous findings from Pickard and colleagues (2003) were contrasted with the current 

study. They found that active joint repositioning was more accurate than passive whereas the 

current study findings showed that passive reproduction was more accurate than active 

reproduction (Pickard et al., 2003). However, the subjects in the current study were laying on 

their sides rather than in the previous study, during which subjects lay supine (Pickard et al., 

2003). Orientation of the body influences the groups of muscles activated during the active 



 

conditions compared to passive conditions during movement. When laying supine, primary 

muscles involved in hip flexion are the same as laying on the side. However, lying supine would 

require abdominal and lumbar muscles to stabilize the hip during motion compared to subject 

laying on their side and stabilize with external rotators (Neumann, 2010). 

The current study comes with some limitations. 

prior to JPS testing. It has previously been stated that ROM of a joint can influence JPS acuity 

(Jami, 1992). If the positions that were chosen (30, 45, 60 of flexion) were towards a 

end range of motion, specific mechanoreceptors (e.g. Ruffini endings, skin receptors) would be 

most sensitive (Collins et al., 2005; Macefield, 2005; Proske & Gandevia, 2012). As a result, a 

decrease of error scores would occur. In contrast, if a was large (surpassing 60 of 

flexion), other mechanoreceptors (e.g. muscle spindles, GTOs) are most sensitive within the 

midrange of motion (Janwantankul et al., 2001; Suprak et al., 2005; Proske & Gandevia, 2012). 

In addition, musculotendinous receptors like GTOs have increased sensitivity when a muscle 

activation occurs (Jami, 1992; Macefield, 2005). This could be a considerable influence seen by 

the reduction of error scores the more supported and less involved the limb perceived.   

Even though the current study did not result with active conditions to have decrease in 

error scores, future studies should continue to investigate hip JPS because of its application to 

functional movements (e.g. walking, squatting, etc.). Breathing and changes in intra-abdominal 

pressure has been exhibited to increase low back muscles and fascia stiffness (Hodges & 

Richardson, 1997; Hodges et al., 2005). Low back pain and joint position sense have been tested 

previously (Li et al., 2008). However, intra-abdominal pressure changes and fascia stiffness 

should be investigated further in its effects on hip proprioceptive abilities or investigation of 

breathing technique effects on lumbopelvic proprioception.  



 

Conclusions 

 The current study revealed that there was a continuous decrease in error scores as the 

testing apparatus became more supportive the tested limb. Limiting gravitational effects by an 

external support (hip trolley) could have elicited a response of increase sensitivity of 

capsuloligamentous mechanoreceptors. Future research should consider that proprioceptive 

sensitivity can be dependent on muscular activity.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

References 

1. Adamo, D.E., 2007. Age-related differences in upper limb proprioceptive acuity. Percept. 

Mot. Skills 104, 1297.  

2. Allen, T.J., Proske, U., 2006. Effect of muscle fatigue on the sense of limb position and 

movement. Exp. Brain Res. 170, 30 38. 

3. Alzaharani, A., Bali, K., Gudena, R., Railton, P., Ponjevic, D., Matyas, J.R., Powell, J.N., 

2014. The innervation of the human acetabular labrum and hip joint: an anatomic study. 

BMC Musculoskelet Disord 15, 41.  

4. Amiri-Khorasani, M., Osman, N.A.A., Yusof, A., 2011. Acute effect of static and 

dynamic stretching on hip dynamic range of motion during instep kicking in professional 

soccer players. J. Strength Cond. Res. 25, 1647 1652. 

5. Arvin, M., Hoozemans, M.J., Burger, B.J., Verschueren, S.M., van Dieën, J.H., 

Pijnappels, M., 2015. Reproducibility of a knee and hip proprioception test in healthy 

older adults. Aging Clin. Exper. Res. 27, 171 177. 

6. Benjaminse, A., Sell, T.C., Abt, J.P., House, A.J., Lephart, S.M., 2009. Reliability and 

precision of hip proprioception methods in healthy individuals. Clin. J. Sport. Med. 19, 

457 463. 

7. Bardakos, N.V., Villar, R.N., 2009. The ligamentum teres of the adult hip. Bone Joint J. 

91, 8 15. 

8. Birnbaum, K., Prescher, A., Heþler, S., 1997. The sensory innervation of the hip joint - 

An anatomical study. Surg. Radiol. Anat. 19, 371 375. 

9. 

muscle spindles during stretch of passive muscle. PLOS Comp. Bio. 13, e1005767.  



 

10. Bressel, E., Yonker, J.C., Kras, J., Heath, E.M., 2007. Comparison of static and dynamic 

balance in female collegiate soccer, basketball, and gymnastics athletes. J. Athl. Train. 

42, 42. 

11. Bridgeman, B., 2007. Efference copy and its limitations. Comp. Bio. Med. 37, 924 929.  

12. Cohen, J. ,1988. Statistical power analysis for the behavioral sciences (2nd ed.)Erlbaum, 

Hillsdale, NJ:. 

13. Collins, D.F., 2005. Cutaneous receptors contribute to kinesthesia at the index finger, 

elbow, and knee. J. Neurophysio. 94, 1699 1706.  

14. 

Standard for hip joint coordinate system recommendations from the international society 

of biomechanics comittee. 

15. Daneshjoo, A., Mokhtar, A.H., Rahnama, N., Yusof, A., 2012. The effects of 

comprehensive warm-up programs on proprioception, static and dynamic balance on 

male soccer players. PLoS ONE 7, e51568.  

16. Dehao, B.W., Bing, T.K., Young, J.L.S., 2015. Understanding the ligamentum teres of 

the hip: a histological study. Acta Ortopédica. Brasileira 23, 29 33.  

17. Desteli, E.E., Gülman, A.B., Imren, Y., Kaymaz, F., 2014. Comparison of 

mechanoreceptor quantities in hip joints of developmental dysplasia of the hip patients 

with normal hips. HIP Intern. 24, 44 48.  

18. Diracoglu, D., Aydin, R., Baskent, A., Celik, A., 2005. Effects of kinesthesia and balance 

exercises in knee osteoarthritis. J. Clin. Rheumatol. 11, 303 310.  

19. Dover, G., Powers, M.E., 2003. Reliability of joint position sense and force-reproduction 

measures during internal and external rotation of the shoulder. J. Athl. Train. 38, 304. 



 

20. DiZio, P., Lacknet, J.R., 2002. Proprioceptive adaptation and aftereffects, in: Hale, K.S, 

Stanney, K.M. (Ed.), Handbook of Virtual Environments. CRC Press Boca Raton, FL, 

pp.791 812. 

21. Durbaba, R., Taylor, A., Ellaway, P.H., Rawlinson, S., 2001. Modulation of primary 

afferent discharge by dynamic and static gamma motor axons in cat muscle spindles in 

relation to the intrafusal fibre types activated. J. Physiol. 532, 563 574. 

22. Durbaba, R., Taylor, A., Ellaway, P.H., Rawlinson, S., 2003. The influence of bag 2 and 

chain intrafusal muscle fibres on secondary spindle afferents in the cat. J. Physiol. 550, 

263 278. 

23. Edwards, S. E., Lin, Y.-L., H. King, J., R. Karduna, A., 2016. Joint position sense  

The s an app for that. J. Biomech. 49, 3529 3533. 

24. Elangovan, N., Herrmann, A., Konczak, J., 2014. Assessing proprioceptive function: 

Evaluating joint position matching methods against psychophysical thresholds. Phys. 

Therap. 94, 553 561.  

25. Erickson, R.I.C., Karduna, A.R., 2012. Three-dimensional repositioning tasks show 

differences in joint position sense between active and passive shoulder motion. J. Orthop. 

Res. 30, 787 792. 

26. Evangelos, B., Georgios, K., Konstantinos, A., Gissis, I., Papadopoulos, C., Aristomenis, 

S., 2012. 

technical skills. J. Phys. Ed. Sport. 12, 81. 

27. Fitzpatrick, R., McCloskey, D.I., 1994. Proprioceptive, visual and vestibular thresholds 

for perception of sway during standing in humans. J. Physiol. 1, 173 186. 



 

28. Friemert, B., Bach, C., Schwarz, W., Gerngross, H., Schmidt, R., 2006. Benefits of active 

motion for joint position sense. Knee Surg. Sports Traumatol. Arthr. 14, 564 570.  

29. Gandevia, S.C., 1996. Kinesthesia: roles for afferent signals and motor commands, in: 

Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems. 

128 172. 

30. Gandevia, S.C., 1999. Mind, muscles and motoneurones. J. Sci. Med. Sport 2, 167 180. 

31. Gerhardt, M., Johnson, K., Atkinson, R., Snow, B., Shaw, C., Brown, A., Vangsness, 

C.T., 2012. Characterisation and classification of the neural anatomy in the human hip 

joint. HIP Intern. 22, 75 81.  

32. Giphart, J.E., Stull, J.D., LaPrade, R.F., Wahoff, M.S., Philippon, M.J., 2012. 

Recruitment and activity of the pectineus and piriformis muscles during hip rehabilitation 

exercises: An electromyography study. Am. J. Sports Med. 40, 1654 1663.  

33. Goble, D.J., 2010. Proprioceptive acuity assessment via joint position matching: from 

basic science to general practice. Phys. Ther. 90, 1176 1184.  

34. Gregory, J.E., Brockett, C.L., Morgan, D.L., Whitehead, N.P., Proske, U., 2002. Effect of 

eccentric muscle contractions on Golgi tendon organ responses to passive and active 

tension in the cat. J. Phys. 538, 209 218. 

35. Han, J., Waddington, G., Adams, R., Anson, J., Liu, Y., 2016. Assessing proprioception: 

A critical review of methods. J. Sport. Health. Sci. 5, 80 90.  

36. Haversath, M., Hanke, J., Landgraeber, S., Herten, M., Zilkens, C., Krauspe, R., Jäger, 

M., 2013. The distribution of nociceptive innervation in the painful hip: A histological 

investigation. Bone Joint J. 95-B, 770 776. 



 

37. Homan, K.J., Norcross, M.F., Goerger, B.M., Prentice, W.E., Blackburn, J.T., 2013. The 

influence of hip strength on gluteal activity and lower extremity kinematics. J. 

Electromyogr. Kines. 23, 411 415.  

38. Hospod, V., Aimonetti, J.-M., Roll, J.-P., Ribot-Ciscar, E., 2007. Changes in Human 

Muscle Spindle Sensitivity during a Proprioceptive Attention Task. J. Neurosci. 27, 

5172 5178.  

39. Hung, Y. -j., Darling, W.G., 2012. Shoulder Position Sense During Passive Matching and 

Active Positioning Tasks in Individuals With Anterior Shoulder Instability. Phys. Therap. 

92, 563 573.  

40. Hurley, M.V., Rees, J., Newham, D.J., 1998. Quadriceps function, proprioceptive acuity 

and functional performance in healthy young, middle-aged and elderly subjects. Age 

Ageing 27, 55 62. 

41. Ishii, Y., Tojo, T., Terajima, K., Terashima, S., Bechtold, J.E., 1999. Intracapsular 

components do not change hip proprioception. J. Bone Joint Surg. Am. 81, 345 348.  

42. Jaffar, A.A., Abass, S.J., Ismael, M.Q., 2006. Biomechanical aspects of shoulder and hip 

articulations: a comparison of two ball and socket joints. Al-Khwarizmi Engineer J 2, 1

14. 

43. Jami, L., 1992. Golgi tendon organs in mammalian skeletal muscle: functional properties 

and central actions. Physiol. Rev. 72, 623-666. 

44. Janwantanakul, P., Magarey, M.E., Jones, M.A., Dansie, B.R., 2001. Variation in 

shoulder position sense at mid and extreme range of motion. Arch. Phys. Med. Rehabil. 

82, 840 844.  



 

45. Ju, Y.Y., Wang, C.W., Cheng, H.Y.K., 2010. Effects of active fatiguing movement 

versus passive repetitive movement on knee proprioception. Clin. Biomech. 25, 708 712.  

46. Kabbaligere, R., Lee, B.-C., Layne, C.S., 2017. Balancing sensory inputs: Sensory 

reweighting of ankle proprioception and vision during a bipedal posture task. Gait 

Posture 52, 244 250.  

47. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., 1990. Measurement of lower 

extremity kinematics during level walking. J. Orthrop. Res. 8, 383 392. 

48. Kapetanakis, S., Dermon, A., Gkantsinikoudis, N., Kommata, V., Soukakos, P., Dermon, 

C., 2017. Acetabular labrum of hip joint in osteoarthritis: A qualitative original study and 

short review of the literature. J. Orthop. Surg. 25, 230949901773444. 

49. Kaplan, F.S., Nixon, J.E., Reitz, M., Rindfleish, L., Tucker, J., 1985. Age-related changes 

in proprioception and sensation of joint position. Acta Orthop. Scand. 56, 72 74. 

50. Keogh, M.J., Batt, M.E., 2008. A Review of Femoroacetabular Impingement in Athletes. 

Sports Med. 38, 863 878. 

51. Kerbel, Y.E., Smith, C.M., Prodromo, J.P., Nzeogu, M.I., Mulcahey, M.K., 2018. 

Epidemiology of hip and groin injuries in collegiate athletes in the united states. Orthop. 

J. Sports Med. 6, 232596711877167. 

52. Kilicarslan, K., Kilicarslan, A., Demirkale, I., Aytekin, M.N., Aksekili, M.A.E., Ugurlu, 

M., 2015. Immunohistochemical analysis of mechanoreceptors in transverse acetabular 

ligament and labrum: A prospective analysis of 35 cases. Acta Orthop. Traumatol. Turc. 

49, 394 398.  

53. Kim, Y.T., Azuma, H., 1995. The Nerve Endings of the Acetabular Labrum: Clin. 

Orthop. Related Res. 320, 176-181.  



 

54. Kopeinig, C., Gödl-Purrer, B., Salchinger, B., 2015. Fascia as a proprioceptive organ and 

its role in chronic pain - A review of current literature. Saf. Health Work. 1, A2.  

55. Kumar, V.P., Balasubramaniam, P., 1985. The role of atmospheric pressure in stabilising 

the shoulder: an experimental study. Brit. Editor Society Bone Joint Surg. 67-B, 719

721. 

56. Kwon, O., Lee, S., Lee, Y., Seo, D., Jung, S., Choi, W., 2013. The effect of repetitive 

passive and active movements on proprioception ability in forearm supination. J. Phys. 

Ther. Sci. 25, 587 590. 

57. Laufer, Y., Hocherman, S., Dickstein, R., 2001. Accuracy of reproducing hand position 

when using active compared with passive movement. Physiother. Res. Int. 6, 65 75.  

58. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., 

Cassanelli, G., Giannini, S., 1999. Validation of a functional method for the estimation of 

hip joint centre location. J. Biomech 32, 99 103. 

59. Lephart, S.M., Pincivero, D.M., Giraido, J.L., Fu, F.H., 1997. The role of proprioception 

in the management and rehabilitation of athletic injuries. Am. J. Sports Med. 25, 130

137. 

60. Leunig, M., Beck, M., Stauffer, E., Hertel, R., Ganz, R., 2000. Free nerve endings in the 

ligamentum capitis femoris. Acta Orthop. Scand. 71, 452 454.  

61. Lewis, C.L., Sahrmann, S.A., Moran, D.W., 2007. Anterior hip joint force increases with 

hip extension, decreased gluteal force, or decreased iliopsoas force. J. Biomech. 40, 

3725 3731 

62. Li, L., Lamis, F., Wilson, S.E., 2008. Whole-body vibration alters proprioception in the 

trunk. Int. J. Ind. Ergon. 38, 792 800. 



 

63. Lin, C.-H., Lien, Y.-H., Wang, S.-F., Tsauo, J.-Y., 2006. Hip and knee proprioception in 

elite, amateur, and novice tennis players. Am. J. Phys. Med. Rehabil. 85, 216 221.  

64. Lin, D.-H., Lin, C.-H.J., Lin, Y.-F., Jan, M.-H., 2009. Efficacy of 2 non-weight-bearing 

interventions, proprioception training versus strength training, for patients with knee 

osteoarthritis: a clinical trial. J. Orthop. Sports Phys. Therap. 39, 450 457. 

https://doi.org/10.2519/jospt.2009.2923 

65. Macefield, V.G., 2005. Physiological characteristics of low-threshold mechanoreceptors 

in joints, muscle and skin in human subjects.  Clin. Exp. Pharmacol. Physiol. 32, 135

144. 

66. Magill R., Anderson D., 2014. Motor learning and control: concepts and application. 

McGraw-Hill Publishing, New York, NY. 

67. Mason, J.B., 2001. Acetabular labral tears in the athlete. Clin. Sports Med. 20, 779 789. 

68. Michelson, J.D., Hutchins, C., 1995. Mechanoreceptors in human ankle ligaments. J. 

Bone Joint Surg. 77, 219 224. 

69. Moraes, M.R., Cavalcante, M.L., Leite, J.A., Macedo, J.N., Sampaio, M.L., Jamacaru, 

V.F., Santana, M.G., 2011. The characteristics of the mechanoreceptors of the hip with 

arthrosis. J. Orthop. Surg. Res. 6, 58. 

70. Muaidi, Q.I., Nicholson, L.L., Refshauge, K.M., 2008. Do elite athletes exhibit enhanced 

proprioceptive acuity, range and strength of knee rotation compared with non-athletes?: 

Enhanced proprioceptive acuity, range and strength of knee rotation. Scan. J. Med. Sci. 

Sports 19, 103 112.  



 

71. Nagai, T., Sell, T.C., House, A.J., Abt, J.P., Lephart, S.M., 2013. Knee proprioception 

and strength and landing kinematics during a single-leg stop-jump task. J. Ath. Train. 48, 

31 38.  

72. Neumann, D.A., 2010. Kinesiology of the hip: A focus on muscular actions. J. Orthop. 

Sports Phys. Therap. 40, 84 94. 

73. 18. The role of the ligamentum teres in the 

adult hip: redundant or relevant? A review. J. Hip Preserv. Surg. 5, 15 22.  

74. Onishi, H., Nagoya, S., Takebayashi, T., Yamashita, T., 2017. Analysis of proprioception 

of hip joint in total hip arthroplasty. Open J. Orthop. 07, 53 62.  

75. Pickard, C.M., Sullivan, P.E., Allison, G.T., Singer, K.P., 2003. Is there a difference in 

hip joint position sense between young and older groups? J. Gerontol. A-Biol. 58, M631

M635. 

76. Powers, C.M., 2010. The influence of abnormal hip mechanics on knee injury: a 

biomechanical perspective. J. Orth. Sports Phys. Ther. 40, 42 51. 

77. Prather, H., Colorado, B., Hunt, D., 2014. Managing hip pain in the athlete. Phys. Med. 

Rehabil. Clin. N. Am. 25, 789 812.  

78. Proske, U., Gandevia, S.C., 2009. The kinaesthetic senses: The kinaesthetic senses. J. 

Physiol. 587, 4139 4146.  

79. Proske, U., Gandevia, S.C., 2012. The proprioceptive senses: Their roles in signaling 

body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651

1697. 

80. Proske, U., 2005. What is the role of muscle receptors in proprioception? Muscle Nerve 

31, 780 787. 



 

81. Retchford, T.H., Crossley, K.M., Grimaldi, A., Kemp, J.L., Cowan, S.M., 2013. Can 

local muscles augment stability in the hip? A narrative literature review. J. 

Musculoskelet. Neuronal. Interact. 13, 1 12. 

82. Riemann, B.L., Lephart, S.M., 2002. The sensorimotor system, part II: the role of 

proprioception in motor control and functional joint stability. J. Ath. Train. 37, 80. 

83. Riemann, B.L., Lephart, S.M., 2002. The sensorimotor system, part I: the physiologic 

basis of functional joint stability. J. Ath. Train. 37, 71. 

84. Rogol, I.M., Ernst, G., Perrin, D.H., 1998. Open and closed kinetic chain exercises 

improve shoulder joint reposition sense equally in healthy subjects. J. Ath. Train. 33, 315. 

85. Röijezon, U., Clark, N.C., Treleaven, J., 2015. Proprioception in musculoskeletal 

rehabilitation. Part 1: Basic science and principles of assessment and clinical 

interventions. Man. Therap. 20, 368 377.  

86. Sarban, S., Baba, F., Kocabey, Y., Cengiz, M., Isikan, U.E., 2007. Free nerve endings 

and morphological features of the ligamentum capitis femoris in developmental dysplasia 

of the hip. J. Ped. Orthop. B 16, 351 356. 

87. Schuenke, M., Schulte, E., Schumacher, U., 2014. Atlas of anatomy: general anatomy 

and musculoskeletal system. Thieme. New York, NY. 

88. Sherrington, C.S., 1907. On the proprioceptive system, especially in its reflex aspect. 

Brain, 29, 467-482. 

89. Smirmaul, B. de P.C., 2012. Sense of effort and other unpleasant sensations during 

exercise: clarifying concepts and mechanisms. Brit. J. Sports Med. 46, 308 311.  



 

90. Stillman, B.C., McMeeken, J.M., Macdonell, R.A., 1998. Aftereffects of resisted muscle 

contractions on the accuracy of joint position sense in elite male athletes. Arch. Phys. 

Med. Rehab. 79, 1250 1254. 

91. Suprak, D.N., Dawes, J., Stephenson, M.D., 2011. The effect of position on the 

percentage of body mass supported during traditional and modified push-up variants. J. 

Strength Cond. Res. 25, 497 503. 

92. Suprak, D.N., Osternig, L.R., van Donkelaar, P., Karduna, A.R., 2006. Shoulder joint 

position sense improves with elevation angle in a novel, unconstrained task. J. Orthop. 

Res. 24, 559 568.  

93. Suprak, D.N., Osternig, L.R., van Donkelaar, P., Karduna, A.R., 2007. Shoulder joint 

position sense improves with external load. J. Moto. Behav. 39, 517 525.  

94. Suprak, D.N., Sahlberg, J.D., Chalmers, G.R., Cunningham, W., 2016. Shoulder 

elevation affects joint position sense and muscle activation differently in upright and 

supine body orientations. Hum. Mov. Sci. 46, 148 158.  

95. Swinnen, E., Baeyens, J.-P., Pintens, S., Van Nieuwenhoven, J., Ilsbroukx, S., Buyl, R., 

Ron, C., Goossens, M., Meeusen, R., Kerckhofs, E., 2014. Trunk kinematics during 

walking in persons with multiple sclerosis: the influence of body weight support. Neuro. 

Rehab. 34, 731 740. 

96. Torry, M.R., Schenker, M.L., Martin, H.D., Hogoboom, D., Philippon, M.J., 2006. 

Neuromuscular hip biomechanics and pathology in the athlete. Clin Sports Med 25, 179

197. 



 

97. Voight, M.L., Hardin, J.A., Blackburn, T.A., Tippett, S., Canner, G.C., 1996. The effects 

of muscle fatigue on and the relationship of arm dominance to shoulder proprioception. J. 

Orthop. Sports Phys. Ther. 23, 348 352. 

98. Walsh, L.D., Hesse, C.W., Morgan, D.L., Proske, U., 2004. Human forearm position 

sense after fatigue of elbow flexor muscles. J. Phys. 2, 588.  

99. Wingert, J.R., Welder, C., Foo, P., 2014. Age-related hip proprioception declines: effects 

on postural sway and dynamic balance. Arch. Phys. Med. Rehab. 95, 253 261.  

100. Wingstrand, H., Wingstrand, A., Krantz, P., 1990. Intracapsular and atmospheric 

pressure in the dynamics and stability of the hip. A biomechanical study. Acta. Orthop. 

Scand. 61, 231-235. 

101. Winter, J.A., Allen, T.J., Proske, U., 2005. Muscle spindle signals combine with 

the sense of effort to indicate limb position: Muscle spindles, effort and position sense. J. 

Physiol. 568, 1035 1046. 

102. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, 

of joint coordinate system of various joints for the reporting of human joint motion part 

I: ankle, hip, and spine. J. Biomech. 35, 543 548. 

 

 

 

 

 

 

 



 

Tables 

 

TABLE 1. SUBJECT DEMOGRAPHICS MEAN (SD) 

AGE, Y 22 (1.72) 

HEIGHT, CM 169.04 (10.45) 

MASS, KG 69.54 (8.46) 

EXERCISE FREQUENCY (DAYS/WK) 3.78 (1.24) 
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Figure 2. Average (SD) Constant Error Score Values. 

Fig 1. A) frontal view of subject testing apparatus with hip trolley B) Posterior view of 
testing apparatus.  
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