
Western Washington University Western Washington University 

Western CEDAR Western CEDAR 

WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 

Spring 2020 

Integrating Synthetic Biology Derived Variables into Ecological Integrating Synthetic Biology Derived Variables into Ecological 

Risk Assessment Using the Bayesian Network – Relative Risk Risk Assessment Using the Bayesian Network – Relative Risk 

Model: Gene Drives to Control Nonindigenous M. musculus on Model: Gene Drives to Control Nonindigenous M. musculus on 

Southeast Farallon Island Southeast Farallon Island 

Ethan A. Brown 
Western Washington University, browne40@wwu.edu 

Follow this and additional works at: https://cedar.wwu.edu/wwuet 

 Part of the Environmental Sciences Commons 

Recommended Citation Recommended Citation 
Brown, Ethan A., "Integrating Synthetic Biology Derived Variables into Ecological Risk Assessment Using 
the Bayesian Network – Relative Risk Model: Gene Drives to Control Nonindigenous M. musculus on 
Southeast Farallon Island" (2020). WWU Graduate School Collection. 941. 
https://cedar.wwu.edu/wwuet/941 

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate 
Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an 
authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu. 

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwuet
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=cedar.wwu.edu%2Fwwuet%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet/941?utm_source=cedar.wwu.edu%2Fwwuet%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


 

 
 

Integrating Synthetic Biology Derived Variables into Ecological Risk Assessment  

Using the Bayesian Network – Relative Risk Model: Gene Drives to Control  

Nonindigenous M. musculus on Southeast Farallon Island 

 

By 

Ethan A. Brown 

 

Accepted in Partial Completion 

Of the Requirements for the Degree 

Master of Science 

 

 

 

ADVISORY COMMITTEE 

 

Chair, Dr. Wayne G. Landis 

 

Dr. Jenise M. Bauman 

 

Dr. John D. Stark 

 

GRADUATE SCHOOL 

 

David L. Patrick, Interim Dean   



 

 
 

MASTER’S THESIS 

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western 

Washington University, I grant to Western Washington University the non-exclusive royalty-free right to 

archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via 

any digital library mechanisms maintained by WWU. 

I represent and warrant this is my original work, and does not infringe or violate any rights of others. I 

warrant that I have obtained written permissions from the owner of any third party copyrighted material 

included in these files. 

I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the 

right to use all or part of this work in future works, such as articles or books. 

Library users are granted permission for individual, research and non-commercial reproduction of this 

work for educational purposes only. Any further digital posting of this document requires specific 

permission from the author. 

Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed 

without my written permission. 

 

Ethan A. Brown 

21 May 2020 

  



 

 
 

Integrating Synthetic Biology Derived Variables into Ecological Risk Assessment  

Using the Bayesian Network – Relative Risk Model: Gene Drives to Control  

Nonindigenous M. musculus on Southeast Farallon Island 

 
 

A Thesis 

Presented to 

The Faculty of 

Western Washington University 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science 

 

 

 

By 

 

Ethan A. Brown 

 

21 May 2020 

 



 

iv 
 

Abstract 

Ecological risk assessment has not been conducted for the proposed environmental 

applications of synthetic biology. To develop a quantitative framework for risk assessment of 

synthetic biology, I selected Southeast Farallon Island as a case study for modeling the 

deployment of gene drive modified house mice to reduce impacts to threatened species. 

Southeast Farallon Island is part of the Farallon Islands National Wildlife Refuge. The island is 

populated by invasive house mice that impact indigenous species. Gene drive technology has 

been proposed as a method to suppress invasive rodent populations through CRISPR-mediated 

genome editing. I applied the Bayesian Network – Relative Risk Model to predict the outcomes 

of a gene drive mouse eradication on Southeast Farallon Island. The Bayesian Network – 

Relative Risk Model is able to probabilistically evaluate multiple causal pathways, incorporating 

the influence of multiple stressors on multiple endpoints. I used a modified version of the R-

based model MGDrivE to simulate population genetics and population dynamics of gene drive 

mouse eradication strategies. I conducted simulations for three unique gene drive mouse 

release schemes across two assumed gene drive homing rates and two levels of supplemental 

rodenticide use; for a total of twelve simulated scenarios. I compared the relative eradication 

probabilities of these scenarios within a Bayesian network. Sensitivity analyses were conducted 

to compare the relative influence of rodenticide use and homing rate on the probability of 

successful mouse eradication. I found that increasing the assumed homing rate of the gene 

drive had a higher influence on mouse eradication than the addition of supplemental 

rodenticide. For most scenarios, simulations showed successful mouse eradications as early as 

seven years after gene drive deployment, with high probabilities of eradication within ten years. 

KEY WORDS: Bayesian network, Relative Risk Model, synthetic biology, gene drive, risk 

assessment  
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Notes 

This work builds upon the framework for synthetic biology ecological risk assessment, as 

outlined by chapter six of Gene Drives on the Horizon (NASEM 2016). The Bayesian network 

files are available electronically or upon request. Download the free version of Netica to view the 

models without a license (https://norsys.com/netica.html).  

The content and format of this paper are intended for submission to Risk Analysis.  
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1. INTRODUCTION 

Proposed environmental applications of synthetic biology bring with them a host of novel management 

and regulatory considerations. Chapter 6 of Gene Drives on the Horizon (NASEM 2016) and Landis et al. 

(2020a) describe frameworks for risk assessment of synthetic biology using the Bayesian Network – 

Relative Risk Model (BN-RRM), with gene drives as an example of a synthetic biology-derived stressor. 

Using the BN-RRM framework, I constructed a probabilistic risk assessment model for the theoretical 

introduction of gene drive modified (GDM) house mice (Mus musculus) to suppress the invasive mouse 

population on Southeast Farallon Island. 

1.1 Introduction to Synthetic Biology 

The National Academies of Sciences, Engineering, and Medicine (NASEM) define synthetic biology as the 

generation of novel traits or organisms via the implementation of chemical or computational processes 

that do not occur naturally. One branch of synthetic biology is genome editing, defined as the 

introduction of new alleles or genes into an organism (NASEM 2016). Clustered regularly interspaced 

short palindromic repeats (CRISPR) Cas (CRISPR-Associated) systems are a common tool in genome 

editing. For example, CRISPR-Cas9 systems can modify specific DNA sequences using a complementary 

guide-RNA (gRNA) complexed with a DNA-targeting endonuclease (Cas9) that creates a double strand 

break at the target site in an organism’s genome. The new sequence is then inserted and replicated 

throughout the genome, making the organism homozygous for the desired allele (Webber et al. 2015; 

Knott and Doudna 2018). The level of gene editing precision offered by CRISPR-Cas systems has the 

potential to alter the germ lines of populations. Genome editing at the population scale is the 

conceptual foundation behind gene drive technology (NASEM 2016). 

1.2 Gene Drives and their Environmental Applications 

Gene drives, also termed “selfish genetic elements”, are naturally occurring or engineered genes that 
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transfer to offspring at proportions greater than a Mendelian expectation (i.e. above 50%) (NASEM 

2016). CRISPR-Cas9-based gene drives have been synthesized (Hammond et al. 2016) to “drive” 

engineered traits through target populations. Intended applications of gene drives fall into two broad 

categories: population replacement and population suppression. The goal of population replacement is 

to substitute a target gene with an engineered gene, avoiding a fitness reduction in the target 

organisms. The goal of population suppression is to substitute the target gene with a gene that causes 

reduced organismal fitness, leading to a steep reduction or elimination of the target population 

(Marshall and Akbari 2016). Gene drives have been proposed for controlling vector-borne diseases, 

suppressing invasive species, and inducing pesticide tolerance or sensitivity in agricultural settings 

(NASEM 2016).  

1.2.1 Controversies and Uncertainties Around Gene Drive Use 

Proposed gene drive applications have come under scrutiny, with researchers questioning the ability of 

these constructs to successfully suppress or replace populations, in addition to their potential for 

adverse environmental impacts. For example, Webber et al. (2015) notes the possibility of dispersal of 

GDM organisms into non-target populations, potentially leading to unintended extinctions and 

alterations to community dynamics. Roberts et al. (2017) suggests that hybridization of GDM organisms 

with similar species in a region could spread gene drives to non-target species, leading to unintended 

population suppression or replacement.  

The development of organismal resistance to the homing properties of gene drives has also been 

investigated. Champer et al. (2017) modified Drosophila melanogaster with two types of CRISPR-Cas9 

gene drives in a laboratory study, monitoring inheritance patterns and mechanisms. The work of 

Champer et al. revealed two types of mutated resistance that resulted in the inability of the CRISPR 

gRNA to recognize the resulting DNA sequence. The first type of mutation, termed in-frame resistance, 
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resulted in zero fitness reduction to organisms, essentially creating a new genotype with no fitness 

reduction. The second type of mutation, termed out-of-frame resistance, led to a high organismal fitness 

cost. 

To overcome potential gene drive resistance, studies have proposed using a multiplexing approach to 

create gene drive constructs that target multiple DNA sequences in a gene using multiple gRNA 

sequences. This approach is expected to minimize the probability of resistance development by 

increasing the number of mutations required to negate the homing capabilities of a gene drive (Marshall 

et al. 2017; Noble et al. 2017; Noble et al. 2019). However, multiplexing has not undergone laboratory 

testing. Additionally, numerical models used to predict the resulting population dynamics and 

population genetics of proposed multiplexed gene drives have been largely deterministic (Noble et al. 

2017; Noble et al. 2019), failing to provide probabilistic estimates of successful population suppression 

or replacement. Risk assessment is a well-suited tool for evaluating the influence of resistance 

development on the probabilities of achieving management goals using gene drive technology. 

1.3 The Need for Adaptive Management of Synthetic Biology 

Given the lack of empirical data concerning environmental applications of gene drives, adaptive 

management has been suggested as a strategy to investigate proposed applications of gene drives in the 

environment (NASEM 2016; Landis et al. 2020a). Adaptive management is an iterative approach to 

decision making that provides a specific set of goals for governance and regulation of ecological systems. 

Adaptive management involves altering management strategies with the acquisition of new knowledge. 

This “iterative” process occurs throughout the course of working towards a management goal and 

follows an explicit set of guidelines to orient thinking and evaluation around an evolving management 

scheme. An intrinsic property of adaptive management is that decisions are treated as experiments that 



 

4 
 

inform future management actions (Holling 1978). Walters (1986) outlines three specific goals of 

adaptive management: 

1. Management concerns should be framed as explicit questions to be evaluated in regards to the 

system being studied.  

2. The ecological system should be clearly defined so that all relevant variables can be evaluated in 

terms of available information and the inherent assumptions and limitations of available data.  

3. The history of the study region and its variance through time should be accounted for in regards 

to modeling techniques and proposed management strategies (Walters 1986).  

Landis et al. (2017) suggests the BN-RRM as an empirical risk assessment model to inform adaptive 

management processes. Because there is very little empirical information on environmental applications 

of synthetic biology, I reiterate that an adaptive management approach in the form of the BN-RRM 

would be a powerful tool for informing management decisions around gene drive technology. 

1.4 Why Risk Assessment? 

Risk assessment is a causal and empirical process that is well-suited for calculating probabilistic 

estimates of synthetic biology-related impacts to ecological systems. Risk assessment is defined as the 

estimation of probabilities of impacts to one or more endpoints due to the effects of one or more 

stressors (NASEM 2016). Landis and Wiegers (2005) outline the Relative Risk Model (RRM) as a 

framework for ranking the relative impacts of multiple stressors on multiple endpoints, where an 

endpoint is defined as some entity of management or regulatory concern. The RRM involves 

constructing a conceptual framework of the risk region, formulating a causal diagram of all variables that 

lead to impacts within the region (Landis and Wiegers 2005; Colnar and Landis 2007). Creating these 

conceptual frameworks involves listing sources that release stressors that occur in habitats, potentially 

causing effects and eventually impacts to management-defined endpoints (Figure 1).  
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The RRM is currently applied within the BN-RRM where these sources-to-impacts conceptual 

frameworks are used to construct Bayesian Networks (BNs). BNs are quantitative models that relate 

variables through conditional probability (Woodberry et al. 2004; Marcot et al. 2006; Pollino et al. 2006). 

BNs can be used to calculate risk to endpoints in the form of probability distributions representing the 

severity of impacts (Johns et al. 2017). Because of the BN-RRM’s causal structure, it would be an ideal 

framework for a systems-based evaluation of structures and processes involved in modeling impacts of 

synthetic biology in the environment. Additionally, the probabilistic nature of risk assessment is well-

suited for accounting for the high mathematical uncertainty that arises from the limited body of 

empirical information concerning synthetic biology and gene drives. 

1.4.1 Bayesian Networks 

BNs are acyclic (i.e. no feedback loops), probabilistic models that relate a network of variables through 

conditional probability. Nodes are separated into two primary classifications: parent nodes and child 

nodes (Marcot et al. 2006). In the BN-RRM, arrows in a BN represent causal linkages between variables, 

with parent nodes influencing child nodes (Landis et al. 2020a; Landis et al. 2020b). Child nodes contain 

conditional probability tables (CPTs) that hold the probabilistic relationship between a child node and its 

parent nodes. Nodes within a BN contain multiple variable states and CPTs contain the probabilities of 

each child node’s variable states given all possible combinations of parent node states (Marcot et al. 

2006; McDonald et al. 2015). 

1.5 Model Selection Criteria 

Risk assessment using the BN-RRM requires the selection of numerical models to calculate the 

probabilistic relationship between variables in the BN framework. These models should conform to the 

criteria put forward by chapter 6 of Gene Drives on the Horizon (NASEM 2016) and Landis et al. (2020a). 

These criteria include: 



 
 

 

Figure 1. Conceptual model for the SEFI invasive M. musculus case study, constructed using the framework of the Relative Risk 

Model, with sources releasing stressors that persist in habitats, causing effects, and eventually impacts to management endpoints. 

(**) indicates variables that that were quantitatively incorporated into parameterizing the BN model in figure 3. 



 
 

• Models should quantitatively trace causal pathways outlined in the conceptual framework for 

the risk assessment scenario. These models should reflect the state-of-the-knowledge on causal 

interactions between variables. 

• Models should be able to calculate risk to endpoints, incorporating the concerns of 

management, stakeholders, and the public. 

• Models should be able to elucidate sources of uncertainty and weigh the relative influence of 

variables or parameters on risk. 

• Models should allow for comparison between multiple management strategies. Costs and 

benefits should be comparable in the context of multiple endpoints. 

Meeting these requirements is requisite for the use of risk assessment as a tool for informing research 

and adaptive management. 

1.6 Case Study: Southeast Farallon Island 

The South Farallon Islands are part of the Farallon Islands National Wildlife Refuge and are located about 

30 miles west of San Francisco. Southeast Farallon Island (SEFI) is the largest island, with an area of 

approximately 40 hectares (Figure 2). The South Farallones are home to a variety of seabirds, pinnipeds, 

crickets, and salamanders. Additionally, SEFI is populated by invasive house mice (M. musculus) which 

prey upon endemic species such as the camel cricket (Farallonophilus cavernicolus), the maritime 

goldfield (Lasthenia maritima), and the juveniles and eggs of the Farallon arboreal salamander (Aneides 

lugubris farallonensis) (USFWS 2019a).  

The invasive mice serve to attract the migratory burrowing owl (Athene cunicularia). Burrowing owls are 

thought to feed primarily on M. musculus until the SEFI mouse population reaches a low abundance in 

late fall. Once the mouse population reaches its low point, ashy storm petrels (Oceanodroma 

homochroa) become the primary food source for owls. Ashy storm petrels are an endangered species 

(IUCN 2018) of which half the nesting population resides in the South Farallones. The high abundance of 
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invasive house mice increases the number of overwintering owls on SEFI. This leads to more owl-petrel 

predation in winter and spring months (USFWS 2019a). 

 

 

Figure 2. Map of the South Farallon Islands. SEFI is populated with invasive M. musculus. A 
locator map is included to highlight SEFI’s location relative to San Francisco, CA. 

 

A 2019 Environmental Impact Statement (EIS) by the United States Fish and Wildlife Service (USFWS) 

proposed deployment of the chemical rodenticide, brodifacoum, as the preferred management strategy 

for eradicating invasive mice on SEFI. Brodifacoum is an anticoagulant that functions through vitamin K 

antagonism. It is deployed in the form of 25 ppmw pellets that can be spread via aerial bombardment or 
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hand baiting (USFWS 2019a). This eradication plan was originally scheduled to occur November 2019 

(USFWS 2019a), but has since been withdrawn by USFWS due to concerns voiced by the California 

Coastal Commission (Newberry 2019). 

Using SEFI as a case study, I employed the BN-RRM to evaluate the risk of mouse eradication given a 

number of scenarios, simulating three hypothetical population suppression gene drive approaches, with 

and without supplemental brodifacoum deployment.  

1.7 Sox9 CRISPR-Cas9 Gene Drive 

A CRISPR-Cas9 gene drive has been proposed to spread the Sox9 male development gene to mouse 

offspring at a proportion greater than 95%, causing XX offspring to develop as males, resulting in sterility 

(Prowse et al. 2017). This estimated homing rate estimate was based on laboratory testing of a CRISPR-

Cas9 gene drives for Anopheles gambiae (Hammond et al. 2016). At the time of this work, laboratory 

testing of CRISPR-Cas9 gene drives on mice has not been conducted. To incorporate dynamics of this 

gene drive into a SEFI mouse eradication, I used a simulation approach to predict outcomes of twelve 

unique GDM mouse deployment scenarios (Table 1). I used the R-based model MGDrivE (Sánchez et al. 

2020b) for the simulations. MGDrivE is able to simulate population genetics, population dynamics, patch 

dynamics, and user-specified gene drive parameters into a Monte Carlo simulation framework. MGDrivE 

was originally intended for simulation of mosquito populations (Sánchez et al. 2020a). I modified 

MGDrivE to simulate mouse populations, altering functions affecting mating behavior and changing 

density-dependent and density-independent mortality equations. I also added functions to incorporate 

stochastic toxicological effects into MGDrivE simulations. See sections 2.2.3 and 2.2.3.1 for more details 

on MGDrivE and the modifications. 
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1.8 Rodenticide Use 

Because the focus of this work was to probabilistically evaluate gene drives in pest management, 

rodenticide use, as specified in the SEFI EIS (USFWS 2019), was not considered in isolation when 

simulating mouse eradication scenarios. However, gene drive simulations were run with and without 

supplemental rodenticide use in conjunction with GDM mouse deployment. Brodifacoum is also toxic to 

birds (Eason and Spurr 1995a), with reported LD50 values as low as 0.5 mg/kg. Because the Farallon 

Islands are home to a variety of seabird species, IPM is necessary for considering potential pathways of 

non-target chemical impacts. However, while the BN includes variables representing non-target 

pesticide impacts (Figure 3), these variables are unparameterized. In other words, no numerical models 

have yet been implemented to calculate the probabilities of impacts to non-target species. The 

calculations focused solely on mice, calculating the influence of rodenticide on mouse abundance and 

eradication risk. 

1.9 Findings  

I used the modified version of MGDrivE to simulate three unique GDM M. musculus deployment 

schemes. Each release scheme was simulated across two hypothetical rates of resistance allele 

generation by the Sox9 CRISPR-Cas9 gene drive. Additionally, each gene drive scenario was simulated 

with and without the inclusion of rodenticide-induced mortality, for a total of twelve simulations each 

run for 250 Monte Carlo repetitions. 

Altering the assumed resistance allele generation rate of the gene drive had more influence on the 

probability of a successful SEFI mouse eradication than the addition of a rodenticide. Resistance rate 

also had a relatively high influence on the time to reach successful mouse eradication. For one of the 

gene drive release schemes, eradication was not achieved in any of the Monte Carlo iterations unless a 

high gene drive homing rate was assumed. The addition of rodenticide increased the probability of 
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mouse eradication in all tested scenarios, but to a lesser extent than increasing homing rate. These 

results elucidate the importance of empirically determining homing rates in proposed gene drive 

constructs. 

2. METHODS 

First, I framed the Farallon Islands case study within the BN-RRM, delineating specific endpoints based 

on management goals for SEFI. To accomplish this, I delineated the pest management strategies to be 

incorporated into the risk assessment, constructing a conceptual model of sources, stressors, habitats, 

and effects that could alter risk to endpoints (Figure 1). Next, I outlined the step-by-step methodology I 

used to create a BN-RRM framework for the SEFI pest management scenario. Finally, I described the 

specific quantitative methods I used to parameterize the BN (Figure 3), focusing on the R-based model 

(MGDrivE) that I modified and used to simulate GDM M. musculus population dynamics and population 

genetics on SEFI. 

2.1 Framing the Farallones Case Study with the BN-RRM 

It is important to orient the formulation of a BN-RRM around specific management or regulatory goals 

for which the probability of impacts to these endpoints can be calculated. A BN-RRM framework is a 

region-specific probabilistic model that takes a systems-oriented and causal approach to incorporating 

variables relevant to calculating risk. To organize the SEFI case study within this context, I first outline 

the specific endpoints to be included in the BN-RRM. Then, I outline the specific management strategies 

that were incorporated into the model. These twelve simulated release strategies are summarized in 

Table 1. They include three GDM mouse release schemes simulated across two levels of gene drive 

resistance generation and two levels of supplemental pesticide. The ability to compare many 

management strategies in the context of multiple stressors and multiple endpoints is a distinct 

advantage of the BN-RRM. 



 
 

 

Figure 3. Bayesian network for the SEFI mouse eradication scenario. The highlighted nodes (surrounded by a red border) were 

parameterized using MGDrivE simulations. The sensitivity analyses described in section 3.3 and Figure 5 were performed using only 

the bordered nodes. Non-bordered nodes follow a uniform distribution between node states, as their CPTs have not been defined 

using numerical modeling techniques. Red nodes (A) represent toxicological variables; yellow nodes (C) represent population 

variables; purple nodes (B) represent gene drive variables; and green nodes (D) represent endpoints. The model as depicted here is 

showing the results of scenario 1 simulations after 10 years, as defined in table 1. The full model is available on WWU CEDAR.



 
 

2.1.1 Management Goals 

Integrated pest management (IPM) is a strategy employed in pest eradications that focuses on 

minimizing the use of chemical pesticides to prevent effects to non-target species.  The purpose of IPM 

is to alter the risk of non-target impacts by decreasing the amount of pesticide used, or by employing 

other methods to reduce the probability of non-target species toxicity from pesticides. In the context of 

the SEFI mouse eradication, the EIS (USFWS 2019a) suggested a number of IPM strategies to reduce 

non-target impacts of brodifacoum deployment. These strategies included gull hazing, using various 

visual and aural methods to keep western gulls away from SEFI, hypothetically reducing their exposure 

to brodifacoum; timing brodifacoum deployment to correspond with the annual low point in the M. 

musculus population that occurs in late fall or early winter; and timing the pesticide deployment to co-

occur with the low point in annual ashy storm petrel mating cycle (USFWS 2019a). In the context of this 

work, gene drive deployment corresponds with IPM, potentially reducing or eliminating the need for 

pesticides.  

Table 1. List of gene drive scenarios simulated using the modified version of the R-based model 

MGDrivE. Each of the following scenarios was simulated for 250 Monte Carlo repetitions used 

to calculate the mouse abundance and eradication probabilities input into the BN depicted in 

figure 2.  

Scenario Number Release 

Scheme 

Rodenticide? Correct 

Homing Rate 

(%) 

1 GD1 No 95 

2 GD1 No 99.9 

3 GD1 Yes 95 

4 GD1 Yes 99.9 

5 GD2 No 95 

6 GD2 No 99.9 

7 GD2 Yes 95 

8 GD2 Yes 99.9 

9 GD3 No 95 

10 GD3 No 99.9 

11 GD3 Yes 95 

12 GD3 Yes 99.9 
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2.2 Analysis Tools 

To calculate the influence of GDM M. musculus and rodenticide on the risk of SEFI mouse eradication, 

three numerical models were used. First, I applied exposure-response analysis using the “drc” package 

in R (Ritz and Streibig 2020) to model the probability of M. musculus mortality given a specified dosage 

of brodifacoum. Next, I constructed a BN in accordance with the BN-RRM to causally relate variables in 

the SEFI mouse eradication scenario through conditional probability. Finally, I modified and used the R-

based model “MGDrivE” (Sánchez et al. 2020b) to simulate GDM mouse population dynamics and 

population genetics given various release strategies. 

2.2.1 Pesticide Exposure-Response Analysis using R-`drc` 

I used the “drc” package in R (Ritz and Streibig 2020) to generate a dose-response equation relating 

dosage of brodifacoum with M. musculus mortality (Figure 4; Eq. 1). A two-parameter log-logistic 

regression model was used to generate the dose-response curve and equation. 95% prediction intervals 

and 95% confidence intervals were calculated to show the degree of confidence in point estimates (LDx 

values) on the curve. Prediction intervals were assumed to represent where outcomes (data points) will 

occur with a specified degree of confidence and a specific number of future predictions, while 

confidence intervals were assumed to represent where the fitted model (regression curve) will fall with 

a specified degree of confidence.  

7𝑑 𝐿𝑒𝑡ℎ𝑎𝑙𝑖𝑡𝑦 =
1

1+exp (−3.30(log(𝑑𝑜𝑠𝑒)−log 1.76))
            (Eq. 1) 
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Figure 4. Two-parameter log-logistic dose-mortality curve for 7-day brodifacoum toxicity to M. 

musculus with plotted 95% confidence and prediction intervals. Data from Wheeler et al. (2019). 

 

2.2.2 Bayesian Network – Relative Risk Model 

Using the conceptual model of the SEFI mouse eradication scenario, I created a BN framework 

incorporating the nodes to be used for the evaluation of risk to a variety of pest management and 

conservation-based endpoints (Figure 3). While the model includes nodes for mice and other non-target 

species, the work focused only on the mouse eradication endpoint in terms of the application of 

numerical models and analysis, leaving other endpoints present, yet unparameterized.  

2.2.2.1 Endpoints 

Endpoints should be framed as specific questions with quantifiable measures of success, including 

explicit experimental units and methods for data acquisition. In the BN-RRM, endpoints must consist of 

an entity and an attribute. An entity is a specific ecological feature such as a species, group of species, or 

ecological service. An attribute is a measurable property of an entity such as population abundance or 

extinction. Endpoints should correspond to site-specific management goals. I included four endpoints 
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within the BN for the SEFI case study. The first endpoint was the probability of mouse eradication, 

where eradication is defined as having zero mice remaining on SEFI. The other endpoints included the 

probability of impacts to ashy storm petrel and western gull abundance on SEFI. I did not parameterize 

these endpoints as part of this work, but the unparameterized nodes were still included in the BN to 

show causality. Unparameterized nodes are nodes that have not been informed by empirical 

information or numerical models. For the most part, unparameterized nodes are assumed to follow a 

uniform distribution until specific analyses have been performed to generate a more informative 

parameterization. An advantage of this approach is that knowledge gaps are clearly depicted by 

unparameterized nodes. Experts with relevant knowledge can then assist in developing or applying 

techniques to parameterize these nodes. This work focused on parameterizing the mouse eradication 

endpoint using gene drive simulations. 

2.2.2.2 Bayesian Network Model Structure 

In the BN for the SEFI scenario (Figure 3), I included nodes based on the conceptual model in Figure 1, 

with groupings for rodenticide variables (group A), gene drive variables (group B), population variables 

(group C), and endpoints (group D). I also included temporal variables to show how mouse eradication 

risk changes through time. Gene drive variables included the specific release scheme of GDM mice, with 

options for three unique release patterns for GDM mice (hereafter termed GD1, GD2, GD3 - see section 

2.2.3 for descriptions). I used Netica™ (Norsys Software Corp.) for all Bayesian network construction and 

analysis. 

Rodenticide nodes included the assumed average dosage of brodifacoum to adult mice on SEFI. I 

included rodenticide-induced mortality as part of MGDrivE simulations (see section 2.2.3). Other 

rodenticide variables that I did not parameterize as part of this work included brodifacoum toxicity to 

western gulls and burrowing owls, in addition to a node for “Brodifacoum Exposure” to represent the 

persistence of brodifacoum outside of the specified rodenticide deployment period. Because 
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brodifacoum is highly lipophilic and has a long biological half-life (Godfrey 1985) it is possible for toxicity 

to occur as a result of predation upon organisms that have ingested brodifacoum baits. Such instances 

have been documented (Eason and Spurr 1995a; 1995b; Godfrey 1985). There is no toxicity node for 

ashy storm petrels because they are considered nocturnal marine feeders and therefore have no 

apparent route of exposure to deployed rodenticide (USFWS 2019a). 

Population nodes included abundance variables for house mice, burrowing owls, ashy storm petrels, and 

western gulls. Mouse abundance is depicted as a parent node to owl abundance, as mice are thought to 

be the primary attractive force for burrowing owl migration to the South Farallones. Owl abundance is 

shown as a parent node to petrel abundance, as owls are thought to be one of the main predators of 

ashy storm petrels after the house mouse population reaches its annual low point in late fall. Population 

node states were divided into categories for “Zero,” “Low,” “Medium,” and “High” abundance 

representing ranges of organism counts for each species, with an additional node state, “Sparse,” for 

mice representing when the population was nearing eradication, but not quite at “Zero.” 

Temporal nodes included a variable for “Time” with node states for years 1-10 following a GDM mouse 

deployment. I included another temporal node called “Month” which is a parent to the owl abundance 

node and is currently unparameterized. However, this node could be used to represent migratory 

patterns for owls roosting on the South Farallones. 

2.2.3 Gene Drive Simulation 

Sánchez et al. (2020a) proposed the R-based model “MGDrivE” (Sánchez et al. 2020b) to simulate 

population dynamics of GDM mosquitoes. MGDrivE incorporates population genetics, age-class 

population dynamics, and functionalities of a variety of gene drives. Additionally, MGDrivE provides 

options for altering biological parameters of mosquitoes to accommodate a range of species, as well as, 

allowing for the adjustment of the number of ecological patches and the probabilities of migration 
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between patches. MGDrivE can be run as a deterministic or stochastic model, with the ability to specify 

a number of Monte Carlo simulations to be performed for stochastic runs (Sánchez et al. 2020a). 

Because I simulated mice and not mosquitoes for this risk assessment, I made a number of modifications 

to MGDrivE to accommodate mouse population dynamics and the Sox9 gene drive. Specific 

modifications are described in section 2.2.3.1. 

For each of the two gene drive release scenarios I simulated for this risk assessment framework, I 

assumed that the SEFI mouse population had a carrying capacity of 50,000 mice, based on spatial house 

mouse density estimates from the SEFI EIS (USFWS 2019a). I also assumed that the SEFI mouse 

population was divided into two patches containing 70% and 30% of the total population, with a 20% 

migration rate between patches. Patches were based on a topographic elevation map of SEFI from the 

EIS appendices (USFWS 2019b).  

I assumed that the Sox9 gene drive had a cutting rate of 99.9%, a correct homing rate of either 95% or 

99.9%, and an in-frame resistance allele generation rate of 33.3%. The cutting rate represented the rate 

of CRISPR-Cas9 successfully causing strand breakage for the target wild-type (W) allele. If cutting was 

unsuccessful, it was assumed that the organism would continue to generate W alleles. The correct 

homing rates represented the probability of successful homology-directed repair by the CRISPR-Cas9 

system, substituting gene drive (H) alleles in place of the cut W alleles. If cutting was successful and 

homing was unsuccessful, out-of-frame resistant (B) alleles were generated via non-homologous end 

joining, leading to zero fertility in homozygous (BB) offspring and a 90% fertility reduction in mice 

heterozygous for B alleles. The in-frame resistance generation rate represented the proportion of 

incorrect homing that would lead to development of in-frame resistant (R) alleles. R alleles were 

assumed to cause no reduction in fertility. I chose to compare homing rates of 95% and 99.9% percent 

because 95% is a homing rate that has been demonstrated in laboratory testing of gene drives 
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(Hammond et al. 2016), and 99.9% is a hypothesized homing rate for multiplexed gene drive constructs 

(Marshall et al. 2017). 

The three release schemes for GDM mouse introduction, GD1, GD2, and GD3 were parameterized as 

described by Table 2. All release schemes were run across two levels of resistance allele generation, with 

and without toxicity, for a total of twelve runs of MGDrivE with n=250 Monte Carlo simulations for each 

run. Table 1 contains a comprehensive list of all simulations and their parameterizations. 

Table 2. Release schemes (GD1, GD2, GD3) as parameterized for MGDrivE simulations.  

Release 

Scheme 

Number of 

Releases 

Number of Mice 

Released (per patch) 

Interval (days 

between releases) 

Which 

Patch? 

Total GDM 

Mice Needed 

GD1 40 1200 60 Both 96,000 

GD2 35 2500 60 Larger* 87,500 

GD3 50 750 30 Both 75,000 

* The ecological patch containing 70% of the mouse population was considered the “Larger” patch. 

2.2.3.1 Modifications to MGDrive 

To alter the functionality of MGDrivE for compatibility with modeling population dynamics of M. 

musculus, I made changes to functions affecting mating behavior, density dependent mortality, and 

recruitment of early life stage mice.  I also added functions for modeling the dynamics of the Sox9 

CRISPR-Cas9 gene drive, including rodenticide-induced mortality in simulations, and extracting the 

numerical output of simulations into a form that could be used to parameterize the BN. I modified the 

source code of MGDrivE version 1.5.0 found at https://github.com/MarshallLab/MGDrivE. This altered 

version of MGDrivE can be found at https://github.com/eabrown2378/MGDrivE. 

In the original version of MGDrivE by Sánchez et al. (2020b) (hereafter termed “MosquitoGD”), all 

female mosquitoes are assumed to find a mate and oviposit eggs once each day, assuming panmixia 

unless genotype-specific mating preferences are specified by the user. In the altered version of MGDrivE 

about:blank
about:blank
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(hereafter termed “MouseGD”), not all female mice mate and conceive offspring every day. Instead, 

each female has a probability of mating and conceiving new offspring calculated with Eq. 2: 

𝑃(𝑚𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛) =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑡𝑡𝑒𝑟𝑠

365 𝑑𝑎𝑦𝑠
       (Eq. 2) 

Where the annual number of litters is an assumed average for female M. musculus. I assumed an 

average of 7.5 litters in the runs of MouseGD. Because this value was used to calculate a probability, it 

was not necessary to use an integer for the average number of litters. When running MouseGD as a 

stochastic model, the probability calculated from Eq. 2 is used in a binomial distribution: 

𝑀𝑎𝑡𝑖𝑛𝑔 𝐹𝑒𝑚𝑎𝑙𝑒𝑠 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐴𝑑𝑓 , 𝑃(𝑚𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛))  (Eq. 3) 

Where Adf is the total female population. MouseGD still assumes panmixia, unless otherwise specified, 

assigning each mating female to a mate amongst the adult male population.  

A Poisson distribution was used to calculate the number of newly gestating offspring resulting from 

conception, following Eq. 4 

𝑁𝑒𝑤𝑙𝑦 𝐺𝑒𝑠𝑡𝑎𝑡𝑖𝑛𝑔 𝑀𝑖𝑐𝑒 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑝𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑡𝑒𝑟)   (Eq. 4) 

I assumed an average of 6 mouse pups per litter based on parameters used by Prowse et al. (2017), 

using this value as the rate parameter in draws from the Poisson distributions, with one random draw 

for each mating female.  

In MosquitoGD age-class population dynamics, four mosquito life stages were assumed: egg, pupa, 

larvae, and adult, where density-independent mortality occurred at all four life stages and density-

dependent mortality occurred at the larval stage (Sánchez et al. 2020a). In MouseGD, I also assumed 

four life stages: gestating, nursing, adolescent, and adult, maintaining density-independent mortality 

processes at all four stages, but removing density-dependence from the larval (nursing) stage and 
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adding density-dependent mortality to the adult stage in the form of a carrying capacity modeled by Eq. 

5: 

𝐷 = (
𝑘 ∗ 1/2

𝑘+𝐴𝑑
)

1

𝜃
           (Eq. 5) 

Where D is the probability of surviving the density-dependent process; k is the carrying capacity for the 

adult mice and was set to 50,000 to represent the SEFI population; Ad represents the current adult 

mouse population; and Θ represents a shape parameter used to limit the mouse population to carrying 

capacity (k). A Θ value of 22.4 was used in conjunction with the assumed life cycle parameters for M. 

musculus used in these simulations. I assumed life stage times of 19 days for gestation, 23 days for 

nursing, 37 days for adolescence, and 690 days for adulthood. I based M. musculus life cycle parameters 

on estimates from Brust et al. (2015). At the time of writing this paper, no adolescent mortality is 

included in MouseGD. However, abundances of each adolescent life stage are calculated as part of daily 

mouse population dynamics and mortality processes could be added to the model with relative ease.  

In MosquitoGD, properties of gene drives are stored as 3-dimensional arrays called “Inheritance Cubes” 

which contain the expected offspring frequencies for each genotype for every male-female mating pair, 

as well as, optional parameters that can specify mechanisms such as the viability of specific mating pairs, 

genotype-specific fitness reduction, and genotype-specific sex emergence. In MouseGD, I added a novel 

inheritance cube function for the Sox9 CRISPR-Cas9 gene drive. Because the Sox9 CRISPR-Cas9 gene 

drive is supposed to function through sex-specific organism fitness, this inheritance cube function 

separated genotypes into sex-specific genotypes for modeling purposes, altering genotype-specific sex-

ratio emergence for male and female genotypes respectively. Four alleles (W/H/B/R) were included in 

the inheritance cube. See sections 1.2.1 and 2.2.3 for contextual descriptions of these alleles. W alleles 

were assumed to cause no reduction in mating fitness, with homozygotes producing a normal amount of 

offspring as calculated from the Poisson function in Eq. 4. H alleles were assumed to carry zero fitness 
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reduction for males; however, they were assumed to cause 100% fitness reduction in both homozygous 

and heterozygous females. Mice homozygous for B alleles had zero mating fitness, however mice 

heterozygous for B alleles experienced a fractional reduction of 90%. Similar to W alleles, R alleles 

caused no reduction in mating fitness, however, R alleles were not subject to the enhanced inheritance 

rate of the Sox9 homing element. 

Rodenticide-induced mortality was included within the daily population dynamics of MouseGD 

simulations, applying a daily probability of mortality to each adult mouse using random draws from a 

binomial distribution following the form: 

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐴𝑑𝑢𝑙𝑡𝑠 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐴𝑑, 1 − 𝑃(𝑙𝑒𝑡ℎ𝑎𝑙𝑖𝑡𝑦))     (Eq. 6) 

For simulations that included rodenticide-induced mortality, there was a ~2.9% probability of adult 

mouse lethality for a period of 70 days coinciding with the start of GDM mouse deployment. This 

probability corresponds to an assumed 1.16 mg/kg average dose of brodifacoum to all adult mice over 

the 70-day toxicity period. This dosage was calculated from the 2-parameter log-logistic regression 

model depicted in Eq. 1 and was assumed to correspond to a 7-day LD20 for M. musculus mortality from 

brodifacoum. The daily lethality was assumed to be the 7-day lethality calculated from Eq. 1 divided by 

7. This dose-response curve (Figure 4) was generated using toxicity data from Wheeler et al. (2019). 

Changes to the source code of MGDrivE version 1.5.0 (Sánchez et al. 2020b) was conducted using RTools 

version 3.5.0.4 (Ripley et al. 2020), RStudio version 1.2.5024 (RStudio Team 2020), and R version 3.6.3 (R 

Core Team 2020).  

3. RESULTS 

For each of the twelve MouseGD runs used to parameterize the BN (Table 1), I used the 250 Monte 

Carlo iterations to calculate the probability of the SEFI mouse population falling into each of five 
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abundance categories in the  mouse abundance node. I defined “High” mouse abundance as greater 

than 25,000 mice on SEFI; “Medium” mouse abundance as 10,000-25,000 mice; “Low” as 1,000-10,000 

mice; “Sparse” as 1-1,000 mice; and “Zero” as zero mice. The probability of the “Yes” state on the 

“Mouse Eradication” node was equal to the probability of “Zero” in the “Mouse Abundance” node, while 

the probability of the “No” state was equal to all non-zero states of the “Mouse Abundance” node 

combined. 

Looking at distributions of mouse abundance and the risk of mouse eradication generated by each 

simulated scenario, I made some general comparisons between the outcomes of each gene drive 

scenario. Then I looked at specific instances of risk to the mouse eradication endpoint, noting the 

influence of time, resistance generation, and pesticide usage. Finally, I used Netica’s built-in sensitivity 

analysis function to calculate the relative entropy reduction of pesticide deployment and gene drive 

resistance rate on risk to the mouse eradication endpoint. Entropy is a measure of statistical 

uncertainty, so a higher entropy reduction for a variable means that the variable has a higher influence 

on changes in the node being evaluated (Hosack et al. 2008; Marcot 2012). I conducted sensitivity 

analyses separately for GD1, GD2, and GD3 at each time point included in the BN. 

3.1 Gene Drive Release Scheme Comparisons 

GD1 simulations predicted a 94.8% probability of successful mouse eradication within 10 years of GDM 

mouse deployment when assuming no rodenticide and a 95% correct homing rate of the gene drive, 

surpassing GD2 and GD3 simulations which showed 10-year eradication probabilities of 49.6% and 0% 

respectively. GD1 overall had the highest probability of successful mouse eradication, however, 

eradication tended to occur later than GD2 or GD3. GD1 would involve the highest number of GDM mice 

being released over the longest time period, with a total of 96,000 mice being released over 6.5 years. 
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GD2 simulations showed earlier eradication of mice than GD1, with 7-year eradication probabilities 

ranging from 23.6-100% depending on gene drive resistance rate and the presence or absence of 

rodenticide. 10-year eradication probabilities ranged from 49.6-100%. GD2 would require less GDM 

mice that GD1, but more GDM mice than GD3, with 87,500 mice being released over 5.75 years. 

GD3 simulations predicted the earliest possible mouse eradications out of the three release schemes, 

however, the overall probability of achieving eradication was lowest out of all the scenarios. Unless I 

assumed a 99.9% homing rate for the gene drive, there was a 0% probability of eradication with GD3. 

Although, 99.9% homing and the addition of rodenticide yielded a 40.8% probability of a “Sparse” 

mouse population after 5 years which was the earliest of any simulated scenarios to reach a “Sparse” 

mouse abundance. GD3 would involve the lowest number of released GDM mice, with a total of 75,000 

GDM mice being released over a 4-year period. 

The BN model is available is a supplementary resource file in the WWU CEDAR repository or upon 

request. The model can be viewed using the free version of Netica available at 

http://www.norsys.com/netica.html.  

3.2 Risk to Mouse Eradication Endpoint 

In addition to looking specifically at the properties of GD1-3, I also looked at the general trends of 

mouse eradication risk in terms of time, resistance development, and toxicity, as they appeared across 

all three release schemes.  

For the “Time” variable, I looked at the earliest times that each mouse population threshold was 

reached for “Medium,” “Low,” and “Sparse,” abundance as well as, the earliest time eradication was 

predicted across all simulations. 52.8% of simulations reached the “Medium” population threshold 

across all simulated scenarios after 3 years. After 4 years, the first simulations reached the “Low” 

threshold at a proportion of 12.1%. The first simulations reached a “Sparse” population at year 5 at a 

about:blank
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proportion of 3.4%. One simulation reached eradication at year 6: This was a simulation for GD3 with 

rodenticide and a 99.9% correct homing rate. Knowing the probabilities of these population thresholds 

in addition to the expected times to reach these reduced abundances is a useful management tool in 

conjunction with knowing the overall probability of eradication, especially when considering that a 

drastically reduced mouse population could minimize the presence of burrowing owls, even if total 

mouse eradication has not yet been achieved. Therefore, these probabilistic results for mouse 

abundance thresholds could be useful in anticipating risk of impacts to ashy storm petrels. 

The assumed correct homing rate increased the probability of achieving eradication within 10 years for 

all tested scenarios, with 82.4% of simulations across all scenarios reaching eradication if a 99.9% 

homing rate was assumed, and only 54.9% of simulations reaching eradication with an assumed homing 

rate of 95% assumed. For GD1 and GD2, 100% of simulations showed eradication within 10 years if 

99.9% homing was assumed. For GD3, no simulations reached eradication with 95% homing, but 47.2% 

reached eradication within 10 years for a 99.9% homing rate. These results suggest that empirical 

testing of an engineered gene drive’s resistance generation is essential to evaluating the viability of 

management decisions. 

Addition of rodenticide to simulations caused an increase in eradication probability across 10/12 release 

scenarios. The exceptions were the two GD3 simulations at 95% homing rate where eradication was not 

achieved in any simulations. Averaged across all tested scenarios, 64.5% of simulations reached 

eradication within 10 years when no rodenticide was present and 72.8% of simulations reached 

eradication when rodenticide was included. Currently the BN nodes for toxicity to burrowing owls and 

laughing gulls are unparameterized, however, I expect that an increase in the amount of deployed 

brodifacoum would lead to increased risk of toxicity-related impacts to non-target organisms on SEFI. 
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3.3 Uncertainty and Sensitivity Analysis 

Sensitivity analysis can show the relative influence of parent nodes on a child node in a BN via the 

calculation of entropy reduction. In the sensitivity analyses I primarily focused on the relative entropy 

reductions of the “Correct Homing Rate” and “Pesticide Dose” nodes of the BN, holding “Time” and “GD 

Release Scheme” constant. Because unparameterized nodes interfere with sensitivity analysis 

calculations, I removed all unparameterized nodes from the BN before calculating entropy reduction.  

Overall, correct homing rate of the gene drive had a higher entropy reduction than the addition of 

rodenticide meaning that in the simulation I ran, the resistance generation rate had more influence on 

the risk of mouse eradication than the influence of toxicity. However, the relative entropy reduction 

between homing rate and rodenticide changed depending on the GD release scheme and the time since 

GDM mouse deployment. 

First, I ran sensitivity analyses on GD1-3 at year 7 (Figure 5), since this is when simulations started to 

show mouse eradication. For GD1, “Pesticide Dose” and “Correct Homing Rate” had entropy reductions 

of 0.16% and 2.36% respectively suggesting that neither of these variables had much influence of GD1’s 

eradication probability. For GD2, pesticide and homing rate had entropy reductions of 7.2% and 38.3% 

respectively meaning these variables explain a high proportion of the variance in eradication probability 

for GD2, with homing rate exerting the most influence. For GD3, pesticide and homing rate had entropy 

reductions of 8.47% and 16.7% respectively, meaning that these variables had high influence on 

eradication probability. However, as opposed to GD2, the influence of rodenticide in GD3 was more 

comparable to the influence of homing rate. 
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Figure 5. Results of sensitivity analyses for GD1-3 at years 7 and 10. Percent entropy reduction 
represents the influence of each variable on the risk of mouse eradication. I compared the 
influence of supplementary rodenticide and gene drive homing rate. Homing rate had higher 
entropy reduction across all scenarios. I performed sensitivity analyses using only 
parameterized nodes (see figure 3). I used Netica for all calculations. 

 

I also ran sensitivity analysis on GD1-3 at year 10 (Figure 5) to show which variables had the highest 

overall influence on the probability of a successful SEFI mouse eradication. For GD1, pesticide and 

homing rate had entropy reductions of 2.96% and 13.1% respectively; for GD2, entropy reductions were 

7.55% and 28.7% respectively; and GD3 entropy reductions were 0.29% and 36.7% respectively.  

In conclusion, sensitivity analysis revealed that the correct homing rate of a deployed gene drive has 

high influence on how early a planned eradication is likely to be achieved, and also on the overall 

likelihood of eradication using GDM mice. 
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4. DISCUSSION 

This BN-RRM risk assessment framework for gene drives demonstrates that outcomes and uncertainties 

pertaining to environmental applications of gene drives can be probabilistically evaluated with clearly-

documented modeling assumptions. I will now discuss this the connection with NASEM criteria for risk 

assessment of gene drives, how this model fits into the broader context of synthetic biology and 

ecological risk assessment, conclusions, and next steps.  

4.1 Alignment with NASEM Criteria 

Chapter 6 of Gene Drives on the Horizon (NASEM 2016) outlines some key properties that should be 

present in an ecological risk assessment of gene drive technology: 

1. The risk assessment should be able to provide probabilistic estimates for potential harm and 

benefits of gene drive deployment using numerical models. 

BNs can combine quantitative modeling techniques and empirical information into calculations of 

probability distributions representing risk. The model demonstrates this property by generating 

distributions of mouse abundance and mouse eradication from gene drive simulations. BNs can 

compare relative impacts to multiple endpoints due to the influence of multiple stressors. 

2. The model should allow for comparison between multiple management strategies. 

The model contains the risk distributions from 12 simulated gene drive management scenarios, showing 

their efficacy across a 10-year period. The outcomes of these scenarios were calculated to inform 

specific management goals by calculating risk to endpoints. 

3. The model should be able to incorporate the concerns of relevant management, stakeholders, 

and publics. 
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The endpoint nodes in this BN reflect specific management concerns around the invasive mouse 

problem on SEFI, showing the probability of accomplishing these management goals given the 

implementation of various mouse eradication strategies. Landis et al. (2017) emphasized the ability of 

the BN-RRM to evaluate a wide range of endpoints. These endpoints can be viewed in terms of their 

costs and benefits to various stakeholder groups. 

4. The model should have utility in identifying sources of uncertainty and forming an adaptive 

management scheme around gene drives. 

Sensitivity analysis was used to determine the relative influence of variables on the probability of mouse 

eradication on SEFI. These analyses could be used to prioritize research investigating the efficacy of 

various gene drive constructs. Landis et al. (2017) incorporates risk assessment and uncertainty analysis 

into an explicit adaptive management framework. Feedback from management decisions and research 

can be used to update the BN-RRM with new knowledge, informing future management decisions and 

research directions. 

In short, this model meets the recommended criteria for ecological risk assessment of gene drives 

outlined by Gene Drives on the Horizon chapter 6 (NASEM 2016) and is an appropriate framework to 

start utilizing for directing empirical gene drive research and developing site-specific adaptive 

management schemes for potential environmental applications of gene drives. 

4.2 Risk Assessment for Synthetic Biology 

The properties of this risk assessment framework for gene drives are broadly applicable to any 

ecological use of synthetic biology. The usefulness of probabilistic estimates of environmental outcomes 

is wide-ranging. Additionally, the flexible and causal nature of the BN-RRM is suitable to a plethora of 

potential scenarios related to emerging biotechnology. Utilizing the MGDrivE framework to 

parameterize this BN allowed me to account for population dynamics, population dynamics, patch 
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dynamics, and specific gene drive parameters when simulating a SEFI mouse eradication. Adapting 

MGDrivE to risk assessment indicated the flexibility of the BN-RRM to incorporate a wide range of 

advanced numerical modeling techniques into a causal BN framework.  

4.3 Conclusions 

I demonstrated an approach to parameterizing a risk assessment model for the environmental 

deployment of GDM organisms, providing a framework that can compare multiple management 

strategies and isolate sources of scientific uncertainty. The purpose of this framework is to assist in 

prioritizing research needs and developing adaptive management strategies, enabling responsible 

investigations into the usefulness of gene drive technology and synthetic biology as a whole. 

In simulating the deployment of GDM mice on SEFI, I found that the risk of successful mouse eradication 

was greatly influenced by the resistance allele generation rate of the simulated Sox9 gene drive. These 

results suggest that thorough laboratory investigations into the homing properties of gene drives would 

be useful for predicting the likelihood of successful population suppression using a CRISPR homing 

system. 

4.4 Next Steps 

The risk assessment model presented in this study serves as a template for developing decision making 

models and orienting future research around synthetic biology and gene drives. However, before risk 

assessment frameworks can be used to direct management decisions in the field, they must be tested 

and validated using supplemental experimentation and monitoring. As I demonstrated with sensitivity 

analysis of the BN, studies to evaluate the performance of gene drives in terms of successful cutting and 

homing of the CRISPR-Cas9 system would be useful in calculating the probabilities of various outcomes 

in a field deployment of GDM organisms.  
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Another set of variables that were not fully evaluated in the BN were the conservation-based endpoints, 

or the impacts to non-target species on SEFI due to the deployment of a pesticide or gene drive. For 

example, processes such as hybridization or horizontal gene transfer could potentially lead to the 

transfer of gene drives to non-target species (NASEM 2016). Pesticides can also cause non-target toxicity 

via multiple routes of exposure, including predation of dosed organisms and non-target consumption of 

bait. Many other potentially confounding variables were excluded from the analyses including seasonal 

and predatory influence on mouse population dynamics; residual toxicity, fate, and transport of 

brodifacoum rodenticide; early life stage mortality processes for mice; and potential differences in 

rodenticide sensitivity for various mouse life stages and for newly released GDM mice. 

Chapter 5 of Gene drives on the Horizon outlines a phased testing approach for gene drives (Figure 6). 

This process involves research and deployment phases encapsulating preliminary lab and field testing, 

field deployment of GDM organisms, and continuous monitoring of post-deployment impacts. This 

approach is intended to be iterative and cautious, with criteria for revisiting research or deployment 

phases when new information or uncertainties arise. Risk assessment is intended to inform this phased 

testing approach at all stages, revealing research needs and guiding adaptive management of gene 

drives. The BN-RRM is a well-suited framework for informing the NASEM-outlined goal of responsible 

and thorough methods for evaluating proposed environmental uses of gene drives and synthetic 

biology.  
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Figure 6. A “phased testing” approach to gene drive research and deployment as outlined by 

Gene Drives on the Horizon, including steps for laboratory testing, field testing, GDM organism 

release, and post-release monitoring. This is intended to be an iterative process, with criteria for 

returning to previous stages if novel uncertainties arise. Modified from NASEM (2016). 
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SUPPLEMENTARY MATERIALS 

• Netica file containing the SEFI Bayesian network model described in this work 

• Source code for the modified version of the R package MGDrivE (MouseGD) 

• R code for each of the 12 simulations run and input into the BN 

• *.csv file output for each of the 12 MouseGD simulations run and used in BN 

• R code used to generate the dose-response model in figure 3 and eq. 1 for M. musculus 

brodifacoum-induced mortality 

*these files are available in the WWU CEDAR repository (will have to get the URL later) 
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