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Abstract 

 

Hot Springs Bay Valley (HSBV) geothermal resource area on Akutan Island, Alaska, has 

increased fluid output and temperature by almost a magnitude, between 1981 and 2012 (Bergfeld 

et al., 2014). These increases have been attributed to increased permeability along NW-SE trending 

faults that may have been activated during a seismic swarm in 1996. In 2010 two unoriented drill 

cores were collected in Hot Springs Bay geothermal resource area. In this study I reorient sections 

from one of the highly fractured cores with paleomagnetic data to test this model of geothermal 

reservoir evolution at Akutan. The core is composed of interlayered island arc volcanic rocks, 

volcaniclastic rocks, and shallow marine mudstones. Paleomagnetic samples were collected from 

the volcanic rocks. Continuous sections of the core were reoriented using the declination of the 

remanent magnetization (RM) as an indication of geographic north. Structure from motion 

software was used to create digital reconstructions of the core from photographs. The resulting 

core images were then flattened with a cylindrical projection into a 2D depiction of the outside of 

the core. The orientation of structural features and the relationships between them were measured 

from these projections, while the mineralogy and rake of slickenlines were determined in hand 

sample. Veins with slickenfibers were separated by mineralogy and the Multiple Inverse Method 

(MIM) (Yamaji, 2000) was employed to calculate the stress regime that produced each set of shear 

veins. Results suggest that NNE dipping transtensional calcite filled shear veins are the result of 

periodic rupture possibly caused by inflation of the volcano due to dike emplacement and represent 

recharge of the reservoir. NNW trending chlorite filled shear veins are the result of normal 

overburden pressure alternating with NNW horizontal compression and likely represent the 

northward migration of heated fluids to the reservoir. Cross cutting relations indicate that NE and 

SW dipping, NW-SE normal faults are conjugate and have ruptured repeatedly. Therefore, events 

like the 1996 seismic swarm, which produced NW trending surface ground cracks, have likely 

acted to maintain permeability throughout the lifetime of the geothermal system at Akutan. I 

propose that the increased fluid flow and heat output recorded by Bergfeld et al. (2014) is the result 

of a recharge event initiated by the rupture of NE and SW dipping structures.  
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1. Introduction 

The City of Akutan and adjacent Trident Seafoods processing plant on Akutan Island 

(Figure 1B) would greatly benefit from a local source of clean energy. The City of Akutan and 

Trident Seafood’s current energy needs are being met by burning 4.3 million gallons of diesel fuel 

annually (Kolker et al., 2011). In 2011 residential electricity rates in Akutan were 0.32 $/kWh; 

167% greater than the national average (Fay et al., 2013). The electrical need here could be met 

by establishing a geothermal power plant in the Hot Springs Bay Valley (HSBV) geothermal 

resource area, which would add valuable infrastructure to the island and eastern Aleutians, help 

the community become more energy independent, and diversify the job market. 

The Aleutian Island chain, and Akutan Island in particular (Figure 1A), has high potential 

for geothermal power production (Motyka et al., 1993; Kolker et al., 2012; Stelling et al., 2015). 

Previous geochemical studies (Bergfeld et al., 2014; Stelling et al., 2015) and downhole 

measurements of two slim wells (Kolker et al., 2011) have confirmed enough reservoir heat to 

produce 2-3 MWe or more from the resource (Stelling et al., 2015). Furthermore, Bergfeld et al., 

(2014) noted a 134% increase in discharge of the thermal creek and increased temperatures 

resulting in a 29MW thermal output for the hot springs, which is nearly an order of magnitude 

greater than previous studies (Motyka et al., 1988). These increases reflect both an increase in heat 

flow and an increase in permeability of the system between 1981 and 2012.  Bergfeld et al., (2014) 

postulated that rupture of a system of NW-SE striking faults during the seismic swarm in 1996 

could explain the increased permeability and noted that the increased heat output is particularly 

long lasting if their hypothesis is correct. The primary goal of this work is to determine the 

orientation of permeable structural features in the subsurface of the HSBV geothermal resource, 

and therefore test Bergfeld’s hypothesis by determining if the geometry of these features are 

compatible with the NW-SE striking faults. 

2. Geologic Context 

Akutan Island is one of the easternmost Aleutian Islands and in the central portion of the 

Aleutian volcanic arc formed from the northwestward subduction of the Pacific plate under the 

North American plate. The active volcano dominates the western half of the island, and the eastern 

half of the island is composed of glacially scoured remnants of ancient volcanic activity (Figure 

1). Romick et al. (1990) separated the rock units on Akutan into three broad categories. The oldest 
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rocks on the island are the Hot Springs volcanics (HSV), overlain by the ancestral Akutan 

volcanics (AKV), and the modern Akutan volcanics (MOD) with the most recent lava flows in the 

north of the island. The AKV and MOD are separated by an angular unconformity (Romick et al., 

1990). The AKV are cut by dikes of MOD which mostly parallel the ridges that extend out from 

Akutan volcano (Byers and Barth, 1953). Akutan has been one of the most active volcanoes in the 

region for decades (Finch, 1935; Miller et al., 1998). Based on historical records, major activity 

on the volcano occurs approximately every 20 years (Byers and Barth, 1953), the most recent of 

which was in 1996, which has been attributed to the emplacement of a shallow dike (Lu et al., 

2005). There are two geothermal systems on Akutan (Motyka et al., 1993), one in the summit 

crater and one on the flank of the volcano in HSBV.   

The HSBV is a glacially carved valley on the eastern side of the island. The upper valley 

is oriented NW/SE and the lower valley is oriented NE/SW. The two valleys meet in the southwest, 

forming an approximately 90o bend (Figure 1C) suggesting that the glacier’s path may have been 

structurally controlled. As on the rest of the island, fault scarps, fractures, dikes and lineaments in 

HSBV have three main orientations: NW/SE, E/W, and  NE/SW  (Figure 1C) (Richter et al., 1998; 

Stelling et al., 2015). A prominent SW dipping normal fault cuts through HSBV (Richter et al. 

1998). Most faults mapped in HSBV have dips to the south and SW and show a down-to-the-south 

dip slip or oblique slip motion with dip angles between 50o and 90o, however nearly a third of the 

faults mapped throughout the island do not have dip direction constrained. Joints also dip between 

50o and near vertical, but the dip direction is bimodal to the north and south (Stelling et al., 2015). 

The seismic swarm of 1996 consisted of >3000 earthquakes (Mmax=5.1) that reactivated 

WNW-ESE striking faults south of HSBV and across the island (Lu et al., 2005). The change in 

ground surface morphology (60 cm of uplift) during the 1996 seismic event is consistent with the 

emplacement of a vertical dike as shallow as 0.4 km beneath the northwest flank of Akutan volcano 

oriented parallel to ground cracks striking N70W (Lu et al., 2005). Inflation of the northern flank 

by 5 mm/yr from 1992-1995 and by 20mm/yr from 1995-1996 has been interpreted to be the result 

of magma injection. Subsidence of the volcano’s northwest flank in 1996-1997 by about 20mm 

may be due to the cooling and degassing of the intrusion (Lu et al., 2005). The deepening of 

seismicity through time (1-5km from 1996-2004, 0-3km in 2005, 4km from 2008-2009) at this 

location is attributed to cooling of deeper portions of the dike and surrounding rocks (Syracuse et 
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al., 2015). The documented subsidence on the eastern flank of the volcano from 1994-1997 has 

been attributed to depressurization of the hydrothermal field facilitated by movement along normal 

faults (Lu et al., 2005). As of 2015 there has been very little seismicity in HSBV since the end of 

the 1996 swarm (Syracuse et al., 2015).  

The HSBV hydrothermal system hosts a fumarole field at the head of the upper valley and 

a string of hot springs extending ~1 mile along the northern wall of the lower valley (Figure 1). 

The fumaroles and the hot springs are likely connected and stem from the same deep reservoir. 

The current conceptual model by Stelling et al., (2015) is based on gas geochemistry, silica and 

cation geothermometry, magnetotelluric surveys, and down-hole temperature measurements. 

According to this model there is a high temperature upflow under the fumaroles that bifurcates 

into a lower temperature outflow daylighting at the hot springs. Kolker et al. (2012) proposed two 

different flow paths for the outflow, one following HSBV to the south, and the other curving north 

under Mt. Formidable just north of HSBV (Figure 1C). A geochemical study of the hot springs 

(Bergfeld et al., 2014) reported a heat output of ~29MW, which is about an order of magnitude 

higher than studies done in 1981 (Motyka et al., 1993). Additionally, Bergfeld et al. (2014) 

reported a 20-25% increase in the flow of thermal streams, a 10o C increase in temperature of 

thermal springs as well as substantial increases in most of the individual dissolved solids which 

combined indicate an increase in hydrothermal activity. Bergfeld et al. (2014) suggest this increase 

in heat and discharge is the result of increased fracture density and dilation along the WNW-ESE 

oriented normal fault between the hot springs and the fumaroles that was re-activated during the 

1996 seismic swarm. 

In 2010, two thermal gradient wells were drilled in Hot Springs Bay Valley on Akutan 

Island as part of a geothermal exploration project (Kolker et al., 2012; Stelling et al., 2015). Both 

wells were recovered entirely as unoriented core, with variable degrees of fracturing. Well TG-2 

is 254 m (833 ft.) deep, located on the northern side of the lower valley near the hot springs (Figure 

1C). Approximately 90% of the interval drilled at TG-2 was recovered as core. Well TG-4 is 457.2 

m (1500 ft.) deep and located along the southwestern valley wall at the confluence of the upper 

and lower valleys (Kolker et al., 2011), with core recovery of ~98% (Figure 1C). Well TG-2 was 

drilled next to the hot springs to intercept the outflow, and TG-4 was drilled at the confluence of 

the upper and lower valleys where the three major orientations of faults intersect. The core from 
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TG-4 is therefore well suited to test models of reservoir evolution. The cores consist of interbedded 

basalt and andesite lavas, andesitic and dacitic tuffs, and mass wasting deposits. Similarities 

between lithologic units and variable alteration have made traditional stratigraphy unsuccessful. 

The hydrothermal alteration can take the form of high-density hairline veining, mottled white and 

green mineralization in the matrix of mass wasting deposits, or pale green chlorite and clay 

mineralization around fracture planes, veins, and lithologic contacts that extend several 

centimeters into the rock. Areas of high permeability are often associated with the brecciated tops 

of vesicular basalt and andesite flows or with hydrothermally altered and fractured tuffs (Kolker 

et al., 2012; Stelling, 2015). 

3. Paleomagnetic Investigation 

Reorientation of segments from TG-4 was done using the declination of remnant 

magnetism (RM) in the core as an indicator of geographic north. Using RM is an inexpensive and 

proven technique for orienting already-drilled core (Fuller, 1969) and has been used widely in such 

varied studies as petroleum exploration (Allerton et al., 1995; Hailwood and Ding, 1995), by the 

Ocean Drilling Program to study the structure of subduction wedges (Hill et al., 1993), and to 

establish magnetostratigraphic sections for late-Triassic to early Jurassic volcanic rocks  (Kent et 

al., 1995). Yet there are several challenges employing this method at Akutan. The high latitude of 

Akutan results in a very steep inclination of the magnetic signal (72o in the modern field), and 

therefore the declination signal has a high degree of intrinsic error. Furthermore, the magnetic 

signal could have been overprinted by the drilling of the core (Hailwood and Ding, 1995).  

3.1 Rock Magnetism.  

Fundamentally, magnetic signals are held in magnetite because unpaired electron spins in 

the d orbitals of Fe2+ and Fe3+ ions have very large exchange energies. The organization of these 

unpaired spins within the A and B sublattices produces a net magnetization that can become 

aligned when the mineral cools in the presence of a magnetic field (Tauxe, et al., 2018). If a 

magnetic mineral is less than 30 nm in diameter, it will not record an ancient direction because 

ambient temperatures will reset the direction. Grains less than 30 nm in diameter are called 

superparamagnetic (SP) grains. The magnetic directions held by these nanoparticles flip randomly 

in response to temperature changes and when measured over a long enough time frame their 
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magnetization is net zero. However, when exposed to a high external field SP grains can acquire 

a magnetization. If a mineral is large enough to hold a magnetic signal but not too large it will 

consist of a single magnetic domain (SD). As the mineral grows the internal energies created by 

the alignment of electron spins become unstable and the mineral splits into multiple magnetic 

domains (MD). The grain size of the SD to MD transition is dependent on mineralogy; in the 

magnetite-titanomagnetite series the grain size of the transition is on the order of micrometers. In 

MD grains the domain walls can shift in response to an external field so that the domain directions 

align with the external field. Because SD grains do not contain any domain walls that can be easily 

reorganized, the direction of the magnetization must flip, which requires much more energy than 

reorganizing domain walls (Dunlop et al., 1997). The magnetic field strength required to flip the 

direction of magnetization in a mineral is a property called coercivity. Because of the presence of 

domain walls, the larger MD grains are more easily remagnetized and have a lower coercivity than 

SD grains. Drilling induced remanent magnetization (DIRM) is a common overprint which is more 

likely held by MD grains because they generally have a lower coercivity. The goal of rock 

magnetism is to identify the magnetic components (SD or MD) that are contributing to the RM so 

that the demagnetization paths can be correctly interpreted and to isolate the signal held by the SD 

grains as this is more likely the characteristic remanent magnetization (ChRM) recorded by the 

rocks at the time of their initial formation.  

3.1.1 Rock Magnetism Methods 

Nine samples were selected for rock magnetism as representatives of lithology and 

demagnetization results. These samples are here after referred to as the representative samples. A 

vibrating sample magnetometer (VSM) was used to measure magnetization in the presence of a 

magnetic field, producing hysteresis loops (Figure 2), and to obtain induced remanent 

magnetization (IRM) curves (first column in Figure 3). Saturation magnetization (Ms) is obtained 

when all magnetic domains are aligned, including those that are not oriented in a favorable 

direction. Ms is determined from a hysteresis loop at the high field horizontal asymptote. Saturation 

remanent magnetization (Mr) is a measure of the magnetization when there is no external field. 

The bulk coercivity (Hc) is the magnetic field needed to flip half of the magnetic domains, 

producing a net zero magnetization. Hc is determined from the hysteresis loops where the loop 

crosses the horizontal (applied field) axis. The magnetic field that flips enough domains such that 
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the net magnetization is zero when the field is removed is the coercivity of remanence (Hcr). The 

Hcr was calculated from the mass normalized IRM curves. The ratios of Ms to Mr and Hcr to Hc are 

plotted in Figure 4. Powders and chips of each sample were analyzed, for a total of 18 

measurements. See Appendix A for full laboratory procedure and sample masses listed in Table 

A1. 

The IRM curves represent the sum of all magnetic mineral components in the sample. An 

open source unmixing program, Max-unmix  (Maxbauer et al., 2016) is used to determine the 

coercivity of the individual mineral populations (Figure 3, second column). The Max-unmix 

software uses a statistical approach to fit multiple curves to an inputted coercivity spectra. Each 

curve that is added to the model has variables of 1) mean coercivity, which dictates the placement 

of the curve’s peak, 2) dispersion, which controls the width of the curve, 3) the skewness of the 

distribution, and 4) normalized proportion, which is a measure of how much that curve is 

contributing to the fit of the data (Figure 3 third column). The observed contribution is the 

contribution calculated from values below 2.5mT (3 mT in the case of sample 414Ch), whereas 

the extrapolated contribution is calculated from the full curve, even if it is cut off at the high end 

of the spectrum, as in the case of component 2 in sample 414Ch (Figure 3 second column). The 

error analysis is a Monte Carlo calculation with 100 iterations where 95% of the points are drawn 

from the original data (Figure 3, second column).  

Plotting the ratios of Mr/Ms verses Hcr/Hc has been used by many as an indication of domain 

states (Day et al, 1977). Theoretically SD and MD gains should plot in the SD and MD regions of 

the Day plot (Figure 4). However most samples found in nature fall in the pseudo single domain 

(PSD) range, which is interpreted as a mixture of SD and MD grains. Dunlop (2002; and references 

therein) suggests particle size distribution, internal strain and grain shape all effect Mr/Ms and 

Hcr/Hc values. High internal strain, irregular shapes and wide distribution of grain sizes can result 

in Mr/Ms and Hcr/Hc values that plot closer to the SD field.  

3.1.2 Rock Magnetism Results 

The representative samples selected for this study have Hcr/Hc ratios that range widely from 

1 to 4, while the Mr/Ms ratios are similar and plot within the PSD range. Samples 414, 828 and 

1161 have Mr/Ms ratios between 0.1 and 0.2 and are closer to the MD range than the other samples 
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that plot along a ratio of 0.25 Mr/Ms. Sample 414 has the lowest Hcr/Hc ratio and plots closest to 

the SD range (Figure 4). 

Each IRM curve can be fit by mixing two distinct curves, except for 414Ch which requires 

three curves to match the data (second column in Figure 3). Samples 414, 828 and 1161 all have a 

high coercivity component between 1.5 and 1.7 mT as well as a lower coercivity component 

between 1 and 1.5 mT that is very dispersed and makes up a much smaller portion of the overall 

magnetization. The rest of the samples have two components that are similar in coercivity and 

contribution, but one is more dispersed and skewed toward higher coercivity than the other 

component.  

The hysteresis loops from 414, 828 and 1161 are all comparable to an idealized MD 

hysteresis loop, whereas the rest of the loops are comparable to a mixture of grain sizes (Tauxe et 

al., 2018). The samples that plot farthest to the right on the Day plot (Figure 4) have hysteresis 

loops that are most similar to an idealized SP loop. 

3.1.3 Rock Magnetism Implications 

The similarity in Mr/Ms ratios indicates that each sample has a similar mixture of SD and 

MD sized grains, apart from samples 414, 828 and 1161 which probably have a larger portion of 

MD sized grains since they are slightly lower on the Day plot (Figure 4). The spread in the Hcr/Hc 

ratios suggest varied amounts of SP grains within the mixture of SD and MD grains. Samples that 

plot farthest to the right on the Day plot (Figure 4) likely contain higher proportions of SP grains. 

The hysteresis loops of these samples also suggest high amounts of SP grains as their shapes are 

closest to and idealized SP loop.  

Unmixed IRM curse suggest that there are two prominent magnetic components in all 

samples and three in sample 414Ch. The dispersed component in samples 414, 828 and 1161 could 

be the manifestation of a higher amount of MD grains in a mixture with SD+SP grains. The skewed 

component in the rest of the samples could be the result of a higher amount of SD grains within 

the mixture or could indicate a mixture of different mineral phases (pyrrhotite or Ti-hematite).  

Analysis of the representative samples has shown that all samples have some component 

of SD grains with coercivities between ~25-60mT, as well as an MD component with much lower 

coercivities. Rock magnetic properties do not vary much between lithology.  
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3.2 Paleomagnetic Directions 

3.2.1 Demagnetization Method 

The fractured core pieces were reassembled into “runs” using the fit of individual pieces 

or through-going rock fabric, and a false north reference mark (N’) was made along the length of 

each section (Figure 5). Each run is separated from the next where the core could not be fitted back 

together. This disconnect occurs where the core is so heavily fractured as to be rubble, where there 

are pieces missing, where the core has been cut for sampling without being marked, or where the 

core pieces were deformed because of drilling complications. It is important to note that rubble 

zones occur along the brecciated tops of lava flows and are likely important permeable planes 

within the substrate. Runs that were selected for this study are listed in Table 1. These runs were 

chosen because they contain the highest density of cross cutting veins and because they contain 

the most reliable paleomagnetic directions. The assumption is made that veins within the intact 

sections of core have orientations that approximate those in the rubble zones. Sampling for RM 

analysis was restricted to igneous units; basalts, andesite, and tuffs that were relatively free of 

veining and at least two feet away from intense hydrothermal alteration. This alteration often 

occurs along contacts between lithologies or the brecciated tops of flows. Sample ID numbers are 

grouped in a hierarchy by locality, site, sample, and specimen. Each core is a locality (e.g., TG-4), 

each run in the core is a site, each flow unit in that run is a sample, and each individual 

paleomagnetic cylinder drilled from the core is a specimen with the naming scheme: (footage)-

(piece number in the box)(specimen in sample). All analyses were done in the Pacific Northwest 

Paleomagnetic Laboratory following standard demagnetization procedures (see appendix A. for 

complete laboratory procedures).  

Flow units were defined by changes in lithology or chilled margins separating flows of the 

same lithology. Six specimens were drilled in each run that hosted an appropriate lithology. If the 

run had multiple flows appropriate for sampling, three specimens were taken from each additional 

flow. Specimens were drilled relative to the false north mark through the center of the core, so that 

the positive x direction on each specimen is parallel to N’ and in the up-core direction as in Figure 

5, see Figure 6 for run lengths and sample locations. The cylinder samples are taken from the 

center of the core to avoid drill induced remagnetization that could have affected the outside of the 

core (Pinto and McWilliams, 1990).  
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Half of the specimens from the samples with six specimens and all the specimens from the 

additional samples were demagnetized with increasing strength of an alternating field in the D-

Tech 2000 AF (de)magnetizer. The other half of the six specimen samples were thermally 

demagnetized. Specimens with high magnetic moments were measured on the spinner 

magnetometer and the rest were measured on the 3-axis 2-G Enterprises model 755 cryogenic 

magnetometer between each demagnetizing step. Principal Component Analysis (PCA) 

(Kirschvink, 1980) was used to define paleomagnetic directions from demagnetization steps within 

the PuffinPlot (Lurcock and Wilson, 2012) software. Fisher statistics (Fisher, 1953) were used to 

calculate the mean declination and inclination of groups of specimens. Finally, selected directions 

with negative inclinations were converted to the lower hemisphere so that the reorientation 

calculations were consistent across all sites, effectively adding 180o to the declination.  

The original directions and the inverted directions used for reorientation are listed in Table 

2. The directions selected to reorient the core had to pass three standards. First, directions from 

individual specimens should be well-defined, with at least four demagnetization steps defining the 

characteristic remanence, with a MAD angle of <6o for the PCA fit. Secondly, directions had to 

have a normal or reverse inclination like that which would be expected at Akutan: between 60o 

and 85o. And thirdly, directions from sets of specimens from a flow unit or intact core run should 

be consistent, with a k value >15 indicating a tightly clustered data set. Only 6.7% of the specimens 

collected were used in the final core reorientation. 

Commonly in paleomagnetic studies a virtual geomagnetic pole (VGP) is calculated from 

sets of samples or specimens that represent a single, or geologically short, interval of time. If 

VGP’s are averaged over ~10,000 years they approximate a geocentric axial dipole (GAD) field, 

which provides the best-defined geomagnetic field reference direction for a specific geographic 

location because the location of the magnetic north pole corresponds to the geographic spin axis 

for this field geometry. As a result, it is considered best practice to sample at least 10,000 years of 

the rock record to average out this paleosecular variation. For volcanic rocks, each cooling unit 

will only record the geomagnetic field over a short duration of time. This study lacks independent 

data with which to define cooling units so rely of flow units. However, because of the limited 

number of flows within intact runs of the core, it must be assumed that there is not enough time 

sampled to average out paleosecular variation. Paleosecular variation models typically have a 
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(VGP) dispersion of about 30o from the GAD field (Johnson and Constable, 1996). Stone and 

Layer (2006) showed that the paleosecular directions from the Aleutian Islands for 0-2 Ma have a 

much smaller directional dispersion than what is predicted by current paleosecular variation 

models. The dispersion measured from flows across the Aleutians have a VGP dispersion of 6.43o 

from the GAD field, and when data from western Canada is added the VGP dispersion is 12.07o. 

Therefore, the reoriented structural measurements used in this study have a reorientation error of 

at least ±6.43o and up to ±30o in the strike direction. Also, because Akutan is at a high latitude the 

inclination angle is steep and therefore there is greater inherent error in the declination direction 

of any magnetic signal compared to a similar sample from lower latitudes. 

The amount of rotation (R) and compounded error (ΔR) for each site is calculated as the 

difference between the declination of the mean direction observed (Do) in each site to the 

declination of the expected magnetic direction (Dx) at Akutan by, 

𝑅 = 𝐷𝑜 − 𝐷𝑥                                                             Eq.1 

and,  

∆𝑅 = 0.8√∆𝐷𝑜
2 + ∆𝐷𝑥

2                                                      Eq.2 

(Demarest, 1983). In this case the declination of the expected direction is Dx= 0, or directly north. 

The confidence limit on the expected declination (ΔDx) is calculated by 

𝛥𝐷𝑥 = sin−1 (
sin 𝐴95

sin 𝑝
)                                                      Eq.3 

where A95 is the 95% confidence limit on the mean VGP and p is the magnetic colatitude, the angle 

between the site location to the equator. Here A95=13o as in Stone and Layer (2006) and 𝛥𝐷𝑥 =

22.6° as calculated from Eq.3. 

3.2.2 Demagnetization Results 

Robust sampling insured that usable paleomagnetic data was acquired, however the side 

effect of this choice is that much of the paleomagnetic data remains unused. In some cases, a site 

only contains one place appropriate for sampling (e.g. Figure 6. 271-274ft.), even if multiple flows 

exist in the site. Many of the sites defined are too small (Figure 6) or do not contain enough 

structures to justify creating an unrolled image (as discussed in section 4.1). Typically, the first 
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component of the paleomagnetic directions throughout each run varies between samples and 

sometimes between specimens within the sample. This was anticipated given the possibility of a 

DIRM overprint. The second or third component within each specimen are typically consistent 

over multiple specimens and samples. While the directions are very well defined most do not fall 

within the required inclination angle. Results are presented generally by each lithology, for sites 

not selected for reorientation (totaling 93.3% of the demagnetization data), and more specifically 

by site and sample for sites that were selected for reorientation. Results from selected sites are 

presented in Table 1 (see appendix B for full list of site, sample and specimen data).  

Specimens that were drilled in the tuff lithology have two components, the first-removed 

component is usually very small and poorly resolved and the second is well defined (Figure 7). A 

few of the specimens treated with alternating field demagnetization have components that are 

overlapping causing the demagnetization paths to be curved. The alternating field demagnetization 

curves are straight to slightly concave up and usually reach <10% of NRM by either 20 mT or ~60 

mT steps (Figure 7.A). Thermal demagnetization curves reach < 10% magnetization by 600 oC 

with a sharp decline between the 120 oC and 200 oC heating steps (Figure 7.C) and the 500 oC and 

600 oC heating steps. Some do not have a significant drop in magnetization between 120 oC and 

200 oC (Figure 7.B). 

Specimens drilled from andesite usually have a scrambled (Figure 8.A) or horizontal 

(Figure 8.B) first component and a highly inclined and well defined second component. The 

thermal demagnetization curves reach <10% NRM by the 600 oC heating step with a sharp decline 

between the 500 oC and 600 oC heating steps (Figure 8.A). The AF demagnetization curves are 

usually straight to slightly concave up and reach <10% NRM by either the 60 mT or rarely the 100 

mT step (Figure 8.B). Some of the thermally demagnetized specimens have only one component. 

Demagnetization curves for the single component andesite specimens have a steady rate of decline 

and reach <10 % NRM by the 400 oC heating step (Figure 8.C). The AF demagnetization curves 

from the same sample sites have a steady rate of decline that reaches <10% of NRM by the 35-

40mT steps (Figure 8.D).  

Many of the specimens drilled from basalt have two components. The first component is 

vertical with a negative inclination, and the second is usually steeply dipping with a positive 

inclination. The first component is defined by the 0-10mT AF steps (Figure 9.A) and the 0-400 oC 
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thermal steps (Figure 9.B). The second component is defined by the 15-70mT steps and the 500-

600 oC thermal steps. Both the AF and the thermal demagnetization curves increase over the steps 

that define the first component and decrease over the steps that define the second component. The 

AF demagnetization curve reaches <10% NRM by the 60-70mT steps and the thermal 

demagnetization curve by the 600 oC step. Some of the basalt specimens have a single component 

that is defined by the 0-35mT (sometimes as low as the 0-15mT step) and the 120-400 oC thermal 

steps. The thermal demagnetization curves have a steady decrease throughout all temperatures and 

reach <10% NRM by the 400 oC step (as in Figure 8.C). The alternating field demagnetization 

curves decrease sharply in the first few steps and then shallowly, creating a distinctive ‘L’ shape, 

reaching <10% NRM by the 15 to 35mT step (as in Figures 8.D and 7.B). 

The 588.5-595.5 ft. (179.4-181.5 m) site has two units which were acceptable for sampling, 

an andesite and a basalt. The andesite flow unit is ~ 1 m think (Figure 6.) and the basalt is ~12.8 

m thick. The specimens collected from the basalt are within a meter of the top flow margin. Every 

specimen revealed a well-defined magnetic direction with two components. The first component 

is interpreted to be an overprint from drilling of the TG wells because it is near vertical and the 

declination is varied. The second components were added to the site mean. Specimens 589-2B, C, 

F, and 594-2B had second components with inclinations steeper than 85 o and so were removed 

from the site mean calculation (Figure 10).  

The 831-841 ft. (253.3-256.3 m) site contains two flow units, a ~3.6m thick basalt and a 

~14.3m think andesite (Figure 6), however only the basalt was appropriate for sampling. 

Specimens were collected within and 10cm of the bottom flow margin. All specimens had 

magnetic directions with two components. The first component in each specimen is vertical and is 

interpreted as a DIRM. The second component in each specimen has a negative inclination and 

was added to the site mean (Figure 10). 

The 942-983 ft. (287.1-299.6 m) site contains eight units, five of which were sampled 

(Figure 6). Samples 947-10, 955-9, and 957-15 are all from flow units that are ~1-3m thick (Figure 

6). The inclination from sample 947-10 are below 65o, the declinations in each specimen from 

sample 955-9 are alternating ~180o, which is interpreted as a sampling overprint (see Appendix 

A), the magnetic directions from sample 957-15 have vertical first components and inconsistent 

second components, which is interpreted as a DIRM (Table 1); all were removed from the site 
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mean calculation. The first component in sample 965-11, a 2.4m thick andesite, aligns well with 

the second component, in sample 971-2 (Figure 11), a 4.5m thick basalt. The 965-11 sample was 

collected within 10cm of the bottom margin of the flow, directly above the basalt (Figure 6).  

The 1022.5-1030 ft. (311.7-313.9 m) site contains one basalt flow that is ~9m thick. The 

first component in all specimens is near vertical with a varied declination and the second 

component is steeply dipping with a consistent declination (Table 1). The first components are 

interpreted to be a DIRM and the second components were added to the site mean. The second 

components in specimens 1024-2A, B and F have inclination that are steeper than our cutoff and 

so were removed from the site mean. 

In the 1030-1066 ft. (313.9-324.9 m) site there are seven flow units, five of which were 

sampled (Figure 6). The thickness of these flow units ranges from 1-9m and all samples were 

collected within 10cm of a flow margin. Two consistent directions that pass our standard for 

reorientation are present in the specimens from the 1030-1066 ft. (313.9-324.9 m) site. The 

consistent direction between samples 1041-16 and 1042-1 has a reverse inclination and is defined 

by the 500-600oC temperature steps. These samples also have a first or second component with 

normal polarity that are consistent in inclination but vary in declination. The directions from 

sample 1053-4 and 1065-16 both have a normal inclination that matches the modern inclination at 

Akutan, and a consistent declination. Both consistent directions could be a ChRM and used for 

reorientation.  

3.2.3 Interpretation of Paleomagnetic Directions  

The temperature range that defines the components used to reorient sites 588.5-595.5 ft. 

(179.4-181.5 m), 831-841 ft. (253.3-256.3 m), and 1022.5-1030 ft. (311.7-313.9 m) is 500-600 oC 

and indicates that magnetite is the mineral holding the magnetic signal. I propose that the basalt at 

965 ft. depth, in the 942-983 ft. (287.1-299.6 m) site intruded into the andesite unit above it and 

the heat caused a thermal overprint in the andesite flow (sample 965-11). Therefore, the second 

component in the basalt is interpreted to be the ChRM and the first component in the andesite is 

interpreted to be a thermal overprint caused by the intrusion. This direction was used to reorient 

the 942-983 ft. (287.1-299.6 m) site (Table 2). The two consistent directions in the 1030-1066 ft. 

(313.9-324.9 m) site could be a ChRM and used to reorient the site. However, since the direction 

from samples 1041-16 and 1042-1 has a reverse inclination it must be an ancient direction, whereas 
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the direction from samples 1053-4 and 1065-16 is normal and might be a DIRM since the first and 

second components are almost indistinguishable. Therefore, the reverse polarity direction in the 

1030-1066 ft. (313.9-324.9 m) site was used to reorient that section of the core.  

The rotational error on the declination of site means ranges from ±9.9o to ± 22.2o (Table 2, 

Figure 10). This error is passed on to the strike of any structural data within the site. While each 

site has a slightly different strike error every strike within a site has the same magnitude of error. 

In other words, a cluster of data from within a single site has an error associated with it, but 

individual structural measurements within a site do not have different strike errors.  

4. Structural Investigation 

Constraining permeability is the most challenging aspect of geothermal exploration and 

development (Coolbaugh et al., 2015). Hinz et al. (2016) has shown that the most productive 

geothermal systems worldwide are associated with structural environments that are complex, with 

intersecting fault zones, and tectonic environments with any component of extension. 

Understanding the structure of hydrothermal pathways and the stress states that widen them is a 

goal that can be met by inspecting the record of past rupturing events. Details of rupturing events 

can be determined by hydrothermal mineralogy. For example, when hydrothermal fluids heat up, 

as they move closer to the reservoir, the solubility of calcite decreases, causing mineral growth but 

quartz becomes more soluble (Elders et al., 1981). For this reason, the inflow pathways are 

commonly identified by the presence of calcite. Mineralogy in upflow and outflow pathways, 

where temperature decreases with distance, is more commonly dominated by quartz and chlorite, 

with only minor calcite (Elders et al., 1981). Boiling during fluid ascent can cause dramatic 

changes in the environment of hydrothermal systems and because of this multiple mineral species 

can crystalize simultaneously (Drummond and Ohmoto, 1985). Veins that are laminated with 

calcite ± chlorite ± quartz ± hematite could be the result of multiple rupturing events or the result 

of progressively changing fluid chemistry and or temperature causing systematic mineralization. 

Sections of the TG-4 drill core were reoriented using the declination of paleomagnetic site means 

and the measured structural and mineralogic features were used to investigate the link between 

seismic events on Akutan and the productivity of the HSBV hydrothermal system. 
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4.1 Core Analysis 

4.1.1 Core Analysis Methods 

Core sections were chosen for structural analysis if they 1) encompassed usable 

paleomagnetic specimens, and 2) contained a high density of veins and cross-cutting structures. 

Each selected core run was photographed with a Nikon COOLPIX B500 digital camera. The core 

segments were placed on a rack with a green screen background that was later masked out of the 

images. Model building followed the standard Agisoft workflow, and a cylindrical projection was 

used to create an “unrolled” image of the outside of the core (Figure 5; see Appendix A for full 

workflow). The open source software ImageJ was used to generate a list of pixel coordinates from 

these images from which the strike, dip, and depth of fractures, veins, contacts and matrix 

permeability were calculated in an excel spread sheet (see appendix B for structural data). The 

mineral fill was identified, and rake of slickenlines was measured by hand. Slickenlines were 

assigned low- or high-confidence levels based on the quality and prominence of directional 

movement indicators. Cross cutting relationships were noted when present. A vein was deemed 

“cross cutting” if there were subtle offsets or if mineralization clearly overprinted the other 

structures. If a fracture or vein was offset by more than a few millimeters it was not directly 

measured, as the offset h measurement would not produce accurate dip data. Instead a vein of 

similar orientation within the run was used as a placeholder for the offset structure.  

A flat structural feature in the core appears as a perfect sinusoidal curve in the core log 

images (Figure 5). To calculate the strike and dip of structures the pixel coordinates of the peak 

(T) and troughs (B) of the sine curve as well as the coordinates of the N’ line were extracted from 

the two-dimensional core log image with ImageJ and used as inputs in an excel sheet. To convert 

the measurements from pixels to meters the pixel width of the image, and the pixel length of a 

scale parallel to the length of the core were extracted with ImageJ and used as inputs in the excel 

sheet. The scale parallel to the length of the core was used to calculate the depth of each feature at 

T. The difference between the T and B of the curve (labeled (h) in Figure 5) is used with the 

diameter of the core (d) to calculate the dip of the structure by  𝑑𝑖𝑝 = 𝑡𝑎𝑛−1 (
ℎ

𝑑
). For the strike 

measurement to be in the right hand rule the pixel coordinates of the inflection point where the 

curve increases to the right is used as the strike. The x and y coordinates of the inflection point are 

calculated as the median value of the x and y coordinates of T and B. The pixel distance between 
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the N’ line and the x value of the strike point is the azimuthal strike in the N’ coordinate system. 

The pixel strike is converted to degrees using the conversion factor of (
𝑝𝑖𝑥𝑒𝑙 𝑤𝑖𝑑𝑡ℎ

360 𝑑𝑒𝑔
). The declination 

of the site mean is then used to convert the strike measurements from the N’ coordinate system to 

true geographic north, albeit with error inherited from the uncertainty of the paleomagnetic 

directions (see section 3.2.1). These calculations were done in an excel spread sheet. 

Irregular structural planes introduce error into these calculations because the calculations 

are based on an assumed perfect sine curve. Additionally, if the 3-dimensional model is misshapen 

significantly because of poorly aligned photographs the 2-dimensional projection will be distorted, 

and the structural trace will not be a perfect sine curve even if the structural is perfectly flat in hand 

sample. It is then important to collect enough overlapping photographs from which to make the 

models as accurate as possible. A randomly selected subset of orientation data was also measured 

by hand with a Brunton compass and compared to the calculated orientations (Figure 12). The 

amount of error on the calculated orientations is comparable to that of measurements made by 

hand as both are done on a small portion of a much larger plane. Therefore, as with structural 

measurements made by hand in the field, I rely on a large data set to define general orientations of 

structural features which can be related to island scale trends mapped on the surface. 

4.1.2 Core Analysis Results 

A total of 530 planar features were measured and reoriented using the declination of the 

site mean (Figure 13). Note that the clusters of data in the unoriented core (Figure 13a) result from 

a large portion of the data being present in a few long core runs. Of the data presented in Figure 

13b, 477 are mineralized veins and 53 are un-mineralized structures. The orientations of un-

mineralized structures (i.e. fractures; Figure 14.A), have dips that are generally within 30o of 

horizontal and average around horizontal with a random distribution of strikes (Figure 14.A). 

Many of these unmineralized fractures have jagged faces and or terminate where truncated by 

mineralize veins. Because many of the fracture are consistent with drilling-induced and handling-

induced stresses, and because unmineralized fractures contain no information about the history of 

the hydrothermal fluid flow, these have been removed from the data set. These 53 fractures make 

up only 10% of the data set, the other 90% of the structural data is useful to our study. As a result, 

all the subsequently discussed veins sets are subsets of the veins presented in Figure 14.B. 

Mineralized veins have strikes in a wide range of directions (Figure 14.B). However, there is a 
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prominent NW striking, NE dipping cluster as well as a more dispersed SE striking, SW dipping 

cluster. 

Vein width, (distinct from aperture, discussed below), is here defined as the width of the 

mineralized zone. Vein widths vary though most are less than 1mm thick (Figure 14.C). Although 

veins <1mm wide strike in all directions, the dominant orientation is to the NW and dip ~60o to 

the NE. Veins that are 2-4mm, 5-9mm and >10mm wide are present throughout the bottom three 

runs and are most abundant in the 313.9 – 324.9 m. range (Figure 14.D, 14.E and 14.F, 

respectively). Veins of all widths are predominantly striking to the NW and dipping to the NE, 

with a smaller number of veins striking to the SE and dipping to the SW. Overall the orientation 

of veins becomes more ordered with depth, with the widest veins present at the greatest depths.  

Polymineralic veins are abundant, and many contain crack-seal textures observed in thin 

section (Figure 15). Monomineralic veins are predominantly calcite filled (Figure 15, 4-83-542 

upper left) and are more often thin, hairline veins. Calcite filled veins dominate the core (Figure 

16.A) and most are NW striking and dip to the NE, whereas the orientation of chlorite filled veins 

(Figure 16.B) are more dispersed. Purely chlorite-filled veins are concentrated in the upper 

portions of the core (0 - 317 m) whereas purely calcite filled veins are present throughout (Figure 

16.A). Quartz is present in only 13 out of 477 veins and is always accompanied by calcite and or 

chlorite (Figure 16.C). Hematite and zeolites such as lawsonite and chabazite are present as well 

but only as accessory minerals in polymineralic veins (Figure 15). 

Veins that have open apertures are concentrated at specific depths (~180 m, between 289-

292 m, ~313 m, and ~322 m depth) and have a range of orientations (Figure 16.D).  Most apertures 

are less than 1mm although the partially mineralized veins below 322 m depth have apertures up 

to 2cm wide as well as bladed calcite with argillic alteration and intense hairline veining extending 

up to 8cm into the wall rock.  

Cross-cutting relationships between veins are also present in the core.  The orientation of 

veins that are cross-cutting (Figure 16.E) and those that are being cross-cut (Figure 16.F) are very 

similar. Both conditions have clusters of orientations with strikes to the NW and S with dips to the 

NE and W, respectively. Because of these similarities fault sets based on orientation cannot be 

separated temporally. However, vug and vein fillings viewed in thin section show that calcite and 

zeolites are always the last to form (Figure 15). 
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Throughout the ~31 m of reoriented core there are 86 mineralized and two unmineralized 

faces with slickenlines. The sense of slip indicated by the slickenlines was not always clear, so 

each measurement was given a confidence ranking from 0-5, with 5 assigned to measurements 

with a clear sense of slip and 0 an ambiguous sense of slip. Of these, 58 are high level confidence 

(Figure 17.A), and the remaining 30 are low level confidence. Purely calcite filled veins with 

slickenlines of high confidence numbered 15 (Figure 17.E), and 10 purely chlorite filled veins with 

slickenlines of high confidence are present (Figure 17.F). Veins with slickenlines, hereafter 

referred to as shear veins, have three primary orientations, WNW dipping, NE and SW dipping, 

and a small number of E-W striking planes (Figure 17.A). The SW dipping shear veins have 

slickenlines showing oblique normal movement down to the NW, W, and SW. These NW striking, 

SW dipping shear veins are filled with calcite after chlorite (Figure 17.B). The NW striking, NE 

dipping set have slickenlines that show oblique normal movement to the NNE and are primarily 

filled with pure calcite (Figure 17.C, E). The NNE and E-W striking shear veins have primarily 

sinistral strike slip movement indicators and are polymineralic, hosting chlorite ± other minerals 

(Figure 17.D) or monomineralic, hosting only chlorite (Figure 17.F). Three of the shear veins with 

laminated mineral growth have slickenlines on multiple mineral lamination faces within the same 

vein. The rake of these slickenlines show two distinct movement indicators for the same structural 

surface (Figure 18). The cross cutting slickenlines show oblique normal-sinistral movement 

whereas the cross-cut slickenlines show reverse movement on two planes and normal movement 

on the other. 

4.1.3 Implications of Reoriented Structures and Minerology 

Vein width, mineralogy, and style of mineralization in part reveal the rupturing history of the 

geothermal system in HSBV. Vein width can be interpreted as a large aperture being slowly filled in, 

indicating high permeability; or a small, repeatedly opened aperture, indicating episodic fluid flow. 

Polymineralic veins could be the result of mineralization during boiling or of repeated rupturing 

and episodic fluid flow. Multiple orientations of slickenlines on separate mineral laminations 

within a single vein, and the abundance of crack-seal textures observed in thin section (Figure 15) 

are evidence of multiple rupturing events rather than systemic mineralization caused by boiling. 

Veins with a monomineralic fill, and veins that are less than 1mm thick are interpreted to show 

single fluid flow events. It is possible that long lived continuous fluid flow could deposit a single 

mineral type if the source fluid had a static chemistry but given the abundance of polymineralic 



19 
 

veins in the core, the monomineralic, thinner veins are more likely to be the result of a single, 

short-lived fluid flow event. Veins wider than 1 mm (Figure 14.D-F) are interpreted to indicate 

sustained or multiple fluid flow events.  Because cross cutting vein sets could not be separated 

temporally, shear veins were grouped based on mineralogy (Figure 17) with the reasoning that 

veins of similar mineralogy likely formed from a similar fluid source and stress field. Chlorite and 

calcite were chosen as the mineral delimitators because these are the primary geothermal minerals 

in the core and form in different hydrothermal environments. As discussed in Section 4, the 

presence of calcite in a vein indicates that that structural feature acted as an inflow path to the 

reservoir, whereas the presence of chlorite is more indicative of hydrothermal outflow. Fractures 

are interpreted as non-fluid hosting and therefore are not relevant to this study.  

4.2 Paleostress Inversion 

The determination of paleostresses or in situ stresses from fault slip data has been the goal 

of many researchers.  One of the main failings of many studies is the use of heterogeneous fault 

slip data for principal stress inversions (Sperner and Zweigel, 2010). Heterogeneous fault slip data 

is the result of multiple stress states and must be separated into temporal subsets based on 

geological evidence or geographical regions of homogenous strain (Simón, 2018). Temporal 

delimitation is not possible for this study because, as discussed in section 4.1.2, cross cutting 

relations between fault sets based on orientation are inconclusive (Figure 16.E, F).  

4.2.1 Paleostress Inversion Methods  

The multiple inverse method (MIM) (Yamaji, 2000) is a statistical algorithm based on the 

inverse method (Angelier, 1984) that can effectively test whether a set of fault slip data resulted 

from homogenous or heterogeneous stresses. The MIM calculates a stress tensor which minimizes 

the angular difference between observed and theoretical slip directions on a set of fault planes. The 

stress tensor is described by three directional components as well as the Lode number (µL) (Lode, 

1925), which describes the shape of the stress ellipsoid where, 

μL =
2𝜎2−σ1−σ3

σ1−σ3
                                                             Eq. 4 

given that 𝜎1 ≥ 𝜎2 ≥ 𝜎3. The Lode number ranges from -1 to +1 where the end member values 

represent uniaxial compression and uniaxial tension respectively and intermediate values indicate 

triaxial strain. Although Angelier's inverse method uses Bishop’s parameter (Φ) to describe the 
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shape of a stress ellipsoid, the Lode number is more desirable for the MIM algorithm because end 

members have the same absolute value. The Bishops parameter is related to the Lode number by  

𝜇𝐿 = 2𝛷 − 1                                                           Eq. 5 

and varies from 0 to 1 where the end members represent uniaxial compression and uniaxial tension, 

respectively. It should be noted that the most recent version of the MIM software uses Φ to describe 

the relationships between principal stresses.  The three directional components and Φ are plotted 

in a four-dimensional parameter space to define a stress state. The best fit to the input data is 

indicated by a cluster of similar σ1 and σ3 directions with similar Φ values. If multiple clusters (i.e. 

multiple solutions) are observed, the data is said to be heterogeneous, resulting from multiple or 

changing stress states. Simón (2018) has suggested using at least 10 but preferably 15 faults with 

directional data in any stress inversion. The MIM program also requires at least 15 data points to 

produce an interpretable result.  

As discussed above (Section 4.1.2) only 15 purely calcite filled and 10 purely chlorite filled 

shear veins with high confidence slickenfibers are present. Shear veins with chlorite and other 

minerals, primarily calcite, were added to the chlorite data set to obtain a large enough data set for 

the MIM to function. Likewise, polymineralic shear veins with calcite ± hematite ± quartz, but not 

chlorite, were added to the calcite data set. Finally, the MIM calculation was run on shear veins 

with chlorite and calcite fill. Shear veins with multiple slickenline orientations were excluded from 

the final MIM calculation because the method only uses one rake measurement for each surface 

and because the crosscutting relations of the slickenlines is low confidence. However, the MIM 

was run with the ‘older’ and ‘younger’ generation of slickenlines for the sake of comparison.  

The uncertainty in the direction of principal stress orientations results from the uncertainty 

of each fault plane in the data set. The error contributed by each shear vein within a run is the 

same, however each run contributes a unique error (inherited from paleomagnetic directions, see 

section 3.2). To calculate the directional error on each principal stress orientation a weighted 

average of the site errors was taken, with the weight on each error being the percentage of shear 

veins that come from the site with that error. The error in the plunge of each principal stress 

orientation can be estimated by the vertical spread in the solution clusters and is therefore 

independent of the inherited paleomagnetic errors.  
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4.2.2 Paleostress Inversion Results 

Results of the MIM analysis on all 55 high confidence shear veins show heterogeneous 

strain because there are multiple clusters (i.e. multiple solutions) produced by the calculation. 

Broadly there are four orientations of principal stress that fit the data, and each cluster of solutions 

fits a different combination of fault sets (Table 3, Figure 19, Figure 20). 

The first orientation group has a horizontal σ1 oriented NNW-SSE, with a subhorizontal σ3 

oriented ENE-WSW and a Φ value of 0.4. This first group of solutions is visible when all 55 high-

confidence data points are included (Figure 20) and when all shear veins with chlorite are included 

(Figure 21), but the cluster of solutions is much larger when shear veins hosting chl + cal ± hem ± 

qtz are considered (Figure 22). Furthermore, Φ value drops to 0.2 when pure calcite filled shear 

veins are removed (Figure 21).  The plunge of σ3 ranges from horizontal WSW to ~25° to the ENE.  

Evaluating the misfits at each end of this range shows that similar, although not identical 

combinations of faults are activated under each σ3 endmember. The shear veins that best fit this 

stress state have steep dips and slickenlines that indicate oblique normal or strike-slip movement.  

The second orientation has a σ1 direction with an azimuth orientation in the SW and a steep 

plunge of about 50o (Figure 19). The corresponding σ3 direction is the same as the ENE 

endmember in the first group; trending ENE with a ~25o plunge. When all 55 shear veins with high 

confidence slickenlines are considered there are two distinct values of Φ in this third group; 0.1 

and 0.6 meaning that the stress ellipse is either strongly oblate or triaxial (Figure 20). When pure 

calcite shear veins are removed from the data set the Φ values are 0.2 and 0.8 (Figure 21), and 

when calcite + chlorite shear veins are considered there are three values of Φ; 0.2, 0.6, and 0.8 

(Figure 22). The Φ=0.8 cluster is much smaller in the calcite + chlorite data set (Figure 22) than 

in the chlorite – calcite data set (Figure 21).  

The third orientation of stress states has a σ3 direction with an azimuth direction in the NE 

and a ~30o plunge (Figure 19). The corresponding σ1 is a great circle perpendicular to σ3 because 

the Φ value is one, meaning that σ1=σ2 and that the stress ellipse is elongated in the direction of 

σ3.  

The fourth group of stress states that fit the data has more variation in the orientation of the 

principal axes and the Φ value. The σ1 axes in the fourth group has an azimuth orientation in the 

NW and a plunge that varies from 20-60o (Figure 19). This fourth orientation is only present when 
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mono and polymineralic shear veins hosting calcite but not chlorite are considered (Figure 23) and 

when all 55 high-confidence data points are considered (Figure 20). When the data set is 

considered as a whole, there are four values of Φ (0.2, 0.3, 0.5, and 0.8), this means that stress 

ellipses with very different shapes have roughly the same orientation of principal stress axes 

(Figure 20). The main result for calcite – chlorite hosting shear veins is that there are distinct 

clusters of solutions with Φ values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) that range from uniaxial 

compression and to triaxial strain (Figure 23). Furthermore, the first two groups of orientations 

discussed are not present at all when mono and polymineralic calcite – chlorite shear veins are 

considered (Figure 23); the third group (Φ =1.0) is present but the cluster of solutions is small.  

Even though the three shear veins with multiple slickenlines were low-confidence the MIM 

was run separately with the ‘older’ and ‘younger’ slickenlines added to the full high-confidence 

dataset. When the ‘younger’ slickenlines were considered the fourth orientation group is more 

pronounced and the maximum stress is closer to horizontal. When the ‘older’ slickenline are 

considered the second and third orientations are more tightly clustered however the group four 

orientations are more scatted.  

The rotational error of each site ranges from 9.9o to 22.2o, and while shear veins from each 

site are present in the dataset, the majority come from the longest sites 287.1 - 299.6 m (942-983 

ft) and 313.9 - 324.9 m (1030-1066 ft). Therefore, the weighted directional error on each principal 

stress orientation relies heavily on the rotational error from these sites (± 22.2o and ± 21.3o, 

respectively). Results are presented in Table 3.  

4.2.3 Interpretation of Stress States 

The data presented reveals much about the structure of the geothermal system at Akutan. 

Multiple solutions for paleostress calculations show a complex deformation history with multiple 

principal stress directions and, I propose, changing magnitudes of stress. The chlorite-bearing 

shear veins that fit orientation groups one and two are interpreted to result from a stress state with 

a constant σ3 orientation and a σ1 that alternates from horizontal to steeply dipping. The calcite 

hosting shear veins that fit orientation groups three and four are interpreted to have resulted from 

changes in the relative magnitudes of sigmas 1, 2, and 3.  

Results of the MIM analysis on mono and polymineralic calcite filled shear veins show 

heterogeneous Φ and homogenous principal stress directions with σ1 in the NW and σ3 in the SW 
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(Figure 23). The range in Φ values with similar orientations of σ1 and σ3 is interpreted as the 

intermediate stress changing substantially from very close to σ1 to very close to σ3. The σ2 direction 

corresponding to the data presented in Figure 23 is oriented at approximately 125 degrees, with a 

plunge of approximately 50 degrees.  

5. Discussion and Summary 

There has been a documented increase in the heat output at the hydrothermal field in Hot 

Springs Bay valley on Akutan, Alaska (Bergfeld et al., 2014). Approximately 31 meters of drill 

core over a 145 m range within the total 390 meters of core from the TG-4 well drilled in 2010, 

has been reassembled and reoriented using remanent magnetization as an indication of geographic 

north. Two-dimensional core logs were created from three-dimensional digital reconstructions 

made with structure from motion software.  The orientation of structural features was measured 

from these two-dimensional core logs. This novel application of the Agisoft PhotoScan software 

could be used for core log creation, as in this study, or ground truthing down-hole geophysical 

logs.  

I hypothesized that if the 1996 seismic swarm caused an increase in the heat outflow of the 

hydrothermal system at HSBV by rupturing the NW trending fault system, as Bergfeld et al. (2014) 

suggested, then the NW trending set of veins would be the youngest observed in the core. This 

hypothesis proved to be too simplistic as cross cutting relations (Figure 16) and MIM analysis 

results (Figures 17-21) reveal a complicated network of structural features beneath HSBV. In 

particular, NW and NNE trending vein sets appear to be coeval and have likely ruptured repeatedly 

over the lifetime of the hydrothermal system, such as in the 1996 event. This is a small window 

into the intricacies of this system, yet the results presented above hold important information about 

recharge pathways that sustain the system. 

The mineralogy of NW striking veins in well TG-4 is predominantly pure calcite, however 

there are calcite veins with laminations of chlorite and trace amounts of quartz present as well. The 

presence of pure calcite veins indicate that the NW trending structures act locally as inflow 

pathways because the solubility of calcite decreases with increasing temperatures (Section 4). The 

wide NW trending veins with drusy calcite and apertures up to 2cm below 314 m depth are strong 
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evidence of this. Well TG-4 is outside of the main upflow region (Stelling et al., 2015) therefore 

it is reasonable to find minerology that is typically associated with the inflow.    

It is reasonable to assume two sources of stress on Akutan: tectonic and volcanic. 

Tectonic forces produced by the oblique subduction of the of the Pacific plate under the North 

American plate cause differential strain accumulation in the Aleutians that is manifested as 

partial block rotation and arc parallel extension (ENE/WSW in the eastern Aleutians) (Ave 

Lallemant and Oldow, 2000). On a more local scale, volcanic fluctuations cause dynamic 

compressional and tensional stresses to periodically overwhelm the background tectonic stresses 

(Syracuse et al., 2015; DeGrandpre et al., 2017). Dike emplacement events occur repeatedly on 

Akutan (Byers and Barth, 1953) and cause localized subsidence or inflation, as was documented 

after the 1996 seismic swarm (Lu et al., 2005).  Lu et al. (2005) modeled changes in ground 

surface morphology as the emplacement of a dike under the NW flank of the volcano parallel to 

NW striking ground cracks that were observed after the 1996 seismic event.  

Separating the MIM datasets by mineralogy reveals that chlorite filled shear veins are the 

results of heterogeneous stress, including distinct stress states with horizontal maximum and 

minimum stresses causing strike slip movement as well as stress states with steeply dipping 

maximum stress causing oblique normal faulting (Figure 21). I propose that the chlorite filled 

structures are the result of background tectonic stresses. The arc-parallel ENE/WSW orientation 

of σ3 in the chlorite and calcite data sets is consistent with the findings of Ave Lallemant and 

Oldow (2000), who documented arc-parallel extension. Because both steep and horizontal 

maximum stress directions fit the chlorite data set it might be that block rotation is intermittent, 

punctuated by periods of normal faulting. Substantial block rotation would pose an added error 

to paleomagnetic directions used for the reorientation of the core. However, since paleomagnetic 

sampling was only done at one locality (TG-4) there is no way of detecting the rotation.  

Calcite filled shear veins also result from heterogeneous stress however the orientation of 

the maximum and minimum stresses remains approximately constant while Φ values vary 

(Figure 23); this is interpreted as a dynamic stress state. I propose that the calcite filled structures 

are the result of deformation caused by volcanic activity; specifically, that dike injection caused 

the magnitude of σ2 in the group 3 paleostress orientation to increase so that σ2 ≈ σ1 resulting in 

the Φ =1.0 paleostress. The Φ =1.0 paleostress fits the same fault orientations in the core (Figure 
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20) that were mapped on the surface (Figure 24) (Stelling et al., 2015). The group 3 paleostress 

orientation could represent the initial rupturing in a dike emplacement event. Although there is 

no way to link these exact shear veins to the 1996 event, the dynamic stress state recorded as the 

group 3 paleostress fits with our expectations for a stress state influenced by volcanic forces. The 

changing Φ values in the group 4 paleostress fit the NE and SW dipping oblique normal faults 

(Figure 20, 23), primarily filled with calcite. This could represent subsidence or settling of the 

hydrothermal system, such as that which was documented in the years following the 1996 

seismic swarm (Lu et al, 2005). Results of the MIM analysis may document the link between 

volcanic activity and hydrothermal recharge events in HSBV. 

This work clarifies some of the outstanding questions in the literature considering HSBV 

and Akutan volcano. Stelling et al. (2015) interpreted the geothermal reservoir to be approximately 

below the fumaroles at the head of the upper arm of HSBV. Kolker et al. (2012) proposed two 

possible outflow paths either to the south and east following the valley floor or north and east 

under Mt. Formidable. DeGrandpre et al., (2017) used geodetic data from five time frames (pre-

2008, 2009-2013, 2014, and post 2014) to model sources of inflation. Low Vp and a high Vp/Vs 

values from Syracuse et al., (2015) and high rates of vertical displacement recorded during 2008 

and 2014 with no subsidence documented after either inflation event indicates that a large amount 

of magma (~0.2km3) is being stored in a mush zone centered beneath the northeastern rim of the 

caldera at 7-8km depth (Figure 24) (Syracuse et al., 2015; DeGrandpre et al., 2017). Injection or 

removal of material from this long term storage chamber causes brittle deformation at its edges 

(Syracuse et al., 2015), as seen during the 1996 dike emplacement that removed material from the 

magma chamber resulting in the seismic swarm. From this work I can add that in the vicinity of 

HSBV normal faulting on NW trending faults is linked to the brittle deformation caused by 

removal of material from this shallow magma chamber and has the effect of creating permeable 

inflow pathways to the hydrothermal system possibly contributing the increased energy output that 

(Bergfeld et al., 2014) recorded. However, permeability is not the only thing responsible for 

increased energy output in hydrothermal systems. (Bergfeld et al., 2014) attributed the increase in 

heat output to the 1996 event, such longevity would require a large addition of heat. The episodic 

injections modeled by DeGrandpre et al., (2017) have likely added heat to the HSBV system 

multiple times throughout the last decade and Syracuse et al. (2015) has documented relatively 

little seismicity in HSBV since 1996. Therefore, magmatic heat is being added with little fracturing 
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and therefore only modest increases in permeability since the 1996 event. Based on the record of 

sustained volcanic activity at Akutan, it is likely that this process of relatively aseismic magma 

injection from depth and shallow brittle failure from dike injection will continue in the future.  

Because well TG-4 is located on the southern periphery of the inflow and outflow systems 

I can only speculate about the structures that conduct the heated geothermal fluids from the 

reservoir to the surface. It is possible that the outflow is diffuse, utilizing the network of NW and 

NNE trending faults that repeatably rupture because of tectonic stresses. Furthermore, weak 

lithologies likely accommodate fracturing and concentrate the outflow into sheets. There are three 

prominent structural orientations mapped on the surface surrounding the TG-4 site (WNW/ESE, 

NE/SW, and E/W). Cross-cutting relation data (Figure 16.F) include veins with NW/SE, N/S, and 

a smaller number of E/W and NE/SW orientations. The relative lack of E/W and NE/SW trending 

structures in the core could indicate that the E/W and NE/SW trending structures are inactive at 

the TG-4 locality. The NE trending line of hot springs in HSBV (Figure 1, Figure 24) defines a 

proposed fault (Stelling et al. 2015). Syracuse et al. (2015) reported relocated seismic epicenters 

at around 6km depth along the same trend but slightly SE of the proposed NE trending fault. This 

may suggest a SE dipping fault parallel to the valley wall. The southeastern block of the proposed 

NE trending fault might be an impermeable layer that concentrates the diffuse flow, as there are 

no hot springs to the south of the proposed fault. Further analysis of the wells located in the outflow 

path, TG-2 and TG-3, is necessary in order to test these ideas. 
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Tables 

Table 1: Results of demagnetization analysis for selected sites in core TG4 

 

Inclination Declination

589-2A AF Cryo 90 2 -82.62 218.07 0.72

589-2B AF Cryo 90 2 - - -

589-2C Thermal Cryo 600 2 - - -

589-2D AF Cryo 90 2 -84.94 155.22 0.58

589-2E Thermal Spinner 568 2 -81.29 131.11 0.51

589-2F AF Spinner 100 2 - - -

594-2A Thermal Spinner 602 2 -69.98 155.9 0.59
594-2B AF Spinner 70 2 - - -

594-2C Thermal Spinner 602 2 -69.98 145.74 3.34

594-2D AF Spinner 90 2 -72.62 136.29 1.52

594-2E Thermal Spinner 602 2 -63.26 126.11 0.55

594-2F AF Spinner 110 2 -60.63 114.31 2.18

839-1.5A AF Cryo 70 2 -65.65 4.29 1.36

839-1.5B Thermal Cryo 600 2 -58.05 1.7 0.67

839-1.5C AF Cryo 70 2 -57.57 357.07 2.16

839-2A Thermal Cryo 600 2 -63.44 13.45 1.31

839-2B AF Cryo 70 2 -67.45 0.3 1.06

947-10A AF Cryo 60 2 - - -
947-10B AF Cryo 70 2 - - -
947-10C AF Cryo 70 2 - - -
955-9A AF Cryo 70 1 - - -

955.5-11A AF Cryo 70 1 - - -

955.5-11B AF Cryo 70 1 - - -

957-15A AF Spinner 35 2 - - -

957-15B AF Cryo 40 2 - - -

957-15C AF Cryo 40 2 - - -

965.5-11A Thermal Cryo 395 2 73.03 248.45 1.67
965.5-11B AF Cryo 35 2 82.44 209.03 1.69

965.5-11C Thermal Cryo 420 2 71.86 247.82 5.24

965.5-11D AF Cryo 30 1 - - -

965.5-11E Thermal Cryo 449 2 69.46 234.93 5.47

965.5-11F AF Cryo 30 2 79.59 214.89 2.73
971-2A AF Spinner 20 2 75.91 186.83 0.74
971-2B AF Cryo 50 2 69.54 207.82 4.52

971-2C AF Spinner 35 2 64.1 212.88 2.24

1024-2A Thermal Spinner 569 1 - - -

1024-2B
Thermal 

pilot
Spinner 570 1 - - -

1024-2C AF Spinner 570 2 74.9 240.65 1.19

1024-2D Thermal Spinner 15 2 79.28 177.02 1.7

1024-2E AF Spinner 570 2 75.78 226.31 1.55

1024-2F Thermal Spinner 15 2 - - -

1041-16A Thermal Cryo 500 3 -64.67 200.39 1.93
1041-16B AF Cryo 15 1 - - -

1041-16C Thermal Cryo 390 3 -53.07 207.69 4.73

1041-16D AF Cryo 15 1 - - -

1041-16E Thermal Cryo 500 2 - - -

1041-16F AF Cryo 15 1 - - -
1042-1A AF Cryo 40 2 -61.48 210.22 4.66

1042-1B AF Cryo 40 2 -75.92 211.83 2.88

1042-1C AF Cryo 40 2 -72.98 214.96 3.72
1053-4A AF Cryo 40 2 - - -

1053-4B AF Spinner 50 2 - - -
1064-4A AF Spinner 50 2 - - -
1064-4B AF Spinner 30 2 - - -
1064-4C AF Spinner 30 2 - - -

1065-16A AF Spinner 30 2 - - -

1065-16B AF Spinner 30 2 - - -

1065-16C AF Spinner 25 2 - - -
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Note: Full list of sites listed in appendix B. Cryo= cryogenic magnetometer. Max T= maximum 

temperature (Co) reached in thermo-demagnetization. Max Field= maximum magnetic field (mT) 

reached in alternating field demagnetization. In observation and interpretation columns I= 

inclination, D= declination. A (-) in the Chosen vector columns indicates no vector was used from 

that sample. The maximum angular deviation (MAD3) angle is a measure of data alignment in a 

vector, with smaller angles indicating less spread in the data.  

 

Table 2. Inclination and declination of site means calculated by fisher statistics 

 

Note: Alpha95 is the radius of 95% confidence. The precision parameter (k) is a measure of 

dispersion with higher values indicating more tightly clustered directions. 
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Table 3. Results of the multiple inverse method on shear veins separated by mineralogy.  
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Table A1. List of sample masses. 

 

Note: Sample weights in kg, for representative samples. Samples are named by depth in feet with 

postscript P=powdered and Ch=chip samples. 

 

  

Sample Mass (kg) Sample Mass (kg) Sample Mass (kg)

414.5Ch 1.07E-04 965Ch 3.69E-05 1107Ch 5.02E-05

414.5P 1.16E-04 965P 5.36E-05 1107P 7.43E-05

589Ch 3.53E-05 971Ch 1.03E-04 1161Ch 2.04E-05

589P 1.20E-04 971P 1.34E-04 1161P 1.10E-04

828Ch 1.07E-04 1042Ch 3.88E-05 1271Ch 5.12E-05

828P 1.19E-04 1042P 1.20E-04 1271P 8.65E-05
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Figures 

 

Figure 1. Map of A) Akutan in relation to Alaska denoted by the red star; B) the location of Hot 

Springs Bay valley (HSBV), on Akutan Island (red box) and Trident Seafoods processing plant 

(red star); C) the location of well TG-4 and structural and geothermal features within HSBV. MF 

= Mt. Formidable. Modified from Stelling et al. 2015. 
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Figure 2. Mass normalized hysteresis loops with high field corrections for representative samples. 

Samples are named by depth in feet with postscript P=powdered and Ch=chip samples. See 

appendix A for full laboratory procedure.  
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Figure 3. IRM data (left column) and results of unmixing of IRM curves (center and right columns) 

for representative samples. In the center column the magnetic components are represented by the 

different colored curves, the mean result is denoted by the dark central lines and the 95% 

confidence limits by the lighter shaded regions. Black points are the original data and the yellow 

curve is the model. Numerical results (right column) of unmixed IRM curves for representative 

chip samples are highlighted in the color that corresponds to component curves in the center 

column. OC=observed contribution. EC=extrapolated contribution. The “.sd” is the standard 

deviation of error of whatever precedes it. Samples are named by depth in feet with the postscripts 

Ch=chip sample. 
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Figure 3. Continued 
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Figure 3. Continued 
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Figure 4. Day plot of representative samples from HSBV. SD=single-domain, PSD= pseudosingle-

domain, MD=multi=domain. Mixing curves for magnetite (dash-double-dot lines) are presented 

following the theory of Day et al. (1977) after Dunlop (2002). 

 



40 
 

 

Figure 5. Cartoon showing the position of plug samples for paleomagnetic analysis relative to the 

false north mark (N’), and a representation of fractures in the 3-D and “unrolled” 2-D states. The 

height (h) of the sinusoid and the distance from N’ to the inflection point (Ɵ) are used to calculate 

the strike and dip of structural features from the 2-D scans. 
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Figure 6. Core log of well TG-4 showing lithology (colored blocks), breaks in run lengths 

(horizontal black lines), flow contacts between like lithologies (dashed lines), depth intervals of 

core that were not reassembled (i.e. no N’ mark) (exed out), number of samples for paleomagnetic 

analysis and their location (red circles), depth intervals of core that have been photographed 

(slanted lines), and depth intervals where 2d core images have been created (cross hatch). 



42 
 

Figure 6. Continued. 
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Figure 6. Continued. 
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Figure 7. Zijderveld plots and demagnetization curves for representative components within the 

tuff lithology.   
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Figure 8. Zijderveld plots and demagnetization curves for representative components within the 

andesite lithology. 
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Figure 8. Continued. 
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Figure 9. Zijderveld plots and demagnetization curves for representative components within the 

basalt lithology. 
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Figure 10. Site means (filled and hollow circles) of paleomagnetic directions (filled and hollow 

diamonds) and their reorientation error (dotted wedge outline) as calculated by Equations 1-3. The 

reorientation error is passed on to structural data (solid gray wedge) as the site means are rotated 

back to geographic north. The α95 of each site is marked by a dashed circle. Note that stereonets 

are cut off at 50o plunge to show detail. 



49 
 

Figure 11. Zijderveld plots for specimens 965-11E (left) and 971-2C (right), and stereonet for the 

287.1-299.6 m site (center). The first component of sample 965 aligns with the second component 

in the 971 sample. Selected components are outlined in dashed bleu lines. Demagnetization steps 

that were selected for PSA analysis are red.  
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Figure 12. Comparison of calculated and measured dip (left) and strike (right) data. Data are 

normalized by 90 for dip data and by 360 for strike data. Trend lines have a y intercept set to the 

origin.  

 

Figure 13. Poles to planes of structural features measured in the core before reorientation by 

paleomagnetic directions (left) and after reorientation (right). Kamb contours have a significance 

level of 3 sigma and an interval of 2. N indicates the number of measurements presented. 
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Figure 14. Stereonets of poles to planes and depth vs strike plots for veins that A) have no 

mineralization on the fracture, B) all veins, C) veins that are ≤1mm, D) 2-4mm, E) 5-9mm, and F) 

>10mm in width. C-F are subsets of the data presented in B. N indicates the number of 

measurements. Kamb contours in the stereonets have a significance level of 3 sigma and an interval 

of 2. N indicates the number of measurements presented. Note the scale breaks on depth versus 

strike plots.  
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Figure 15. Micrographs taken in plain polarized light of monomineralic (4-83-542 top right) and 

polymineralic (4-83-542 top left, 4-114-1049, 4-160-1911b) veins within reoriented sections of 

the TG-4 core. Polymineralic veins show evidence of crack-seal mineral growth in the form of 

symmetrical mineral laminations in 4-144-1049 and 4-160-1911b, and vein material on either side 

of an aperture in 4-83-542 (top left). Cal=calcite, Chl=chlorite, Hem=hematite. Host rock in each 

image is black to dark brown with phenocrysts of plagioclase.   
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Figure 16. Stereonets of poles to planes and strike vs depth plots for veins that are filled with A) 

only calcite, B) only chlorite, C) quartz, D) partial mineralization with aperture, E) structures that 

are cross cut (i.e. the ‘older’ generation of veins) F) structures that are cross cutting other (i.e. the 

‘younger’ generation of structures). All data are subsets of the data presented in 13.B. N indicates 

the number of measurements presented. Kamb contours on the stereonets have a significance level 

of 3 sigma and an interval of 2. Note the scale breaks on depth versus strike plots. 



54 
 

 

Figure 17. Stereonets showing the orientation of shear veins (great circles) and relative movement 

of the hanging wall (arrows) as indicated by the slickenline rake (small circles) for A) shear veins 

with high confidence slickenfibers, and B-F) sub-sets of A separated by mineralogy. Calcite=cal, 

chlorite=chl, quartz=qtz, hematite=hem, biotite=bt. N= number of structures plotted.  
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Figure 18. Shear veins with multiple slickenlines. Arrows point in the direction of hanging wall 

movement as indicated by slickenlines. Cross cutting slickenlines are indicated by filled arrows 

and cross-cut slickenlines are marked by hollow arrows.  
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Figure 19. Results of MIM analysis for high-confidence shear veins. Orientation groups are circled 

in black. See text for orientation group descriptions. Sigma 1 directions are plotted on the left and 

sigma 3 directions are plotted on the right. Squares indicate directions and the line extending out 

of each square points in the azimuth direction of the paired direction in the other plot. Longer lines 

indicate a paired direction with a shallower plunge. All orientations have a directional error of ± 

20.7o. The error on the plunge can be estimated by the vertical spread of each solution cluster. 

Colors indicate the Φ value with purple = 0.0 and red = 1.0. Dispersion factor = 2 and enhancement 

=10. 
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Figure 20. Results of the multiple inverse method (MIM) on all high-confidence shear veins (top, 

see Figure caption 19 for explanation). Dashed lines demarcate solution clusters picked for error 

analysis. The numbered arrows pointing to each cluster are the Φ values picked for that cluster. 

N= the number of samples. The small stereonets (central) show shear vein orientation (great 

circles) and slickenline movement indicators (arrows on the great circles) of the hanging wall. The 

number bellow and to the left of each stereonet corresponds to the Φ value of the solution cluster 

picked from the MIM results (top). ‘ss’ after the Φ value = strike slip. Black orientation data have 

movement indicators within 30° of the theoretical movement for that fault orientation, given the 

principal stress directions (σ1= red triangle, σ3= red star) and Φ value picked (i.e. the misfit). Gray 

orientation data have misfits >30°. Bright green circles denote theoretical movement given fault 

orientation, principal stress directions, and Φ value. The histogram (bottom) compares the misfits 

of each solution. Bin size =15°. 
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Figure 21. MIM results for all chlorite ± calcite ± hematite ± biotite ± quartz filled shear veins. 

See figure caption 20 for explanation.  

(°) 
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Figure 22. MIM results for all chlorite + calcite filled shear veins. See figure caption 20 for 

explanation. 

(°) 
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Figure 23. MIM results for all calcite ± hematite ± biotite ± quartz - chlorite filled shear veins. See 

figure caption 20 for explanation. 

(°) 
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Figure 24. A) Map of Akutan showing mapped faults (dashed lines) (Stelling et al., 2015) in 

relation to the TG-4 well site, ground cracks and the modeled dike intrusion (orange rectangle)(Lu 

et al., 2005).  Orange circle represents the modeled mush zone at 7-8km depth of (DeGrandpre et 

al., 2017). Elevation between topographic lines (brown) is 500 ft. (Richter et al., 1998). B) Inset 

map of Hot Springs Bay Valley shows the relation of well TG-4 to mapped faults and geothermal 

surface expressions such as fumaroles (hollow green circles) and hot springs (solid green circles). 
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Appendix A 

A1. Rock Magnetism 

A1.1 Sample Preparation 

Samples were powdered with a marble mortar and pestle and placed in plastic pill casings; 

these were pressed onto the end of the sample holder. Chip samples were adhered to the sample 

holder with a silicone gel. 

A1.2 Hysteresis 

To create the hysteresis loops, samples were exposed from a zero field to a 1T field in 

250mT steps. The direction of the field was then switched, and the magnetic moment of the sample 

was measured by the VSM. The magnetic moment is plotted vs. the strength of the field in Figure 

2. Magnetic saturation (Ms) is the moment that a sample has when all the available magnetic 

domains have been aligned. Ms is visible in the hysteresis loops as the horizontal signal at high 

fields. It is important to note that the Ms is measured in the presence of a magnetic field. The 

magnetic remanence (Mr) is the moment that the sample has when the field is returned to zero. Mr 

represents the highest possible moment that the sample could retain in nature and is read off the 

vertical axis on the downward curve. The Magnetic coercivity (Hc) is the maximum field that a 

material can withstand without becoming magnetized, or demagnetized. Hc is read off the 

hysteresis loop where the loops crossed the horizontal axis. All these parameters are inputs in the 

Day plot (Figure 4), which is used to distinguish the domain states of the minerals present.  

A1.3 Induced Remanent Magnetization (IRM) 

The IRM curves are a measure of the total magnetization a sample could possibly hold in 

nature, as opposed to the Mr which is measured in the presence of a magnetic field. The VSM was 

used to measure IRM in the nine representative chip samples. Samples were exposed to 

increasingly high fields for 1 second, followed by a 0.5 second period of measurement in zero 

field. 

A2. Demagnetization 

A2.1 Sampling Method 

Sample ID numbers are grouped in a hierarchy by locality, site, sample, and specimen. 

Each core is a locality, each run in the core is a site, each flow unit in that run is a sample, and 

each individual paleomagnetic cylinder drilled from the core is a specimen with the naming 
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scheme: (footage)-(piece number in the box)(specimen in sample).Six plug samples were drilled 

in each run that hosted an appropriate lithology. If the run had multiple lithologic units appropriate 

for sampling, three specimens were taken from each unit. A false north (N’) was drawn along the 

length of each core run, and samples were drilled relative to the false north mark through the center 

of the core, so that the positive x direction on each specimen is parallel to N’ and in the up-core 

direction (Figure 5). Specimens were cut using a diamond tipped band saw to obtain a cylinder 22 

mm high and 24.7 mm in diameter from the center of the core. The plug samples were taken from 

the center of the core to minimize any drill induced remagnetization that could have affected the 

outside of the core, as suggested by Pinto and McWilliams (1990). When the plug samples were 

drilled out of the core, the up-core direction was alternated between north and south every other 

sample. This was done so that any magnetization the samples might pick up due to drilling in the 

present field is averaged out when the group of samples is taken as a whole. Similarly, when the 

plug samples were cut with the diamond saw, one side was cut with the z direction pointing up and 

the other side was cut with the z direction pointing down. 

A2.2 Measuring AMS  

The anisotropy of magnetic susceptibility (AMS) was measured with the Kappa Bridge in 

the PNWPL. The ‘sampling angle’ was set to 0 degrees’ azimuth and 90 degrees down from 

vertical (hade) for all specimens, resulting in horizontally-drilled samples throughout the core. 

Because the declination of the runs was unknown prior to analysis the azimuth of the sample, the 

false north mark was defined as 0 degrees.  

A2.3 Alternating Field Demagnetization  

Half of the specimens from the samples with six specimens and all the specimens from the 

additional samples were demagnetized with increasing alternating field strength in the D-Tech 2000 AF 

(de)magnetizer. After the first demagnetization at 1 mT the field was increased to 2.5 mT and increased in 

steps of 2.5 until 10 mT. From 10 to ~40mT the demagnetization steps were 5 mT. 10 mT steps were used 

from ~40 mT until the sample had <10% of its original magnetization. For each demagnetization step the 

samples were placed in the alternating field with each axis parallel to the field. The order in which the axes 

were demagnetized varied with each step so that any acquired magnetization was averaged out. Specimens 

with high magnetic moments were measured on the spinner magnetometer and all other samples were 

measured on the 3-axis 2-G Enterprises model 755 cryogenic magnetometer. See Table 1 for reference.  
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A2.4 Thermal Demagnetization 

A common occurrence in thermally treated rocks is the growth of goethite (FeOOH) and 

hematite (Fe2O3), which can obscure the true magnetic signal of a material. These minerals 

produce a softer signal than primary minerals such as magnetite (Fe3O4) so it is therefore unlikely 

that the signal will be completely overprinted. However, due to the limited number of available 

sampling sites, secondary mineral growth was tested. To this end, a pilot study was done to test 

the effects of heating in the presence of free oxygen. Two identical sets of specimens were selected 

from the core; all lithologies were represented. The first set of specimens were demagnetized in 

air and the second were demagnetized in an Argon atmosphere. There are two ovens in the 

PNWPL; the TD48 (upper) oven and the TD48SC (lower) oven, the latter of which has 

atmospheric controls. The magnetic field inside each oven can be measured with the digital 

magnetometer model DM 2220 and if it is higher than ~0.02 mT the oven should be demagnetized. 

This is done by passing an alternating field through the coils. The field is slowly ramped up to and 

down from 40 volts; the process is repeated three times. Argon was used to cool the specimens in 

the lower oven until they reach 300 oC, after which air was used to cool until the specimens could 

be handled. The temperature steps start at 120 oC and increased over 17 steps of 30 oC increments 

until the sample reached 600 oC. Between each thermal step the magnetic susceptibility and 

remanence were measured on the Bartington and cryogenic magnetometers, respectively. Any 

difference in the susceptibility trends between the two sets of specimens indicates growth of 

magnetic minerals. No significant difference was observed between the set demagnetized in air 

and the set demagnetized in argon, therefore mineral growth due to oxidation is not a significant 

enough effect on the magnetic remanence to warrant demagnetization in Argon. Following the 

results of the thermal test the rest of the specimens from the six specimen samples were 

demagnetized in the upper oven in air.  

A3. Core log Creation 

A3.1 Image Collection  

Each selected core run was photographed with a Nikon COOLPIX B500 digital camera. 

The core segments were placed on a rack with a green screen background. The green screen was 

connected on both ends to two dowels that could be rotated, in this way when the green screen was 

rolled up on the dowel it rotated the core which was resting on it. This set up allowed for images 

to be taken at all angles around the core segments. The quality of the model produced is directly 
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related to the quality of the images inputted. Images need to be in focus and with at least 50% 

overlap, taken at varied focal lengths and angles. For this work I found that taking images around 

the circumference and length of the core in a ‘zig-zag’ pattern as well as orthogonal to the core 

produced the best results. The images taken in a ‘zig-zag’ pattern around the core maximized the 

degree of curvature able to be reconstructed and the images taken orthogonal to the length of the 

core kept the model from being curved around an axis perpendicular to the length of the core, as 

often happens when images taken at low angles to the subject are used in the reconstruction.  

A3.2 Masking 

Masking can be done by hand in the Agisoft PhotoScan software. This is, however, time 

consuming and tedious. A python script written by Daniel Fagerlie, a computer science 

undergraduate student at Western Washington University, was used to automate the process. The 

script identifies all the green pixels in an image and classifies them as black. The rest of the image 

is classified as white. An additional algorithm is used to smooth the boundary between the black 

and white pixels, and finally the image is saved with the file name original image name_mask.png 

in a folder of the users choosing.  

A3.3 Agisoft PhotoScan Workflow 

The fundamental Agisoft workflow is well established. The images were loaded, masks 

imported, photos aligned, and dense point clouds generated with the batch processing tool. The 

software is capable of stitching ~4 feet and 30 degrees of core together at a time. The unaligned 

photographs were moved to a new workspace, called a ‘chunk’ in the Agisoft software, and 

processed to the dense point cloud stage. This was repeated until the entire core was represented, 

albeit in separate chunks. Markers were manually placed on reference points on models in different 

chunks and the “align by marker” and “merge chunks” tools were used to stich the model segments 

together. Once combined, the ball-and-stick model and texture were generated with the batch 

processing tool.  Before the orthomosaic was created the bounding box was reduced to just fit the 

model with the positive z direction pointing up-core. The orthomosaic was created using a 

cylindrical projection using the current region setting. This way the axis of the projection is parallel 

to the axis of the core. The 2-dimentsional projections of the textured model were exported as 

.PNG files. 
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